1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Arrays.h" 23 #include "lld/Common/Filesystem.h" 24 #include "lld/Common/Memory.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/Parallel.h" 29 #include "llvm/Support/RandomNumberGenerator.h" 30 #include "llvm/Support/SHA1.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 // ".text.split." holds symbols which are split out from functions in other 135 // input sections. For example, with -fsplit-machine-functions, placing the 136 // cold parts in .text.split instead of .text.unlikely mitigates against poor 137 // profile inaccuracy. Techniques such as hugepage remapping can make 138 // conservative decisions at the section granularity. 139 if (config->zKeepTextSectionPrefix) 140 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 141 ".text.startup.", ".text.exit.", ".text.split."}) 142 if (isSectionPrefix(v, s->name)) 143 return v.drop_back(); 144 145 for (StringRef v : 146 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 147 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 148 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 149 if (isSectionPrefix(v, s->name)) 150 return v.drop_back(); 151 152 return s->name; 153 } 154 155 static bool needsInterpSection() { 156 return !config->relocatable && !config->shared && 157 !config->dynamicLinker.empty() && script->needsInterpSection(); 158 } 159 160 template <class ELFT> void elf::writeResult() { 161 Writer<ELFT>().run(); 162 } 163 164 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 165 auto it = std::stable_partition( 166 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 167 if (p->p_type != PT_LOAD) 168 return true; 169 if (!p->firstSec) 170 return false; 171 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 172 return size != 0; 173 }); 174 175 // Clear OutputSection::ptLoad for sections contained in removed 176 // segments. 177 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 178 for (OutputSection *sec : outputSections) 179 if (removed.count(sec->ptLoad)) 180 sec->ptLoad = nullptr; 181 phdrs.erase(it, phdrs.end()); 182 } 183 184 void elf::copySectionsIntoPartitions() { 185 std::vector<InputSectionBase *> newSections; 186 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 187 for (InputSectionBase *s : inputSections) { 188 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 189 continue; 190 InputSectionBase *copy; 191 if (s->type == SHT_NOTE) 192 copy = make<InputSection>(cast<InputSection>(*s)); 193 else if (auto *es = dyn_cast<EhInputSection>(s)) 194 copy = make<EhInputSection>(*es); 195 else 196 continue; 197 copy->partition = part; 198 newSections.push_back(copy); 199 } 200 } 201 202 inputSections.insert(inputSections.end(), newSections.begin(), 203 newSections.end()); 204 } 205 206 void elf::combineEhSections() { 207 llvm::TimeTraceScope timeScope("Combine EH sections"); 208 for (InputSectionBase *&s : inputSections) { 209 // Ignore dead sections and the partition end marker (.part.end), 210 // whose partition number is out of bounds. 211 if (!s->isLive() || s->partition == 255) 212 continue; 213 214 Partition &part = s->getPartition(); 215 if (auto *es = dyn_cast<EhInputSection>(s)) { 216 part.ehFrame->addSection(es); 217 s = nullptr; 218 } else if (s->kind() == SectionBase::Regular && part.armExidx && 219 part.armExidx->addSection(cast<InputSection>(s))) { 220 s = nullptr; 221 } 222 } 223 224 std::vector<InputSectionBase *> &v = inputSections; 225 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 226 } 227 228 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 229 uint64_t val, uint8_t stOther = STV_HIDDEN) { 230 Symbol *s = symtab->find(name); 231 if (!s || s->isDefined()) 232 return nullptr; 233 234 s->resolve(Defined{/*file=*/nullptr, name, STB_GLOBAL, stOther, STT_NOTYPE, 235 val, 236 /*size=*/0, sec}); 237 return cast<Defined>(s); 238 } 239 240 static Defined *addAbsolute(StringRef name) { 241 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 242 STT_NOTYPE, 0, 0, nullptr}); 243 return cast<Defined>(sym); 244 } 245 246 // The linker is expected to define some symbols depending on 247 // the linking result. This function defines such symbols. 248 void elf::addReservedSymbols() { 249 if (config->emachine == EM_MIPS) { 250 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 251 // so that it points to an absolute address which by default is relative 252 // to GOT. Default offset is 0x7ff0. 253 // See "Global Data Symbols" in Chapter 6 in the following document: 254 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 255 ElfSym::mipsGp = addAbsolute("_gp"); 256 257 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 258 // start of function and 'gp' pointer into GOT. 259 if (symtab->find("_gp_disp")) 260 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 261 262 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 263 // pointer. This symbol is used in the code generated by .cpload pseudo-op 264 // in case of using -mno-shared option. 265 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 266 if (symtab->find("__gnu_local_gp")) 267 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 268 } else if (config->emachine == EM_PPC) { 269 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 270 // support Small Data Area, define it arbitrarily as 0. 271 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 272 } else if (config->emachine == EM_PPC64) { 273 addPPC64SaveRestore(); 274 } 275 276 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 277 // combines the typical ELF GOT with the small data sections. It commonly 278 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 279 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 280 // represent the TOC base which is offset by 0x8000 bytes from the start of 281 // the .got section. 282 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 283 // correctness of some relocations depends on its value. 284 StringRef gotSymName = 285 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 286 287 if (Symbol *s = symtab->find(gotSymName)) { 288 if (s->isDefined()) { 289 error(toString(s->file) + " cannot redefine linker defined symbol '" + 290 gotSymName + "'"); 291 return; 292 } 293 294 uint64_t gotOff = 0; 295 if (config->emachine == EM_PPC64) 296 gotOff = 0x8000; 297 298 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 299 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 300 ElfSym::globalOffsetTable = cast<Defined>(s); 301 } 302 303 // __ehdr_start is the location of ELF file headers. Note that we define 304 // this symbol unconditionally even when using a linker script, which 305 // differs from the behavior implemented by GNU linker which only define 306 // this symbol if ELF headers are in the memory mapped segment. 307 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 308 309 // __executable_start is not documented, but the expectation of at 310 // least the Android libc is that it points to the ELF header. 311 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 312 313 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 314 // each DSO. The address of the symbol doesn't matter as long as they are 315 // different in different DSOs, so we chose the start address of the DSO. 316 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 317 318 // If linker script do layout we do not need to create any standard symbols. 319 if (script->hasSectionsCommand) 320 return; 321 322 auto add = [](StringRef s, int64_t pos) { 323 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 324 }; 325 326 ElfSym::bss = add("__bss_start", 0); 327 ElfSym::end1 = add("end", -1); 328 ElfSym::end2 = add("_end", -1); 329 ElfSym::etext1 = add("etext", -1); 330 ElfSym::etext2 = add("_etext", -1); 331 ElfSym::edata1 = add("edata", -1); 332 ElfSym::edata2 = add("_edata", -1); 333 } 334 335 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 336 for (BaseCommand *base : script->sectionCommands) 337 if (auto *sec = dyn_cast<OutputSection>(base)) 338 if (sec->name == name && sec->partition == partition) 339 return sec; 340 return nullptr; 341 } 342 343 template <class ELFT> void elf::createSyntheticSections() { 344 // Initialize all pointers with NULL. This is needed because 345 // you can call lld::elf::main more than once as a library. 346 memset(&Out::first, 0, sizeof(Out)); 347 348 // Add the .interp section first because it is not a SyntheticSection. 349 // The removeUnusedSyntheticSections() function relies on the 350 // SyntheticSections coming last. 351 if (needsInterpSection()) { 352 for (size_t i = 1; i <= partitions.size(); ++i) { 353 InputSection *sec = createInterpSection(); 354 sec->partition = i; 355 inputSections.push_back(sec); 356 } 357 } 358 359 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 360 361 in.shStrTab = make<StringTableSection>(".shstrtab", false); 362 363 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 364 Out::programHeaders->alignment = config->wordsize; 365 366 if (config->strip != StripPolicy::All) { 367 in.strTab = make<StringTableSection>(".strtab", false); 368 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 369 in.symTabShndx = make<SymtabShndxSection>(); 370 } 371 372 in.bss = make<BssSection>(".bss", 0, 1); 373 add(in.bss); 374 375 // If there is a SECTIONS command and a .data.rel.ro section name use name 376 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 377 // This makes sure our relro is contiguous. 378 bool hasDataRelRo = 379 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 380 in.bssRelRo = 381 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 382 add(in.bssRelRo); 383 384 // Add MIPS-specific sections. 385 if (config->emachine == EM_MIPS) { 386 if (!config->shared && config->hasDynSymTab) { 387 in.mipsRldMap = make<MipsRldMapSection>(); 388 add(in.mipsRldMap); 389 } 390 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 391 add(sec); 392 if (auto *sec = MipsOptionsSection<ELFT>::create()) 393 add(sec); 394 if (auto *sec = MipsReginfoSection<ELFT>::create()) 395 add(sec); 396 } 397 398 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 399 400 for (Partition &part : partitions) { 401 auto add = [&](SyntheticSection *sec) { 402 sec->partition = part.getNumber(); 403 inputSections.push_back(sec); 404 }; 405 406 if (!part.name.empty()) { 407 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 408 part.elfHeader->name = part.name; 409 add(part.elfHeader); 410 411 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 412 add(part.programHeaders); 413 } 414 415 if (config->buildId != BuildIdKind::None) { 416 part.buildId = make<BuildIdSection>(); 417 add(part.buildId); 418 } 419 420 part.dynStrTab = make<StringTableSection>(".dynstr", true); 421 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 422 part.dynamic = make<DynamicSection<ELFT>>(); 423 if (config->androidPackDynRelocs) 424 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 425 else 426 part.relaDyn = 427 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 428 429 if (config->hasDynSymTab) { 430 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 431 add(part.dynSymTab); 432 433 part.verSym = make<VersionTableSection>(); 434 add(part.verSym); 435 436 if (!namedVersionDefs().empty()) { 437 part.verDef = make<VersionDefinitionSection>(); 438 add(part.verDef); 439 } 440 441 part.verNeed = make<VersionNeedSection<ELFT>>(); 442 add(part.verNeed); 443 444 if (config->gnuHash) { 445 part.gnuHashTab = make<GnuHashTableSection>(); 446 add(part.gnuHashTab); 447 } 448 449 if (config->sysvHash) { 450 part.hashTab = make<HashTableSection>(); 451 add(part.hashTab); 452 } 453 454 add(part.dynamic); 455 add(part.dynStrTab); 456 add(part.relaDyn); 457 } 458 459 if (config->relrPackDynRelocs) { 460 part.relrDyn = make<RelrSection<ELFT>>(); 461 add(part.relrDyn); 462 } 463 464 if (!config->relocatable) { 465 if (config->ehFrameHdr) { 466 part.ehFrameHdr = make<EhFrameHeader>(); 467 add(part.ehFrameHdr); 468 } 469 part.ehFrame = make<EhFrameSection>(); 470 add(part.ehFrame); 471 } 472 473 if (config->emachine == EM_ARM && !config->relocatable) { 474 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 475 // InputSections. 476 part.armExidx = make<ARMExidxSyntheticSection>(); 477 add(part.armExidx); 478 } 479 } 480 481 if (partitions.size() != 1) { 482 // Create the partition end marker. This needs to be in partition number 255 483 // so that it is sorted after all other partitions. It also has other 484 // special handling (see createPhdrs() and combineEhSections()). 485 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 486 in.partEnd->partition = 255; 487 add(in.partEnd); 488 489 in.partIndex = make<PartitionIndexSection>(); 490 addOptionalRegular("__part_index_begin", in.partIndex, 0); 491 addOptionalRegular("__part_index_end", in.partIndex, 492 in.partIndex->getSize()); 493 add(in.partIndex); 494 } 495 496 // Add .got. MIPS' .got is so different from the other archs, 497 // it has its own class. 498 if (config->emachine == EM_MIPS) { 499 in.mipsGot = make<MipsGotSection>(); 500 add(in.mipsGot); 501 } else { 502 in.got = make<GotSection>(); 503 add(in.got); 504 } 505 506 if (config->emachine == EM_PPC) { 507 in.ppc32Got2 = make<PPC32Got2Section>(); 508 add(in.ppc32Got2); 509 } 510 511 if (config->emachine == EM_PPC64) { 512 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 513 add(in.ppc64LongBranchTarget); 514 } 515 516 in.gotPlt = make<GotPltSection>(); 517 add(in.gotPlt); 518 in.igotPlt = make<IgotPltSection>(); 519 add(in.igotPlt); 520 521 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 522 // it as a relocation and ensure the referenced section is created. 523 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 524 if (target->gotBaseSymInGotPlt) 525 in.gotPlt->hasGotPltOffRel = true; 526 else 527 in.got->hasGotOffRel = true; 528 } 529 530 if (config->gdbIndex) 531 add(GdbIndexSection::create<ELFT>()); 532 533 // We always need to add rel[a].plt to output if it has entries. 534 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 535 in.relaPlt = make<RelocationSection<ELFT>>( 536 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 537 add(in.relaPlt); 538 539 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 540 // relocations are processed last by the dynamic loader. We cannot place the 541 // iplt section in .rel.dyn when Android relocation packing is enabled because 542 // that would cause a section type mismatch. However, because the Android 543 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 544 // behaviour by placing the iplt section in .rel.plt. 545 in.relaIplt = make<RelocationSection<ELFT>>( 546 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 547 /*sort=*/false); 548 add(in.relaIplt); 549 550 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 551 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 552 in.ibtPlt = make<IBTPltSection>(); 553 add(in.ibtPlt); 554 } 555 556 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 557 : make<PltSection>(); 558 add(in.plt); 559 in.iplt = make<IpltSection>(); 560 add(in.iplt); 561 562 if (config->andFeatures) 563 add(make<GnuPropertySection>()); 564 565 // .note.GNU-stack is always added when we are creating a re-linkable 566 // object file. Other linkers are using the presence of this marker 567 // section to control the executable-ness of the stack area, but that 568 // is irrelevant these days. Stack area should always be non-executable 569 // by default. So we emit this section unconditionally. 570 if (config->relocatable) 571 add(make<GnuStackSection>()); 572 573 if (in.symTab) 574 add(in.symTab); 575 if (in.symTabShndx) 576 add(in.symTabShndx); 577 add(in.shStrTab); 578 if (in.strTab) 579 add(in.strTab); 580 } 581 582 // The main function of the writer. 583 template <class ELFT> void Writer<ELFT>::run() { 584 copyLocalSymbols(); 585 586 if (config->copyRelocs) 587 addSectionSymbols(); 588 589 // Now that we have a complete set of output sections. This function 590 // completes section contents. For example, we need to add strings 591 // to the string table, and add entries to .got and .plt. 592 // finalizeSections does that. 593 finalizeSections(); 594 checkExecuteOnly(); 595 if (errorCount()) 596 return; 597 598 // If -compressed-debug-sections is specified, we need to compress 599 // .debug_* sections. Do it right now because it changes the size of 600 // output sections. 601 for (OutputSection *sec : outputSections) 602 sec->maybeCompress<ELFT>(); 603 604 if (script->hasSectionsCommand) 605 script->allocateHeaders(mainPart->phdrs); 606 607 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 608 // 0 sized region. This has to be done late since only after assignAddresses 609 // we know the size of the sections. 610 for (Partition &part : partitions) 611 removeEmptyPTLoad(part.phdrs); 612 613 if (!config->oFormatBinary) 614 assignFileOffsets(); 615 else 616 assignFileOffsetsBinary(); 617 618 for (Partition &part : partitions) 619 setPhdrs(part); 620 621 if (config->relocatable) 622 for (OutputSection *sec : outputSections) 623 sec->addr = 0; 624 625 // Handle --print-map(-M)/--Map, --why-extract=, --cref and 626 // --print-archive-stats=. Dump them before checkSections() because the files 627 // may be useful in case checkSections() or openFile() fails, for example, due 628 // to an erroneous file size. 629 writeMapFile(); 630 writeWhyExtract(); 631 writeCrossReferenceTable(); 632 writeArchiveStats(); 633 634 if (config->checkSections) 635 checkSections(); 636 637 // It does not make sense try to open the file if we have error already. 638 if (errorCount()) 639 return; 640 641 { 642 llvm::TimeTraceScope timeScope("Write output file"); 643 // Write the result down to a file. 644 openFile(); 645 if (errorCount()) 646 return; 647 648 if (!config->oFormatBinary) { 649 if (config->zSeparate != SeparateSegmentKind::None) 650 writeTrapInstr(); 651 writeHeader(); 652 writeSections(); 653 } else { 654 writeSectionsBinary(); 655 } 656 657 // Backfill .note.gnu.build-id section content. This is done at last 658 // because the content is usually a hash value of the entire output file. 659 writeBuildId(); 660 if (errorCount()) 661 return; 662 663 if (auto e = buffer->commit()) 664 error("failed to write to the output file: " + toString(std::move(e))); 665 } 666 } 667 668 template <class ELFT, class RelTy> 669 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 670 llvm::ArrayRef<RelTy> rels) { 671 for (const RelTy &rel : rels) { 672 Symbol &sym = file->getRelocTargetSym(rel); 673 if (sym.isLocal()) 674 sym.used = true; 675 } 676 } 677 678 // The function ensures that the "used" field of local symbols reflects the fact 679 // that the symbol is used in a relocation from a live section. 680 template <class ELFT> static void markUsedLocalSymbols() { 681 // With --gc-sections, the field is already filled. 682 // See MarkLive<ELFT>::resolveReloc(). 683 if (config->gcSections) 684 return; 685 // Without --gc-sections, the field is initialized with "true". 686 // Drop the flag first and then rise for symbols referenced in relocations. 687 for (InputFile *file : objectFiles) { 688 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 689 for (Symbol *b : f->getLocalSymbols()) 690 b->used = false; 691 for (InputSectionBase *s : f->getSections()) { 692 InputSection *isec = dyn_cast_or_null<InputSection>(s); 693 if (!isec) 694 continue; 695 if (isec->type == SHT_REL) 696 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 697 else if (isec->type == SHT_RELA) 698 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 699 } 700 } 701 } 702 703 static bool shouldKeepInSymtab(const Defined &sym) { 704 if (sym.isSection()) 705 return false; 706 707 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 708 // from live sections. 709 if (config->copyRelocs && sym.used) 710 return true; 711 712 // Exclude local symbols pointing to .ARM.exidx sections. 713 // They are probably mapping symbols "$d", which are optional for these 714 // sections. After merging the .ARM.exidx sections, some of these symbols 715 // may become dangling. The easiest way to avoid the issue is not to add 716 // them to the symbol table from the beginning. 717 if (config->emachine == EM_ARM && sym.section && 718 sym.section->type == SHT_ARM_EXIDX) 719 return false; 720 721 if (config->discard == DiscardPolicy::None) 722 return true; 723 if (config->discard == DiscardPolicy::All) 724 return false; 725 726 // In ELF assembly .L symbols are normally discarded by the assembler. 727 // If the assembler fails to do so, the linker discards them if 728 // * --discard-locals is used. 729 // * The symbol is in a SHF_MERGE section, which is normally the reason for 730 // the assembler keeping the .L symbol. 731 StringRef name = sym.getName(); 732 bool isLocal = name.startswith(".L") || name.empty(); 733 if (!isLocal) 734 return true; 735 736 if (config->discard == DiscardPolicy::Locals) 737 return false; 738 739 SectionBase *sec = sym.section; 740 return !sec || !(sec->flags & SHF_MERGE); 741 } 742 743 static bool includeInSymtab(const Symbol &b) { 744 if (!b.isLocal() && !b.isUsedInRegularObj) 745 return false; 746 747 if (auto *d = dyn_cast<Defined>(&b)) { 748 // Always include absolute symbols. 749 SectionBase *sec = d->section; 750 if (!sec) 751 return true; 752 sec = sec->repl; 753 754 // Exclude symbols pointing to garbage-collected sections. 755 if (isa<InputSectionBase>(sec) && !sec->isLive()) 756 return false; 757 758 if (auto *s = dyn_cast<MergeInputSection>(sec)) 759 if (!s->getSectionPiece(d->value)->live) 760 return false; 761 return true; 762 } 763 return b.used; 764 } 765 766 // Local symbols are not in the linker's symbol table. This function scans 767 // each object file's symbol table to copy local symbols to the output. 768 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 769 if (!in.symTab) 770 return; 771 llvm::TimeTraceScope timeScope("Add local symbols"); 772 if (config->copyRelocs && config->discard != DiscardPolicy::None) 773 markUsedLocalSymbols<ELFT>(); 774 for (InputFile *file : objectFiles) { 775 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 776 for (Symbol *b : f->getLocalSymbols()) { 777 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 778 auto *dr = dyn_cast<Defined>(b); 779 780 // No reason to keep local undefined symbol in symtab. 781 if (!dr) 782 continue; 783 if (!includeInSymtab(*b)) 784 continue; 785 if (!shouldKeepInSymtab(*dr)) 786 continue; 787 in.symTab->addSymbol(b); 788 } 789 } 790 } 791 792 // Create a section symbol for each output section so that we can represent 793 // relocations that point to the section. If we know that no relocation is 794 // referring to a section (that happens if the section is a synthetic one), we 795 // don't create a section symbol for that section. 796 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 797 for (BaseCommand *base : script->sectionCommands) { 798 auto *sec = dyn_cast<OutputSection>(base); 799 if (!sec) 800 continue; 801 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 802 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 803 return !isd->sections.empty(); 804 return false; 805 }); 806 if (i == sec->sectionCommands.end()) 807 continue; 808 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 809 810 // Relocations are not using REL[A] section symbols. 811 if (isec->type == SHT_REL || isec->type == SHT_RELA) 812 continue; 813 814 // Unlike other synthetic sections, mergeable output sections contain data 815 // copied from input sections, and there may be a relocation pointing to its 816 // contents if -r or -emit-reloc are given. 817 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 818 continue; 819 820 // Set the symbol to be relative to the output section so that its st_value 821 // equals the output section address. Note, there may be a gap between the 822 // start of the output section and isec. 823 auto *sym = 824 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 825 /*value=*/0, /*size=*/0, isec->getOutputSection()); 826 in.symTab->addSymbol(sym); 827 } 828 } 829 830 // Today's loaders have a feature to make segments read-only after 831 // processing dynamic relocations to enhance security. PT_GNU_RELRO 832 // is defined for that. 833 // 834 // This function returns true if a section needs to be put into a 835 // PT_GNU_RELRO segment. 836 static bool isRelroSection(const OutputSection *sec) { 837 if (!config->zRelro) 838 return false; 839 840 uint64_t flags = sec->flags; 841 842 // Non-allocatable or non-writable sections don't need RELRO because 843 // they are not writable or not even mapped to memory in the first place. 844 // RELRO is for sections that are essentially read-only but need to 845 // be writable only at process startup to allow dynamic linker to 846 // apply relocations. 847 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 848 return false; 849 850 // Once initialized, TLS data segments are used as data templates 851 // for a thread-local storage. For each new thread, runtime 852 // allocates memory for a TLS and copy templates there. No thread 853 // are supposed to use templates directly. Thus, it can be in RELRO. 854 if (flags & SHF_TLS) 855 return true; 856 857 // .init_array, .preinit_array and .fini_array contain pointers to 858 // functions that are executed on process startup or exit. These 859 // pointers are set by the static linker, and they are not expected 860 // to change at runtime. But if you are an attacker, you could do 861 // interesting things by manipulating pointers in .fini_array, for 862 // example. So they are put into RELRO. 863 uint32_t type = sec->type; 864 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 865 type == SHT_PREINIT_ARRAY) 866 return true; 867 868 // .got contains pointers to external symbols. They are resolved by 869 // the dynamic linker when a module is loaded into memory, and after 870 // that they are not expected to change. So, it can be in RELRO. 871 if (in.got && sec == in.got->getParent()) 872 return true; 873 874 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 875 // through r2 register, which is reserved for that purpose. Since r2 is used 876 // for accessing .got as well, .got and .toc need to be close enough in the 877 // virtual address space. Usually, .toc comes just after .got. Since we place 878 // .got into RELRO, .toc needs to be placed into RELRO too. 879 if (sec->name.equals(".toc")) 880 return true; 881 882 // .got.plt contains pointers to external function symbols. They are 883 // by default resolved lazily, so we usually cannot put it into RELRO. 884 // However, if "-z now" is given, the lazy symbol resolution is 885 // disabled, which enables us to put it into RELRO. 886 if (sec == in.gotPlt->getParent()) 887 return config->zNow; 888 889 // .dynamic section contains data for the dynamic linker, and 890 // there's no need to write to it at runtime, so it's better to put 891 // it into RELRO. 892 if (sec->name == ".dynamic") 893 return true; 894 895 // Sections with some special names are put into RELRO. This is a 896 // bit unfortunate because section names shouldn't be significant in 897 // ELF in spirit. But in reality many linker features depend on 898 // magic section names. 899 StringRef s = sec->name; 900 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 901 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 902 s == ".fini_array" || s == ".init_array" || 903 s == ".openbsd.randomdata" || s == ".preinit_array"; 904 } 905 906 // We compute a rank for each section. The rank indicates where the 907 // section should be placed in the file. Instead of using simple 908 // numbers (0,1,2...), we use a series of flags. One for each decision 909 // point when placing the section. 910 // Using flags has two key properties: 911 // * It is easy to check if a give branch was taken. 912 // * It is easy two see how similar two ranks are (see getRankProximity). 913 enum RankFlags { 914 RF_NOT_ADDR_SET = 1 << 27, 915 RF_NOT_ALLOC = 1 << 26, 916 RF_PARTITION = 1 << 18, // Partition number (8 bits) 917 RF_NOT_PART_EHDR = 1 << 17, 918 RF_NOT_PART_PHDR = 1 << 16, 919 RF_NOT_INTERP = 1 << 15, 920 RF_NOT_NOTE = 1 << 14, 921 RF_WRITE = 1 << 13, 922 RF_EXEC_WRITE = 1 << 12, 923 RF_EXEC = 1 << 11, 924 RF_RODATA = 1 << 10, 925 RF_NOT_RELRO = 1 << 9, 926 RF_NOT_TLS = 1 << 8, 927 RF_BSS = 1 << 7, 928 RF_PPC_NOT_TOCBSS = 1 << 6, 929 RF_PPC_TOCL = 1 << 5, 930 RF_PPC_TOC = 1 << 4, 931 RF_PPC_GOT = 1 << 3, 932 RF_PPC_BRANCH_LT = 1 << 2, 933 RF_MIPS_GPREL = 1 << 1, 934 RF_MIPS_NOT_GOT = 1 << 0 935 }; 936 937 static unsigned getSectionRank(const OutputSection *sec) { 938 unsigned rank = sec->partition * RF_PARTITION; 939 940 // We want to put section specified by -T option first, so we 941 // can start assigning VA starting from them later. 942 if (config->sectionStartMap.count(sec->name)) 943 return rank; 944 rank |= RF_NOT_ADDR_SET; 945 946 // Allocatable sections go first to reduce the total PT_LOAD size and 947 // so debug info doesn't change addresses in actual code. 948 if (!(sec->flags & SHF_ALLOC)) 949 return rank | RF_NOT_ALLOC; 950 951 if (sec->type == SHT_LLVM_PART_EHDR) 952 return rank; 953 rank |= RF_NOT_PART_EHDR; 954 955 if (sec->type == SHT_LLVM_PART_PHDR) 956 return rank; 957 rank |= RF_NOT_PART_PHDR; 958 959 // Put .interp first because some loaders want to see that section 960 // on the first page of the executable file when loaded into memory. 961 if (sec->name == ".interp") 962 return rank; 963 rank |= RF_NOT_INTERP; 964 965 // Put .note sections (which make up one PT_NOTE) at the beginning so that 966 // they are likely to be included in a core file even if core file size is 967 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 968 // included in a core to match core files with executables. 969 if (sec->type == SHT_NOTE) 970 return rank; 971 rank |= RF_NOT_NOTE; 972 973 // Sort sections based on their access permission in the following 974 // order: R, RX, RWX, RW. This order is based on the following 975 // considerations: 976 // * Read-only sections come first such that they go in the 977 // PT_LOAD covering the program headers at the start of the file. 978 // * Read-only, executable sections come next. 979 // * Writable, executable sections follow such that .plt on 980 // architectures where it needs to be writable will be placed 981 // between .text and .data. 982 // * Writable sections come last, such that .bss lands at the very 983 // end of the last PT_LOAD. 984 bool isExec = sec->flags & SHF_EXECINSTR; 985 bool isWrite = sec->flags & SHF_WRITE; 986 987 if (isExec) { 988 if (isWrite) 989 rank |= RF_EXEC_WRITE; 990 else 991 rank |= RF_EXEC; 992 } else if (isWrite) { 993 rank |= RF_WRITE; 994 } else if (sec->type == SHT_PROGBITS) { 995 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 996 // .eh_frame) closer to .text. They likely contain PC or GOT relative 997 // relocations and there could be relocation overflow if other huge sections 998 // (.dynstr .dynsym) were placed in between. 999 rank |= RF_RODATA; 1000 } 1001 1002 // Place RelRo sections first. After considering SHT_NOBITS below, the 1003 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 1004 // where | marks where page alignment happens. An alternative ordering is 1005 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 1006 // waste more bytes due to 2 alignment places. 1007 if (!isRelroSection(sec)) 1008 rank |= RF_NOT_RELRO; 1009 1010 // If we got here we know that both A and B are in the same PT_LOAD. 1011 1012 // The TLS initialization block needs to be a single contiguous block in a R/W 1013 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1014 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1015 // after PROGBITS. 1016 if (!(sec->flags & SHF_TLS)) 1017 rank |= RF_NOT_TLS; 1018 1019 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1020 // sections, place non-NOBITS sections first. 1021 if (sec->type == SHT_NOBITS) 1022 rank |= RF_BSS; 1023 1024 // Some architectures have additional ordering restrictions for sections 1025 // within the same PT_LOAD. 1026 if (config->emachine == EM_PPC64) { 1027 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1028 // that we would like to make sure appear is a specific order to maximize 1029 // their coverage by a single signed 16-bit offset from the TOC base 1030 // pointer. Conversely, the special .tocbss section should be first among 1031 // all SHT_NOBITS sections. This will put it next to the loaded special 1032 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1033 StringRef name = sec->name; 1034 if (name != ".tocbss") 1035 rank |= RF_PPC_NOT_TOCBSS; 1036 1037 if (name == ".toc1") 1038 rank |= RF_PPC_TOCL; 1039 1040 if (name == ".toc") 1041 rank |= RF_PPC_TOC; 1042 1043 if (name == ".got") 1044 rank |= RF_PPC_GOT; 1045 1046 if (name == ".branch_lt") 1047 rank |= RF_PPC_BRANCH_LT; 1048 } 1049 1050 if (config->emachine == EM_MIPS) { 1051 // All sections with SHF_MIPS_GPREL flag should be grouped together 1052 // because data in these sections is addressable with a gp relative address. 1053 if (sec->flags & SHF_MIPS_GPREL) 1054 rank |= RF_MIPS_GPREL; 1055 1056 if (sec->name != ".got") 1057 rank |= RF_MIPS_NOT_GOT; 1058 } 1059 1060 return rank; 1061 } 1062 1063 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1064 const OutputSection *a = cast<OutputSection>(aCmd); 1065 const OutputSection *b = cast<OutputSection>(bCmd); 1066 1067 if (a->sortRank != b->sortRank) 1068 return a->sortRank < b->sortRank; 1069 1070 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1071 return config->sectionStartMap.lookup(a->name) < 1072 config->sectionStartMap.lookup(b->name); 1073 return false; 1074 } 1075 1076 void PhdrEntry::add(OutputSection *sec) { 1077 lastSec = sec; 1078 if (!firstSec) 1079 firstSec = sec; 1080 p_align = std::max(p_align, sec->alignment); 1081 if (p_type == PT_LOAD) 1082 sec->ptLoad = this; 1083 } 1084 1085 // The beginning and the ending of .rel[a].plt section are marked 1086 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1087 // executable. The runtime needs these symbols in order to resolve 1088 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1089 // need these symbols, since IRELATIVE relocs are resolved through GOT 1090 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1091 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1092 if (config->relocatable || config->isPic) 1093 return; 1094 1095 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1096 // because .rela.plt might be empty and thus removed from output. 1097 // We'll override Out::elfHeader with In.relaIplt later when we are 1098 // sure that .rela.plt exists in output. 1099 ElfSym::relaIpltStart = addOptionalRegular( 1100 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1101 Out::elfHeader, 0, STV_HIDDEN); 1102 1103 ElfSym::relaIpltEnd = addOptionalRegular( 1104 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1105 Out::elfHeader, 0, STV_HIDDEN); 1106 } 1107 1108 template <class ELFT> 1109 void Writer<ELFT>::forEachRelSec( 1110 llvm::function_ref<void(InputSectionBase &)> fn) { 1111 // Scan all relocations. Each relocation goes through a series 1112 // of tests to determine if it needs special treatment, such as 1113 // creating GOT, PLT, copy relocations, etc. 1114 // Note that relocations for non-alloc sections are directly 1115 // processed by InputSection::relocateNonAlloc. 1116 for (InputSectionBase *isec : inputSections) 1117 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1118 fn(*isec); 1119 for (Partition &part : partitions) { 1120 for (EhInputSection *es : part.ehFrame->sections) 1121 fn(*es); 1122 if (part.armExidx && part.armExidx->isLive()) 1123 for (InputSection *ex : part.armExidx->exidxSections) 1124 fn(*ex); 1125 } 1126 } 1127 1128 // This function generates assignments for predefined symbols (e.g. _end or 1129 // _etext) and inserts them into the commands sequence to be processed at the 1130 // appropriate time. This ensures that the value is going to be correct by the 1131 // time any references to these symbols are processed and is equivalent to 1132 // defining these symbols explicitly in the linker script. 1133 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1134 if (ElfSym::globalOffsetTable) { 1135 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1136 // to the start of the .got or .got.plt section. 1137 InputSection *gotSection = in.gotPlt; 1138 if (!target->gotBaseSymInGotPlt) 1139 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1140 : cast<InputSection>(in.got); 1141 ElfSym::globalOffsetTable->section = gotSection; 1142 } 1143 1144 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1145 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1146 ElfSym::relaIpltStart->section = in.relaIplt; 1147 ElfSym::relaIpltEnd->section = in.relaIplt; 1148 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1149 } 1150 1151 PhdrEntry *last = nullptr; 1152 PhdrEntry *lastRO = nullptr; 1153 1154 for (Partition &part : partitions) { 1155 for (PhdrEntry *p : part.phdrs) { 1156 if (p->p_type != PT_LOAD) 1157 continue; 1158 last = p; 1159 if (!(p->p_flags & PF_W)) 1160 lastRO = p; 1161 } 1162 } 1163 1164 if (lastRO) { 1165 // _etext is the first location after the last read-only loadable segment. 1166 if (ElfSym::etext1) 1167 ElfSym::etext1->section = lastRO->lastSec; 1168 if (ElfSym::etext2) 1169 ElfSym::etext2->section = lastRO->lastSec; 1170 } 1171 1172 if (last) { 1173 // _edata points to the end of the last mapped initialized section. 1174 OutputSection *edata = nullptr; 1175 for (OutputSection *os : outputSections) { 1176 if (os->type != SHT_NOBITS) 1177 edata = os; 1178 if (os == last->lastSec) 1179 break; 1180 } 1181 1182 if (ElfSym::edata1) 1183 ElfSym::edata1->section = edata; 1184 if (ElfSym::edata2) 1185 ElfSym::edata2->section = edata; 1186 1187 // _end is the first location after the uninitialized data region. 1188 if (ElfSym::end1) 1189 ElfSym::end1->section = last->lastSec; 1190 if (ElfSym::end2) 1191 ElfSym::end2->section = last->lastSec; 1192 } 1193 1194 if (ElfSym::bss) 1195 ElfSym::bss->section = findSection(".bss"); 1196 1197 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1198 // be equal to the _gp symbol's value. 1199 if (ElfSym::mipsGp) { 1200 // Find GP-relative section with the lowest address 1201 // and use this address to calculate default _gp value. 1202 for (OutputSection *os : outputSections) { 1203 if (os->flags & SHF_MIPS_GPREL) { 1204 ElfSym::mipsGp->section = os; 1205 ElfSym::mipsGp->value = 0x7ff0; 1206 break; 1207 } 1208 } 1209 } 1210 } 1211 1212 // We want to find how similar two ranks are. 1213 // The more branches in getSectionRank that match, the more similar they are. 1214 // Since each branch corresponds to a bit flag, we can just use 1215 // countLeadingZeros. 1216 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1217 return countLeadingZeros(a->sortRank ^ b->sortRank); 1218 } 1219 1220 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1221 auto *sec = dyn_cast<OutputSection>(b); 1222 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1223 } 1224 1225 // When placing orphan sections, we want to place them after symbol assignments 1226 // so that an orphan after 1227 // begin_foo = .; 1228 // foo : { *(foo) } 1229 // end_foo = .; 1230 // doesn't break the intended meaning of the begin/end symbols. 1231 // We don't want to go over sections since findOrphanPos is the 1232 // one in charge of deciding the order of the sections. 1233 // We don't want to go over changes to '.', since doing so in 1234 // rx_sec : { *(rx_sec) } 1235 // . = ALIGN(0x1000); 1236 // /* The RW PT_LOAD starts here*/ 1237 // rw_sec : { *(rw_sec) } 1238 // would mean that the RW PT_LOAD would become unaligned. 1239 static bool shouldSkip(BaseCommand *cmd) { 1240 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1241 return assign->name != "."; 1242 return false; 1243 } 1244 1245 // We want to place orphan sections so that they share as much 1246 // characteristics with their neighbors as possible. For example, if 1247 // both are rw, or both are tls. 1248 static std::vector<BaseCommand *>::iterator 1249 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1250 std::vector<BaseCommand *>::iterator e) { 1251 OutputSection *sec = cast<OutputSection>(*e); 1252 1253 // Find the first element that has as close a rank as possible. 1254 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1255 return getRankProximity(sec, a) < getRankProximity(sec, b); 1256 }); 1257 if (i == e) 1258 return e; 1259 1260 // Consider all existing sections with the same proximity. 1261 int proximity = getRankProximity(sec, *i); 1262 for (; i != e; ++i) { 1263 auto *curSec = dyn_cast<OutputSection>(*i); 1264 if (!curSec || !curSec->hasInputSections) 1265 continue; 1266 if (getRankProximity(sec, curSec) != proximity || 1267 sec->sortRank < curSec->sortRank) 1268 break; 1269 } 1270 1271 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1272 auto *os = dyn_cast<OutputSection>(cmd); 1273 return os && os->hasInputSections; 1274 }; 1275 auto j = std::find_if(llvm::make_reverse_iterator(i), 1276 llvm::make_reverse_iterator(b), 1277 isOutputSecWithInputSections); 1278 i = j.base(); 1279 1280 // As a special case, if the orphan section is the last section, put 1281 // it at the very end, past any other commands. 1282 // This matches bfd's behavior and is convenient when the linker script fully 1283 // specifies the start of the file, but doesn't care about the end (the non 1284 // alloc sections for example). 1285 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1286 if (nextSec == e) 1287 return e; 1288 1289 while (i != e && shouldSkip(*i)) 1290 ++i; 1291 return i; 1292 } 1293 1294 // Adds random priorities to sections not already in the map. 1295 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1296 if (config->shuffleSections.empty()) 1297 return; 1298 1299 std::vector<InputSectionBase *> matched, sections = inputSections; 1300 matched.reserve(sections.size()); 1301 for (const auto &patAndSeed : config->shuffleSections) { 1302 matched.clear(); 1303 for (InputSectionBase *sec : sections) 1304 if (patAndSeed.first.match(sec->name)) 1305 matched.push_back(sec); 1306 const uint32_t seed = patAndSeed.second; 1307 if (seed == UINT32_MAX) { 1308 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1309 // section order is stable even if the number of sections changes. This is 1310 // useful to catch issues like static initialization order fiasco 1311 // reliably. 1312 std::reverse(matched.begin(), matched.end()); 1313 } else { 1314 std::mt19937 g(seed ? seed : std::random_device()()); 1315 llvm::shuffle(matched.begin(), matched.end(), g); 1316 } 1317 size_t i = 0; 1318 for (InputSectionBase *&sec : sections) 1319 if (patAndSeed.first.match(sec->name)) 1320 sec = matched[i++]; 1321 } 1322 1323 // Existing priorities are < 0, so use priorities >= 0 for the missing 1324 // sections. 1325 int prio = 0; 1326 for (InputSectionBase *sec : sections) { 1327 if (order.try_emplace(sec, prio).second) 1328 ++prio; 1329 } 1330 } 1331 1332 // Builds section order for handling --symbol-ordering-file. 1333 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1334 DenseMap<const InputSectionBase *, int> sectionOrder; 1335 // Use the rarely used option -call-graph-ordering-file to sort sections. 1336 if (!config->callGraphProfile.empty()) 1337 return computeCallGraphProfileOrder(); 1338 1339 if (config->symbolOrderingFile.empty()) 1340 return sectionOrder; 1341 1342 struct SymbolOrderEntry { 1343 int priority; 1344 bool present; 1345 }; 1346 1347 // Build a map from symbols to their priorities. Symbols that didn't 1348 // appear in the symbol ordering file have the lowest priority 0. 1349 // All explicitly mentioned symbols have negative (higher) priorities. 1350 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1351 int priority = -config->symbolOrderingFile.size(); 1352 for (StringRef s : config->symbolOrderingFile) 1353 symbolOrder.insert({s, {priority++, false}}); 1354 1355 // Build a map from sections to their priorities. 1356 auto addSym = [&](Symbol &sym) { 1357 auto it = symbolOrder.find(sym.getName()); 1358 if (it == symbolOrder.end()) 1359 return; 1360 SymbolOrderEntry &ent = it->second; 1361 ent.present = true; 1362 1363 maybeWarnUnorderableSymbol(&sym); 1364 1365 if (auto *d = dyn_cast<Defined>(&sym)) { 1366 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1367 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1368 priority = std::min(priority, ent.priority); 1369 } 1370 } 1371 }; 1372 1373 // We want both global and local symbols. We get the global ones from the 1374 // symbol table and iterate the object files for the local ones. 1375 for (Symbol *sym : symtab->symbols()) 1376 if (!sym->isLazy()) 1377 addSym(*sym); 1378 1379 for (InputFile *file : objectFiles) 1380 for (Symbol *sym : file->getSymbols()) { 1381 if (!sym->isLocal()) 1382 break; 1383 addSym(*sym); 1384 } 1385 1386 if (config->warnSymbolOrdering) 1387 for (auto orderEntry : symbolOrder) 1388 if (!orderEntry.second.present) 1389 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1390 1391 return sectionOrder; 1392 } 1393 1394 // Sorts the sections in ISD according to the provided section order. 1395 static void 1396 sortISDBySectionOrder(InputSectionDescription *isd, 1397 const DenseMap<const InputSectionBase *, int> &order) { 1398 std::vector<InputSection *> unorderedSections; 1399 std::vector<std::pair<InputSection *, int>> orderedSections; 1400 uint64_t unorderedSize = 0; 1401 1402 for (InputSection *isec : isd->sections) { 1403 auto i = order.find(isec); 1404 if (i == order.end()) { 1405 unorderedSections.push_back(isec); 1406 unorderedSize += isec->getSize(); 1407 continue; 1408 } 1409 orderedSections.push_back({isec, i->second}); 1410 } 1411 llvm::sort(orderedSections, llvm::less_second()); 1412 1413 // Find an insertion point for the ordered section list in the unordered 1414 // section list. On targets with limited-range branches, this is the mid-point 1415 // of the unordered section list. This decreases the likelihood that a range 1416 // extension thunk will be needed to enter or exit the ordered region. If the 1417 // ordered section list is a list of hot functions, we can generally expect 1418 // the ordered functions to be called more often than the unordered functions, 1419 // making it more likely that any particular call will be within range, and 1420 // therefore reducing the number of thunks required. 1421 // 1422 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1423 // If the layout is: 1424 // 1425 // 8MB hot 1426 // 32MB cold 1427 // 1428 // only the first 8-16MB of the cold code (depending on which hot function it 1429 // is actually calling) can call the hot code without a range extension thunk. 1430 // However, if we use this layout: 1431 // 1432 // 16MB cold 1433 // 8MB hot 1434 // 16MB cold 1435 // 1436 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1437 // of the second block of cold code can call the hot code without a thunk. So 1438 // we effectively double the amount of code that could potentially call into 1439 // the hot code without a thunk. 1440 size_t insPt = 0; 1441 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1442 uint64_t unorderedPos = 0; 1443 for (; insPt != unorderedSections.size(); ++insPt) { 1444 unorderedPos += unorderedSections[insPt]->getSize(); 1445 if (unorderedPos > unorderedSize / 2) 1446 break; 1447 } 1448 } 1449 1450 isd->sections.clear(); 1451 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1452 isd->sections.push_back(isec); 1453 for (std::pair<InputSection *, int> p : orderedSections) 1454 isd->sections.push_back(p.first); 1455 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1456 isd->sections.push_back(isec); 1457 } 1458 1459 static void sortSection(OutputSection *sec, 1460 const DenseMap<const InputSectionBase *, int> &order) { 1461 StringRef name = sec->name; 1462 1463 // Never sort these. 1464 if (name == ".init" || name == ".fini") 1465 return; 1466 1467 // IRelative relocations that usually live in the .rel[a].dyn section should 1468 // be processed last by the dynamic loader. To achieve that we add synthetic 1469 // sections in the required order from the beginning so that the in.relaIplt 1470 // section is placed last in an output section. Here we just do not apply 1471 // sorting for an output section which holds the in.relaIplt section. 1472 if (in.relaIplt->getParent() == sec) 1473 return; 1474 1475 // Sort input sections by priority using the list provided by 1476 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1477 // digit radix sort. The sections may be sorted stably again by a more 1478 // significant key. 1479 if (!order.empty()) 1480 for (BaseCommand *b : sec->sectionCommands) 1481 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1482 sortISDBySectionOrder(isd, order); 1483 1484 // Sort input sections by section name suffixes for 1485 // __attribute__((init_priority(N))). 1486 if (name == ".init_array" || name == ".fini_array") { 1487 if (!script->hasSectionsCommand) 1488 sec->sortInitFini(); 1489 return; 1490 } 1491 1492 // Sort input sections by the special rule for .ctors and .dtors. 1493 if (name == ".ctors" || name == ".dtors") { 1494 if (!script->hasSectionsCommand) 1495 sec->sortCtorsDtors(); 1496 return; 1497 } 1498 1499 // .toc is allocated just after .got and is accessed using GOT-relative 1500 // relocations. Object files compiled with small code model have an 1501 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1502 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1503 // sections having smaller relocation offsets are at beginning of .toc 1504 if (config->emachine == EM_PPC64 && name == ".toc") { 1505 if (script->hasSectionsCommand) 1506 return; 1507 assert(sec->sectionCommands.size() == 1); 1508 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1509 llvm::stable_sort(isd->sections, 1510 [](const InputSection *a, const InputSection *b) -> bool { 1511 return a->file->ppc64SmallCodeModelTocRelocs && 1512 !b->file->ppc64SmallCodeModelTocRelocs; 1513 }); 1514 return; 1515 } 1516 } 1517 1518 // If no layout was provided by linker script, we want to apply default 1519 // sorting for special input sections. This also handles --symbol-ordering-file. 1520 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1521 // Build the order once since it is expensive. 1522 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1523 maybeShuffle(order); 1524 for (BaseCommand *base : script->sectionCommands) 1525 if (auto *sec = dyn_cast<OutputSection>(base)) 1526 sortSection(sec, order); 1527 } 1528 1529 template <class ELFT> void Writer<ELFT>::sortSections() { 1530 llvm::TimeTraceScope timeScope("Sort sections"); 1531 script->adjustSectionsBeforeSorting(); 1532 1533 // Don't sort if using -r. It is not necessary and we want to preserve the 1534 // relative order for SHF_LINK_ORDER sections. 1535 if (config->relocatable) 1536 return; 1537 1538 sortInputSections(); 1539 1540 for (BaseCommand *base : script->sectionCommands) { 1541 auto *os = dyn_cast<OutputSection>(base); 1542 if (!os) 1543 continue; 1544 os->sortRank = getSectionRank(os); 1545 1546 // We want to assign rude approximation values to outSecOff fields 1547 // to know the relative order of the input sections. We use it for 1548 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1549 uint64_t i = 0; 1550 for (InputSection *sec : getInputSections(os)) 1551 sec->outSecOff = i++; 1552 } 1553 1554 if (!script->hasSectionsCommand) { 1555 // We know that all the OutputSections are contiguous in this case. 1556 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1557 std::stable_sort( 1558 llvm::find_if(script->sectionCommands, isSection), 1559 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1560 compareSections); 1561 1562 // Process INSERT commands. From this point onwards the order of 1563 // script->sectionCommands is fixed. 1564 script->processInsertCommands(); 1565 return; 1566 } 1567 1568 script->processInsertCommands(); 1569 1570 // Orphan sections are sections present in the input files which are 1571 // not explicitly placed into the output file by the linker script. 1572 // 1573 // The sections in the linker script are already in the correct 1574 // order. We have to figuere out where to insert the orphan 1575 // sections. 1576 // 1577 // The order of the sections in the script is arbitrary and may not agree with 1578 // compareSections. This means that we cannot easily define a strict weak 1579 // ordering. To see why, consider a comparison of a section in the script and 1580 // one not in the script. We have a two simple options: 1581 // * Make them equivalent (a is not less than b, and b is not less than a). 1582 // The problem is then that equivalence has to be transitive and we can 1583 // have sections a, b and c with only b in a script and a less than c 1584 // which breaks this property. 1585 // * Use compareSectionsNonScript. Given that the script order doesn't have 1586 // to match, we can end up with sections a, b, c, d where b and c are in the 1587 // script and c is compareSectionsNonScript less than b. In which case d 1588 // can be equivalent to c, a to b and d < a. As a concrete example: 1589 // .a (rx) # not in script 1590 // .b (rx) # in script 1591 // .c (ro) # in script 1592 // .d (ro) # not in script 1593 // 1594 // The way we define an order then is: 1595 // * Sort only the orphan sections. They are in the end right now. 1596 // * Move each orphan section to its preferred position. We try 1597 // to put each section in the last position where it can share 1598 // a PT_LOAD. 1599 // 1600 // There is some ambiguity as to where exactly a new entry should be 1601 // inserted, because Commands contains not only output section 1602 // commands but also other types of commands such as symbol assignment 1603 // expressions. There's no correct answer here due to the lack of the 1604 // formal specification of the linker script. We use heuristics to 1605 // determine whether a new output command should be added before or 1606 // after another commands. For the details, look at shouldSkip 1607 // function. 1608 1609 auto i = script->sectionCommands.begin(); 1610 auto e = script->sectionCommands.end(); 1611 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1612 if (auto *sec = dyn_cast<OutputSection>(base)) 1613 return sec->sectionIndex == UINT32_MAX; 1614 return false; 1615 }); 1616 1617 // Sort the orphan sections. 1618 std::stable_sort(nonScriptI, e, compareSections); 1619 1620 // As a horrible special case, skip the first . assignment if it is before any 1621 // section. We do this because it is common to set a load address by starting 1622 // the script with ". = 0xabcd" and the expectation is that every section is 1623 // after that. 1624 auto firstSectionOrDotAssignment = 1625 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1626 if (firstSectionOrDotAssignment != e && 1627 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1628 ++firstSectionOrDotAssignment; 1629 i = firstSectionOrDotAssignment; 1630 1631 while (nonScriptI != e) { 1632 auto pos = findOrphanPos(i, nonScriptI); 1633 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1634 1635 // As an optimization, find all sections with the same sort rank 1636 // and insert them with one rotate. 1637 unsigned rank = orphan->sortRank; 1638 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1639 return cast<OutputSection>(cmd)->sortRank != rank; 1640 }); 1641 std::rotate(pos, nonScriptI, end); 1642 nonScriptI = end; 1643 } 1644 1645 script->adjustSectionsAfterSorting(); 1646 } 1647 1648 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1649 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1650 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1651 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1652 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1653 if (!la || !lb) 1654 return la && !lb; 1655 OutputSection *aOut = la->getParent(); 1656 OutputSection *bOut = lb->getParent(); 1657 1658 if (aOut != bOut) 1659 return aOut->addr < bOut->addr; 1660 return la->outSecOff < lb->outSecOff; 1661 } 1662 1663 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1664 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1665 for (OutputSection *sec : outputSections) { 1666 if (!(sec->flags & SHF_LINK_ORDER)) 1667 continue; 1668 1669 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1670 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1671 if (!config->relocatable && config->emachine == EM_ARM && 1672 sec->type == SHT_ARM_EXIDX) 1673 continue; 1674 1675 // Link order may be distributed across several InputSectionDescriptions. 1676 // Sorting is performed separately. 1677 std::vector<InputSection **> scriptSections; 1678 std::vector<InputSection *> sections; 1679 for (BaseCommand *base : sec->sectionCommands) { 1680 auto *isd = dyn_cast<InputSectionDescription>(base); 1681 if (!isd) 1682 continue; 1683 bool hasLinkOrder = false; 1684 scriptSections.clear(); 1685 sections.clear(); 1686 for (InputSection *&isec : isd->sections) { 1687 if (isec->flags & SHF_LINK_ORDER) { 1688 InputSection *link = isec->getLinkOrderDep(); 1689 if (link && !link->getParent()) 1690 error(toString(isec) + ": sh_link points to discarded section " + 1691 toString(link)); 1692 hasLinkOrder = true; 1693 } 1694 scriptSections.push_back(&isec); 1695 sections.push_back(isec); 1696 } 1697 if (hasLinkOrder && errorCount() == 0) { 1698 llvm::stable_sort(sections, compareByFilePosition); 1699 for (int i = 0, n = sections.size(); i != n; ++i) 1700 *scriptSections[i] = sections[i]; 1701 } 1702 } 1703 } 1704 } 1705 1706 static void finalizeSynthetic(SyntheticSection *sec) { 1707 if (sec && sec->isNeeded() && sec->getParent()) { 1708 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1709 sec->finalizeContents(); 1710 } 1711 } 1712 1713 // We need to generate and finalize the content that depends on the address of 1714 // InputSections. As the generation of the content may also alter InputSection 1715 // addresses we must converge to a fixed point. We do that here. See the comment 1716 // in Writer<ELFT>::finalizeSections(). 1717 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1718 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1719 ThunkCreator tc; 1720 AArch64Err843419Patcher a64p; 1721 ARMErr657417Patcher a32p; 1722 script->assignAddresses(); 1723 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1724 // do require the relative addresses of OutputSections because linker scripts 1725 // can assign Virtual Addresses to OutputSections that are not monotonically 1726 // increasing. 1727 for (Partition &part : partitions) 1728 finalizeSynthetic(part.armExidx); 1729 resolveShfLinkOrder(); 1730 1731 // Converts call x@GDPLT to call __tls_get_addr 1732 if (config->emachine == EM_HEXAGON) 1733 hexagonTLSSymbolUpdate(outputSections); 1734 1735 int assignPasses = 0; 1736 for (;;) { 1737 bool changed = target->needsThunks && tc.createThunks(outputSections); 1738 1739 // With Thunk Size much smaller than branch range we expect to 1740 // converge quickly; if we get to 15 something has gone wrong. 1741 if (changed && tc.pass >= 15) { 1742 error("thunk creation not converged"); 1743 break; 1744 } 1745 1746 if (config->fixCortexA53Errata843419) { 1747 if (changed) 1748 script->assignAddresses(); 1749 changed |= a64p.createFixes(); 1750 } 1751 if (config->fixCortexA8) { 1752 if (changed) 1753 script->assignAddresses(); 1754 changed |= a32p.createFixes(); 1755 } 1756 1757 if (in.mipsGot) 1758 in.mipsGot->updateAllocSize(); 1759 1760 for (Partition &part : partitions) { 1761 changed |= part.relaDyn->updateAllocSize(); 1762 if (part.relrDyn) 1763 changed |= part.relrDyn->updateAllocSize(); 1764 } 1765 1766 const Defined *changedSym = script->assignAddresses(); 1767 if (!changed) { 1768 // Some symbols may be dependent on section addresses. When we break the 1769 // loop, the symbol values are finalized because a previous 1770 // assignAddresses() finalized section addresses. 1771 if (!changedSym) 1772 break; 1773 if (++assignPasses == 5) { 1774 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1775 " does not converge"); 1776 break; 1777 } 1778 } 1779 } 1780 1781 // If addrExpr is set, the address may not be a multiple of the alignment. 1782 // Warn because this is error-prone. 1783 for (BaseCommand *cmd : script->sectionCommands) 1784 if (auto *os = dyn_cast<OutputSection>(cmd)) 1785 if (os->addr % os->alignment != 0) 1786 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1787 os->name + " is not a multiple of alignment (" + 1788 Twine(os->alignment) + ")"); 1789 } 1790 1791 // If Input Sections have been shrunk (basic block sections) then 1792 // update symbol values and sizes associated with these sections. With basic 1793 // block sections, input sections can shrink when the jump instructions at 1794 // the end of the section are relaxed. 1795 static void fixSymbolsAfterShrinking() { 1796 for (InputFile *File : objectFiles) { 1797 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1798 auto *def = dyn_cast<Defined>(Sym); 1799 if (!def) 1800 return; 1801 1802 const SectionBase *sec = def->section; 1803 if (!sec) 1804 return; 1805 1806 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1807 if (!inputSec || !inputSec->bytesDropped) 1808 return; 1809 1810 const size_t OldSize = inputSec->data().size(); 1811 const size_t NewSize = OldSize - inputSec->bytesDropped; 1812 1813 if (def->value > NewSize && def->value <= OldSize) { 1814 LLVM_DEBUG(llvm::dbgs() 1815 << "Moving symbol " << Sym->getName() << " from " 1816 << def->value << " to " 1817 << def->value - inputSec->bytesDropped << " bytes\n"); 1818 def->value -= inputSec->bytesDropped; 1819 return; 1820 } 1821 1822 if (def->value + def->size > NewSize && def->value <= OldSize && 1823 def->value + def->size <= OldSize) { 1824 LLVM_DEBUG(llvm::dbgs() 1825 << "Shrinking symbol " << Sym->getName() << " from " 1826 << def->size << " to " << def->size - inputSec->bytesDropped 1827 << " bytes\n"); 1828 def->size -= inputSec->bytesDropped; 1829 } 1830 }); 1831 } 1832 } 1833 1834 // If basic block sections exist, there are opportunities to delete fall thru 1835 // jumps and shrink jump instructions after basic block reordering. This 1836 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1837 // option is used. 1838 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1839 assert(config->optimizeBBJumps); 1840 1841 script->assignAddresses(); 1842 // For every output section that has executable input sections, this 1843 // does the following: 1844 // 1. Deletes all direct jump instructions in input sections that 1845 // jump to the following section as it is not required. 1846 // 2. If there are two consecutive jump instructions, it checks 1847 // if they can be flipped and one can be deleted. 1848 for (OutputSection *os : outputSections) { 1849 if (!(os->flags & SHF_EXECINSTR)) 1850 continue; 1851 std::vector<InputSection *> sections = getInputSections(os); 1852 std::vector<unsigned> result(sections.size()); 1853 // Delete all fall through jump instructions. Also, check if two 1854 // consecutive jump instructions can be flipped so that a fall 1855 // through jmp instruction can be deleted. 1856 parallelForEachN(0, sections.size(), [&](size_t i) { 1857 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1858 InputSection &is = *sections[i]; 1859 result[i] = 1860 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1861 }); 1862 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1863 if (numDeleted > 0) { 1864 script->assignAddresses(); 1865 LLVM_DEBUG(llvm::dbgs() 1866 << "Removing " << numDeleted << " fall through jumps\n"); 1867 } 1868 } 1869 1870 fixSymbolsAfterShrinking(); 1871 1872 for (OutputSection *os : outputSections) { 1873 std::vector<InputSection *> sections = getInputSections(os); 1874 for (InputSection *is : sections) 1875 is->trim(); 1876 } 1877 } 1878 1879 // In order to allow users to manipulate linker-synthesized sections, 1880 // we had to add synthetic sections to the input section list early, 1881 // even before we make decisions whether they are needed. This allows 1882 // users to write scripts like this: ".mygot : { .got }". 1883 // 1884 // Doing it has an unintended side effects. If it turns out that we 1885 // don't need a .got (for example) at all because there's no 1886 // relocation that needs a .got, we don't want to emit .got. 1887 // 1888 // To deal with the above problem, this function is called after 1889 // scanRelocations is called to remove synthetic sections that turn 1890 // out to be empty. 1891 static void removeUnusedSyntheticSections() { 1892 // All input synthetic sections that can be empty are placed after 1893 // all regular ones. Reverse iterate to find the first synthetic section 1894 // after a non-synthetic one which will be our starting point. 1895 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1896 [](InputSectionBase *s) { 1897 return !isa<SyntheticSection>(s); 1898 }) 1899 .base(); 1900 1901 DenseSet<InputSectionDescription *> isdSet; 1902 // Mark unused synthetic sections for deletion 1903 auto end = std::stable_partition( 1904 start, inputSections.end(), [&](InputSectionBase *s) { 1905 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1906 OutputSection *os = ss->getParent(); 1907 if (!os || ss->isNeeded()) 1908 return true; 1909 1910 // If we reach here, then ss is an unused synthetic section and we want 1911 // to remove it from the corresponding input section description, and 1912 // orphanSections. 1913 for (BaseCommand *b : os->sectionCommands) 1914 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1915 isdSet.insert(isd); 1916 1917 llvm::erase_if( 1918 script->orphanSections, 1919 [=](const InputSectionBase *isec) { return isec == ss; }); 1920 1921 return false; 1922 }); 1923 1924 DenseSet<InputSectionBase *> unused(end, inputSections.end()); 1925 for (auto *isd : isdSet) 1926 llvm::erase_if(isd->sections, 1927 [=](InputSection *isec) { return unused.count(isec); }); 1928 1929 // Erase unused synthetic sections. 1930 inputSections.erase(end, inputSections.end()); 1931 } 1932 1933 // Create output section objects and add them to OutputSections. 1934 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1935 Out::preinitArray = findSection(".preinit_array"); 1936 Out::initArray = findSection(".init_array"); 1937 Out::finiArray = findSection(".fini_array"); 1938 1939 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1940 // symbols for sections, so that the runtime can get the start and end 1941 // addresses of each section by section name. Add such symbols. 1942 if (!config->relocatable) { 1943 addStartEndSymbols(); 1944 for (BaseCommand *base : script->sectionCommands) 1945 if (auto *sec = dyn_cast<OutputSection>(base)) 1946 addStartStopSymbols(sec); 1947 } 1948 1949 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1950 // It should be okay as no one seems to care about the type. 1951 // Even the author of gold doesn't remember why gold behaves that way. 1952 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1953 if (mainPart->dynamic->parent) 1954 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1955 STV_HIDDEN, STT_NOTYPE, 1956 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1957 1958 // Define __rel[a]_iplt_{start,end} symbols if needed. 1959 addRelIpltSymbols(); 1960 1961 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1962 // should only be defined in an executable. If .sdata does not exist, its 1963 // value/section does not matter but it has to be relative, so set its 1964 // st_shndx arbitrarily to 1 (Out::elfHeader). 1965 if (config->emachine == EM_RISCV && !config->shared) { 1966 OutputSection *sec = findSection(".sdata"); 1967 ElfSym::riscvGlobalPointer = 1968 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1969 0x800, STV_DEFAULT); 1970 } 1971 1972 if (config->emachine == EM_X86_64) { 1973 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1974 // way that: 1975 // 1976 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1977 // computes 0. 1978 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1979 // the TLS block). 1980 // 1981 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1982 // an absolute symbol of zero. This is different from GNU linkers which 1983 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1984 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1985 if (s && s->isUndefined()) { 1986 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1987 STT_TLS, /*value=*/0, 0, 1988 /*section=*/nullptr}); 1989 ElfSym::tlsModuleBase = cast<Defined>(s); 1990 } 1991 } 1992 1993 { 1994 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1995 // This responsible for splitting up .eh_frame section into 1996 // pieces. The relocation scan uses those pieces, so this has to be 1997 // earlier. 1998 for (Partition &part : partitions) 1999 finalizeSynthetic(part.ehFrame); 2000 } 2001 2002 for (Symbol *sym : symtab->symbols()) 2003 sym->isPreemptible = computeIsPreemptible(*sym); 2004 2005 // Change values of linker-script-defined symbols from placeholders (assigned 2006 // by declareSymbols) to actual definitions. 2007 script->processSymbolAssignments(); 2008 2009 { 2010 llvm::TimeTraceScope timeScope("Scan relocations"); 2011 // Scan relocations. This must be done after every symbol is declared so 2012 // that we can correctly decide if a dynamic relocation is needed. This is 2013 // called after processSymbolAssignments() because it needs to know whether 2014 // a linker-script-defined symbol is absolute. 2015 ppc64noTocRelax.clear(); 2016 if (!config->relocatable) { 2017 forEachRelSec(scanRelocations<ELFT>); 2018 reportUndefinedSymbols<ELFT>(); 2019 } 2020 } 2021 2022 if (in.plt && in.plt->isNeeded()) 2023 in.plt->addSymbols(); 2024 if (in.iplt && in.iplt->isNeeded()) 2025 in.iplt->addSymbols(); 2026 2027 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 2028 auto diagnose = 2029 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 2030 ? errorOrWarn 2031 : warn; 2032 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 2033 // entries are seen. These cases would otherwise lead to runtime errors 2034 // reported by the dynamic linker. 2035 // 2036 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 2037 // catch more cases. That is too much for us. Our approach resembles the one 2038 // used in ld.gold, achieves a good balance to be useful but not too smart. 2039 for (SharedFile *file : sharedFiles) { 2040 bool allNeededIsKnown = 2041 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2042 return symtab->soNames.count(needed); 2043 }); 2044 if (!allNeededIsKnown) 2045 continue; 2046 for (Symbol *sym : file->requiredSymbols) 2047 if (sym->isUndefined() && !sym->isWeak()) 2048 diagnose(toString(file) + ": undefined reference to " + 2049 toString(*sym) + " [--no-allow-shlib-undefined]"); 2050 } 2051 } 2052 2053 { 2054 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2055 // Now that we have defined all possible global symbols including linker- 2056 // synthesized ones. Visit all symbols to give the finishing touches. 2057 for (Symbol *sym : symtab->symbols()) { 2058 if (!includeInSymtab(*sym)) 2059 continue; 2060 if (in.symTab) 2061 in.symTab->addSymbol(sym); 2062 2063 if (sym->includeInDynsym()) { 2064 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2065 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2066 if (file->isNeeded && !sym->isUndefined()) 2067 addVerneed(sym); 2068 } 2069 } 2070 2071 // We also need to scan the dynamic relocation tables of the other 2072 // partitions and add any referenced symbols to the partition's dynsym. 2073 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2074 DenseSet<Symbol *> syms; 2075 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2076 syms.insert(e.sym); 2077 for (DynamicReloc &reloc : part.relaDyn->relocs) 2078 if (reloc.sym && reloc.needsDynSymIndex() && 2079 syms.insert(reloc.sym).second) 2080 part.dynSymTab->addSymbol(reloc.sym); 2081 } 2082 } 2083 2084 // Do not proceed if there was an undefined symbol. 2085 if (errorCount()) 2086 return; 2087 2088 if (in.mipsGot) 2089 in.mipsGot->build(); 2090 2091 removeUnusedSyntheticSections(); 2092 script->diagnoseOrphanHandling(); 2093 2094 sortSections(); 2095 2096 // Now that we have the final list, create a list of all the 2097 // OutputSections for convenience. 2098 for (BaseCommand *base : script->sectionCommands) 2099 if (auto *sec = dyn_cast<OutputSection>(base)) 2100 outputSections.push_back(sec); 2101 2102 // Prefer command line supplied address over other constraints. 2103 for (OutputSection *sec : outputSections) { 2104 auto i = config->sectionStartMap.find(sec->name); 2105 if (i != config->sectionStartMap.end()) 2106 sec->addrExpr = [=] { return i->second; }; 2107 } 2108 2109 // With the outputSections available check for GDPLT relocations 2110 // and add __tls_get_addr symbol if needed. 2111 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2112 Symbol *sym = symtab->addSymbol(Undefined{ 2113 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2114 sym->isPreemptible = true; 2115 partitions[0].dynSymTab->addSymbol(sym); 2116 } 2117 2118 // This is a bit of a hack. A value of 0 means undef, so we set it 2119 // to 1 to make __ehdr_start defined. The section number is not 2120 // particularly relevant. 2121 Out::elfHeader->sectionIndex = 1; 2122 2123 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2124 OutputSection *sec = outputSections[i]; 2125 sec->sectionIndex = i + 1; 2126 sec->shName = in.shStrTab->addString(sec->name); 2127 } 2128 2129 // Binary and relocatable output does not have PHDRS. 2130 // The headers have to be created before finalize as that can influence the 2131 // image base and the dynamic section on mips includes the image base. 2132 if (!config->relocatable && !config->oFormatBinary) { 2133 for (Partition &part : partitions) { 2134 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2135 : createPhdrs(part); 2136 if (config->emachine == EM_ARM) { 2137 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2138 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2139 } 2140 if (config->emachine == EM_MIPS) { 2141 // Add separate segments for MIPS-specific sections. 2142 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2143 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2144 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2145 } 2146 } 2147 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2148 2149 // Find the TLS segment. This happens before the section layout loop so that 2150 // Android relocation packing can look up TLS symbol addresses. We only need 2151 // to care about the main partition here because all TLS symbols were moved 2152 // to the main partition (see MarkLive.cpp). 2153 for (PhdrEntry *p : mainPart->phdrs) 2154 if (p->p_type == PT_TLS) 2155 Out::tlsPhdr = p; 2156 } 2157 2158 // Some symbols are defined in term of program headers. Now that we 2159 // have the headers, we can find out which sections they point to. 2160 setReservedSymbolSections(); 2161 2162 { 2163 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2164 2165 finalizeSynthetic(in.bss); 2166 finalizeSynthetic(in.bssRelRo); 2167 finalizeSynthetic(in.symTabShndx); 2168 finalizeSynthetic(in.shStrTab); 2169 finalizeSynthetic(in.strTab); 2170 finalizeSynthetic(in.got); 2171 finalizeSynthetic(in.mipsGot); 2172 finalizeSynthetic(in.igotPlt); 2173 finalizeSynthetic(in.gotPlt); 2174 finalizeSynthetic(in.relaIplt); 2175 finalizeSynthetic(in.relaPlt); 2176 finalizeSynthetic(in.plt); 2177 finalizeSynthetic(in.iplt); 2178 finalizeSynthetic(in.ppc32Got2); 2179 finalizeSynthetic(in.partIndex); 2180 2181 // Dynamic section must be the last one in this list and dynamic 2182 // symbol table section (dynSymTab) must be the first one. 2183 for (Partition &part : partitions) { 2184 finalizeSynthetic(part.dynSymTab); 2185 finalizeSynthetic(part.gnuHashTab); 2186 finalizeSynthetic(part.hashTab); 2187 finalizeSynthetic(part.verDef); 2188 finalizeSynthetic(part.relaDyn); 2189 finalizeSynthetic(part.relrDyn); 2190 finalizeSynthetic(part.ehFrameHdr); 2191 finalizeSynthetic(part.verSym); 2192 finalizeSynthetic(part.verNeed); 2193 finalizeSynthetic(part.dynamic); 2194 } 2195 } 2196 2197 if (!script->hasSectionsCommand && !config->relocatable) 2198 fixSectionAlignments(); 2199 2200 // This is used to: 2201 // 1) Create "thunks": 2202 // Jump instructions in many ISAs have small displacements, and therefore 2203 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2204 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2205 // responsibility to create and insert small pieces of code between 2206 // sections to extend the ranges if jump targets are out of range. Such 2207 // code pieces are called "thunks". 2208 // 2209 // We add thunks at this stage. We couldn't do this before this point 2210 // because this is the earliest point where we know sizes of sections and 2211 // their layouts (that are needed to determine if jump targets are in 2212 // range). 2213 // 2214 // 2) Update the sections. We need to generate content that depends on the 2215 // address of InputSections. For example, MIPS GOT section content or 2216 // android packed relocations sections content. 2217 // 2218 // 3) Assign the final values for the linker script symbols. Linker scripts 2219 // sometimes using forward symbol declarations. We want to set the correct 2220 // values. They also might change after adding the thunks. 2221 finalizeAddressDependentContent(); 2222 if (errorCount()) 2223 return; 2224 2225 { 2226 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2227 // finalizeAddressDependentContent may have added local symbols to the 2228 // static symbol table. 2229 finalizeSynthetic(in.symTab); 2230 finalizeSynthetic(in.ppc64LongBranchTarget); 2231 } 2232 2233 // Relaxation to delete inter-basic block jumps created by basic block 2234 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2235 // can relax jump instructions based on symbol offset. 2236 if (config->optimizeBBJumps) 2237 optimizeBasicBlockJumps(); 2238 2239 // Fill other section headers. The dynamic table is finalized 2240 // at the end because some tags like RELSZ depend on result 2241 // of finalizing other sections. 2242 for (OutputSection *sec : outputSections) 2243 sec->finalize(); 2244 } 2245 2246 // Ensure data sections are not mixed with executable sections when 2247 // -execute-only is used. -execute-only is a feature to make pages executable 2248 // but not readable, and the feature is currently supported only on AArch64. 2249 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2250 if (!config->executeOnly) 2251 return; 2252 2253 for (OutputSection *os : outputSections) 2254 if (os->flags & SHF_EXECINSTR) 2255 for (InputSection *isec : getInputSections(os)) 2256 if (!(isec->flags & SHF_EXECINSTR)) 2257 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2258 ": -execute-only does not support intermingling data and code"); 2259 } 2260 2261 // The linker is expected to define SECNAME_start and SECNAME_end 2262 // symbols for a few sections. This function defines them. 2263 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2264 // If a section does not exist, there's ambiguity as to how we 2265 // define _start and _end symbols for an init/fini section. Since 2266 // the loader assume that the symbols are always defined, we need to 2267 // always define them. But what value? The loader iterates over all 2268 // pointers between _start and _end to run global ctors/dtors, so if 2269 // the section is empty, their symbol values don't actually matter 2270 // as long as _start and _end point to the same location. 2271 // 2272 // That said, we don't want to set the symbols to 0 (which is 2273 // probably the simplest value) because that could cause some 2274 // program to fail to link due to relocation overflow, if their 2275 // program text is above 2 GiB. We use the address of the .text 2276 // section instead to prevent that failure. 2277 // 2278 // In rare situations, the .text section may not exist. If that's the 2279 // case, use the image base address as a last resort. 2280 OutputSection *Default = findSection(".text"); 2281 if (!Default) 2282 Default = Out::elfHeader; 2283 2284 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2285 if (os) { 2286 addOptionalRegular(start, os, 0); 2287 addOptionalRegular(end, os, -1); 2288 } else { 2289 addOptionalRegular(start, Default, 0); 2290 addOptionalRegular(end, Default, 0); 2291 } 2292 }; 2293 2294 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2295 define("__init_array_start", "__init_array_end", Out::initArray); 2296 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2297 2298 if (OutputSection *sec = findSection(".ARM.exidx")) 2299 define("__exidx_start", "__exidx_end", sec); 2300 } 2301 2302 // If a section name is valid as a C identifier (which is rare because of 2303 // the leading '.'), linkers are expected to define __start_<secname> and 2304 // __stop_<secname> symbols. They are at beginning and end of the section, 2305 // respectively. This is not requested by the ELF standard, but GNU ld and 2306 // gold provide the feature, and used by many programs. 2307 template <class ELFT> 2308 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2309 StringRef s = sec->name; 2310 if (!isValidCIdentifier(s)) 2311 return; 2312 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2313 config->zStartStopVisibility); 2314 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2315 config->zStartStopVisibility); 2316 } 2317 2318 static bool needsPtLoad(OutputSection *sec) { 2319 if (!(sec->flags & SHF_ALLOC)) 2320 return false; 2321 2322 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2323 // responsible for allocating space for them, not the PT_LOAD that 2324 // contains the TLS initialization image. 2325 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2326 return false; 2327 return true; 2328 } 2329 2330 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2331 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2332 // RW. This means that there is no alignment in the RO to RX transition and we 2333 // cannot create a PT_LOAD there. 2334 static uint64_t computeFlags(uint64_t flags) { 2335 if (config->omagic) 2336 return PF_R | PF_W | PF_X; 2337 if (config->executeOnly && (flags & PF_X)) 2338 return flags & ~PF_R; 2339 if (config->singleRoRx && !(flags & PF_W)) 2340 return flags | PF_X; 2341 return flags; 2342 } 2343 2344 // Decide which program headers to create and which sections to include in each 2345 // one. 2346 template <class ELFT> 2347 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2348 std::vector<PhdrEntry *> ret; 2349 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2350 ret.push_back(make<PhdrEntry>(type, flags)); 2351 return ret.back(); 2352 }; 2353 2354 unsigned partNo = part.getNumber(); 2355 bool isMain = partNo == 1; 2356 2357 // Add the first PT_LOAD segment for regular output sections. 2358 uint64_t flags = computeFlags(PF_R); 2359 PhdrEntry *load = nullptr; 2360 2361 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2362 // PT_LOAD. 2363 if (!config->nmagic && !config->omagic) { 2364 // The first phdr entry is PT_PHDR which describes the program header 2365 // itself. 2366 if (isMain) 2367 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2368 else 2369 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2370 2371 // PT_INTERP must be the second entry if exists. 2372 if (OutputSection *cmd = findSection(".interp", partNo)) 2373 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2374 2375 // Add the headers. We will remove them if they don't fit. 2376 // In the other partitions the headers are ordinary sections, so they don't 2377 // need to be added here. 2378 if (isMain) { 2379 load = addHdr(PT_LOAD, flags); 2380 load->add(Out::elfHeader); 2381 load->add(Out::programHeaders); 2382 } 2383 } 2384 2385 // PT_GNU_RELRO includes all sections that should be marked as 2386 // read-only by dynamic linker after processing relocations. 2387 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2388 // an error message if more than one PT_GNU_RELRO PHDR is required. 2389 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2390 bool inRelroPhdr = false; 2391 OutputSection *relroEnd = nullptr; 2392 for (OutputSection *sec : outputSections) { 2393 if (sec->partition != partNo || !needsPtLoad(sec)) 2394 continue; 2395 if (isRelroSection(sec)) { 2396 inRelroPhdr = true; 2397 if (!relroEnd) 2398 relRo->add(sec); 2399 else 2400 error("section: " + sec->name + " is not contiguous with other relro" + 2401 " sections"); 2402 } else if (inRelroPhdr) { 2403 inRelroPhdr = false; 2404 relroEnd = sec; 2405 } 2406 } 2407 2408 for (OutputSection *sec : outputSections) { 2409 if (!needsPtLoad(sec)) 2410 continue; 2411 2412 // Normally, sections in partitions other than the current partition are 2413 // ignored. But partition number 255 is a special case: it contains the 2414 // partition end marker (.part.end). It needs to be added to the main 2415 // partition so that a segment is created for it in the main partition, 2416 // which will cause the dynamic loader to reserve space for the other 2417 // partitions. 2418 if (sec->partition != partNo) { 2419 if (isMain && sec->partition == 255) 2420 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2421 continue; 2422 } 2423 2424 // Segments are contiguous memory regions that has the same attributes 2425 // (e.g. executable or writable). There is one phdr for each segment. 2426 // Therefore, we need to create a new phdr when the next section has 2427 // different flags or is loaded at a discontiguous address or memory 2428 // region using AT or AT> linker script command, respectively. At the same 2429 // time, we don't want to create a separate load segment for the headers, 2430 // even if the first output section has an AT or AT> attribute. 2431 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2432 bool sameLMARegion = 2433 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2434 if (!(load && newFlags == flags && sec != relroEnd && 2435 sec->memRegion == load->firstSec->memRegion && 2436 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2437 load = addHdr(PT_LOAD, newFlags); 2438 flags = newFlags; 2439 } 2440 2441 load->add(sec); 2442 } 2443 2444 // Add a TLS segment if any. 2445 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2446 for (OutputSection *sec : outputSections) 2447 if (sec->partition == partNo && sec->flags & SHF_TLS) 2448 tlsHdr->add(sec); 2449 if (tlsHdr->firstSec) 2450 ret.push_back(tlsHdr); 2451 2452 // Add an entry for .dynamic. 2453 if (OutputSection *sec = part.dynamic->getParent()) 2454 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2455 2456 if (relRo->firstSec) 2457 ret.push_back(relRo); 2458 2459 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2460 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2461 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2462 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2463 ->add(part.ehFrameHdr->getParent()); 2464 2465 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2466 // the dynamic linker fill the segment with random data. 2467 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2468 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2469 2470 if (config->zGnustack != GnuStackKind::None) { 2471 // PT_GNU_STACK is a special section to tell the loader to make the 2472 // pages for the stack non-executable. If you really want an executable 2473 // stack, you can pass -z execstack, but that's not recommended for 2474 // security reasons. 2475 unsigned perm = PF_R | PF_W; 2476 if (config->zGnustack == GnuStackKind::Exec) 2477 perm |= PF_X; 2478 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2479 } 2480 2481 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2482 // is expected to perform W^X violations, such as calling mprotect(2) or 2483 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2484 // OpenBSD. 2485 if (config->zWxneeded) 2486 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2487 2488 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2489 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2490 2491 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2492 // same alignment. 2493 PhdrEntry *note = nullptr; 2494 for (OutputSection *sec : outputSections) { 2495 if (sec->partition != partNo) 2496 continue; 2497 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2498 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2499 note = addHdr(PT_NOTE, PF_R); 2500 note->add(sec); 2501 } else { 2502 note = nullptr; 2503 } 2504 } 2505 return ret; 2506 } 2507 2508 template <class ELFT> 2509 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2510 unsigned pType, unsigned pFlags) { 2511 unsigned partNo = part.getNumber(); 2512 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2513 return cmd->partition == partNo && cmd->type == shType; 2514 }); 2515 if (i == outputSections.end()) 2516 return; 2517 2518 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2519 entry->add(*i); 2520 part.phdrs.push_back(entry); 2521 } 2522 2523 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2524 // This is achieved by assigning an alignment expression to addrExpr of each 2525 // such section. 2526 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2527 const PhdrEntry *prev; 2528 auto pageAlign = [&](const PhdrEntry *p) { 2529 OutputSection *cmd = p->firstSec; 2530 if (!cmd) 2531 return; 2532 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2533 if (!cmd->addrExpr) { 2534 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2535 // padding in the file contents. 2536 // 2537 // When -z separate-code is used we must not have any overlap in pages 2538 // between an executable segment and a non-executable segment. We align to 2539 // the next maximum page size boundary on transitions between executable 2540 // and non-executable segments. 2541 // 2542 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2543 // sections will be extracted to a separate file. Align to the next 2544 // maximum page size boundary so that we can find the ELF header at the 2545 // start. We cannot benefit from overlapping p_offset ranges with the 2546 // previous segment anyway. 2547 if (config->zSeparate == SeparateSegmentKind::Loadable || 2548 (config->zSeparate == SeparateSegmentKind::Code && prev && 2549 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2550 cmd->type == SHT_LLVM_PART_EHDR) 2551 cmd->addrExpr = [] { 2552 return alignTo(script->getDot(), config->maxPageSize); 2553 }; 2554 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2555 // it must be the RW. Align to p_align(PT_TLS) to make sure 2556 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2557 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2558 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2559 // be congruent to 0 modulo p_align(PT_TLS). 2560 // 2561 // Technically this is not required, but as of 2019, some dynamic loaders 2562 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2563 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2564 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2565 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2566 // blocks correctly. We need to keep the workaround for a while. 2567 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2568 cmd->addrExpr = [] { 2569 return alignTo(script->getDot(), config->maxPageSize) + 2570 alignTo(script->getDot() % config->maxPageSize, 2571 Out::tlsPhdr->p_align); 2572 }; 2573 else 2574 cmd->addrExpr = [] { 2575 return alignTo(script->getDot(), config->maxPageSize) + 2576 script->getDot() % config->maxPageSize; 2577 }; 2578 } 2579 }; 2580 2581 for (Partition &part : partitions) { 2582 prev = nullptr; 2583 for (const PhdrEntry *p : part.phdrs) 2584 if (p->p_type == PT_LOAD && p->firstSec) { 2585 pageAlign(p); 2586 prev = p; 2587 } 2588 } 2589 } 2590 2591 // Compute an in-file position for a given section. The file offset must be the 2592 // same with its virtual address modulo the page size, so that the loader can 2593 // load executables without any address adjustment. 2594 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2595 // The first section in a PT_LOAD has to have congruent offset and address 2596 // modulo the maximum page size. 2597 if (os->ptLoad && os->ptLoad->firstSec == os) 2598 return alignTo(off, os->ptLoad->p_align, os->addr); 2599 2600 // File offsets are not significant for .bss sections other than the first one 2601 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2602 // increasing rather than setting to zero. 2603 if (os->type == SHT_NOBITS && 2604 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2605 return off; 2606 2607 // If the section is not in a PT_LOAD, we just have to align it. 2608 if (!os->ptLoad) 2609 return alignTo(off, os->alignment); 2610 2611 // If two sections share the same PT_LOAD the file offset is calculated 2612 // using this formula: Off2 = Off1 + (VA2 - VA1). 2613 OutputSection *first = os->ptLoad->firstSec; 2614 return first->offset + os->addr - first->addr; 2615 } 2616 2617 // Set an in-file position to a given section and returns the end position of 2618 // the section. 2619 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2620 off = computeFileOffset(os, off); 2621 os->offset = off; 2622 2623 if (os->type == SHT_NOBITS) 2624 return off; 2625 return off + os->size; 2626 } 2627 2628 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2629 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2630 auto needsOffset = [](OutputSection &sec) { 2631 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2632 }; 2633 uint64_t minAddr = UINT64_MAX; 2634 for (OutputSection *sec : outputSections) 2635 if (needsOffset(*sec)) { 2636 sec->offset = sec->getLMA(); 2637 minAddr = std::min(minAddr, sec->offset); 2638 } 2639 2640 // Sections are laid out at LMA minus minAddr. 2641 fileSize = 0; 2642 for (OutputSection *sec : outputSections) 2643 if (needsOffset(*sec)) { 2644 sec->offset -= minAddr; 2645 fileSize = std::max(fileSize, sec->offset + sec->size); 2646 } 2647 } 2648 2649 static std::string rangeToString(uint64_t addr, uint64_t len) { 2650 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2651 } 2652 2653 // Assign file offsets to output sections. 2654 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2655 uint64_t off = 0; 2656 off = setFileOffset(Out::elfHeader, off); 2657 off = setFileOffset(Out::programHeaders, off); 2658 2659 PhdrEntry *lastRX = nullptr; 2660 for (Partition &part : partitions) 2661 for (PhdrEntry *p : part.phdrs) 2662 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2663 lastRX = p; 2664 2665 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2666 // will not occupy file offsets contained by a PT_LOAD. 2667 for (OutputSection *sec : outputSections) { 2668 if (!(sec->flags & SHF_ALLOC)) 2669 continue; 2670 off = setFileOffset(sec, off); 2671 2672 // If this is a last section of the last executable segment and that 2673 // segment is the last loadable segment, align the offset of the 2674 // following section to avoid loading non-segments parts of the file. 2675 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2676 lastRX->lastSec == sec) 2677 off = alignTo(off, config->commonPageSize); 2678 } 2679 for (OutputSection *sec : outputSections) 2680 if (!(sec->flags & SHF_ALLOC)) 2681 off = setFileOffset(sec, off); 2682 2683 sectionHeaderOff = alignTo(off, config->wordsize); 2684 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2685 2686 // Our logic assumes that sections have rising VA within the same segment. 2687 // With use of linker scripts it is possible to violate this rule and get file 2688 // offset overlaps or overflows. That should never happen with a valid script 2689 // which does not move the location counter backwards and usually scripts do 2690 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2691 // kernel, which control segment distribution explicitly and move the counter 2692 // backwards, so we have to allow doing that to support linking them. We 2693 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2694 // we want to prevent file size overflows because it would crash the linker. 2695 for (OutputSection *sec : outputSections) { 2696 if (sec->type == SHT_NOBITS) 2697 continue; 2698 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2699 error("unable to place section " + sec->name + " at file offset " + 2700 rangeToString(sec->offset, sec->size) + 2701 "; check your linker script for overflows"); 2702 } 2703 } 2704 2705 // Finalize the program headers. We call this function after we assign 2706 // file offsets and VAs to all sections. 2707 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2708 for (PhdrEntry *p : part.phdrs) { 2709 OutputSection *first = p->firstSec; 2710 OutputSection *last = p->lastSec; 2711 2712 if (first) { 2713 p->p_filesz = last->offset - first->offset; 2714 if (last->type != SHT_NOBITS) 2715 p->p_filesz += last->size; 2716 2717 p->p_memsz = last->addr + last->size - first->addr; 2718 p->p_offset = first->offset; 2719 p->p_vaddr = first->addr; 2720 2721 // File offsets in partitions other than the main partition are relative 2722 // to the offset of the ELF headers. Perform that adjustment now. 2723 if (part.elfHeader) 2724 p->p_offset -= part.elfHeader->getParent()->offset; 2725 2726 if (!p->hasLMA) 2727 p->p_paddr = first->getLMA(); 2728 } 2729 2730 if (p->p_type == PT_GNU_RELRO) { 2731 p->p_align = 1; 2732 // musl/glibc ld.so rounds the size down, so we need to round up 2733 // to protect the last page. This is a no-op on FreeBSD which always 2734 // rounds up. 2735 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2736 p->p_offset; 2737 } 2738 } 2739 } 2740 2741 // A helper struct for checkSectionOverlap. 2742 namespace { 2743 struct SectionOffset { 2744 OutputSection *sec; 2745 uint64_t offset; 2746 }; 2747 } // namespace 2748 2749 // Check whether sections overlap for a specific address range (file offsets, 2750 // load and virtual addresses). 2751 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2752 bool isVirtualAddr) { 2753 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2754 return a.offset < b.offset; 2755 }); 2756 2757 // Finding overlap is easy given a vector is sorted by start position. 2758 // If an element starts before the end of the previous element, they overlap. 2759 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2760 SectionOffset a = sections[i - 1]; 2761 SectionOffset b = sections[i]; 2762 if (b.offset >= a.offset + a.sec->size) 2763 continue; 2764 2765 // If both sections are in OVERLAY we allow the overlapping of virtual 2766 // addresses, because it is what OVERLAY was designed for. 2767 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2768 continue; 2769 2770 errorOrWarn("section " + a.sec->name + " " + name + 2771 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2772 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2773 b.sec->name + " range is " + 2774 rangeToString(b.offset, b.sec->size)); 2775 } 2776 } 2777 2778 // Check for overlapping sections and address overflows. 2779 // 2780 // In this function we check that none of the output sections have overlapping 2781 // file offsets. For SHF_ALLOC sections we also check that the load address 2782 // ranges and the virtual address ranges don't overlap 2783 template <class ELFT> void Writer<ELFT>::checkSections() { 2784 // First, check that section's VAs fit in available address space for target. 2785 for (OutputSection *os : outputSections) 2786 if ((os->addr + os->size < os->addr) || 2787 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2788 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2789 " of size 0x" + utohexstr(os->size) + 2790 " exceeds available address space"); 2791 2792 // Check for overlapping file offsets. In this case we need to skip any 2793 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2794 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2795 // binary is specified only add SHF_ALLOC sections are added to the output 2796 // file so we skip any non-allocated sections in that case. 2797 std::vector<SectionOffset> fileOffs; 2798 for (OutputSection *sec : outputSections) 2799 if (sec->size > 0 && sec->type != SHT_NOBITS && 2800 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2801 fileOffs.push_back({sec, sec->offset}); 2802 checkOverlap("file", fileOffs, false); 2803 2804 // When linking with -r there is no need to check for overlapping virtual/load 2805 // addresses since those addresses will only be assigned when the final 2806 // executable/shared object is created. 2807 if (config->relocatable) 2808 return; 2809 2810 // Checking for overlapping virtual and load addresses only needs to take 2811 // into account SHF_ALLOC sections since others will not be loaded. 2812 // Furthermore, we also need to skip SHF_TLS sections since these will be 2813 // mapped to other addresses at runtime and can therefore have overlapping 2814 // ranges in the file. 2815 std::vector<SectionOffset> vmas; 2816 for (OutputSection *sec : outputSections) 2817 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2818 vmas.push_back({sec, sec->addr}); 2819 checkOverlap("virtual address", vmas, true); 2820 2821 // Finally, check that the load addresses don't overlap. This will usually be 2822 // the same as the virtual addresses but can be different when using a linker 2823 // script with AT(). 2824 std::vector<SectionOffset> lmas; 2825 for (OutputSection *sec : outputSections) 2826 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2827 lmas.push_back({sec, sec->getLMA()}); 2828 checkOverlap("load address", lmas, false); 2829 } 2830 2831 // The entry point address is chosen in the following ways. 2832 // 2833 // 1. the '-e' entry command-line option; 2834 // 2. the ENTRY(symbol) command in a linker control script; 2835 // 3. the value of the symbol _start, if present; 2836 // 4. the number represented by the entry symbol, if it is a number; 2837 // 5. the address 0. 2838 static uint64_t getEntryAddr() { 2839 // Case 1, 2 or 3 2840 if (Symbol *b = symtab->find(config->entry)) 2841 return b->getVA(); 2842 2843 // Case 4 2844 uint64_t addr; 2845 if (to_integer(config->entry, addr)) 2846 return addr; 2847 2848 // Case 5 2849 if (config->warnMissingEntry) 2850 warn("cannot find entry symbol " + config->entry + 2851 "; not setting start address"); 2852 return 0; 2853 } 2854 2855 static uint16_t getELFType() { 2856 if (config->isPic) 2857 return ET_DYN; 2858 if (config->relocatable) 2859 return ET_REL; 2860 return ET_EXEC; 2861 } 2862 2863 template <class ELFT> void Writer<ELFT>::writeHeader() { 2864 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2865 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2866 2867 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2868 eHdr->e_type = getELFType(); 2869 eHdr->e_entry = getEntryAddr(); 2870 eHdr->e_shoff = sectionHeaderOff; 2871 2872 // Write the section header table. 2873 // 2874 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2875 // and e_shstrndx fields. When the value of one of these fields exceeds 2876 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2877 // use fields in the section header at index 0 to store 2878 // the value. The sentinel values and fields are: 2879 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2880 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2881 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2882 size_t num = outputSections.size() + 1; 2883 if (num >= SHN_LORESERVE) 2884 sHdrs->sh_size = num; 2885 else 2886 eHdr->e_shnum = num; 2887 2888 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2889 if (strTabIndex >= SHN_LORESERVE) { 2890 sHdrs->sh_link = strTabIndex; 2891 eHdr->e_shstrndx = SHN_XINDEX; 2892 } else { 2893 eHdr->e_shstrndx = strTabIndex; 2894 } 2895 2896 for (OutputSection *sec : outputSections) 2897 sec->writeHeaderTo<ELFT>(++sHdrs); 2898 } 2899 2900 // Open a result file. 2901 template <class ELFT> void Writer<ELFT>::openFile() { 2902 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2903 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2904 std::string msg; 2905 raw_string_ostream s(msg); 2906 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2907 << "section sizes:\n"; 2908 for (OutputSection *os : outputSections) 2909 s << os->name << ' ' << os->size << "\n"; 2910 error(s.str()); 2911 return; 2912 } 2913 2914 unlinkAsync(config->outputFile); 2915 unsigned flags = 0; 2916 if (!config->relocatable) 2917 flags |= FileOutputBuffer::F_executable; 2918 if (!config->mmapOutputFile) 2919 flags |= FileOutputBuffer::F_no_mmap; 2920 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2921 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2922 2923 if (!bufferOrErr) { 2924 error("failed to open " + config->outputFile + ": " + 2925 llvm::toString(bufferOrErr.takeError())); 2926 return; 2927 } 2928 buffer = std::move(*bufferOrErr); 2929 Out::bufferStart = buffer->getBufferStart(); 2930 } 2931 2932 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2933 for (OutputSection *sec : outputSections) 2934 if (sec->flags & SHF_ALLOC) 2935 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2936 } 2937 2938 static void fillTrap(uint8_t *i, uint8_t *end) { 2939 for (; i + 4 <= end; i += 4) 2940 memcpy(i, &target->trapInstr, 4); 2941 } 2942 2943 // Fill the last page of executable segments with trap instructions 2944 // instead of leaving them as zero. Even though it is not required by any 2945 // standard, it is in general a good thing to do for security reasons. 2946 // 2947 // We'll leave other pages in segments as-is because the rest will be 2948 // overwritten by output sections. 2949 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2950 for (Partition &part : partitions) { 2951 // Fill the last page. 2952 for (PhdrEntry *p : part.phdrs) 2953 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2954 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2955 config->commonPageSize), 2956 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2957 config->commonPageSize)); 2958 2959 // Round up the file size of the last segment to the page boundary iff it is 2960 // an executable segment to ensure that other tools don't accidentally 2961 // trim the instruction padding (e.g. when stripping the file). 2962 PhdrEntry *last = nullptr; 2963 for (PhdrEntry *p : part.phdrs) 2964 if (p->p_type == PT_LOAD) 2965 last = p; 2966 2967 if (last && (last->p_flags & PF_X)) 2968 last->p_memsz = last->p_filesz = 2969 alignTo(last->p_filesz, config->commonPageSize); 2970 } 2971 } 2972 2973 // Write section contents to a mmap'ed file. 2974 template <class ELFT> void Writer<ELFT>::writeSections() { 2975 // In -r or -emit-relocs mode, write the relocation sections first as in 2976 // ELf_Rel targets we might find out that we need to modify the relocated 2977 // section while doing it. 2978 for (OutputSection *sec : outputSections) 2979 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2980 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2981 2982 for (OutputSection *sec : outputSections) 2983 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2984 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2985 2986 // Finally, check that all dynamic relocation addends were written correctly. 2987 if (config->checkDynamicRelocs && config->writeAddends) { 2988 for (OutputSection *sec : outputSections) 2989 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2990 sec->checkDynRelAddends(Out::bufferStart); 2991 } 2992 } 2993 2994 // Computes a hash value of Data using a given hash function. 2995 // In order to utilize multiple cores, we first split data into 1MB 2996 // chunks, compute a hash for each chunk, and then compute a hash value 2997 // of the hash values. 2998 static void 2999 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 3000 llvm::ArrayRef<uint8_t> data, 3001 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 3002 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 3003 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 3004 3005 // Compute hash values. 3006 parallelForEachN(0, chunks.size(), [&](size_t i) { 3007 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 3008 }); 3009 3010 // Write to the final output buffer. 3011 hashFn(hashBuf.data(), hashes); 3012 } 3013 3014 template <class ELFT> void Writer<ELFT>::writeBuildId() { 3015 if (!mainPart->buildId || !mainPart->buildId->getParent()) 3016 return; 3017 3018 if (config->buildId == BuildIdKind::Hexstring) { 3019 for (Partition &part : partitions) 3020 part.buildId->writeBuildId(config->buildIdVector); 3021 return; 3022 } 3023 3024 // Compute a hash of all sections of the output file. 3025 size_t hashSize = mainPart->buildId->hashSize; 3026 std::vector<uint8_t> buildId(hashSize); 3027 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 3028 3029 switch (config->buildId) { 3030 case BuildIdKind::Fast: 3031 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3032 write64le(dest, xxHash64(arr)); 3033 }); 3034 break; 3035 case BuildIdKind::Md5: 3036 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3037 memcpy(dest, MD5::hash(arr).data(), hashSize); 3038 }); 3039 break; 3040 case BuildIdKind::Sha1: 3041 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3042 memcpy(dest, SHA1::hash(arr).data(), hashSize); 3043 }); 3044 break; 3045 case BuildIdKind::Uuid: 3046 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 3047 error("entropy source failure: " + ec.message()); 3048 break; 3049 default: 3050 llvm_unreachable("unknown BuildIdKind"); 3051 } 3052 for (Partition &part : partitions) 3053 part.buildId->writeBuildId(buildId); 3054 } 3055 3056 template void elf::createSyntheticSections<ELF32LE>(); 3057 template void elf::createSyntheticSections<ELF32BE>(); 3058 template void elf::createSyntheticSections<ELF64LE>(); 3059 template void elf::createSyntheticSections<ELF64BE>(); 3060 3061 template void elf::writeResult<ELF32LE>(); 3062 template void elf::writeResult<ELF32BE>(); 3063 template void elf::writeResult<ELF64LE>(); 3064 template void elf::writeResult<ELF64BE>(); 3065