1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "AArch64ErrataFix.h" 12 #include "Config.h" 13 #include "Filesystem.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include <climits> 28 29 using namespace llvm; 30 using namespace llvm::ELF; 31 using namespace llvm::object; 32 using namespace llvm::support; 33 using namespace llvm::support::endian; 34 35 using namespace lld; 36 using namespace lld::elf; 37 38 namespace { 39 // The writer writes a SymbolTable result to a file. 40 template <class ELFT> class Writer { 41 public: 42 Writer() : Buffer(errorHandler().OutputBuffer) {} 43 typedef typename ELFT::Shdr Elf_Shdr; 44 typedef typename ELFT::Ehdr Elf_Ehdr; 45 typedef typename ELFT::Phdr Elf_Phdr; 46 47 void run(); 48 49 private: 50 void copyLocalSymbols(); 51 void addSectionSymbols(); 52 void forEachRelSec(std::function<void(InputSectionBase &)> Fn); 53 void sortSections(); 54 void resolveShfLinkOrder(); 55 void sortInputSections(); 56 void finalizeSections(); 57 void setReservedSymbolSections(); 58 59 std::vector<PhdrEntry *> createPhdrs(); 60 void removeEmptyPTLoad(); 61 void addPtArmExid(std::vector<PhdrEntry *> &Phdrs); 62 void assignFileOffsets(); 63 void assignFileOffsetsBinary(); 64 void setPhdrs(); 65 void checkSections(); 66 void fixSectionAlignments(); 67 void openFile(); 68 void writeTrapInstr(); 69 void writeHeader(); 70 void writeSections(); 71 void writeSectionsBinary(); 72 void writeBuildId(); 73 74 std::unique_ptr<FileOutputBuffer> &Buffer; 75 76 void addRelIpltSymbols(); 77 void addStartEndSymbols(); 78 void addStartStopSymbols(OutputSection *Sec); 79 uint64_t getEntryAddr(); 80 81 std::vector<PhdrEntry *> Phdrs; 82 83 uint64_t FileSize; 84 uint64_t SectionHeaderOff; 85 86 bool HasGotBaseSym = false; 87 }; 88 } // anonymous namespace 89 90 StringRef elf::getOutputSectionName(InputSectionBase *S) { 91 if (Config->Relocatable) 92 return S->Name; 93 94 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 95 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 96 // technically required, but not doing it is odd). This code guarantees that. 97 if (auto *IS = dyn_cast<InputSection>(S)) { 98 if (InputSectionBase *Rel = IS->getRelocatedSection()) { 99 OutputSection *Out = Rel->getOutputSection(); 100 if (S->Type == SHT_RELA) 101 return Saver.save(".rela" + Out->Name); 102 return Saver.save(".rel" + Out->Name); 103 } 104 } 105 106 for (StringRef V : 107 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 108 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 109 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) { 110 StringRef Prefix = V.drop_back(); 111 if (S->Name.startswith(V) || S->Name == Prefix) 112 return Prefix; 113 } 114 115 // CommonSection is identified as "COMMON" in linker scripts. 116 // By default, it should go to .bss section. 117 if (S->Name == "COMMON") 118 return ".bss"; 119 120 return S->Name; 121 } 122 123 static bool needsInterpSection() { 124 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 125 Script->needsInterpSection(); 126 } 127 128 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 129 130 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { 131 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 132 if (P->p_type != PT_LOAD) 133 return false; 134 if (!P->FirstSec) 135 return true; 136 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 137 return Size == 0; 138 }); 139 } 140 141 template <class ELFT> static void combineEhFrameSections() { 142 for (InputSectionBase *&S : InputSections) { 143 EhInputSection *ES = dyn_cast<EhInputSection>(S); 144 if (!ES || !ES->Live) 145 continue; 146 147 InX::EhFrame->addSection<ELFT>(ES); 148 S = nullptr; 149 } 150 151 std::vector<InputSectionBase *> &V = InputSections; 152 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 153 } 154 155 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 156 uint64_t Val, uint8_t StOther = STV_HIDDEN, 157 uint8_t Binding = STB_GLOBAL) { 158 Symbol *S = Symtab->find(Name); 159 if (!S || S->isDefined()) 160 return nullptr; 161 Symbol *Sym = Symtab->addRegular(Name, StOther, STT_NOTYPE, Val, 162 /*Size=*/0, Binding, Sec, 163 /*File=*/nullptr); 164 return cast<Defined>(Sym); 165 } 166 167 // The linker is expected to define some symbols depending on 168 // the linking result. This function defines such symbols. 169 void elf::addReservedSymbols() { 170 if (Config->EMachine == EM_MIPS) { 171 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 172 // so that it points to an absolute address which by default is relative 173 // to GOT. Default offset is 0x7ff0. 174 // See "Global Data Symbols" in Chapter 6 in the following document: 175 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 176 ElfSym::MipsGp = Symtab->addAbsolute("_gp", STV_HIDDEN, STB_GLOBAL); 177 178 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 179 // start of function and 'gp' pointer into GOT. 180 if (Symtab->find("_gp_disp")) 181 ElfSym::MipsGpDisp = 182 Symtab->addAbsolute("_gp_disp", STV_HIDDEN, STB_GLOBAL); 183 184 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 185 // pointer. This symbol is used in the code generated by .cpload pseudo-op 186 // in case of using -mno-shared option. 187 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 188 if (Symtab->find("__gnu_local_gp")) 189 ElfSym::MipsLocalGp = 190 Symtab->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_GLOBAL); 191 } 192 193 // The 64-bit PowerOpen ABI defines a TableOfContents (TOC) which combines the 194 // typical ELF GOT with the small data sections. It commonly includes .got 195 // .toc .sdata .sbss. The .TOC. symbol replaces both _GLOBAL_OFFSET_TABLE_ and 196 // _SDA_BASE_ from the 32-bit ABI. It is used to represent the TOC base which 197 // is offset by 0x8000 bytes from the start of the .got section. 198 ElfSym::GlobalOffsetTable = addOptionalRegular( 199 (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_", 200 Out::ElfHeader, Target->GotBaseSymOff); 201 202 // __ehdr_start is the location of ELF file headers. Note that we define 203 // this symbol unconditionally even when using a linker script, which 204 // differs from the behavior implemented by GNU linker which only define 205 // this symbol if ELF headers are in the memory mapped segment. 206 addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); 207 208 // __executable_start is not documented, but the expectation of at 209 // least the Android libc is that it points to the ELF header. 210 addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); 211 212 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 213 // each DSO. The address of the symbol doesn't matter as long as they are 214 // different in different DSOs, so we chose the start address of the DSO. 215 addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); 216 217 // If linker script do layout we do not need to create any standart symbols. 218 if (Script->HasSectionsCommand) 219 return; 220 221 auto Add = [](StringRef S, int64_t Pos) { 222 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 223 }; 224 225 ElfSym::Bss = Add("__bss_start", 0); 226 ElfSym::End1 = Add("end", -1); 227 ElfSym::End2 = Add("_end", -1); 228 ElfSym::Etext1 = Add("etext", -1); 229 ElfSym::Etext2 = Add("_etext", -1); 230 ElfSym::Edata1 = Add("edata", -1); 231 ElfSym::Edata2 = Add("_edata", -1); 232 } 233 234 static OutputSection *findSection(StringRef Name) { 235 for (BaseCommand *Base : Script->SectionCommands) 236 if (auto *Sec = dyn_cast<OutputSection>(Base)) 237 if (Sec->Name == Name) 238 return Sec; 239 return nullptr; 240 } 241 242 // Initialize Out members. 243 template <class ELFT> static void createSyntheticSections() { 244 // Initialize all pointers with NULL. This is needed because 245 // you can call lld::elf::main more than once as a library. 246 memset(&Out::First, 0, sizeof(Out)); 247 248 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 249 250 InX::DynStrTab = make<StringTableSection>(".dynstr", true); 251 InX::Dynamic = make<DynamicSection<ELFT>>(); 252 if (Config->AndroidPackDynRelocs) { 253 InX::RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 254 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 255 } else { 256 InX::RelaDyn = make<RelocationSection<ELFT>>( 257 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 258 } 259 InX::ShStrTab = make<StringTableSection>(".shstrtab", false); 260 261 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 262 Out::ProgramHeaders->Alignment = Config->Wordsize; 263 264 if (needsInterpSection()) { 265 InX::Interp = createInterpSection(); 266 Add(InX::Interp); 267 } else { 268 InX::Interp = nullptr; 269 } 270 271 if (Config->Strip != StripPolicy::All) { 272 InX::StrTab = make<StringTableSection>(".strtab", false); 273 InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab); 274 } 275 276 if (Config->BuildId != BuildIdKind::None) { 277 InX::BuildId = make<BuildIdSection>(); 278 Add(InX::BuildId); 279 } 280 281 InX::Bss = make<BssSection>(".bss", 0, 1); 282 Add(InX::Bss); 283 284 // If there is a SECTIONS command and a .data.rel.ro section name use name 285 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 286 // This makes sure our relro is contiguous. 287 bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro"); 288 InX::BssRelRo = 289 make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 290 Add(InX::BssRelRo); 291 292 // Add MIPS-specific sections. 293 if (Config->EMachine == EM_MIPS) { 294 if (!Config->Shared && Config->HasDynSymTab) { 295 InX::MipsRldMap = make<MipsRldMapSection>(); 296 Add(InX::MipsRldMap); 297 } 298 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 299 Add(Sec); 300 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 301 Add(Sec); 302 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 303 Add(Sec); 304 } 305 306 if (Config->HasDynSymTab) { 307 InX::DynSymTab = make<SymbolTableSection<ELFT>>(*InX::DynStrTab); 308 Add(InX::DynSymTab); 309 310 In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); 311 Add(In<ELFT>::VerSym); 312 313 if (!Config->VersionDefinitions.empty()) { 314 In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); 315 Add(In<ELFT>::VerDef); 316 } 317 318 In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); 319 Add(In<ELFT>::VerNeed); 320 321 if (Config->GnuHash) { 322 InX::GnuHashTab = make<GnuHashTableSection>(); 323 Add(InX::GnuHashTab); 324 } 325 326 if (Config->SysvHash) { 327 InX::HashTab = make<HashTableSection>(); 328 Add(InX::HashTab); 329 } 330 331 Add(InX::Dynamic); 332 Add(InX::DynStrTab); 333 Add(InX::RelaDyn); 334 } 335 336 // Add .got. MIPS' .got is so different from the other archs, 337 // it has its own class. 338 if (Config->EMachine == EM_MIPS) { 339 InX::MipsGot = make<MipsGotSection>(); 340 Add(InX::MipsGot); 341 } else { 342 InX::Got = make<GotSection>(); 343 Add(InX::Got); 344 } 345 346 InX::GotPlt = make<GotPltSection>(); 347 Add(InX::GotPlt); 348 InX::IgotPlt = make<IgotPltSection>(); 349 Add(InX::IgotPlt); 350 351 if (Config->GdbIndex) { 352 InX::GdbIndex = createGdbIndex<ELFT>(); 353 Add(InX::GdbIndex); 354 } 355 356 // We always need to add rel[a].plt to output if it has entries. 357 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 358 InX::RelaPlt = make<RelocationSection<ELFT>>( 359 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 360 Add(InX::RelaPlt); 361 362 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 363 // that the IRelative relocations are processed last by the dynamic loader. 364 // We cannot place the iplt section in .rel.dyn when Android relocation 365 // packing is enabled because that would cause a section type mismatch. 366 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 367 // we can get the desired behaviour by placing the iplt section in .rel.plt. 368 InX::RelaIplt = make<RelocationSection<ELFT>>( 369 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 370 ? ".rel.dyn" 371 : InX::RelaPlt->Name, 372 false /*Sort*/); 373 Add(InX::RelaIplt); 374 375 InX::Plt = make<PltSection>(false); 376 Add(InX::Plt); 377 InX::Iplt = make<PltSection>(true); 378 Add(InX::Iplt); 379 380 if (!Config->Relocatable) { 381 if (Config->EhFrameHdr) { 382 InX::EhFrameHdr = make<EhFrameHeader>(); 383 Add(InX::EhFrameHdr); 384 } 385 InX::EhFrame = make<EhFrameSection>(); 386 Add(InX::EhFrame); 387 } 388 389 if (InX::SymTab) 390 Add(InX::SymTab); 391 Add(InX::ShStrTab); 392 if (InX::StrTab) 393 Add(InX::StrTab); 394 395 if (Config->EMachine == EM_ARM && !Config->Relocatable) 396 // Add a sentinel to terminate .ARM.exidx. It helps an unwinder 397 // to find the exact address range of the last entry. 398 Add(make<ARMExidxSentinelSection>()); 399 } 400 401 // The main function of the writer. 402 template <class ELFT> void Writer<ELFT>::run() { 403 // Create linker-synthesized sections such as .got or .plt. 404 // Such sections are of type input section. 405 createSyntheticSections<ELFT>(); 406 407 if (!Config->Relocatable) 408 combineEhFrameSections<ELFT>(); 409 410 // We want to process linker script commands. When SECTIONS command 411 // is given we let it create sections. 412 Script->processSectionCommands(); 413 414 // Linker scripts controls how input sections are assigned to output sections. 415 // Input sections that were not handled by scripts are called "orphans", and 416 // they are assigned to output sections by the default rule. Process that. 417 Script->addOrphanSections(); 418 419 if (Config->Discard != DiscardPolicy::All) 420 copyLocalSymbols(); 421 422 if (Config->CopyRelocs) 423 addSectionSymbols(); 424 425 // Now that we have a complete set of output sections. This function 426 // completes section contents. For example, we need to add strings 427 // to the string table, and add entries to .got and .plt. 428 // finalizeSections does that. 429 finalizeSections(); 430 if (errorCount()) 431 return; 432 433 Script->assignAddresses(); 434 435 // If -compressed-debug-sections is specified, we need to compress 436 // .debug_* sections. Do it right now because it changes the size of 437 // output sections. 438 for (OutputSection *Sec : OutputSections) 439 Sec->maybeCompress<ELFT>(); 440 441 Script->allocateHeaders(Phdrs); 442 443 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 444 // 0 sized region. This has to be done late since only after assignAddresses 445 // we know the size of the sections. 446 removeEmptyPTLoad(); 447 448 if (!Config->OFormatBinary) 449 assignFileOffsets(); 450 else 451 assignFileOffsetsBinary(); 452 453 setPhdrs(); 454 455 if (Config->Relocatable) { 456 for (OutputSection *Sec : OutputSections) 457 Sec->Addr = 0; 458 } 459 460 if (Config->CheckSections) 461 checkSections(); 462 463 // It does not make sense try to open the file if we have error already. 464 if (errorCount()) 465 return; 466 // Write the result down to a file. 467 openFile(); 468 if (errorCount()) 469 return; 470 471 if (!Config->OFormatBinary) { 472 writeTrapInstr(); 473 writeHeader(); 474 writeSections(); 475 } else { 476 writeSectionsBinary(); 477 } 478 479 // Backfill .note.gnu.build-id section content. This is done at last 480 // because the content is usually a hash value of the entire output file. 481 writeBuildId(); 482 if (errorCount()) 483 return; 484 485 // Handle -Map and -cref options. 486 writeMapFile(); 487 writeCrossReferenceTable(); 488 if (errorCount()) 489 return; 490 491 if (auto E = Buffer->commit()) 492 error("failed to write to the output file: " + toString(std::move(E))); 493 } 494 495 static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, 496 const Symbol &B) { 497 if (B.isSection()) 498 return false; 499 500 // If sym references a section in a discarded group, don't keep it. 501 if (Sec == &InputSection::Discarded) 502 return false; 503 504 if (Config->Discard == DiscardPolicy::None) 505 return true; 506 507 // In ELF assembly .L symbols are normally discarded by the assembler. 508 // If the assembler fails to do so, the linker discards them if 509 // * --discard-locals is used. 510 // * The symbol is in a SHF_MERGE section, which is normally the reason for 511 // the assembler keeping the .L symbol. 512 if (!SymName.startswith(".L") && !SymName.empty()) 513 return true; 514 515 if (Config->Discard == DiscardPolicy::Locals) 516 return false; 517 518 return !Sec || !(Sec->Flags & SHF_MERGE); 519 } 520 521 static bool includeInSymtab(const Symbol &B) { 522 if (!B.isLocal() && !B.IsUsedInRegularObj) 523 return false; 524 525 if (auto *D = dyn_cast<Defined>(&B)) { 526 // Always include absolute symbols. 527 SectionBase *Sec = D->Section; 528 if (!Sec) 529 return true; 530 Sec = Sec->Repl; 531 // Exclude symbols pointing to garbage-collected sections. 532 if (isa<InputSectionBase>(Sec) && !Sec->Live) 533 return false; 534 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 535 if (!S->getSectionPiece(D->Value)->Live) 536 return false; 537 return true; 538 } 539 return B.Used; 540 } 541 542 // Local symbols are not in the linker's symbol table. This function scans 543 // each object file's symbol table to copy local symbols to the output. 544 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 545 if (!InX::SymTab) 546 return; 547 for (InputFile *File : ObjectFiles) { 548 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 549 for (Symbol *B : F->getLocalSymbols()) { 550 if (!B->isLocal()) 551 fatal(toString(F) + 552 ": broken object: getLocalSymbols returns a non-local symbol"); 553 auto *DR = dyn_cast<Defined>(B); 554 555 // No reason to keep local undefined symbol in symtab. 556 if (!DR) 557 continue; 558 if (!includeInSymtab(*B)) 559 continue; 560 561 SectionBase *Sec = DR->Section; 562 if (!shouldKeepInSymtab(Sec, B->getName(), *B)) 563 continue; 564 InX::SymTab->addSymbol(B); 565 } 566 } 567 } 568 569 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 570 // Create a section symbol for each output section so that we can represent 571 // relocations that point to the section. If we know that no relocation is 572 // referring to a section (that happens if the section is a synthetic one), we 573 // don't create a section symbol for that section. 574 for (BaseCommand *Base : Script->SectionCommands) { 575 auto *Sec = dyn_cast<OutputSection>(Base); 576 if (!Sec) 577 continue; 578 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 579 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 580 return !ISD->Sections.empty(); 581 return false; 582 }); 583 if (I == Sec->SectionCommands.end()) 584 continue; 585 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 586 587 // Relocations are not using REL[A] section symbols. 588 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 589 continue; 590 591 // Unlike other synthetic sections, mergeable output sections contain data 592 // copied from input sections, and there may be a relocation pointing to its 593 // contents if -r or -emit-reloc are given. 594 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 595 continue; 596 597 auto *Sym = 598 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 599 /*Value=*/0, /*Size=*/0, IS); 600 InX::SymTab->addSymbol(Sym); 601 } 602 } 603 604 // Today's loaders have a feature to make segments read-only after 605 // processing dynamic relocations to enhance security. PT_GNU_RELRO 606 // is defined for that. 607 // 608 // This function returns true if a section needs to be put into a 609 // PT_GNU_RELRO segment. 610 static bool isRelroSection(const OutputSection *Sec) { 611 if (!Config->ZRelro) 612 return false; 613 614 uint64_t Flags = Sec->Flags; 615 616 // Non-allocatable or non-writable sections don't need RELRO because 617 // they are not writable or not even mapped to memory in the first place. 618 // RELRO is for sections that are essentially read-only but need to 619 // be writable only at process startup to allow dynamic linker to 620 // apply relocations. 621 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 622 return false; 623 624 // Once initialized, TLS data segments are used as data templates 625 // for a thread-local storage. For each new thread, runtime 626 // allocates memory for a TLS and copy templates there. No thread 627 // are supposed to use templates directly. Thus, it can be in RELRO. 628 if (Flags & SHF_TLS) 629 return true; 630 631 // .init_array, .preinit_array and .fini_array contain pointers to 632 // functions that are executed on process startup or exit. These 633 // pointers are set by the static linker, and they are not expected 634 // to change at runtime. But if you are an attacker, you could do 635 // interesting things by manipulating pointers in .fini_array, for 636 // example. So they are put into RELRO. 637 uint32_t Type = Sec->Type; 638 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 639 Type == SHT_PREINIT_ARRAY) 640 return true; 641 642 // .got contains pointers to external symbols. They are resolved by 643 // the dynamic linker when a module is loaded into memory, and after 644 // that they are not expected to change. So, it can be in RELRO. 645 if (InX::Got && Sec == InX::Got->getParent()) 646 return true; 647 648 // .got.plt contains pointers to external function symbols. They are 649 // by default resolved lazily, so we usually cannot put it into RELRO. 650 // However, if "-z now" is given, the lazy symbol resolution is 651 // disabled, which enables us to put it into RELRO. 652 if (Sec == InX::GotPlt->getParent()) 653 return Config->ZNow; 654 655 // .dynamic section contains data for the dynamic linker, and 656 // there's no need to write to it at runtime, so it's better to put 657 // it into RELRO. 658 if (Sec == InX::Dynamic->getParent()) 659 return true; 660 661 // Sections with some special names are put into RELRO. This is a 662 // bit unfortunate because section names shouldn't be significant in 663 // ELF in spirit. But in reality many linker features depend on 664 // magic section names. 665 StringRef S = Sec->Name; 666 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 667 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 668 S == ".openbsd.randomdata"; 669 } 670 671 // We compute a rank for each section. The rank indicates where the 672 // section should be placed in the file. Instead of using simple 673 // numbers (0,1,2...), we use a series of flags. One for each decision 674 // point when placing the section. 675 // Using flags has two key properties: 676 // * It is easy to check if a give branch was taken. 677 // * It is easy two see how similar two ranks are (see getRankProximity). 678 enum RankFlags { 679 RF_NOT_ADDR_SET = 1 << 18, 680 RF_NOT_INTERP = 1 << 17, 681 RF_NOT_ALLOC = 1 << 16, 682 RF_WRITE = 1 << 15, 683 RF_EXEC_WRITE = 1 << 13, 684 RF_EXEC = 1 << 12, 685 RF_NON_TLS_BSS = 1 << 11, 686 RF_NON_TLS_BSS_RO = 1 << 10, 687 RF_NOT_TLS = 1 << 9, 688 RF_BSS = 1 << 8, 689 RF_NOTE = 1 << 7, 690 RF_PPC_NOT_TOCBSS = 1 << 6, 691 RF_PPC_OPD = 1 << 5, 692 RF_PPC_TOCL = 1 << 4, 693 RF_PPC_TOC = 1 << 3, 694 RF_PPC_BRANCH_LT = 1 << 2, 695 RF_MIPS_GPREL = 1 << 1, 696 RF_MIPS_NOT_GOT = 1 << 0 697 }; 698 699 static unsigned getSectionRank(const OutputSection *Sec) { 700 unsigned Rank = 0; 701 702 // We want to put section specified by -T option first, so we 703 // can start assigning VA starting from them later. 704 if (Config->SectionStartMap.count(Sec->Name)) 705 return Rank; 706 Rank |= RF_NOT_ADDR_SET; 707 708 // Put .interp first because some loaders want to see that section 709 // on the first page of the executable file when loaded into memory. 710 if (Sec->Name == ".interp") 711 return Rank; 712 Rank |= RF_NOT_INTERP; 713 714 // Allocatable sections go first to reduce the total PT_LOAD size and 715 // so debug info doesn't change addresses in actual code. 716 if (!(Sec->Flags & SHF_ALLOC)) 717 return Rank | RF_NOT_ALLOC; 718 719 // Sort sections based on their access permission in the following 720 // order: R, RX, RWX, RW. This order is based on the following 721 // considerations: 722 // * Read-only sections come first such that they go in the 723 // PT_LOAD covering the program headers at the start of the file. 724 // * Read-only, executable sections come next, unless the 725 // -no-rosegment option is used. 726 // * Writable, executable sections follow such that .plt on 727 // architectures where it needs to be writable will be placed 728 // between .text and .data. 729 // * Writable sections come last, such that .bss lands at the very 730 // end of the last PT_LOAD. 731 bool IsExec = Sec->Flags & SHF_EXECINSTR; 732 bool IsWrite = Sec->Flags & SHF_WRITE; 733 734 if (IsExec) { 735 if (IsWrite) 736 Rank |= RF_EXEC_WRITE; 737 else if (!Config->SingleRoRx) 738 Rank |= RF_EXEC; 739 } else { 740 if (IsWrite) 741 Rank |= RF_WRITE; 742 } 743 744 // If we got here we know that both A and B are in the same PT_LOAD. 745 746 bool IsTls = Sec->Flags & SHF_TLS; 747 bool IsNoBits = Sec->Type == SHT_NOBITS; 748 749 // The first requirement we have is to put (non-TLS) nobits sections last. The 750 // reason is that the only thing the dynamic linker will see about them is a 751 // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the 752 // PT_LOAD, so that has to correspond to the nobits sections. 753 bool IsNonTlsNoBits = IsNoBits && !IsTls; 754 if (IsNonTlsNoBits) 755 Rank |= RF_NON_TLS_BSS; 756 757 // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo 758 // sections after r/w ones, so that the RelRo sections are contiguous. 759 bool IsRelRo = isRelroSection(Sec); 760 if (IsNonTlsNoBits && !IsRelRo) 761 Rank |= RF_NON_TLS_BSS_RO; 762 if (!IsNonTlsNoBits && IsRelRo) 763 Rank |= RF_NON_TLS_BSS_RO; 764 765 // The TLS initialization block needs to be a single contiguous block in a R/W 766 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 767 // sections. The TLS NOBITS sections are placed here as they don't take up 768 // virtual address space in the PT_LOAD. 769 if (!IsTls) 770 Rank |= RF_NOT_TLS; 771 772 // Within the TLS initialization block, the non-nobits sections need to appear 773 // first. 774 if (IsNoBits) 775 Rank |= RF_BSS; 776 777 // We create a NOTE segment for contiguous .note sections, so make 778 // them contigous if there are more than one .note section with the 779 // same attributes. 780 if (Sec->Type == SHT_NOTE) 781 Rank |= RF_NOTE; 782 783 // Some architectures have additional ordering restrictions for sections 784 // within the same PT_LOAD. 785 if (Config->EMachine == EM_PPC64) { 786 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 787 // that we would like to make sure appear is a specific order to maximize 788 // their coverage by a single signed 16-bit offset from the TOC base 789 // pointer. Conversely, the special .tocbss section should be first among 790 // all SHT_NOBITS sections. This will put it next to the loaded special 791 // PPC64 sections (and, thus, within reach of the TOC base pointer). 792 StringRef Name = Sec->Name; 793 if (Name != ".tocbss") 794 Rank |= RF_PPC_NOT_TOCBSS; 795 796 if (Name == ".opd") 797 Rank |= RF_PPC_OPD; 798 799 if (Name == ".toc1") 800 Rank |= RF_PPC_TOCL; 801 802 if (Name == ".toc") 803 Rank |= RF_PPC_TOC; 804 805 if (Name == ".branch_lt") 806 Rank |= RF_PPC_BRANCH_LT; 807 } 808 809 if (Config->EMachine == EM_MIPS) { 810 // All sections with SHF_MIPS_GPREL flag should be grouped together 811 // because data in these sections is addressable with a gp relative address. 812 if (Sec->Flags & SHF_MIPS_GPREL) 813 Rank |= RF_MIPS_GPREL; 814 815 if (Sec->Name != ".got") 816 Rank |= RF_MIPS_NOT_GOT; 817 } 818 819 return Rank; 820 } 821 822 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 823 const OutputSection *A = cast<OutputSection>(ACmd); 824 const OutputSection *B = cast<OutputSection>(BCmd); 825 if (A->SortRank != B->SortRank) 826 return A->SortRank < B->SortRank; 827 if (!(A->SortRank & RF_NOT_ADDR_SET)) 828 return Config->SectionStartMap.lookup(A->Name) < 829 Config->SectionStartMap.lookup(B->Name); 830 return false; 831 } 832 833 void PhdrEntry::add(OutputSection *Sec) { 834 LastSec = Sec; 835 if (!FirstSec) 836 FirstSec = Sec; 837 p_align = std::max(p_align, Sec->Alignment); 838 if (p_type == PT_LOAD) 839 Sec->PtLoad = this; 840 } 841 842 // The beginning and the ending of .rel[a].plt section are marked 843 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 844 // executable. The runtime needs these symbols in order to resolve 845 // all IRELATIVE relocs on startup. For dynamic executables, we don't 846 // need these symbols, since IRELATIVE relocs are resolved through GOT 847 // and PLT. For details, see http://www.airs.com/blog/archives/403. 848 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 849 if (needsInterpSection()) 850 return; 851 StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; 852 addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK); 853 854 S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; 855 addOptionalRegular(S, InX::RelaIplt, -1, STV_HIDDEN, STB_WEAK); 856 } 857 858 template <class ELFT> 859 void Writer<ELFT>::forEachRelSec(std::function<void(InputSectionBase &)> Fn) { 860 // Scan all relocations. Each relocation goes through a series 861 // of tests to determine if it needs special treatment, such as 862 // creating GOT, PLT, copy relocations, etc. 863 // Note that relocations for non-alloc sections are directly 864 // processed by InputSection::relocateNonAlloc. 865 for (InputSectionBase *IS : InputSections) 866 if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 867 Fn(*IS); 868 for (EhInputSection *ES : InX::EhFrame->Sections) 869 Fn(*ES); 870 } 871 872 // This function generates assignments for predefined symbols (e.g. _end or 873 // _etext) and inserts them into the commands sequence to be processed at the 874 // appropriate time. This ensures that the value is going to be correct by the 875 // time any references to these symbols are processed and is equivalent to 876 // defining these symbols explicitly in the linker script. 877 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 878 if (ElfSym::GlobalOffsetTable) { 879 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 880 // to the start of the .got or .got.plt section. 881 InputSection *GotSection = InX::GotPlt; 882 if (!Target->GotBaseSymInGotPlt) 883 GotSection = InX::MipsGot ? cast<InputSection>(InX::MipsGot) 884 : cast<InputSection>(InX::Got); 885 ElfSym::GlobalOffsetTable->Section = GotSection; 886 } 887 888 PhdrEntry *Last = nullptr; 889 PhdrEntry *LastRO = nullptr; 890 891 for (PhdrEntry *P : Phdrs) { 892 if (P->p_type != PT_LOAD) 893 continue; 894 Last = P; 895 if (!(P->p_flags & PF_W)) 896 LastRO = P; 897 } 898 899 if (LastRO) { 900 // _etext is the first location after the last read-only loadable segment. 901 if (ElfSym::Etext1) 902 ElfSym::Etext1->Section = LastRO->LastSec; 903 if (ElfSym::Etext2) 904 ElfSym::Etext2->Section = LastRO->LastSec; 905 } 906 907 if (Last) { 908 // _edata points to the end of the last mapped initialized section. 909 OutputSection *Edata = nullptr; 910 for (OutputSection *OS : OutputSections) { 911 if (OS->Type != SHT_NOBITS) 912 Edata = OS; 913 if (OS == Last->LastSec) 914 break; 915 } 916 917 if (ElfSym::Edata1) 918 ElfSym::Edata1->Section = Edata; 919 if (ElfSym::Edata2) 920 ElfSym::Edata2->Section = Edata; 921 922 // _end is the first location after the uninitialized data region. 923 if (ElfSym::End1) 924 ElfSym::End1->Section = Last->LastSec; 925 if (ElfSym::End2) 926 ElfSym::End2->Section = Last->LastSec; 927 } 928 929 if (ElfSym::Bss) 930 ElfSym::Bss->Section = findSection(".bss"); 931 932 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 933 // be equal to the _gp symbol's value. 934 if (ElfSym::MipsGp) { 935 // Find GP-relative section with the lowest address 936 // and use this address to calculate default _gp value. 937 for (OutputSection *OS : OutputSections) { 938 if (OS->Flags & SHF_MIPS_GPREL) { 939 ElfSym::MipsGp->Section = OS; 940 ElfSym::MipsGp->Value = 0x7ff0; 941 break; 942 } 943 } 944 } 945 } 946 947 // We want to find how similar two ranks are. 948 // The more branches in getSectionRank that match, the more similar they are. 949 // Since each branch corresponds to a bit flag, we can just use 950 // countLeadingZeros. 951 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 952 return countLeadingZeros(A->SortRank ^ B->SortRank); 953 } 954 955 static int getRankProximity(OutputSection *A, BaseCommand *B) { 956 if (auto *Sec = dyn_cast<OutputSection>(B)) 957 return getRankProximityAux(A, Sec); 958 return -1; 959 } 960 961 // When placing orphan sections, we want to place them after symbol assignments 962 // so that an orphan after 963 // begin_foo = .; 964 // foo : { *(foo) } 965 // end_foo = .; 966 // doesn't break the intended meaning of the begin/end symbols. 967 // We don't want to go over sections since findOrphanPos is the 968 // one in charge of deciding the order of the sections. 969 // We don't want to go over changes to '.', since doing so in 970 // rx_sec : { *(rx_sec) } 971 // . = ALIGN(0x1000); 972 // /* The RW PT_LOAD starts here*/ 973 // rw_sec : { *(rw_sec) } 974 // would mean that the RW PT_LOAD would become unaligned. 975 static bool shouldSkip(BaseCommand *Cmd) { 976 if (isa<OutputSection>(Cmd)) 977 return false; 978 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 979 return Assign->Name != "."; 980 return true; 981 } 982 983 // We want to place orphan sections so that they share as much 984 // characteristics with their neighbors as possible. For example, if 985 // both are rw, or both are tls. 986 template <typename ELFT> 987 static std::vector<BaseCommand *>::iterator 988 findOrphanPos(std::vector<BaseCommand *>::iterator B, 989 std::vector<BaseCommand *>::iterator E) { 990 OutputSection *Sec = cast<OutputSection>(*E); 991 992 // Find the first element that has as close a rank as possible. 993 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 994 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 995 }); 996 if (I == E) 997 return E; 998 999 // Consider all existing sections with the same proximity. 1000 int Proximity = getRankProximity(Sec, *I); 1001 for (; I != E; ++I) { 1002 auto *CurSec = dyn_cast<OutputSection>(*I); 1003 if (!CurSec) 1004 continue; 1005 if (getRankProximity(Sec, CurSec) != Proximity || 1006 Sec->SortRank < CurSec->SortRank) 1007 break; 1008 } 1009 1010 auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); }; 1011 auto J = std::find_if(llvm::make_reverse_iterator(I), 1012 llvm::make_reverse_iterator(B), IsOutputSec); 1013 I = J.base(); 1014 1015 // As a special case, if the orphan section is the last section, put 1016 // it at the very end, past any other commands. 1017 // This matches bfd's behavior and is convenient when the linker script fully 1018 // specifies the start of the file, but doesn't care about the end (the non 1019 // alloc sections for example). 1020 auto NextSec = std::find_if(I, E, IsOutputSec); 1021 if (NextSec == E) 1022 return E; 1023 1024 while (I != E && shouldSkip(*I)) 1025 ++I; 1026 return I; 1027 } 1028 1029 // Builds section order for handling --symbol-ordering-file. 1030 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1031 DenseMap<const InputSectionBase *, int> SectionOrder; 1032 if (Config->SymbolOrderingFile.empty()) 1033 return SectionOrder; 1034 1035 struct SymbolOrderEntry { 1036 int Priority; 1037 bool Present; 1038 }; 1039 1040 // Build a map from symbols to their priorities. Symbols that didn't 1041 // appear in the symbol ordering file have the lowest priority 0. 1042 // All explicitly mentioned symbols have negative (higher) priorities. 1043 DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; 1044 int Priority = -Config->SymbolOrderingFile.size(); 1045 for (StringRef S : Config->SymbolOrderingFile) 1046 SymbolOrder.insert({S, {Priority++, false}}); 1047 1048 // Build a map from sections to their priorities. 1049 auto AddSym = [&](Symbol &Sym) { 1050 auto It = SymbolOrder.find(Sym.getName()); 1051 if (It == SymbolOrder.end()) 1052 return; 1053 SymbolOrderEntry &Ent = It->second; 1054 Ent.Present = true; 1055 1056 if (Config->WarnSymbolOrdering) { 1057 auto *D = dyn_cast<Defined>(&Sym); 1058 InputFile *File = Sym.File; 1059 if (Sym.isUndefined()) 1060 warn(toString(File) + 1061 ": unable to order undefined symbol: " + Sym.getName()); 1062 else if (Sym.isShared()) 1063 warn(toString(File) + 1064 ": unable to order shared symbol: " + Sym.getName()); 1065 else if (D && !D->Section) 1066 warn(toString(File) + 1067 ": unable to order absolute symbol: " + Sym.getName()); 1068 else if (D && isa<OutputSection>(D->Section)) 1069 warn(toString(File) + 1070 ": unable to order synthetic symbol: " + Sym.getName()); 1071 else if (D && !D->Section->Repl->Live) 1072 warn(toString(File) + 1073 ": unable to order discarded symbol: " + Sym.getName()); 1074 } 1075 1076 if (auto *D = dyn_cast<Defined>(&Sym)) { 1077 if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { 1078 int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; 1079 Priority = std::min(Priority, Ent.Priority); 1080 } 1081 } 1082 }; 1083 // We want both global and local symbols. We get the global ones from the 1084 // symbol table and iterate the object files for the local ones. 1085 for (Symbol *Sym : Symtab->getSymbols()) 1086 if (!Sym->isLazy()) 1087 AddSym(*Sym); 1088 for (InputFile *File : ObjectFiles) 1089 for (Symbol *Sym : File->getSymbols()) 1090 if (Sym->isLocal()) 1091 AddSym(*Sym); 1092 1093 if (Config->WarnSymbolOrdering) 1094 for (auto OrderEntry : SymbolOrder) 1095 if (!OrderEntry.second.Present) 1096 warn("symbol ordering file: no such symbol: " + OrderEntry.first); 1097 1098 return SectionOrder; 1099 } 1100 1101 // Sorts the sections in ISD according to the provided section order. 1102 static void 1103 sortISDBySectionOrder(InputSectionDescription *ISD, 1104 const DenseMap<const InputSectionBase *, int> &Order) { 1105 std::vector<InputSection *> UnorderedSections; 1106 std::vector<std::pair<InputSection *, int>> OrderedSections; 1107 uint64_t UnorderedSize = 0; 1108 1109 for (InputSection *IS : ISD->Sections) { 1110 auto I = Order.find(IS); 1111 if (I == Order.end()) { 1112 UnorderedSections.push_back(IS); 1113 UnorderedSize += IS->getSize(); 1114 continue; 1115 } 1116 OrderedSections.push_back({IS, I->second}); 1117 } 1118 std::sort( 1119 OrderedSections.begin(), OrderedSections.end(), 1120 [&](std::pair<InputSection *, int> A, std::pair<InputSection *, int> B) { 1121 return A.second < B.second; 1122 }); 1123 1124 // Find an insertion point for the ordered section list in the unordered 1125 // section list. On targets with limited-range branches, this is the mid-point 1126 // of the unordered section list. This decreases the likelihood that a range 1127 // extension thunk will be needed to enter or exit the ordered region. If the 1128 // ordered section list is a list of hot functions, we can generally expect 1129 // the ordered functions to be called more often than the unordered functions, 1130 // making it more likely that any particular call will be within range, and 1131 // therefore reducing the number of thunks required. 1132 // 1133 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1134 // If the layout is: 1135 // 1136 // 8MB hot 1137 // 32MB cold 1138 // 1139 // only the first 8-16MB of the cold code (depending on which hot function it 1140 // is actually calling) can call the hot code without a range extension thunk. 1141 // However, if we use this layout: 1142 // 1143 // 16MB cold 1144 // 8MB hot 1145 // 16MB cold 1146 // 1147 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1148 // of the second block of cold code can call the hot code without a thunk. So 1149 // we effectively double the amount of code that could potentially call into 1150 // the hot code without a thunk. 1151 size_t InsPt = 0; 1152 if (Target->ThunkSectionSpacing && !OrderedSections.empty()) { 1153 uint64_t UnorderedPos = 0; 1154 for (; InsPt != UnorderedSections.size(); ++InsPt) { 1155 UnorderedPos += UnorderedSections[InsPt]->getSize(); 1156 if (UnorderedPos > UnorderedSize / 2) 1157 break; 1158 } 1159 } 1160 1161 ISD->Sections.clear(); 1162 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) 1163 ISD->Sections.push_back(IS); 1164 for (std::pair<InputSection *, int> P : OrderedSections) 1165 ISD->Sections.push_back(P.first); 1166 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) 1167 ISD->Sections.push_back(IS); 1168 } 1169 1170 static void sortSection(OutputSection *Sec, 1171 const DenseMap<const InputSectionBase *, int> &Order) { 1172 StringRef Name = Sec->Name; 1173 1174 // Sort input sections by section name suffixes for 1175 // __attribute__((init_priority(N))). 1176 if (Name == ".init_array" || Name == ".fini_array") { 1177 if (!Script->HasSectionsCommand) 1178 Sec->sortInitFini(); 1179 return; 1180 } 1181 1182 // Sort input sections by the special rule for .ctors and .dtors. 1183 if (Name == ".ctors" || Name == ".dtors") { 1184 if (!Script->HasSectionsCommand) 1185 Sec->sortCtorsDtors(); 1186 return; 1187 } 1188 1189 // Never sort these. 1190 if (Name == ".init" || Name == ".fini") 1191 return; 1192 1193 // Sort input sections by priority using the list provided 1194 // by --symbol-ordering-file. 1195 if (!Order.empty()) 1196 for (BaseCommand *B : Sec->SectionCommands) 1197 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1198 sortISDBySectionOrder(ISD, Order); 1199 } 1200 1201 // If no layout was provided by linker script, we want to apply default 1202 // sorting for special input sections. This also handles --symbol-ordering-file. 1203 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1204 // Build the order once since it is expensive. 1205 DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); 1206 for (BaseCommand *Base : Script->SectionCommands) 1207 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1208 sortSection(Sec, Order); 1209 } 1210 1211 template <class ELFT> void Writer<ELFT>::sortSections() { 1212 Script->adjustSectionsBeforeSorting(); 1213 1214 // Don't sort if using -r. It is not necessary and we want to preserve the 1215 // relative order for SHF_LINK_ORDER sections. 1216 if (Config->Relocatable) 1217 return; 1218 1219 sortInputSections(); 1220 1221 for (BaseCommand *Base : Script->SectionCommands) { 1222 auto *OS = dyn_cast<OutputSection>(Base); 1223 if (!OS) 1224 continue; 1225 OS->SortRank = getSectionRank(OS); 1226 1227 // We want to assign rude approximation values to OutSecOff fields 1228 // to know the relative order of the input sections. We use it for 1229 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1230 uint64_t I = 0; 1231 for (InputSection *Sec : getInputSections(OS)) 1232 Sec->OutSecOff = I++; 1233 } 1234 1235 if (!Script->HasSectionsCommand) { 1236 // We know that all the OutputSections are contiguous in this case. 1237 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1238 std::stable_sort( 1239 llvm::find_if(Script->SectionCommands, IsSection), 1240 llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), 1241 compareSections); 1242 return; 1243 } 1244 1245 // Orphan sections are sections present in the input files which are 1246 // not explicitly placed into the output file by the linker script. 1247 // 1248 // The sections in the linker script are already in the correct 1249 // order. We have to figuere out where to insert the orphan 1250 // sections. 1251 // 1252 // The order of the sections in the script is arbitrary and may not agree with 1253 // compareSections. This means that we cannot easily define a strict weak 1254 // ordering. To see why, consider a comparison of a section in the script and 1255 // one not in the script. We have a two simple options: 1256 // * Make them equivalent (a is not less than b, and b is not less than a). 1257 // The problem is then that equivalence has to be transitive and we can 1258 // have sections a, b and c with only b in a script and a less than c 1259 // which breaks this property. 1260 // * Use compareSectionsNonScript. Given that the script order doesn't have 1261 // to match, we can end up with sections a, b, c, d where b and c are in the 1262 // script and c is compareSectionsNonScript less than b. In which case d 1263 // can be equivalent to c, a to b and d < a. As a concrete example: 1264 // .a (rx) # not in script 1265 // .b (rx) # in script 1266 // .c (ro) # in script 1267 // .d (ro) # not in script 1268 // 1269 // The way we define an order then is: 1270 // * Sort only the orphan sections. They are in the end right now. 1271 // * Move each orphan section to its preferred position. We try 1272 // to put each section in the last position where it can share 1273 // a PT_LOAD. 1274 // 1275 // There is some ambiguity as to where exactly a new entry should be 1276 // inserted, because Commands contains not only output section 1277 // commands but also other types of commands such as symbol assignment 1278 // expressions. There's no correct answer here due to the lack of the 1279 // formal specification of the linker script. We use heuristics to 1280 // determine whether a new output command should be added before or 1281 // after another commands. For the details, look at shouldSkip 1282 // function. 1283 1284 auto I = Script->SectionCommands.begin(); 1285 auto E = Script->SectionCommands.end(); 1286 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1287 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1288 return Sec->SectionIndex == UINT32_MAX; 1289 return false; 1290 }); 1291 1292 // Sort the orphan sections. 1293 std::stable_sort(NonScriptI, E, compareSections); 1294 1295 // As a horrible special case, skip the first . assignment if it is before any 1296 // section. We do this because it is common to set a load address by starting 1297 // the script with ". = 0xabcd" and the expectation is that every section is 1298 // after that. 1299 auto FirstSectionOrDotAssignment = 1300 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1301 if (FirstSectionOrDotAssignment != E && 1302 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1303 ++FirstSectionOrDotAssignment; 1304 I = FirstSectionOrDotAssignment; 1305 1306 while (NonScriptI != E) { 1307 auto Pos = findOrphanPos<ELFT>(I, NonScriptI); 1308 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1309 1310 // As an optimization, find all sections with the same sort rank 1311 // and insert them with one rotate. 1312 unsigned Rank = Orphan->SortRank; 1313 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1314 return cast<OutputSection>(Cmd)->SortRank != Rank; 1315 }); 1316 std::rotate(Pos, NonScriptI, End); 1317 NonScriptI = End; 1318 } 1319 1320 Script->adjustSectionsAfterSorting(); 1321 } 1322 1323 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1324 // Synthetic, i. e. a sentinel section, should go last. 1325 if (A->kind() == InputSectionBase::Synthetic || 1326 B->kind() == InputSectionBase::Synthetic) 1327 return A->kind() != InputSectionBase::Synthetic; 1328 InputSection *LA = A->getLinkOrderDep(); 1329 InputSection *LB = B->getLinkOrderDep(); 1330 OutputSection *AOut = LA->getParent(); 1331 OutputSection *BOut = LB->getParent(); 1332 if (AOut != BOut) 1333 return AOut->SectionIndex < BOut->SectionIndex; 1334 return LA->OutSecOff < LB->OutSecOff; 1335 } 1336 1337 // This function is used by the --merge-exidx-entries to detect duplicate 1338 // .ARM.exidx sections. It is Arm only. 1339 // 1340 // The .ARM.exidx section is of the form: 1341 // | PREL31 offset to function | Unwind instructions for function | 1342 // where the unwind instructions are either a small number of unwind 1343 // instructions inlined into the table entry, the special CANT_UNWIND value of 1344 // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind 1345 // instructions. 1346 // 1347 // We return true if all the unwind instructions in the .ARM.exidx entries of 1348 // Cur can be merged into the last entry of Prev. 1349 static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) { 1350 1351 // References to .ARM.Extab Sections have bit 31 clear and are not the 1352 // special EXIDX_CANTUNWIND bit-pattern. 1353 auto IsExtabRef = [](uint32_t Unwind) { 1354 return (Unwind & 0x80000000) == 0 && Unwind != 0x1; 1355 }; 1356 1357 struct ExidxEntry { 1358 ulittle32_t Fn; 1359 ulittle32_t Unwind; 1360 }; 1361 1362 // Get the last table Entry from the previous .ARM.exidx section. 1363 const ExidxEntry &PrevEntry = *reinterpret_cast<const ExidxEntry *>( 1364 Prev->Data.data() + Prev->getSize() - sizeof(ExidxEntry)); 1365 if (IsExtabRef(PrevEntry.Unwind)) 1366 return false; 1367 1368 // We consider the unwind instructions of an .ARM.exidx table entry 1369 // a duplicate if the previous unwind instructions if: 1370 // - Both are the special EXIDX_CANTUNWIND. 1371 // - Both are the same inline unwind instructions. 1372 // We do not attempt to follow and check links into .ARM.extab tables as 1373 // consecutive identical entries are rare and the effort to check that they 1374 // are identical is high. 1375 1376 if (isa<SyntheticSection>(Cur)) 1377 // Exidx sentinel section has implicit EXIDX_CANTUNWIND; 1378 return PrevEntry.Unwind == 0x1; 1379 1380 ArrayRef<const ExidxEntry> Entries( 1381 reinterpret_cast<const ExidxEntry *>(Cur->Data.data()), 1382 Cur->getSize() / sizeof(ExidxEntry)); 1383 for (const ExidxEntry &Entry : Entries) 1384 if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind) 1385 return false; 1386 // All table entries in this .ARM.exidx Section can be merged into the 1387 // previous Section. 1388 return true; 1389 } 1390 1391 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1392 for (OutputSection *Sec : OutputSections) { 1393 if (!(Sec->Flags & SHF_LINK_ORDER)) 1394 continue; 1395 1396 // Link order may be distributed across several InputSectionDescriptions 1397 // but sort must consider them all at once. 1398 std::vector<InputSection **> ScriptSections; 1399 std::vector<InputSection *> Sections; 1400 for (BaseCommand *Base : Sec->SectionCommands) { 1401 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1402 for (InputSection *&IS : ISD->Sections) { 1403 ScriptSections.push_back(&IS); 1404 Sections.push_back(IS); 1405 } 1406 } 1407 } 1408 std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); 1409 1410 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1411 Sec->Type == SHT_ARM_EXIDX) { 1412 1413 if (!Sections.empty() && isa<ARMExidxSentinelSection>(Sections.back())) { 1414 assert(Sections.size() >= 2 && 1415 "We should create a sentinel section only if there are " 1416 "alive regular exidx sections."); 1417 // The last executable section is required to fill the sentinel. 1418 // Remember it here so that we don't have to find it again. 1419 auto *Sentinel = cast<ARMExidxSentinelSection>(Sections.back()); 1420 Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep(); 1421 } 1422 1423 if (Config->MergeArmExidx) { 1424 // The EHABI for the Arm Architecture permits consecutive identical 1425 // table entries to be merged. We use a simple implementation that 1426 // removes a .ARM.exidx Input Section if it can be merged into the 1427 // previous one. This does not require any rewriting of InputSection 1428 // contents but misses opportunities for fine grained deduplication 1429 // where only a subset of the InputSection contents can be merged. 1430 int Cur = 1; 1431 int Prev = 0; 1432 // The last one is a sentinel entry which should not be removed. 1433 int N = Sections.size() - 1; 1434 while (Cur < N) { 1435 if (isDuplicateArmExidxSec(Sections[Prev], Sections[Cur])) 1436 Sections[Cur] = nullptr; 1437 else 1438 Prev = Cur; 1439 ++Cur; 1440 } 1441 } 1442 } 1443 1444 for (int I = 0, N = Sections.size(); I < N; ++I) 1445 *ScriptSections[I] = Sections[I]; 1446 1447 // Remove the Sections we marked as duplicate earlier. 1448 for (BaseCommand *Base : Sec->SectionCommands) 1449 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 1450 llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; }); 1451 } 1452 } 1453 1454 static void applySynthetic(const std::vector<SyntheticSection *> &Sections, 1455 std::function<void(SyntheticSection *)> Fn) { 1456 for (SyntheticSection *SS : Sections) 1457 if (SS && SS->getParent() && !SS->empty()) 1458 Fn(SS); 1459 } 1460 1461 // In order to allow users to manipulate linker-synthesized sections, 1462 // we had to add synthetic sections to the input section list early, 1463 // even before we make decisions whether they are needed. This allows 1464 // users to write scripts like this: ".mygot : { .got }". 1465 // 1466 // Doing it has an unintended side effects. If it turns out that we 1467 // don't need a .got (for example) at all because there's no 1468 // relocation that needs a .got, we don't want to emit .got. 1469 // 1470 // To deal with the above problem, this function is called after 1471 // scanRelocations is called to remove synthetic sections that turn 1472 // out to be empty. 1473 static void removeUnusedSyntheticSections() { 1474 // All input synthetic sections that can be empty are placed after 1475 // all regular ones. We iterate over them all and exit at first 1476 // non-synthetic. 1477 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1478 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1479 if (!SS) 1480 return; 1481 OutputSection *OS = SS->getParent(); 1482 if (!OS || !SS->empty()) 1483 continue; 1484 1485 // If we reach here, then SS is an unused synthetic section and we want to 1486 // remove it from corresponding input section description of output section. 1487 for (BaseCommand *B : OS->SectionCommands) 1488 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1489 llvm::erase_if(ISD->Sections, 1490 [=](InputSection *IS) { return IS == SS; }); 1491 } 1492 } 1493 1494 // Returns true if a symbol can be replaced at load-time by a symbol 1495 // with the same name defined in other ELF executable or DSO. 1496 static bool computeIsPreemptible(const Symbol &B) { 1497 assert(!B.isLocal()); 1498 // Only symbols that appear in dynsym can be preempted. 1499 if (!B.includeInDynsym()) 1500 return false; 1501 1502 // Only default visibility symbols can be preempted. 1503 if (B.Visibility != STV_DEFAULT) 1504 return false; 1505 1506 // At this point copy relocations have not been created yet, so any 1507 // symbol that is not defined locally is preemptible. 1508 if (!B.isDefined()) 1509 return true; 1510 1511 // If we have a dynamic list it specifies which local symbols are preemptible. 1512 if (Config->HasDynamicList) 1513 return false; 1514 1515 if (!Config->Shared) 1516 return false; 1517 1518 // -Bsymbolic means that definitions are not preempted. 1519 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1520 return false; 1521 return true; 1522 } 1523 1524 // Create output section objects and add them to OutputSections. 1525 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1526 Out::DebugInfo = findSection(".debug_info"); 1527 Out::PreinitArray = findSection(".preinit_array"); 1528 Out::InitArray = findSection(".init_array"); 1529 Out::FiniArray = findSection(".fini_array"); 1530 1531 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1532 // symbols for sections, so that the runtime can get the start and end 1533 // addresses of each section by section name. Add such symbols. 1534 if (!Config->Relocatable) { 1535 addStartEndSymbols(); 1536 for (BaseCommand *Base : Script->SectionCommands) 1537 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1538 addStartStopSymbols(Sec); 1539 } 1540 1541 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1542 // It should be okay as no one seems to care about the type. 1543 // Even the author of gold doesn't remember why gold behaves that way. 1544 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1545 if (InX::DynSymTab) 1546 Symtab->addRegular("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/, 1547 /*Size=*/0, STB_WEAK, InX::Dynamic, 1548 /*File=*/nullptr); 1549 1550 // Define __rel[a]_iplt_{start,end} symbols if needed. 1551 addRelIpltSymbols(); 1552 1553 // This responsible for splitting up .eh_frame section into 1554 // pieces. The relocation scan uses those pieces, so this has to be 1555 // earlier. 1556 applySynthetic({InX::EhFrame}, 1557 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1558 1559 for (Symbol *S : Symtab->getSymbols()) 1560 S->IsPreemptible |= computeIsPreemptible(*S); 1561 1562 // Scan relocations. This must be done after every symbol is declared so that 1563 // we can correctly decide if a dynamic relocation is needed. 1564 if (!Config->Relocatable) 1565 forEachRelSec(scanRelocations<ELFT>); 1566 1567 if (InX::Plt && !InX::Plt->empty()) 1568 InX::Plt->addSymbols(); 1569 if (InX::Iplt && !InX::Iplt->empty()) 1570 InX::Iplt->addSymbols(); 1571 1572 // Now that we have defined all possible global symbols including linker- 1573 // synthesized ones. Visit all symbols to give the finishing touches. 1574 for (Symbol *Sym : Symtab->getSymbols()) { 1575 if (!includeInSymtab(*Sym)) 1576 continue; 1577 if (InX::SymTab) 1578 InX::SymTab->addSymbol(Sym); 1579 1580 if (InX::DynSymTab && Sym->includeInDynsym()) { 1581 InX::DynSymTab->addSymbol(Sym); 1582 if (auto *SS = dyn_cast<SharedSymbol>(Sym)) 1583 if (cast<SharedFile<ELFT>>(Sym->File)->IsNeeded) 1584 In<ELFT>::VerNeed->addSymbol(SS); 1585 } 1586 } 1587 1588 // Do not proceed if there was an undefined symbol. 1589 if (errorCount()) 1590 return; 1591 1592 removeUnusedSyntheticSections(); 1593 1594 sortSections(); 1595 1596 // Now that we have the final list, create a list of all the 1597 // OutputSections for convenience. 1598 for (BaseCommand *Base : Script->SectionCommands) 1599 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1600 OutputSections.push_back(Sec); 1601 1602 // Prefer command line supplied address over other constraints. 1603 for (OutputSection *Sec : OutputSections) { 1604 auto I = Config->SectionStartMap.find(Sec->Name); 1605 if (I != Config->SectionStartMap.end()) 1606 Sec->AddrExpr = [=] { return I->second; }; 1607 } 1608 1609 // This is a bit of a hack. A value of 0 means undef, so we set it 1610 // to 1 t make __ehdr_start defined. The section number is not 1611 // particularly relevant. 1612 Out::ElfHeader->SectionIndex = 1; 1613 1614 unsigned I = 1; 1615 for (OutputSection *Sec : OutputSections) { 1616 Sec->SectionIndex = I++; 1617 Sec->ShName = InX::ShStrTab->addString(Sec->Name); 1618 } 1619 1620 // Binary and relocatable output does not have PHDRS. 1621 // The headers have to be created before finalize as that can influence the 1622 // image base and the dynamic section on mips includes the image base. 1623 if (!Config->Relocatable && !Config->OFormatBinary) { 1624 Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); 1625 addPtArmExid(Phdrs); 1626 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); 1627 } 1628 1629 // Some symbols are defined in term of program headers. Now that we 1630 // have the headers, we can find out which sections they point to. 1631 setReservedSymbolSections(); 1632 1633 // Dynamic section must be the last one in this list and dynamic 1634 // symbol table section (DynSymTab) must be the first one. 1635 applySynthetic( 1636 {InX::DynSymTab, InX::Bss, InX::BssRelRo, InX::GnuHashTab, 1637 InX::HashTab, InX::SymTab, InX::ShStrTab, InX::StrTab, 1638 In<ELFT>::VerDef, InX::DynStrTab, InX::Got, InX::MipsGot, 1639 InX::IgotPlt, InX::GotPlt, InX::RelaDyn, InX::RelaIplt, 1640 InX::RelaPlt, InX::Plt, InX::Iplt, InX::EhFrameHdr, 1641 In<ELFT>::VerSym, In<ELFT>::VerNeed, InX::Dynamic}, 1642 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1643 1644 if (!Script->HasSectionsCommand && !Config->Relocatable) 1645 fixSectionAlignments(); 1646 1647 // After link order processing .ARM.exidx sections can be deduplicated, which 1648 // needs to be resolved before any other address dependent operation. 1649 resolveShfLinkOrder(); 1650 1651 // Some architectures need to generate content that depends on the address 1652 // of InputSections. For example some architectures use small displacements 1653 // for jump instructions that is the linker's responsibility for creating 1654 // range extension thunks for. As the generation of the content may also 1655 // alter InputSection addresses we must converge to a fixed point. 1656 if (Target->NeedsThunks || Config->AndroidPackDynRelocs) { 1657 ThunkCreator TC; 1658 AArch64Err843419Patcher A64P; 1659 bool Changed; 1660 do { 1661 Script->assignAddresses(); 1662 Changed = false; 1663 if (Target->NeedsThunks) 1664 Changed |= TC.createThunks(OutputSections); 1665 if (Config->FixCortexA53Errata843419) { 1666 if (Changed) 1667 Script->assignAddresses(); 1668 Changed |= A64P.createFixes(); 1669 } 1670 if (InX::MipsGot) 1671 InX::MipsGot->updateAllocSize(); 1672 Changed |= InX::RelaDyn->updateAllocSize(); 1673 } while (Changed); 1674 } 1675 1676 // createThunks may have added local symbols to the static symbol table 1677 applySynthetic({InX::SymTab}, 1678 [](SyntheticSection *SS) { SS->postThunkContents(); }); 1679 1680 // Fill other section headers. The dynamic table is finalized 1681 // at the end because some tags like RELSZ depend on result 1682 // of finalizing other sections. 1683 for (OutputSection *Sec : OutputSections) 1684 Sec->finalize<ELFT>(); 1685 } 1686 1687 // The linker is expected to define SECNAME_start and SECNAME_end 1688 // symbols for a few sections. This function defines them. 1689 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1690 auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) { 1691 // These symbols resolve to the image base if the section does not exist. 1692 // A special value -1 indicates end of the section. 1693 if (OS) { 1694 addOptionalRegular(Start, OS, 0); 1695 addOptionalRegular(End, OS, -1); 1696 } else { 1697 if (Config->Pic) 1698 OS = Out::ElfHeader; 1699 addOptionalRegular(Start, OS, 0); 1700 addOptionalRegular(End, OS, 0); 1701 } 1702 }; 1703 1704 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1705 Define("__init_array_start", "__init_array_end", Out::InitArray); 1706 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1707 1708 if (OutputSection *Sec = findSection(".ARM.exidx")) 1709 Define("__exidx_start", "__exidx_end", Sec); 1710 } 1711 1712 // If a section name is valid as a C identifier (which is rare because of 1713 // the leading '.'), linkers are expected to define __start_<secname> and 1714 // __stop_<secname> symbols. They are at beginning and end of the section, 1715 // respectively. This is not requested by the ELF standard, but GNU ld and 1716 // gold provide the feature, and used by many programs. 1717 template <class ELFT> 1718 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 1719 StringRef S = Sec->Name; 1720 if (!isValidCIdentifier(S)) 1721 return; 1722 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); 1723 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); 1724 } 1725 1726 static bool needsPtLoad(OutputSection *Sec) { 1727 if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) 1728 return false; 1729 1730 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1731 // responsible for allocating space for them, not the PT_LOAD that 1732 // contains the TLS initialization image. 1733 if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) 1734 return false; 1735 return true; 1736 } 1737 1738 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1739 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1740 // RW. This means that there is no alignment in the RO to RX transition and we 1741 // cannot create a PT_LOAD there. 1742 static uint64_t computeFlags(uint64_t Flags) { 1743 if (Config->Omagic) 1744 return PF_R | PF_W | PF_X; 1745 if (Config->SingleRoRx && !(Flags & PF_W)) 1746 return Flags | PF_X; 1747 return Flags; 1748 } 1749 1750 // Decide which program headers to create and which sections to include in each 1751 // one. 1752 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { 1753 std::vector<PhdrEntry *> Ret; 1754 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 1755 Ret.push_back(make<PhdrEntry>(Type, Flags)); 1756 return Ret.back(); 1757 }; 1758 1759 // The first phdr entry is PT_PHDR which describes the program header itself. 1760 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 1761 1762 // PT_INTERP must be the second entry if exists. 1763 if (OutputSection *Cmd = findSection(".interp")) 1764 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 1765 1766 // Add the first PT_LOAD segment for regular output sections. 1767 uint64_t Flags = computeFlags(PF_R); 1768 PhdrEntry *Load = AddHdr(PT_LOAD, Flags); 1769 1770 // Add the headers. We will remove them if they don't fit. 1771 Load->add(Out::ElfHeader); 1772 Load->add(Out::ProgramHeaders); 1773 1774 for (OutputSection *Sec : OutputSections) { 1775 if (!(Sec->Flags & SHF_ALLOC)) 1776 break; 1777 if (!needsPtLoad(Sec)) 1778 continue; 1779 1780 // Segments are contiguous memory regions that has the same attributes 1781 // (e.g. executable or writable). There is one phdr for each segment. 1782 // Therefore, we need to create a new phdr when the next section has 1783 // different flags or is loaded at a discontiguous address using AT linker 1784 // script command. At the same time, we don't want to create a separate 1785 // load segment for the headers, even if the first output section has 1786 // an AT attribute. 1787 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 1788 if ((Sec->LMAExpr && Load->LastSec != Out::ProgramHeaders) || 1789 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) { 1790 1791 Load = AddHdr(PT_LOAD, NewFlags); 1792 Flags = NewFlags; 1793 } 1794 1795 Load->add(Sec); 1796 } 1797 1798 // Add a TLS segment if any. 1799 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 1800 for (OutputSection *Sec : OutputSections) 1801 if (Sec->Flags & SHF_TLS) 1802 TlsHdr->add(Sec); 1803 if (TlsHdr->FirstSec) 1804 Ret.push_back(TlsHdr); 1805 1806 // Add an entry for .dynamic. 1807 if (InX::DynSymTab) 1808 AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags()) 1809 ->add(InX::Dynamic->getParent()); 1810 1811 // PT_GNU_RELRO includes all sections that should be marked as 1812 // read-only by dynamic linker after proccessing relocations. 1813 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 1814 // an error message if more than one PT_GNU_RELRO PHDR is required. 1815 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 1816 bool InRelroPhdr = false; 1817 bool IsRelroFinished = false; 1818 for (OutputSection *Sec : OutputSections) { 1819 if (!needsPtLoad(Sec)) 1820 continue; 1821 if (isRelroSection(Sec)) { 1822 InRelroPhdr = true; 1823 if (!IsRelroFinished) 1824 RelRo->add(Sec); 1825 else 1826 error("section: " + Sec->Name + " is not contiguous with other relro" + 1827 " sections"); 1828 } else if (InRelroPhdr) { 1829 InRelroPhdr = false; 1830 IsRelroFinished = true; 1831 } 1832 } 1833 if (RelRo->FirstSec) 1834 Ret.push_back(RelRo); 1835 1836 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 1837 if (!InX::EhFrame->empty() && InX::EhFrameHdr && InX::EhFrame->getParent() && 1838 InX::EhFrameHdr->getParent()) 1839 AddHdr(PT_GNU_EH_FRAME, InX::EhFrameHdr->getParent()->getPhdrFlags()) 1840 ->add(InX::EhFrameHdr->getParent()); 1841 1842 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 1843 // the dynamic linker fill the segment with random data. 1844 if (OutputSection *Cmd = findSection(".openbsd.randomdata")) 1845 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 1846 1847 // PT_GNU_STACK is a special section to tell the loader to make the 1848 // pages for the stack non-executable. If you really want an executable 1849 // stack, you can pass -z execstack, but that's not recommended for 1850 // security reasons. 1851 unsigned Perm = PF_R | PF_W; 1852 if (Config->ZExecstack) 1853 Perm |= PF_X; 1854 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 1855 1856 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 1857 // is expected to perform W^X violations, such as calling mprotect(2) or 1858 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 1859 // OpenBSD. 1860 if (Config->ZWxneeded) 1861 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 1862 1863 // Create one PT_NOTE per a group of contiguous .note sections. 1864 PhdrEntry *Note = nullptr; 1865 for (OutputSection *Sec : OutputSections) { 1866 if (Sec->Type == SHT_NOTE) { 1867 if (!Note || Sec->LMAExpr) 1868 Note = AddHdr(PT_NOTE, PF_R); 1869 Note->add(Sec); 1870 } else { 1871 Note = nullptr; 1872 } 1873 } 1874 return Ret; 1875 } 1876 1877 template <class ELFT> 1878 void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) { 1879 if (Config->EMachine != EM_ARM) 1880 return; 1881 auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) { 1882 return Cmd->Type == SHT_ARM_EXIDX; 1883 }); 1884 if (I == OutputSections.end()) 1885 return; 1886 1887 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1888 PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R); 1889 ARMExidx->add(*I); 1890 Phdrs.push_back(ARMExidx); 1891 } 1892 1893 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 1894 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 1895 // linker can set the permissions. 1896 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 1897 auto PageAlign = [](OutputSection *Cmd) { 1898 if (Cmd && !Cmd->AddrExpr) 1899 Cmd->AddrExpr = [=] { 1900 return alignTo(Script->getDot(), Config->MaxPageSize); 1901 }; 1902 }; 1903 1904 for (const PhdrEntry *P : Phdrs) 1905 if (P->p_type == PT_LOAD && P->FirstSec) 1906 PageAlign(P->FirstSec); 1907 1908 for (const PhdrEntry *P : Phdrs) { 1909 if (P->p_type != PT_GNU_RELRO) 1910 continue; 1911 if (P->FirstSec) 1912 PageAlign(P->FirstSec); 1913 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 1914 // have to align it to a page. 1915 auto End = OutputSections.end(); 1916 auto I = std::find(OutputSections.begin(), End, P->LastSec); 1917 if (I == End || (I + 1) == End) 1918 continue; 1919 OutputSection *Cmd = (*(I + 1)); 1920 if (needsPtLoad(Cmd)) 1921 PageAlign(Cmd); 1922 } 1923 } 1924 1925 // Adjusts the file alignment for a given output section and returns 1926 // its new file offset. The file offset must be the same with its 1927 // virtual address (modulo the page size) so that the loader can load 1928 // executables without any address adjustment. 1929 static uint64_t getFileAlignment(uint64_t Off, OutputSection *Cmd) { 1930 OutputSection *First = Cmd->PtLoad ? Cmd->PtLoad->FirstSec : nullptr; 1931 // The first section in a PT_LOAD has to have congruent offset and address 1932 // module the page size. 1933 if (Cmd == First) 1934 return alignTo(Off, std::max<uint64_t>(Cmd->Alignment, Config->MaxPageSize), 1935 Cmd->Addr); 1936 1937 // For SHT_NOBITS we don't want the alignment of the section to impact the 1938 // offset of the sections that follow. Since nothing seems to care about the 1939 // sh_offset of the SHT_NOBITS section itself, just ignore it. 1940 if (Cmd->Type == SHT_NOBITS) 1941 return Off; 1942 1943 // If the section is not in a PT_LOAD, we just have to align it. 1944 if (!Cmd->PtLoad) 1945 return alignTo(Off, Cmd->Alignment); 1946 1947 // If two sections share the same PT_LOAD the file offset is calculated 1948 // using this formula: Off2 = Off1 + (VA2 - VA1). 1949 return First->Offset + Cmd->Addr - First->Addr; 1950 } 1951 1952 static uint64_t setOffset(OutputSection *Cmd, uint64_t Off) { 1953 Off = getFileAlignment(Off, Cmd); 1954 Cmd->Offset = Off; 1955 1956 // For SHT_NOBITS we should not count the size. 1957 if (Cmd->Type == SHT_NOBITS) 1958 return Off; 1959 1960 return Off + Cmd->Size; 1961 } 1962 1963 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 1964 uint64_t Off = 0; 1965 for (OutputSection *Sec : OutputSections) 1966 if (Sec->Flags & SHF_ALLOC) 1967 Off = setOffset(Sec, Off); 1968 FileSize = alignTo(Off, Config->Wordsize); 1969 } 1970 1971 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 1972 if (Len == 0) 1973 return "<empty range at 0x" + utohexstr(Addr) + ">"; 1974 return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; 1975 } 1976 1977 // Assign file offsets to output sections. 1978 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 1979 uint64_t Off = 0; 1980 Off = setOffset(Out::ElfHeader, Off); 1981 Off = setOffset(Out::ProgramHeaders, Off); 1982 1983 PhdrEntry *LastRX = nullptr; 1984 for (PhdrEntry *P : Phdrs) 1985 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 1986 LastRX = P; 1987 1988 for (OutputSection *Sec : OutputSections) { 1989 Off = setOffset(Sec, Off); 1990 if (Script->HasSectionsCommand) 1991 continue; 1992 // If this is a last section of the last executable segment and that 1993 // segment is the last loadable segment, align the offset of the 1994 // following section to avoid loading non-segments parts of the file. 1995 if (LastRX && LastRX->LastSec == Sec) 1996 Off = alignTo(Off, Target->PageSize); 1997 } 1998 1999 SectionHeaderOff = alignTo(Off, Config->Wordsize); 2000 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 2001 2002 // Our logic assumes that sections have rising VA within the same segment. 2003 // With use of linker scripts it is possible to violate this rule and get file 2004 // offset overlaps or overflows. That should never happen with a valid script 2005 // which does not move the location counter backwards and usually scripts do 2006 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2007 // kernel, which control segment distribution explicitly and move the counter 2008 // backwards, so we have to allow doing that to support linking them. We 2009 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2010 // we want to prevent file size overflows because it would crash the linker. 2011 for (OutputSection *Sec : OutputSections) { 2012 if (Sec->Type == SHT_NOBITS) 2013 continue; 2014 if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) 2015 error("unable to place section " + Sec->Name + " at file offset " + 2016 rangeToString(Sec->Offset, Sec->Offset + Sec->Size) + 2017 "; check your linker script for overflows"); 2018 } 2019 } 2020 2021 // Finalize the program headers. We call this function after we assign 2022 // file offsets and VAs to all sections. 2023 template <class ELFT> void Writer<ELFT>::setPhdrs() { 2024 for (PhdrEntry *P : Phdrs) { 2025 OutputSection *First = P->FirstSec; 2026 OutputSection *Last = P->LastSec; 2027 if (First) { 2028 P->p_filesz = Last->Offset - First->Offset; 2029 if (Last->Type != SHT_NOBITS) 2030 P->p_filesz += Last->Size; 2031 P->p_memsz = Last->Addr + Last->Size - First->Addr; 2032 P->p_offset = First->Offset; 2033 P->p_vaddr = First->Addr; 2034 if (!P->HasLMA) 2035 P->p_paddr = First->getLMA(); 2036 } 2037 if (P->p_type == PT_LOAD) 2038 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 2039 else if (P->p_type == PT_GNU_RELRO) { 2040 P->p_align = 1; 2041 // The glibc dynamic loader rounds the size down, so we need to round up 2042 // to protect the last page. This is a no-op on FreeBSD which always 2043 // rounds up. 2044 P->p_memsz = alignTo(P->p_memsz, Target->PageSize); 2045 } 2046 2047 // The TLS pointer goes after PT_TLS. At least glibc will align it, 2048 // so round up the size to make sure the offsets are correct. 2049 if (P->p_type == PT_TLS) { 2050 Out::TlsPhdr = P; 2051 if (P->p_memsz) 2052 P->p_memsz = alignTo(P->p_memsz, P->p_align); 2053 } 2054 } 2055 } 2056 2057 // A helper struct for checkSectionOverlap. 2058 namespace { 2059 struct SectionOffset { 2060 OutputSection *Sec; 2061 uint64_t Offset; 2062 }; 2063 } // namespace 2064 2065 // Check whether sections overlap for a specific address range (file offsets, 2066 // load and virtual adresses). 2067 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections) { 2068 std::sort(Sections.begin(), Sections.end(), 2069 [=](const SectionOffset &A, const SectionOffset &B) { 2070 return A.Offset < B.Offset; 2071 }); 2072 2073 // Finding overlap is easy given a vector is sorted by start position. 2074 // If an element starts before the end of the previous element, they overlap. 2075 for (size_t I = 1, End = Sections.size(); I < End; ++I) { 2076 SectionOffset A = Sections[I - 1]; 2077 SectionOffset B = Sections[I]; 2078 if (B.Offset < A.Offset + A.Sec->Size) 2079 errorOrWarn( 2080 "section " + A.Sec->Name + " " + Name + " range overlaps with " + 2081 B.Sec->Name + "\n>>> " + A.Sec->Name + " range is " + 2082 rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + B.Sec->Name + 2083 " range is " + rangeToString(B.Offset, B.Sec->Size)); 2084 } 2085 } 2086 2087 // Check for overlapping sections and address overflows. 2088 // 2089 // In this function we check that none of the output sections have overlapping 2090 // file offsets. For SHF_ALLOC sections we also check that the load address 2091 // ranges and the virtual address ranges don't overlap 2092 template <class ELFT> void Writer<ELFT>::checkSections() { 2093 // First, check that section's VAs fit in available address space for target. 2094 for (OutputSection *OS : OutputSections) 2095 if ((OS->Addr + OS->Size < OS->Addr) || 2096 (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) 2097 errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + 2098 " of size 0x" + utohexstr(OS->Size) + 2099 " exceeds available address space"); 2100 2101 // Check for overlapping file offsets. In this case we need to skip any 2102 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2103 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2104 // binary is specified only add SHF_ALLOC sections are added to the output 2105 // file so we skip any non-allocated sections in that case. 2106 std::vector<SectionOffset> FileOffs; 2107 for (OutputSection *Sec : OutputSections) 2108 if (0 < Sec->Size && Sec->Type != SHT_NOBITS && 2109 (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) 2110 FileOffs.push_back({Sec, Sec->Offset}); 2111 checkOverlap("file", FileOffs); 2112 2113 // When linking with -r there is no need to check for overlapping virtual/load 2114 // addresses since those addresses will only be assigned when the final 2115 // executable/shared object is created. 2116 if (Config->Relocatable) 2117 return; 2118 2119 // Checking for overlapping virtual and load addresses only needs to take 2120 // into account SHF_ALLOC sections since others will not be loaded. 2121 // Furthermore, we also need to skip SHF_TLS sections since these will be 2122 // mapped to other addresses at runtime and can therefore have overlapping 2123 // ranges in the file. 2124 std::vector<SectionOffset> VMAs; 2125 for (OutputSection *Sec : OutputSections) 2126 if (0 < Sec->Size && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2127 VMAs.push_back({Sec, Sec->Addr}); 2128 checkOverlap("virtual address", VMAs); 2129 2130 // Finally, check that the load addresses don't overlap. This will usually be 2131 // the same as the virtual addresses but can be different when using a linker 2132 // script with AT(). 2133 std::vector<SectionOffset> LMAs; 2134 for (OutputSection *Sec : OutputSections) 2135 if (0 < Sec->Size && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2136 LMAs.push_back({Sec, Sec->getLMA()}); 2137 checkOverlap("load address", LMAs); 2138 } 2139 2140 // The entry point address is chosen in the following ways. 2141 // 2142 // 1. the '-e' entry command-line option; 2143 // 2. the ENTRY(symbol) command in a linker control script; 2144 // 3. the value of the symbol _start, if present; 2145 // 4. the number represented by the entry symbol, if it is a number; 2146 // 5. the address of the first byte of the .text section, if present; 2147 // 6. the address 0. 2148 template <class ELFT> uint64_t Writer<ELFT>::getEntryAddr() { 2149 // Case 1, 2 or 3 2150 if (Symbol *B = Symtab->find(Config->Entry)) 2151 return B->getVA(); 2152 2153 // Case 4 2154 uint64_t Addr; 2155 if (to_integer(Config->Entry, Addr)) 2156 return Addr; 2157 2158 // Case 5 2159 if (OutputSection *Sec = findSection(".text")) { 2160 if (Config->WarnMissingEntry) 2161 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2162 utohexstr(Sec->Addr)); 2163 return Sec->Addr; 2164 } 2165 2166 // Case 6 2167 if (Config->WarnMissingEntry) 2168 warn("cannot find entry symbol " + Config->Entry + 2169 "; not setting start address"); 2170 return 0; 2171 } 2172 2173 static uint16_t getELFType() { 2174 if (Config->Pic) 2175 return ET_DYN; 2176 if (Config->Relocatable) 2177 return ET_REL; 2178 return ET_EXEC; 2179 } 2180 2181 static uint8_t getAbiVersion() { 2182 // MIPS non-PIC executable gets ABI version 1. 2183 if (Config->EMachine == EM_MIPS && getELFType() == ET_EXEC && 2184 (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 2185 return 1; 2186 return 0; 2187 } 2188 2189 template <class ELFT> void Writer<ELFT>::writeHeader() { 2190 uint8_t *Buf = Buffer->getBufferStart(); 2191 // For executable segments, the trap instructions are written before writing 2192 // the header. Setting Elf header bytes to zero ensures that any unused bytes 2193 // in header are zero-cleared, instead of having trap instructions. 2194 memset(Buf, 0, sizeof(Elf_Ehdr)); 2195 memcpy(Buf, "\177ELF", 4); 2196 2197 // Write the ELF header. 2198 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 2199 EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; 2200 EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; 2201 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 2202 EHdr->e_ident[EI_OSABI] = Config->OSABI; 2203 EHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 2204 EHdr->e_type = getELFType(); 2205 EHdr->e_machine = Config->EMachine; 2206 EHdr->e_version = EV_CURRENT; 2207 EHdr->e_entry = getEntryAddr(); 2208 EHdr->e_shoff = SectionHeaderOff; 2209 EHdr->e_flags = Config->EFlags; 2210 EHdr->e_ehsize = sizeof(Elf_Ehdr); 2211 EHdr->e_phnum = Phdrs.size(); 2212 EHdr->e_shentsize = sizeof(Elf_Shdr); 2213 EHdr->e_shnum = OutputSections.size() + 1; 2214 EHdr->e_shstrndx = InX::ShStrTab->getParent()->SectionIndex; 2215 2216 if (!Config->Relocatable) { 2217 EHdr->e_phoff = sizeof(Elf_Ehdr); 2218 EHdr->e_phentsize = sizeof(Elf_Phdr); 2219 } 2220 2221 // Write the program header table. 2222 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); 2223 for (PhdrEntry *P : Phdrs) { 2224 HBuf->p_type = P->p_type; 2225 HBuf->p_flags = P->p_flags; 2226 HBuf->p_offset = P->p_offset; 2227 HBuf->p_vaddr = P->p_vaddr; 2228 HBuf->p_paddr = P->p_paddr; 2229 HBuf->p_filesz = P->p_filesz; 2230 HBuf->p_memsz = P->p_memsz; 2231 HBuf->p_align = P->p_align; 2232 ++HBuf; 2233 } 2234 2235 // Write the section header table. Note that the first table entry is null. 2236 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 2237 for (OutputSection *Sec : OutputSections) 2238 Sec->writeHeaderTo<ELFT>(++SHdrs); 2239 } 2240 2241 // Open a result file. 2242 template <class ELFT> void Writer<ELFT>::openFile() { 2243 if (!Config->Is64 && FileSize > UINT32_MAX) { 2244 error("output file too large: " + Twine(FileSize) + " bytes"); 2245 return; 2246 } 2247 2248 unlinkAsync(Config->OutputFile); 2249 unsigned Flags = 0; 2250 if (!Config->Relocatable) 2251 Flags = FileOutputBuffer::F_executable; 2252 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2253 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2254 2255 if (!BufferOrErr) 2256 error("failed to open " + Config->OutputFile + ": " + 2257 llvm::toString(BufferOrErr.takeError())); 2258 else 2259 Buffer = std::move(*BufferOrErr); 2260 } 2261 2262 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2263 uint8_t *Buf = Buffer->getBufferStart(); 2264 for (OutputSection *Sec : OutputSections) 2265 if (Sec->Flags & SHF_ALLOC) 2266 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2267 } 2268 2269 static void fillTrap(uint8_t *I, uint8_t *End) { 2270 for (; I + 4 <= End; I += 4) 2271 memcpy(I, &Target->TrapInstr, 4); 2272 } 2273 2274 // Fill the last page of executable segments with trap instructions 2275 // instead of leaving them as zero. Even though it is not required by any 2276 // standard, it is in general a good thing to do for security reasons. 2277 // 2278 // We'll leave other pages in segments as-is because the rest will be 2279 // overwritten by output sections. 2280 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2281 if (Script->HasSectionsCommand) 2282 return; 2283 2284 // Fill the last page. 2285 uint8_t *Buf = Buffer->getBufferStart(); 2286 for (PhdrEntry *P : Phdrs) 2287 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2288 fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize), 2289 Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize)); 2290 2291 // Round up the file size of the last segment to the page boundary iff it is 2292 // an executable segment to ensure that other tools don't accidentally 2293 // trim the instruction padding (e.g. when stripping the file). 2294 PhdrEntry *Last = nullptr; 2295 for (PhdrEntry *P : Phdrs) 2296 if (P->p_type == PT_LOAD) 2297 Last = P; 2298 2299 if (Last && (Last->p_flags & PF_X)) 2300 Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize); 2301 } 2302 2303 // Write section contents to a mmap'ed file. 2304 template <class ELFT> void Writer<ELFT>::writeSections() { 2305 uint8_t *Buf = Buffer->getBufferStart(); 2306 2307 // PPC64 needs to process relocations in the .opd section 2308 // before processing relocations in code-containing sections. 2309 if (auto *OpdCmd = findSection(".opd")) { 2310 Out::Opd = OpdCmd; 2311 Out::OpdBuf = Buf + Out::Opd->Offset; 2312 OpdCmd->template writeTo<ELFT>(Buf + Out::Opd->Offset); 2313 } 2314 2315 OutputSection *EhFrameHdr = nullptr; 2316 if (InX::EhFrameHdr && !InX::EhFrameHdr->empty()) 2317 EhFrameHdr = InX::EhFrameHdr->getParent(); 2318 2319 // In -r or -emit-relocs mode, write the relocation sections first as in 2320 // ELf_Rel targets we might find out that we need to modify the relocated 2321 // section while doing it. 2322 for (OutputSection *Sec : OutputSections) 2323 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2324 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2325 2326 for (OutputSection *Sec : OutputSections) 2327 if (Sec != Out::Opd && Sec != EhFrameHdr && Sec->Type != SHT_REL && 2328 Sec->Type != SHT_RELA) 2329 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2330 2331 // The .eh_frame_hdr depends on .eh_frame section contents, therefore 2332 // it should be written after .eh_frame is written. 2333 if (EhFrameHdr) 2334 EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset); 2335 } 2336 2337 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2338 if (!InX::BuildId || !InX::BuildId->getParent()) 2339 return; 2340 2341 // Compute a hash of all sections of the output file. 2342 uint8_t *Start = Buffer->getBufferStart(); 2343 uint8_t *End = Start + FileSize; 2344 InX::BuildId->writeBuildId({Start, End}); 2345 } 2346 2347 template void elf::writeResult<ELF32LE>(); 2348 template void elf::writeResult<ELF32BE>(); 2349 template void elf::writeResult<ELF64LE>(); 2350 template void elf::writeResult<ELF64BE>(); 2351