1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Arrays.h" 23 #include "lld/Common/CommonLinkerContext.h" 24 #include "lld/Common/Filesystem.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/Support/MD5.h" 28 #include "llvm/Support/Parallel.h" 29 #include "llvm/Support/RandomNumberGenerator.h" 30 #include "llvm/Support/SHA1.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void sortSections(); 59 void resolveShfLinkOrder(); 60 void finalizeAddressDependentContent(); 61 void optimizeBasicBlockJumps(); 62 void sortInputSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection *sec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool needsInterpSection() { 94 return !config->relocatable && !config->shared && 95 !config->dynamicLinker.empty() && script->needsInterpSection(); 96 } 97 98 template <class ELFT> void elf::writeResult() { 99 Writer<ELFT>().run(); 100 } 101 102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 103 auto it = std::stable_partition( 104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 105 if (p->p_type != PT_LOAD) 106 return true; 107 if (!p->firstSec) 108 return false; 109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 110 return size != 0; 111 }); 112 113 // Clear OutputSection::ptLoad for sections contained in removed 114 // segments. 115 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 116 for (OutputSection *sec : outputSections) 117 if (removed.count(sec->ptLoad)) 118 sec->ptLoad = nullptr; 119 phdrs.erase(it, phdrs.end()); 120 } 121 122 void elf::copySectionsIntoPartitions() { 123 SmallVector<InputSectionBase *, 0> newSections; 124 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 125 for (InputSectionBase *s : inputSections) { 126 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 127 continue; 128 InputSectionBase *copy; 129 if (s->type == SHT_NOTE) 130 copy = make<InputSection>(cast<InputSection>(*s)); 131 else if (auto *es = dyn_cast<EhInputSection>(s)) 132 copy = make<EhInputSection>(*es); 133 else 134 continue; 135 copy->partition = part; 136 newSections.push_back(copy); 137 } 138 } 139 140 inputSections.insert(inputSections.end(), newSections.begin(), 141 newSections.end()); 142 } 143 144 void elf::combineEhSections() { 145 llvm::TimeTraceScope timeScope("Combine EH sections"); 146 for (InputSectionBase *&s : inputSections) { 147 // Ignore dead sections and the partition end marker (.part.end), 148 // whose partition number is out of bounds. 149 if (!s->isLive() || s->partition == 255) 150 continue; 151 152 Partition &part = s->getPartition(); 153 if (auto *es = dyn_cast<EhInputSection>(s)) { 154 part.ehFrame->addSection(es); 155 s = nullptr; 156 } else if (s->kind() == SectionBase::Regular && part.armExidx && 157 part.armExidx->addSection(cast<InputSection>(s))) { 158 s = nullptr; 159 } 160 } 161 162 llvm::erase_value(inputSections, nullptr); 163 } 164 165 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 166 uint64_t val, uint8_t stOther = STV_HIDDEN) { 167 Symbol *s = symtab->find(name); 168 if (!s || s->isDefined()) 169 return nullptr; 170 171 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val, 172 /*size=*/0, sec}); 173 return cast<Defined>(s); 174 } 175 176 static Defined *addAbsolute(StringRef name) { 177 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 178 STT_NOTYPE, 0, 0, nullptr}); 179 return cast<Defined>(sym); 180 } 181 182 // The linker is expected to define some symbols depending on 183 // the linking result. This function defines such symbols. 184 void elf::addReservedSymbols() { 185 if (config->emachine == EM_MIPS) { 186 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 187 // so that it points to an absolute address which by default is relative 188 // to GOT. Default offset is 0x7ff0. 189 // See "Global Data Symbols" in Chapter 6 in the following document: 190 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 191 ElfSym::mipsGp = addAbsolute("_gp"); 192 193 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 194 // start of function and 'gp' pointer into GOT. 195 if (symtab->find("_gp_disp")) 196 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 197 198 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 199 // pointer. This symbol is used in the code generated by .cpload pseudo-op 200 // in case of using -mno-shared option. 201 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 202 if (symtab->find("__gnu_local_gp")) 203 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 204 } else if (config->emachine == EM_PPC) { 205 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 206 // support Small Data Area, define it arbitrarily as 0. 207 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 208 } else if (config->emachine == EM_PPC64) { 209 addPPC64SaveRestore(); 210 } 211 212 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 213 // combines the typical ELF GOT with the small data sections. It commonly 214 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 215 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 216 // represent the TOC base which is offset by 0x8000 bytes from the start of 217 // the .got section. 218 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 219 // correctness of some relocations depends on its value. 220 StringRef gotSymName = 221 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 222 223 if (Symbol *s = symtab->find(gotSymName)) { 224 if (s->isDefined()) { 225 error(toString(s->file) + " cannot redefine linker defined symbol '" + 226 gotSymName + "'"); 227 return; 228 } 229 230 uint64_t gotOff = 0; 231 if (config->emachine == EM_PPC64) 232 gotOff = 0x8000; 233 234 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 235 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 236 ElfSym::globalOffsetTable = cast<Defined>(s); 237 } 238 239 // __ehdr_start is the location of ELF file headers. Note that we define 240 // this symbol unconditionally even when using a linker script, which 241 // differs from the behavior implemented by GNU linker which only define 242 // this symbol if ELF headers are in the memory mapped segment. 243 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 244 245 // __executable_start is not documented, but the expectation of at 246 // least the Android libc is that it points to the ELF header. 247 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 248 249 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 250 // each DSO. The address of the symbol doesn't matter as long as they are 251 // different in different DSOs, so we chose the start address of the DSO. 252 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 253 254 // If linker script do layout we do not need to create any standard symbols. 255 if (script->hasSectionsCommand) 256 return; 257 258 auto add = [](StringRef s, int64_t pos) { 259 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 260 }; 261 262 ElfSym::bss = add("__bss_start", 0); 263 ElfSym::end1 = add("end", -1); 264 ElfSym::end2 = add("_end", -1); 265 ElfSym::etext1 = add("etext", -1); 266 ElfSym::etext2 = add("_etext", -1); 267 ElfSym::edata1 = add("edata", -1); 268 ElfSym::edata2 = add("_edata", -1); 269 } 270 271 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 272 for (SectionCommand *cmd : script->sectionCommands) 273 if (auto *sec = dyn_cast<OutputSection>(cmd)) 274 if (sec->name == name && sec->partition == partition) 275 return sec; 276 return nullptr; 277 } 278 279 template <class ELFT> void elf::createSyntheticSections() { 280 // Initialize all pointers with NULL. This is needed because 281 // you can call lld::elf::main more than once as a library. 282 Out::tlsPhdr = nullptr; 283 Out::preinitArray = nullptr; 284 Out::initArray = nullptr; 285 Out::finiArray = nullptr; 286 287 // Add the .interp section first because it is not a SyntheticSection. 288 // The removeUnusedSyntheticSections() function relies on the 289 // SyntheticSections coming last. 290 if (needsInterpSection()) { 291 for (size_t i = 1; i <= partitions.size(); ++i) { 292 InputSection *sec = createInterpSection(); 293 sec->partition = i; 294 inputSections.push_back(sec); 295 } 296 } 297 298 auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); }; 299 300 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 301 302 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 303 Out::programHeaders->alignment = config->wordsize; 304 305 if (config->strip != StripPolicy::All) { 306 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 307 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 308 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 309 } 310 311 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 312 add(*in.bss); 313 314 // If there is a SECTIONS command and a .data.rel.ro section name use name 315 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 316 // This makes sure our relro is contiguous. 317 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 318 in.bssRelRo = std::make_unique<BssSection>( 319 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 320 add(*in.bssRelRo); 321 322 // Add MIPS-specific sections. 323 if (config->emachine == EM_MIPS) { 324 if (!config->shared && config->hasDynSymTab) { 325 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 326 add(*in.mipsRldMap); 327 } 328 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 329 add(*in.mipsAbiFlags); 330 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 331 add(*in.mipsOptions); 332 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 333 add(*in.mipsReginfo); 334 } 335 336 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 337 338 for (Partition &part : partitions) { 339 auto add = [&](SyntheticSection &sec) { 340 sec.partition = part.getNumber(); 341 inputSections.push_back(&sec); 342 }; 343 344 if (!part.name.empty()) { 345 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 346 part.elfHeader->name = part.name; 347 add(*part.elfHeader); 348 349 part.programHeaders = 350 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 351 add(*part.programHeaders); 352 } 353 354 if (config->buildId != BuildIdKind::None) { 355 part.buildId = std::make_unique<BuildIdSection>(); 356 add(*part.buildId); 357 } 358 359 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 360 part.dynSymTab = 361 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 362 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 363 if (config->androidPackDynRelocs) 364 part.relaDyn = 365 std::make_unique<AndroidPackedRelocationSection<ELFT>>(relaDynName); 366 else 367 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 368 relaDynName, config->zCombreloc); 369 370 if (config->hasDynSymTab) { 371 add(*part.dynSymTab); 372 373 part.verSym = std::make_unique<VersionTableSection>(); 374 add(*part.verSym); 375 376 if (!namedVersionDefs().empty()) { 377 part.verDef = std::make_unique<VersionDefinitionSection>(); 378 add(*part.verDef); 379 } 380 381 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 382 add(*part.verNeed); 383 384 if (config->gnuHash) { 385 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 386 add(*part.gnuHashTab); 387 } 388 389 if (config->sysvHash) { 390 part.hashTab = std::make_unique<HashTableSection>(); 391 add(*part.hashTab); 392 } 393 394 add(*part.dynamic); 395 add(*part.dynStrTab); 396 add(*part.relaDyn); 397 } 398 399 if (config->relrPackDynRelocs) { 400 part.relrDyn = std::make_unique<RelrSection<ELFT>>(); 401 add(*part.relrDyn); 402 } 403 404 if (!config->relocatable) { 405 if (config->ehFrameHdr) { 406 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 407 add(*part.ehFrameHdr); 408 } 409 part.ehFrame = std::make_unique<EhFrameSection>(); 410 add(*part.ehFrame); 411 } 412 413 if (config->emachine == EM_ARM && !config->relocatable) { 414 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 415 // InputSections. 416 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 417 add(*part.armExidx); 418 } 419 } 420 421 if (partitions.size() != 1) { 422 // Create the partition end marker. This needs to be in partition number 255 423 // so that it is sorted after all other partitions. It also has other 424 // special handling (see createPhdrs() and combineEhSections()). 425 in.partEnd = 426 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 427 in.partEnd->partition = 255; 428 add(*in.partEnd); 429 430 in.partIndex = std::make_unique<PartitionIndexSection>(); 431 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 432 addOptionalRegular("__part_index_end", in.partIndex.get(), 433 in.partIndex->getSize()); 434 add(*in.partIndex); 435 } 436 437 // Add .got. MIPS' .got is so different from the other archs, 438 // it has its own class. 439 if (config->emachine == EM_MIPS) { 440 in.mipsGot = std::make_unique<MipsGotSection>(); 441 add(*in.mipsGot); 442 } else { 443 in.got = std::make_unique<GotSection>(); 444 add(*in.got); 445 } 446 447 if (config->emachine == EM_PPC) { 448 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 449 add(*in.ppc32Got2); 450 } 451 452 if (config->emachine == EM_PPC64) { 453 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 454 add(*in.ppc64LongBranchTarget); 455 } 456 457 in.gotPlt = std::make_unique<GotPltSection>(); 458 add(*in.gotPlt); 459 in.igotPlt = std::make_unique<IgotPltSection>(); 460 add(*in.igotPlt); 461 462 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 463 // it as a relocation and ensure the referenced section is created. 464 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 465 if (target->gotBaseSymInGotPlt) 466 in.gotPlt->hasGotPltOffRel = true; 467 else 468 in.got->hasGotOffRel = true; 469 } 470 471 if (config->gdbIndex) 472 add(*GdbIndexSection::create<ELFT>()); 473 474 // We always need to add rel[a].plt to output if it has entries. 475 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 476 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 477 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 478 add(*in.relaPlt); 479 480 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 481 // relocations are processed last by the dynamic loader. We cannot place the 482 // iplt section in .rel.dyn when Android relocation packing is enabled because 483 // that would cause a section type mismatch. However, because the Android 484 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 485 // behaviour by placing the iplt section in .rel.plt. 486 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 487 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 488 /*sort=*/false); 489 add(*in.relaIplt); 490 491 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 492 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 493 in.ibtPlt = std::make_unique<IBTPltSection>(); 494 add(*in.ibtPlt); 495 } 496 497 if (config->emachine == EM_PPC) 498 in.plt = std::make_unique<PPC32GlinkSection>(); 499 else 500 in.plt = std::make_unique<PltSection>(); 501 add(*in.plt); 502 in.iplt = std::make_unique<IpltSection>(); 503 add(*in.iplt); 504 505 if (config->andFeatures) 506 add(*make<GnuPropertySection>()); 507 508 // .note.GNU-stack is always added when we are creating a re-linkable 509 // object file. Other linkers are using the presence of this marker 510 // section to control the executable-ness of the stack area, but that 511 // is irrelevant these days. Stack area should always be non-executable 512 // by default. So we emit this section unconditionally. 513 if (config->relocatable) 514 add(*make<GnuStackSection>()); 515 516 if (in.symTab) 517 add(*in.symTab); 518 if (in.symTabShndx) 519 add(*in.symTabShndx); 520 add(*in.shStrTab); 521 if (in.strTab) 522 add(*in.strTab); 523 } 524 525 // The main function of the writer. 526 template <class ELFT> void Writer<ELFT>::run() { 527 copyLocalSymbols(); 528 529 if (config->copyRelocs) 530 addSectionSymbols(); 531 532 // Now that we have a complete set of output sections. This function 533 // completes section contents. For example, we need to add strings 534 // to the string table, and add entries to .got and .plt. 535 // finalizeSections does that. 536 finalizeSections(); 537 checkExecuteOnly(); 538 539 // If --compressed-debug-sections is specified, compress .debug_* sections. 540 // Do it right now because it changes the size of output sections. 541 for (OutputSection *sec : outputSections) 542 sec->maybeCompress<ELFT>(); 543 544 if (script->hasSectionsCommand) 545 script->allocateHeaders(mainPart->phdrs); 546 547 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 548 // 0 sized region. This has to be done late since only after assignAddresses 549 // we know the size of the sections. 550 for (Partition &part : partitions) 551 removeEmptyPTLoad(part.phdrs); 552 553 if (!config->oFormatBinary) 554 assignFileOffsets(); 555 else 556 assignFileOffsetsBinary(); 557 558 for (Partition &part : partitions) 559 setPhdrs(part); 560 561 562 // Handle --print-map(-M)/--Map, --why-extract=, --cref and 563 // --print-archive-stats=. Dump them before checkSections() because the files 564 // may be useful in case checkSections() or openFile() fails, for example, due 565 // to an erroneous file size. 566 writeMapAndCref(); 567 writeWhyExtract(); 568 writeArchiveStats(); 569 570 if (config->checkSections) 571 checkSections(); 572 573 // It does not make sense try to open the file if we have error already. 574 if (errorCount()) 575 return; 576 577 { 578 llvm::TimeTraceScope timeScope("Write output file"); 579 // Write the result down to a file. 580 openFile(); 581 if (errorCount()) 582 return; 583 584 if (!config->oFormatBinary) { 585 if (config->zSeparate != SeparateSegmentKind::None) 586 writeTrapInstr(); 587 writeHeader(); 588 writeSections(); 589 } else { 590 writeSectionsBinary(); 591 } 592 593 // Backfill .note.gnu.build-id section content. This is done at last 594 // because the content is usually a hash value of the entire output file. 595 writeBuildId(); 596 if (errorCount()) 597 return; 598 599 if (auto e = buffer->commit()) 600 error("failed to write to the output file: " + toString(std::move(e))); 601 } 602 } 603 604 template <class ELFT, class RelTy> 605 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 606 llvm::ArrayRef<RelTy> rels) { 607 for (const RelTy &rel : rels) { 608 Symbol &sym = file->getRelocTargetSym(rel); 609 if (sym.isLocal()) 610 sym.used = true; 611 } 612 } 613 614 // The function ensures that the "used" field of local symbols reflects the fact 615 // that the symbol is used in a relocation from a live section. 616 template <class ELFT> static void markUsedLocalSymbols() { 617 // With --gc-sections, the field is already filled. 618 // See MarkLive<ELFT>::resolveReloc(). 619 if (config->gcSections) 620 return; 621 for (ELFFileBase *file : objectFiles) { 622 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 623 for (InputSectionBase *s : f->getSections()) { 624 InputSection *isec = dyn_cast_or_null<InputSection>(s); 625 if (!isec) 626 continue; 627 if (isec->type == SHT_REL) 628 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 629 else if (isec->type == SHT_RELA) 630 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 631 } 632 } 633 } 634 635 static bool shouldKeepInSymtab(const Defined &sym) { 636 if (sym.isSection()) 637 return false; 638 639 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 640 // from live sections. 641 if (sym.used) 642 return true; 643 644 // Exclude local symbols pointing to .ARM.exidx sections. 645 // They are probably mapping symbols "$d", which are optional for these 646 // sections. After merging the .ARM.exidx sections, some of these symbols 647 // may become dangling. The easiest way to avoid the issue is not to add 648 // them to the symbol table from the beginning. 649 if (config->emachine == EM_ARM && sym.section && 650 sym.section->type == SHT_ARM_EXIDX) 651 return false; 652 653 if (config->discard == DiscardPolicy::None) 654 return true; 655 if (config->discard == DiscardPolicy::All) 656 return false; 657 658 // In ELF assembly .L symbols are normally discarded by the assembler. 659 // If the assembler fails to do so, the linker discards them if 660 // * --discard-locals is used. 661 // * The symbol is in a SHF_MERGE section, which is normally the reason for 662 // the assembler keeping the .L symbol. 663 if (sym.getName().startswith(".L") && 664 (config->discard == DiscardPolicy::Locals || 665 (sym.section && (sym.section->flags & SHF_MERGE)))) 666 return false; 667 return true; 668 } 669 670 static bool includeInSymtab(const Symbol &b) { 671 if (auto *d = dyn_cast<Defined>(&b)) { 672 // Always include absolute symbols. 673 SectionBase *sec = d->section; 674 if (!sec) 675 return true; 676 677 if (auto *s = dyn_cast<MergeInputSection>(sec)) 678 return s->getSectionPiece(d->value)->live; 679 return sec->isLive(); 680 } 681 return b.used || !config->gcSections; 682 } 683 684 // Local symbols are not in the linker's symbol table. This function scans 685 // each object file's symbol table to copy local symbols to the output. 686 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 687 if (!in.symTab) 688 return; 689 llvm::TimeTraceScope timeScope("Add local symbols"); 690 if (config->copyRelocs && config->discard != DiscardPolicy::None) 691 markUsedLocalSymbols<ELFT>(); 692 for (ELFFileBase *file : objectFiles) { 693 for (Symbol *b : file->getLocalSymbols()) { 694 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 695 auto *dr = dyn_cast<Defined>(b); 696 697 // No reason to keep local undefined symbol in symtab. 698 if (!dr) 699 continue; 700 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 701 in.symTab->addSymbol(b); 702 } 703 } 704 } 705 706 // Create a section symbol for each output section so that we can represent 707 // relocations that point to the section. If we know that no relocation is 708 // referring to a section (that happens if the section is a synthetic one), we 709 // don't create a section symbol for that section. 710 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 711 for (SectionCommand *cmd : script->sectionCommands) { 712 auto *sec = dyn_cast<OutputSection>(cmd); 713 if (!sec) 714 continue; 715 auto i = llvm::find_if(sec->commands, [](SectionCommand *cmd) { 716 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 717 return !isd->sections.empty(); 718 return false; 719 }); 720 if (i == sec->commands.end()) 721 continue; 722 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 723 724 // Relocations are not using REL[A] section symbols. 725 if (isec->type == SHT_REL || isec->type == SHT_RELA) 726 continue; 727 728 // Unlike other synthetic sections, mergeable output sections contain data 729 // copied from input sections, and there may be a relocation pointing to its 730 // contents if -r or --emit-reloc is given. 731 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 732 continue; 733 734 // Set the symbol to be relative to the output section so that its st_value 735 // equals the output section address. Note, there may be a gap between the 736 // start of the output section and isec. 737 in.symTab->addSymbol( 738 makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 739 /*value=*/0, /*size=*/0, isec->getOutputSection())); 740 } 741 } 742 743 // Today's loaders have a feature to make segments read-only after 744 // processing dynamic relocations to enhance security. PT_GNU_RELRO 745 // is defined for that. 746 // 747 // This function returns true if a section needs to be put into a 748 // PT_GNU_RELRO segment. 749 static bool isRelroSection(const OutputSection *sec) { 750 if (!config->zRelro) 751 return false; 752 753 uint64_t flags = sec->flags; 754 755 // Non-allocatable or non-writable sections don't need RELRO because 756 // they are not writable or not even mapped to memory in the first place. 757 // RELRO is for sections that are essentially read-only but need to 758 // be writable only at process startup to allow dynamic linker to 759 // apply relocations. 760 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 761 return false; 762 763 // Once initialized, TLS data segments are used as data templates 764 // for a thread-local storage. For each new thread, runtime 765 // allocates memory for a TLS and copy templates there. No thread 766 // are supposed to use templates directly. Thus, it can be in RELRO. 767 if (flags & SHF_TLS) 768 return true; 769 770 // .init_array, .preinit_array and .fini_array contain pointers to 771 // functions that are executed on process startup or exit. These 772 // pointers are set by the static linker, and they are not expected 773 // to change at runtime. But if you are an attacker, you could do 774 // interesting things by manipulating pointers in .fini_array, for 775 // example. So they are put into RELRO. 776 uint32_t type = sec->type; 777 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 778 type == SHT_PREINIT_ARRAY) 779 return true; 780 781 // .got contains pointers to external symbols. They are resolved by 782 // the dynamic linker when a module is loaded into memory, and after 783 // that they are not expected to change. So, it can be in RELRO. 784 if (in.got && sec == in.got->getParent()) 785 return true; 786 787 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 788 // through r2 register, which is reserved for that purpose. Since r2 is used 789 // for accessing .got as well, .got and .toc need to be close enough in the 790 // virtual address space. Usually, .toc comes just after .got. Since we place 791 // .got into RELRO, .toc needs to be placed into RELRO too. 792 if (sec->name.equals(".toc")) 793 return true; 794 795 // .got.plt contains pointers to external function symbols. They are 796 // by default resolved lazily, so we usually cannot put it into RELRO. 797 // However, if "-z now" is given, the lazy symbol resolution is 798 // disabled, which enables us to put it into RELRO. 799 if (sec == in.gotPlt->getParent()) 800 return config->zNow; 801 802 // .dynamic section contains data for the dynamic linker, and 803 // there's no need to write to it at runtime, so it's better to put 804 // it into RELRO. 805 if (sec->name == ".dynamic") 806 return true; 807 808 // Sections with some special names are put into RELRO. This is a 809 // bit unfortunate because section names shouldn't be significant in 810 // ELF in spirit. But in reality many linker features depend on 811 // magic section names. 812 StringRef s = sec->name; 813 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 814 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 815 s == ".fini_array" || s == ".init_array" || 816 s == ".openbsd.randomdata" || s == ".preinit_array"; 817 } 818 819 // We compute a rank for each section. The rank indicates where the 820 // section should be placed in the file. Instead of using simple 821 // numbers (0,1,2...), we use a series of flags. One for each decision 822 // point when placing the section. 823 // Using flags has two key properties: 824 // * It is easy to check if a give branch was taken. 825 // * It is easy two see how similar two ranks are (see getRankProximity). 826 enum RankFlags { 827 RF_NOT_ADDR_SET = 1 << 27, 828 RF_NOT_ALLOC = 1 << 26, 829 RF_PARTITION = 1 << 18, // Partition number (8 bits) 830 RF_NOT_PART_EHDR = 1 << 17, 831 RF_NOT_PART_PHDR = 1 << 16, 832 RF_NOT_INTERP = 1 << 15, 833 RF_NOT_NOTE = 1 << 14, 834 RF_WRITE = 1 << 13, 835 RF_EXEC_WRITE = 1 << 12, 836 RF_EXEC = 1 << 11, 837 RF_RODATA = 1 << 10, 838 RF_NOT_RELRO = 1 << 9, 839 RF_NOT_TLS = 1 << 8, 840 RF_BSS = 1 << 7, 841 RF_PPC_NOT_TOCBSS = 1 << 6, 842 RF_PPC_TOCL = 1 << 5, 843 RF_PPC_TOC = 1 << 4, 844 RF_PPC_GOT = 1 << 3, 845 RF_PPC_BRANCH_LT = 1 << 2, 846 RF_MIPS_GPREL = 1 << 1, 847 RF_MIPS_NOT_GOT = 1 << 0 848 }; 849 850 static unsigned getSectionRank(const OutputSection *sec) { 851 unsigned rank = sec->partition * RF_PARTITION; 852 853 // We want to put section specified by -T option first, so we 854 // can start assigning VA starting from them later. 855 if (config->sectionStartMap.count(sec->name)) 856 return rank; 857 rank |= RF_NOT_ADDR_SET; 858 859 // Allocatable sections go first to reduce the total PT_LOAD size and 860 // so debug info doesn't change addresses in actual code. 861 if (!(sec->flags & SHF_ALLOC)) 862 return rank | RF_NOT_ALLOC; 863 864 if (sec->type == SHT_LLVM_PART_EHDR) 865 return rank; 866 rank |= RF_NOT_PART_EHDR; 867 868 if (sec->type == SHT_LLVM_PART_PHDR) 869 return rank; 870 rank |= RF_NOT_PART_PHDR; 871 872 // Put .interp first because some loaders want to see that section 873 // on the first page of the executable file when loaded into memory. 874 if (sec->name == ".interp") 875 return rank; 876 rank |= RF_NOT_INTERP; 877 878 // Put .note sections (which make up one PT_NOTE) at the beginning so that 879 // they are likely to be included in a core file even if core file size is 880 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 881 // included in a core to match core files with executables. 882 if (sec->type == SHT_NOTE) 883 return rank; 884 rank |= RF_NOT_NOTE; 885 886 // Sort sections based on their access permission in the following 887 // order: R, RX, RWX, RW. This order is based on the following 888 // considerations: 889 // * Read-only sections come first such that they go in the 890 // PT_LOAD covering the program headers at the start of the file. 891 // * Read-only, executable sections come next. 892 // * Writable, executable sections follow such that .plt on 893 // architectures where it needs to be writable will be placed 894 // between .text and .data. 895 // * Writable sections come last, such that .bss lands at the very 896 // end of the last PT_LOAD. 897 bool isExec = sec->flags & SHF_EXECINSTR; 898 bool isWrite = sec->flags & SHF_WRITE; 899 900 if (isExec) { 901 if (isWrite) 902 rank |= RF_EXEC_WRITE; 903 else 904 rank |= RF_EXEC; 905 } else if (isWrite) { 906 rank |= RF_WRITE; 907 } else if (sec->type == SHT_PROGBITS) { 908 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 909 // .eh_frame) closer to .text. They likely contain PC or GOT relative 910 // relocations and there could be relocation overflow if other huge sections 911 // (.dynstr .dynsym) were placed in between. 912 rank |= RF_RODATA; 913 } 914 915 // Place RelRo sections first. After considering SHT_NOBITS below, the 916 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 917 // where | marks where page alignment happens. An alternative ordering is 918 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 919 // waste more bytes due to 2 alignment places. 920 if (!isRelroSection(sec)) 921 rank |= RF_NOT_RELRO; 922 923 // If we got here we know that both A and B are in the same PT_LOAD. 924 925 // The TLS initialization block needs to be a single contiguous block in a R/W 926 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 927 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 928 // after PROGBITS. 929 if (!(sec->flags & SHF_TLS)) 930 rank |= RF_NOT_TLS; 931 932 // Within TLS sections, or within other RelRo sections, or within non-RelRo 933 // sections, place non-NOBITS sections first. 934 if (sec->type == SHT_NOBITS) 935 rank |= RF_BSS; 936 937 // Some architectures have additional ordering restrictions for sections 938 // within the same PT_LOAD. 939 if (config->emachine == EM_PPC64) { 940 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 941 // that we would like to make sure appear is a specific order to maximize 942 // their coverage by a single signed 16-bit offset from the TOC base 943 // pointer. Conversely, the special .tocbss section should be first among 944 // all SHT_NOBITS sections. This will put it next to the loaded special 945 // PPC64 sections (and, thus, within reach of the TOC base pointer). 946 StringRef name = sec->name; 947 if (name != ".tocbss") 948 rank |= RF_PPC_NOT_TOCBSS; 949 950 if (name == ".toc1") 951 rank |= RF_PPC_TOCL; 952 953 if (name == ".toc") 954 rank |= RF_PPC_TOC; 955 956 if (name == ".got") 957 rank |= RF_PPC_GOT; 958 959 if (name == ".branch_lt") 960 rank |= RF_PPC_BRANCH_LT; 961 } 962 963 if (config->emachine == EM_MIPS) { 964 // All sections with SHF_MIPS_GPREL flag should be grouped together 965 // because data in these sections is addressable with a gp relative address. 966 if (sec->flags & SHF_MIPS_GPREL) 967 rank |= RF_MIPS_GPREL; 968 969 if (sec->name != ".got") 970 rank |= RF_MIPS_NOT_GOT; 971 } 972 973 return rank; 974 } 975 976 static bool compareSections(const SectionCommand *aCmd, 977 const SectionCommand *bCmd) { 978 const OutputSection *a = cast<OutputSection>(aCmd); 979 const OutputSection *b = cast<OutputSection>(bCmd); 980 981 if (a->sortRank != b->sortRank) 982 return a->sortRank < b->sortRank; 983 984 if (!(a->sortRank & RF_NOT_ADDR_SET)) 985 return config->sectionStartMap.lookup(a->name) < 986 config->sectionStartMap.lookup(b->name); 987 return false; 988 } 989 990 void PhdrEntry::add(OutputSection *sec) { 991 lastSec = sec; 992 if (!firstSec) 993 firstSec = sec; 994 p_align = std::max(p_align, sec->alignment); 995 if (p_type == PT_LOAD) 996 sec->ptLoad = this; 997 } 998 999 // The beginning and the ending of .rel[a].plt section are marked 1000 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1001 // executable. The runtime needs these symbols in order to resolve 1002 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1003 // need these symbols, since IRELATIVE relocs are resolved through GOT 1004 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1005 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1006 if (config->relocatable || config->isPic) 1007 return; 1008 1009 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1010 // because .rela.plt might be empty and thus removed from output. 1011 // We'll override Out::elfHeader with In.relaIplt later when we are 1012 // sure that .rela.plt exists in output. 1013 ElfSym::relaIpltStart = addOptionalRegular( 1014 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1015 Out::elfHeader, 0, STV_HIDDEN); 1016 1017 ElfSym::relaIpltEnd = addOptionalRegular( 1018 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1019 Out::elfHeader, 0, STV_HIDDEN); 1020 } 1021 1022 // This function generates assignments for predefined symbols (e.g. _end or 1023 // _etext) and inserts them into the commands sequence to be processed at the 1024 // appropriate time. This ensures that the value is going to be correct by the 1025 // time any references to these symbols are processed and is equivalent to 1026 // defining these symbols explicitly in the linker script. 1027 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1028 if (ElfSym::globalOffsetTable) { 1029 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1030 // to the start of the .got or .got.plt section. 1031 InputSection *sec = in.gotPlt.get(); 1032 if (!target->gotBaseSymInGotPlt) 1033 sec = in.mipsGot.get() ? cast<InputSection>(in.mipsGot.get()) 1034 : cast<InputSection>(in.got.get()); 1035 ElfSym::globalOffsetTable->section = sec; 1036 } 1037 1038 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1039 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1040 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1041 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1042 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1043 } 1044 1045 PhdrEntry *last = nullptr; 1046 PhdrEntry *lastRO = nullptr; 1047 1048 for (Partition &part : partitions) { 1049 for (PhdrEntry *p : part.phdrs) { 1050 if (p->p_type != PT_LOAD) 1051 continue; 1052 last = p; 1053 if (!(p->p_flags & PF_W)) 1054 lastRO = p; 1055 } 1056 } 1057 1058 if (lastRO) { 1059 // _etext is the first location after the last read-only loadable segment. 1060 if (ElfSym::etext1) 1061 ElfSym::etext1->section = lastRO->lastSec; 1062 if (ElfSym::etext2) 1063 ElfSym::etext2->section = lastRO->lastSec; 1064 } 1065 1066 if (last) { 1067 // _edata points to the end of the last mapped initialized section. 1068 OutputSection *edata = nullptr; 1069 for (OutputSection *os : outputSections) { 1070 if (os->type != SHT_NOBITS) 1071 edata = os; 1072 if (os == last->lastSec) 1073 break; 1074 } 1075 1076 if (ElfSym::edata1) 1077 ElfSym::edata1->section = edata; 1078 if (ElfSym::edata2) 1079 ElfSym::edata2->section = edata; 1080 1081 // _end is the first location after the uninitialized data region. 1082 if (ElfSym::end1) 1083 ElfSym::end1->section = last->lastSec; 1084 if (ElfSym::end2) 1085 ElfSym::end2->section = last->lastSec; 1086 } 1087 1088 if (ElfSym::bss) 1089 ElfSym::bss->section = findSection(".bss"); 1090 1091 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1092 // be equal to the _gp symbol's value. 1093 if (ElfSym::mipsGp) { 1094 // Find GP-relative section with the lowest address 1095 // and use this address to calculate default _gp value. 1096 for (OutputSection *os : outputSections) { 1097 if (os->flags & SHF_MIPS_GPREL) { 1098 ElfSym::mipsGp->section = os; 1099 ElfSym::mipsGp->value = 0x7ff0; 1100 break; 1101 } 1102 } 1103 } 1104 } 1105 1106 // We want to find how similar two ranks are. 1107 // The more branches in getSectionRank that match, the more similar they are. 1108 // Since each branch corresponds to a bit flag, we can just use 1109 // countLeadingZeros. 1110 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1111 return countLeadingZeros(a->sortRank ^ b->sortRank); 1112 } 1113 1114 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1115 auto *sec = dyn_cast<OutputSection>(b); 1116 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1117 } 1118 1119 // When placing orphan sections, we want to place them after symbol assignments 1120 // so that an orphan after 1121 // begin_foo = .; 1122 // foo : { *(foo) } 1123 // end_foo = .; 1124 // doesn't break the intended meaning of the begin/end symbols. 1125 // We don't want to go over sections since findOrphanPos is the 1126 // one in charge of deciding the order of the sections. 1127 // We don't want to go over changes to '.', since doing so in 1128 // rx_sec : { *(rx_sec) } 1129 // . = ALIGN(0x1000); 1130 // /* The RW PT_LOAD starts here*/ 1131 // rw_sec : { *(rw_sec) } 1132 // would mean that the RW PT_LOAD would become unaligned. 1133 static bool shouldSkip(SectionCommand *cmd) { 1134 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1135 return assign->name != "."; 1136 return false; 1137 } 1138 1139 // We want to place orphan sections so that they share as much 1140 // characteristics with their neighbors as possible. For example, if 1141 // both are rw, or both are tls. 1142 static SmallVectorImpl<SectionCommand *>::iterator 1143 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1144 SmallVectorImpl<SectionCommand *>::iterator e) { 1145 OutputSection *sec = cast<OutputSection>(*e); 1146 1147 // Find the first element that has as close a rank as possible. 1148 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1149 return getRankProximity(sec, a) < getRankProximity(sec, b); 1150 }); 1151 if (i == e) 1152 return e; 1153 auto foundSec = dyn_cast<OutputSection>(*i); 1154 if (!foundSec) 1155 return e; 1156 1157 // Consider all existing sections with the same proximity. 1158 int proximity = getRankProximity(sec, *i); 1159 unsigned sortRank = sec->sortRank; 1160 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1161 // Prevent the orphan section to be placed before the found section. If 1162 // custom program headers are defined, that helps to avoid adding it to a 1163 // previous segment and changing flags of that segment, for example, making 1164 // a read-only segment writable. If memory regions are defined, an orphan 1165 // section should continue the same region as the found section to better 1166 // resemble the behavior of GNU ld. 1167 sortRank = std::max(sortRank, foundSec->sortRank); 1168 for (; i != e; ++i) { 1169 auto *curSec = dyn_cast<OutputSection>(*i); 1170 if (!curSec || !curSec->hasInputSections) 1171 continue; 1172 if (getRankProximity(sec, curSec) != proximity || 1173 sortRank < curSec->sortRank) 1174 break; 1175 } 1176 1177 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1178 auto *os = dyn_cast<OutputSection>(cmd); 1179 return os && os->hasInputSections; 1180 }; 1181 auto j = 1182 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1183 isOutputSecWithInputSections); 1184 i = j.base(); 1185 1186 // As a special case, if the orphan section is the last section, put 1187 // it at the very end, past any other commands. 1188 // This matches bfd's behavior and is convenient when the linker script fully 1189 // specifies the start of the file, but doesn't care about the end (the non 1190 // alloc sections for example). 1191 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1192 if (nextSec == e) 1193 return e; 1194 1195 while (i != e && shouldSkip(*i)) 1196 ++i; 1197 return i; 1198 } 1199 1200 // Adds random priorities to sections not already in the map. 1201 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1202 if (config->shuffleSections.empty()) 1203 return; 1204 1205 SmallVector<InputSectionBase *, 0> matched, sections = inputSections; 1206 matched.reserve(sections.size()); 1207 for (const auto &patAndSeed : config->shuffleSections) { 1208 matched.clear(); 1209 for (InputSectionBase *sec : sections) 1210 if (patAndSeed.first.match(sec->name)) 1211 matched.push_back(sec); 1212 const uint32_t seed = patAndSeed.second; 1213 if (seed == UINT32_MAX) { 1214 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1215 // section order is stable even if the number of sections changes. This is 1216 // useful to catch issues like static initialization order fiasco 1217 // reliably. 1218 std::reverse(matched.begin(), matched.end()); 1219 } else { 1220 std::mt19937 g(seed ? seed : std::random_device()()); 1221 llvm::shuffle(matched.begin(), matched.end(), g); 1222 } 1223 size_t i = 0; 1224 for (InputSectionBase *&sec : sections) 1225 if (patAndSeed.first.match(sec->name)) 1226 sec = matched[i++]; 1227 } 1228 1229 // Existing priorities are < 0, so use priorities >= 0 for the missing 1230 // sections. 1231 int prio = 0; 1232 for (InputSectionBase *sec : sections) { 1233 if (order.try_emplace(sec, prio).second) 1234 ++prio; 1235 } 1236 } 1237 1238 // Builds section order for handling --symbol-ordering-file. 1239 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1240 DenseMap<const InputSectionBase *, int> sectionOrder; 1241 // Use the rarely used option --call-graph-ordering-file to sort sections. 1242 if (!config->callGraphProfile.empty()) 1243 return computeCallGraphProfileOrder(); 1244 1245 if (config->symbolOrderingFile.empty()) 1246 return sectionOrder; 1247 1248 struct SymbolOrderEntry { 1249 int priority; 1250 bool present; 1251 }; 1252 1253 // Build a map from symbols to their priorities. Symbols that didn't 1254 // appear in the symbol ordering file have the lowest priority 0. 1255 // All explicitly mentioned symbols have negative (higher) priorities. 1256 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1257 int priority = -config->symbolOrderingFile.size(); 1258 for (StringRef s : config->symbolOrderingFile) 1259 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1260 1261 // Build a map from sections to their priorities. 1262 auto addSym = [&](Symbol &sym) { 1263 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1264 if (it == symbolOrder.end()) 1265 return; 1266 SymbolOrderEntry &ent = it->second; 1267 ent.present = true; 1268 1269 maybeWarnUnorderableSymbol(&sym); 1270 1271 if (auto *d = dyn_cast<Defined>(&sym)) { 1272 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1273 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1274 priority = std::min(priority, ent.priority); 1275 } 1276 } 1277 }; 1278 1279 // We want both global and local symbols. We get the global ones from the 1280 // symbol table and iterate the object files for the local ones. 1281 for (Symbol *sym : symtab->symbols()) 1282 addSym(*sym); 1283 1284 for (ELFFileBase *file : objectFiles) 1285 for (Symbol *sym : file->getLocalSymbols()) 1286 addSym(*sym); 1287 1288 if (config->warnSymbolOrdering) 1289 for (auto orderEntry : symbolOrder) 1290 if (!orderEntry.second.present) 1291 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1292 1293 return sectionOrder; 1294 } 1295 1296 // Sorts the sections in ISD according to the provided section order. 1297 static void 1298 sortISDBySectionOrder(InputSectionDescription *isd, 1299 const DenseMap<const InputSectionBase *, int> &order) { 1300 SmallVector<InputSection *, 0> unorderedSections; 1301 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1302 uint64_t unorderedSize = 0; 1303 1304 for (InputSection *isec : isd->sections) { 1305 auto i = order.find(isec); 1306 if (i == order.end()) { 1307 unorderedSections.push_back(isec); 1308 unorderedSize += isec->getSize(); 1309 continue; 1310 } 1311 orderedSections.push_back({isec, i->second}); 1312 } 1313 llvm::sort(orderedSections, llvm::less_second()); 1314 1315 // Find an insertion point for the ordered section list in the unordered 1316 // section list. On targets with limited-range branches, this is the mid-point 1317 // of the unordered section list. This decreases the likelihood that a range 1318 // extension thunk will be needed to enter or exit the ordered region. If the 1319 // ordered section list is a list of hot functions, we can generally expect 1320 // the ordered functions to be called more often than the unordered functions, 1321 // making it more likely that any particular call will be within range, and 1322 // therefore reducing the number of thunks required. 1323 // 1324 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1325 // If the layout is: 1326 // 1327 // 8MB hot 1328 // 32MB cold 1329 // 1330 // only the first 8-16MB of the cold code (depending on which hot function it 1331 // is actually calling) can call the hot code without a range extension thunk. 1332 // However, if we use this layout: 1333 // 1334 // 16MB cold 1335 // 8MB hot 1336 // 16MB cold 1337 // 1338 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1339 // of the second block of cold code can call the hot code without a thunk. So 1340 // we effectively double the amount of code that could potentially call into 1341 // the hot code without a thunk. 1342 size_t insPt = 0; 1343 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1344 uint64_t unorderedPos = 0; 1345 for (; insPt != unorderedSections.size(); ++insPt) { 1346 unorderedPos += unorderedSections[insPt]->getSize(); 1347 if (unorderedPos > unorderedSize / 2) 1348 break; 1349 } 1350 } 1351 1352 isd->sections.clear(); 1353 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1354 isd->sections.push_back(isec); 1355 for (std::pair<InputSection *, int> p : orderedSections) 1356 isd->sections.push_back(p.first); 1357 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1358 isd->sections.push_back(isec); 1359 } 1360 1361 static void sortSection(OutputSection *sec, 1362 const DenseMap<const InputSectionBase *, int> &order) { 1363 StringRef name = sec->name; 1364 1365 // Never sort these. 1366 if (name == ".init" || name == ".fini") 1367 return; 1368 1369 // IRelative relocations that usually live in the .rel[a].dyn section should 1370 // be processed last by the dynamic loader. To achieve that we add synthetic 1371 // sections in the required order from the beginning so that the in.relaIplt 1372 // section is placed last in an output section. Here we just do not apply 1373 // sorting for an output section which holds the in.relaIplt section. 1374 if (in.relaIplt->getParent() == sec) 1375 return; 1376 1377 // Sort input sections by priority using the list provided by 1378 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1379 // digit radix sort. The sections may be sorted stably again by a more 1380 // significant key. 1381 if (!order.empty()) 1382 for (SectionCommand *b : sec->commands) 1383 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1384 sortISDBySectionOrder(isd, order); 1385 1386 if (script->hasSectionsCommand) 1387 return; 1388 1389 if (name == ".init_array" || name == ".fini_array") { 1390 sec->sortInitFini(); 1391 } else if (name == ".ctors" || name == ".dtors") { 1392 sec->sortCtorsDtors(); 1393 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1394 // .toc is allocated just after .got and is accessed using GOT-relative 1395 // relocations. Object files compiled with small code model have an 1396 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1397 // To reduce the risk of relocation overflow, .toc contents are sorted so 1398 // that sections having smaller relocation offsets are at beginning of .toc 1399 assert(sec->commands.size() == 1); 1400 auto *isd = cast<InputSectionDescription>(sec->commands[0]); 1401 llvm::stable_sort(isd->sections, 1402 [](const InputSection *a, const InputSection *b) -> bool { 1403 return a->file->ppc64SmallCodeModelTocRelocs && 1404 !b->file->ppc64SmallCodeModelTocRelocs; 1405 }); 1406 } 1407 } 1408 1409 // If no layout was provided by linker script, we want to apply default 1410 // sorting for special input sections. This also handles --symbol-ordering-file. 1411 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1412 // Build the order once since it is expensive. 1413 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1414 maybeShuffle(order); 1415 for (SectionCommand *cmd : script->sectionCommands) 1416 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1417 sortSection(sec, order); 1418 } 1419 1420 template <class ELFT> void Writer<ELFT>::sortSections() { 1421 llvm::TimeTraceScope timeScope("Sort sections"); 1422 1423 // Don't sort if using -r. It is not necessary and we want to preserve the 1424 // relative order for SHF_LINK_ORDER sections. 1425 if (config->relocatable) { 1426 script->adjustOutputSections(); 1427 return; 1428 } 1429 1430 sortInputSections(); 1431 1432 for (SectionCommand *cmd : script->sectionCommands) 1433 if (auto *osec = dyn_cast_or_null<OutputSection>(cmd)) 1434 osec->sortRank = getSectionRank(osec); 1435 if (!script->hasSectionsCommand) { 1436 // We know that all the OutputSections are contiguous in this case. 1437 auto isSection = [](SectionCommand *cmd) { 1438 return isa<OutputSection>(cmd); 1439 }; 1440 std::stable_sort( 1441 llvm::find_if(script->sectionCommands, isSection), 1442 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1443 compareSections); 1444 } 1445 1446 // Process INSERT commands and update output section attributes. From this 1447 // point onwards the order of script->sectionCommands is fixed. 1448 script->processInsertCommands(); 1449 script->adjustOutputSections(); 1450 1451 if (!script->hasSectionsCommand) 1452 return; 1453 1454 // Orphan sections are sections present in the input files which are 1455 // not explicitly placed into the output file by the linker script. 1456 // 1457 // The sections in the linker script are already in the correct 1458 // order. We have to figuere out where to insert the orphan 1459 // sections. 1460 // 1461 // The order of the sections in the script is arbitrary and may not agree with 1462 // compareSections. This means that we cannot easily define a strict weak 1463 // ordering. To see why, consider a comparison of a section in the script and 1464 // one not in the script. We have a two simple options: 1465 // * Make them equivalent (a is not less than b, and b is not less than a). 1466 // The problem is then that equivalence has to be transitive and we can 1467 // have sections a, b and c with only b in a script and a less than c 1468 // which breaks this property. 1469 // * Use compareSectionsNonScript. Given that the script order doesn't have 1470 // to match, we can end up with sections a, b, c, d where b and c are in the 1471 // script and c is compareSectionsNonScript less than b. In which case d 1472 // can be equivalent to c, a to b and d < a. As a concrete example: 1473 // .a (rx) # not in script 1474 // .b (rx) # in script 1475 // .c (ro) # in script 1476 // .d (ro) # not in script 1477 // 1478 // The way we define an order then is: 1479 // * Sort only the orphan sections. They are in the end right now. 1480 // * Move each orphan section to its preferred position. We try 1481 // to put each section in the last position where it can share 1482 // a PT_LOAD. 1483 // 1484 // There is some ambiguity as to where exactly a new entry should be 1485 // inserted, because Commands contains not only output section 1486 // commands but also other types of commands such as symbol assignment 1487 // expressions. There's no correct answer here due to the lack of the 1488 // formal specification of the linker script. We use heuristics to 1489 // determine whether a new output command should be added before or 1490 // after another commands. For the details, look at shouldSkip 1491 // function. 1492 1493 auto i = script->sectionCommands.begin(); 1494 auto e = script->sectionCommands.end(); 1495 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1496 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1497 return sec->sectionIndex == UINT32_MAX; 1498 return false; 1499 }); 1500 1501 // Sort the orphan sections. 1502 std::stable_sort(nonScriptI, e, compareSections); 1503 1504 // As a horrible special case, skip the first . assignment if it is before any 1505 // section. We do this because it is common to set a load address by starting 1506 // the script with ". = 0xabcd" and the expectation is that every section is 1507 // after that. 1508 auto firstSectionOrDotAssignment = 1509 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1510 if (firstSectionOrDotAssignment != e && 1511 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1512 ++firstSectionOrDotAssignment; 1513 i = firstSectionOrDotAssignment; 1514 1515 while (nonScriptI != e) { 1516 auto pos = findOrphanPos(i, nonScriptI); 1517 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1518 1519 // As an optimization, find all sections with the same sort rank 1520 // and insert them with one rotate. 1521 unsigned rank = orphan->sortRank; 1522 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1523 return cast<OutputSection>(cmd)->sortRank != rank; 1524 }); 1525 std::rotate(pos, nonScriptI, end); 1526 nonScriptI = end; 1527 } 1528 1529 script->adjustSectionsAfterSorting(); 1530 } 1531 1532 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1533 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1534 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1535 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1536 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1537 if (!la || !lb) 1538 return la && !lb; 1539 OutputSection *aOut = la->getParent(); 1540 OutputSection *bOut = lb->getParent(); 1541 1542 if (aOut != bOut) 1543 return aOut->addr < bOut->addr; 1544 return la->outSecOff < lb->outSecOff; 1545 } 1546 1547 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1548 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1549 for (OutputSection *sec : outputSections) { 1550 if (!(sec->flags & SHF_LINK_ORDER)) 1551 continue; 1552 1553 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1554 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1555 if (!config->relocatable && config->emachine == EM_ARM && 1556 sec->type == SHT_ARM_EXIDX) 1557 continue; 1558 1559 // Link order may be distributed across several InputSectionDescriptions. 1560 // Sorting is performed separately. 1561 SmallVector<InputSection **, 0> scriptSections; 1562 SmallVector<InputSection *, 0> sections; 1563 for (SectionCommand *cmd : sec->commands) { 1564 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1565 if (!isd) 1566 continue; 1567 bool hasLinkOrder = false; 1568 scriptSections.clear(); 1569 sections.clear(); 1570 for (InputSection *&isec : isd->sections) { 1571 if (isec->flags & SHF_LINK_ORDER) { 1572 InputSection *link = isec->getLinkOrderDep(); 1573 if (link && !link->getParent()) 1574 error(toString(isec) + ": sh_link points to discarded section " + 1575 toString(link)); 1576 hasLinkOrder = true; 1577 } 1578 scriptSections.push_back(&isec); 1579 sections.push_back(isec); 1580 } 1581 if (hasLinkOrder && errorCount() == 0) { 1582 llvm::stable_sort(sections, compareByFilePosition); 1583 for (int i = 0, n = sections.size(); i != n; ++i) 1584 *scriptSections[i] = sections[i]; 1585 } 1586 } 1587 } 1588 } 1589 1590 static void finalizeSynthetic(SyntheticSection *sec) { 1591 if (sec && sec->isNeeded() && sec->getParent()) { 1592 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1593 sec->finalizeContents(); 1594 } 1595 } 1596 1597 // We need to generate and finalize the content that depends on the address of 1598 // InputSections. As the generation of the content may also alter InputSection 1599 // addresses we must converge to a fixed point. We do that here. See the comment 1600 // in Writer<ELFT>::finalizeSections(). 1601 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1602 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1603 ThunkCreator tc; 1604 AArch64Err843419Patcher a64p; 1605 ARMErr657417Patcher a32p; 1606 script->assignAddresses(); 1607 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1608 // do require the relative addresses of OutputSections because linker scripts 1609 // can assign Virtual Addresses to OutputSections that are not monotonically 1610 // increasing. 1611 for (Partition &part : partitions) 1612 finalizeSynthetic(part.armExidx.get()); 1613 resolveShfLinkOrder(); 1614 1615 // Converts call x@GDPLT to call __tls_get_addr 1616 if (config->emachine == EM_HEXAGON) 1617 hexagonTLSSymbolUpdate(outputSections); 1618 1619 int assignPasses = 0; 1620 for (;;) { 1621 bool changed = target->needsThunks && tc.createThunks(outputSections); 1622 1623 // With Thunk Size much smaller than branch range we expect to 1624 // converge quickly; if we get to 15 something has gone wrong. 1625 if (changed && tc.pass >= 15) { 1626 error("thunk creation not converged"); 1627 break; 1628 } 1629 1630 if (config->fixCortexA53Errata843419) { 1631 if (changed) 1632 script->assignAddresses(); 1633 changed |= a64p.createFixes(); 1634 } 1635 if (config->fixCortexA8) { 1636 if (changed) 1637 script->assignAddresses(); 1638 changed |= a32p.createFixes(); 1639 } 1640 1641 if (in.mipsGot) 1642 in.mipsGot->updateAllocSize(); 1643 1644 for (Partition &part : partitions) { 1645 changed |= part.relaDyn->updateAllocSize(); 1646 if (part.relrDyn) 1647 changed |= part.relrDyn->updateAllocSize(); 1648 } 1649 1650 const Defined *changedSym = script->assignAddresses(); 1651 if (!changed) { 1652 // Some symbols may be dependent on section addresses. When we break the 1653 // loop, the symbol values are finalized because a previous 1654 // assignAddresses() finalized section addresses. 1655 if (!changedSym) 1656 break; 1657 if (++assignPasses == 5) { 1658 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1659 " does not converge"); 1660 break; 1661 } 1662 } 1663 } 1664 1665 if (config->relocatable) 1666 for (OutputSection *sec : outputSections) 1667 sec->addr = 0; 1668 1669 // If addrExpr is set, the address may not be a multiple of the alignment. 1670 // Warn because this is error-prone. 1671 for (SectionCommand *cmd : script->sectionCommands) 1672 if (auto *os = dyn_cast<OutputSection>(cmd)) 1673 if (os->addr % os->alignment != 0) 1674 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1675 os->name + " is not a multiple of alignment (" + 1676 Twine(os->alignment) + ")"); 1677 } 1678 1679 // If Input Sections have been shrunk (basic block sections) then 1680 // update symbol values and sizes associated with these sections. With basic 1681 // block sections, input sections can shrink when the jump instructions at 1682 // the end of the section are relaxed. 1683 static void fixSymbolsAfterShrinking() { 1684 for (InputFile *File : objectFiles) { 1685 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1686 auto *def = dyn_cast<Defined>(Sym); 1687 if (!def) 1688 return; 1689 1690 const SectionBase *sec = def->section; 1691 if (!sec) 1692 return; 1693 1694 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1695 if (!inputSec || !inputSec->bytesDropped) 1696 return; 1697 1698 const size_t OldSize = inputSec->data().size(); 1699 const size_t NewSize = OldSize - inputSec->bytesDropped; 1700 1701 if (def->value > NewSize && def->value <= OldSize) { 1702 LLVM_DEBUG(llvm::dbgs() 1703 << "Moving symbol " << Sym->getName() << " from " 1704 << def->value << " to " 1705 << def->value - inputSec->bytesDropped << " bytes\n"); 1706 def->value -= inputSec->bytesDropped; 1707 return; 1708 } 1709 1710 if (def->value + def->size > NewSize && def->value <= OldSize && 1711 def->value + def->size <= OldSize) { 1712 LLVM_DEBUG(llvm::dbgs() 1713 << "Shrinking symbol " << Sym->getName() << " from " 1714 << def->size << " to " << def->size - inputSec->bytesDropped 1715 << " bytes\n"); 1716 def->size -= inputSec->bytesDropped; 1717 } 1718 }); 1719 } 1720 } 1721 1722 // If basic block sections exist, there are opportunities to delete fall thru 1723 // jumps and shrink jump instructions after basic block reordering. This 1724 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1725 // option is used. 1726 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1727 assert(config->optimizeBBJumps); 1728 1729 script->assignAddresses(); 1730 // For every output section that has executable input sections, this 1731 // does the following: 1732 // 1. Deletes all direct jump instructions in input sections that 1733 // jump to the following section as it is not required. 1734 // 2. If there are two consecutive jump instructions, it checks 1735 // if they can be flipped and one can be deleted. 1736 for (OutputSection *osec : outputSections) { 1737 if (!(osec->flags & SHF_EXECINSTR)) 1738 continue; 1739 SmallVector<InputSection *, 0> sections = getInputSections(*osec); 1740 size_t numDeleted = 0; 1741 // Delete all fall through jump instructions. Also, check if two 1742 // consecutive jump instructions can be flipped so that a fall 1743 // through jmp instruction can be deleted. 1744 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1745 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1746 InputSection &sec = *sections[i]; 1747 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1748 } 1749 if (numDeleted > 0) { 1750 script->assignAddresses(); 1751 LLVM_DEBUG(llvm::dbgs() 1752 << "Removing " << numDeleted << " fall through jumps\n"); 1753 } 1754 } 1755 1756 fixSymbolsAfterShrinking(); 1757 1758 for (OutputSection *osec : outputSections) 1759 for (InputSection *is : getInputSections(*osec)) 1760 is->trim(); 1761 } 1762 1763 // In order to allow users to manipulate linker-synthesized sections, 1764 // we had to add synthetic sections to the input section list early, 1765 // even before we make decisions whether they are needed. This allows 1766 // users to write scripts like this: ".mygot : { .got }". 1767 // 1768 // Doing it has an unintended side effects. If it turns out that we 1769 // don't need a .got (for example) at all because there's no 1770 // relocation that needs a .got, we don't want to emit .got. 1771 // 1772 // To deal with the above problem, this function is called after 1773 // scanRelocations is called to remove synthetic sections that turn 1774 // out to be empty. 1775 static void removeUnusedSyntheticSections() { 1776 // All input synthetic sections that can be empty are placed after 1777 // all regular ones. Reverse iterate to find the first synthetic section 1778 // after a non-synthetic one which will be our starting point. 1779 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1780 [](InputSectionBase *s) { 1781 return !isa<SyntheticSection>(s); 1782 }) 1783 .base(); 1784 1785 // Remove unused synthetic sections from inputSections; 1786 DenseSet<InputSectionBase *> unused; 1787 auto end = 1788 std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) { 1789 auto *sec = cast<SyntheticSection>(s); 1790 if (sec->getParent() && sec->isNeeded()) 1791 return false; 1792 unused.insert(sec); 1793 return true; 1794 }); 1795 inputSections.erase(end, inputSections.end()); 1796 1797 // Remove unused synthetic sections from the corresponding input section 1798 // description and orphanSections. 1799 for (auto *sec : unused) 1800 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1801 for (SectionCommand *cmd : osec->commands) 1802 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1803 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1804 return unused.count(isec); 1805 }); 1806 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1807 return unused.count(sec); 1808 }); 1809 } 1810 1811 // Create output section objects and add them to OutputSections. 1812 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1813 Out::preinitArray = findSection(".preinit_array"); 1814 Out::initArray = findSection(".init_array"); 1815 Out::finiArray = findSection(".fini_array"); 1816 1817 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1818 // symbols for sections, so that the runtime can get the start and end 1819 // addresses of each section by section name. Add such symbols. 1820 if (!config->relocatable) { 1821 addStartEndSymbols(); 1822 for (SectionCommand *cmd : script->sectionCommands) 1823 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1824 addStartStopSymbols(sec); 1825 } 1826 1827 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1828 // It should be okay as no one seems to care about the type. 1829 // Even the author of gold doesn't remember why gold behaves that way. 1830 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1831 if (mainPart->dynamic->parent) 1832 symtab->addSymbol( 1833 Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1834 /*value=*/0, /*size=*/0, mainPart->dynamic.get()}); 1835 1836 // Define __rel[a]_iplt_{start,end} symbols if needed. 1837 addRelIpltSymbols(); 1838 1839 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1840 // should only be defined in an executable. If .sdata does not exist, its 1841 // value/section does not matter but it has to be relative, so set its 1842 // st_shndx arbitrarily to 1 (Out::elfHeader). 1843 if (config->emachine == EM_RISCV && !config->shared) { 1844 OutputSection *sec = findSection(".sdata"); 1845 ElfSym::riscvGlobalPointer = 1846 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1847 0x800, STV_DEFAULT); 1848 } 1849 1850 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1851 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1852 // way that: 1853 // 1854 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1855 // computes 0. 1856 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1857 // the TLS block). 1858 // 1859 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1860 // an absolute symbol of zero. This is different from GNU linkers which 1861 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1862 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1863 if (s && s->isUndefined()) { 1864 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 1865 STT_TLS, /*value=*/0, 0, 1866 /*section=*/nullptr}); 1867 ElfSym::tlsModuleBase = cast<Defined>(s); 1868 } 1869 } 1870 1871 { 1872 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1873 // This responsible for splitting up .eh_frame section into 1874 // pieces. The relocation scan uses those pieces, so this has to be 1875 // earlier. 1876 for (Partition &part : partitions) 1877 finalizeSynthetic(part.ehFrame.get()); 1878 } 1879 1880 if (config->hasDynSymTab) { 1881 parallelForEach(symtab->symbols(), [](Symbol *sym) { 1882 sym->isPreemptible = computeIsPreemptible(*sym); 1883 }); 1884 } 1885 1886 // Change values of linker-script-defined symbols from placeholders (assigned 1887 // by declareSymbols) to actual definitions. 1888 script->processSymbolAssignments(); 1889 1890 { 1891 llvm::TimeTraceScope timeScope("Scan relocations"); 1892 // Scan relocations. This must be done after every symbol is declared so 1893 // that we can correctly decide if a dynamic relocation is needed. This is 1894 // called after processSymbolAssignments() because it needs to know whether 1895 // a linker-script-defined symbol is absolute. 1896 ppc64noTocRelax.clear(); 1897 if (!config->relocatable) { 1898 // Scan all relocations. Each relocation goes through a series of tests to 1899 // determine if it needs special treatment, such as creating GOT, PLT, 1900 // copy relocations, etc. Note that relocations for non-alloc sections are 1901 // directly processed by InputSection::relocateNonAlloc. 1902 for (InputSectionBase *sec : inputSections) 1903 if (sec->isLive() && isa<InputSection>(sec) && (sec->flags & SHF_ALLOC)) 1904 scanRelocations<ELFT>(*sec); 1905 for (Partition &part : partitions) { 1906 for (EhInputSection *sec : part.ehFrame->sections) 1907 scanRelocations<ELFT>(*sec); 1908 if (part.armExidx && part.armExidx->isLive()) 1909 for (InputSection *sec : part.armExidx->exidxSections) 1910 scanRelocations<ELFT>(*sec); 1911 } 1912 1913 reportUndefinedSymbols(); 1914 postScanRelocations(); 1915 } 1916 } 1917 1918 if (in.plt && in.plt->isNeeded()) 1919 in.plt->addSymbols(); 1920 if (in.iplt && in.iplt->isNeeded()) 1921 in.iplt->addSymbols(); 1922 1923 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1924 auto diagnose = 1925 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 1926 ? errorOrWarn 1927 : warn; 1928 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1929 // entries are seen. These cases would otherwise lead to runtime errors 1930 // reported by the dynamic linker. 1931 // 1932 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1933 // catch more cases. That is too much for us. Our approach resembles the one 1934 // used in ld.gold, achieves a good balance to be useful but not too smart. 1935 for (SharedFile *file : sharedFiles) { 1936 bool allNeededIsKnown = 1937 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1938 return symtab->soNames.count(CachedHashStringRef(needed)); 1939 }); 1940 if (!allNeededIsKnown) 1941 continue; 1942 for (Symbol *sym : file->requiredSymbols) 1943 if (sym->isUndefined() && !sym->isWeak()) 1944 diagnose(toString(file) + ": undefined reference to " + 1945 toString(*sym) + " [--no-allow-shlib-undefined]"); 1946 } 1947 } 1948 1949 { 1950 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 1951 // Now that we have defined all possible global symbols including linker- 1952 // synthesized ones. Visit all symbols to give the finishing touches. 1953 for (Symbol *sym : symtab->symbols()) { 1954 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 1955 continue; 1956 if (!config->relocatable) 1957 sym->binding = sym->computeBinding(); 1958 if (in.symTab) 1959 in.symTab->addSymbol(sym); 1960 1961 if (sym->includeInDynsym()) { 1962 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1963 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1964 if (file->isNeeded && !sym->isUndefined()) 1965 addVerneed(sym); 1966 } 1967 } 1968 1969 // We also need to scan the dynamic relocation tables of the other 1970 // partitions and add any referenced symbols to the partition's dynsym. 1971 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1972 DenseSet<Symbol *> syms; 1973 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1974 syms.insert(e.sym); 1975 for (DynamicReloc &reloc : part.relaDyn->relocs) 1976 if (reloc.sym && reloc.needsDynSymIndex() && 1977 syms.insert(reloc.sym).second) 1978 part.dynSymTab->addSymbol(reloc.sym); 1979 } 1980 } 1981 1982 if (in.mipsGot) 1983 in.mipsGot->build(); 1984 1985 removeUnusedSyntheticSections(); 1986 script->diagnoseOrphanHandling(); 1987 1988 sortSections(); 1989 1990 // Create a list of OutputSections, assign sectionIndex, and populate 1991 // in.shStrTab. 1992 for (SectionCommand *cmd : script->sectionCommands) 1993 if (auto *osec = dyn_cast<OutputSection>(cmd)) { 1994 outputSections.push_back(osec); 1995 osec->sectionIndex = outputSections.size(); 1996 osec->shName = in.shStrTab->addString(osec->name); 1997 } 1998 1999 // Prefer command line supplied address over other constraints. 2000 for (OutputSection *sec : outputSections) { 2001 auto i = config->sectionStartMap.find(sec->name); 2002 if (i != config->sectionStartMap.end()) 2003 sec->addrExpr = [=] { return i->second; }; 2004 } 2005 2006 // With the outputSections available check for GDPLT relocations 2007 // and add __tls_get_addr symbol if needed. 2008 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2009 Symbol *sym = symtab->addSymbol(Undefined{ 2010 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2011 sym->isPreemptible = true; 2012 partitions[0].dynSymTab->addSymbol(sym); 2013 } 2014 2015 // This is a bit of a hack. A value of 0 means undef, so we set it 2016 // to 1 to make __ehdr_start defined. The section number is not 2017 // particularly relevant. 2018 Out::elfHeader->sectionIndex = 1; 2019 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2020 2021 // Binary and relocatable output does not have PHDRS. 2022 // The headers have to be created before finalize as that can influence the 2023 // image base and the dynamic section on mips includes the image base. 2024 if (!config->relocatable && !config->oFormatBinary) { 2025 for (Partition &part : partitions) { 2026 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2027 : createPhdrs(part); 2028 if (config->emachine == EM_ARM) { 2029 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2030 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2031 } 2032 if (config->emachine == EM_MIPS) { 2033 // Add separate segments for MIPS-specific sections. 2034 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2035 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2036 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2037 } 2038 } 2039 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2040 2041 // Find the TLS segment. This happens before the section layout loop so that 2042 // Android relocation packing can look up TLS symbol addresses. We only need 2043 // to care about the main partition here because all TLS symbols were moved 2044 // to the main partition (see MarkLive.cpp). 2045 for (PhdrEntry *p : mainPart->phdrs) 2046 if (p->p_type == PT_TLS) 2047 Out::tlsPhdr = p; 2048 } 2049 2050 // Some symbols are defined in term of program headers. Now that we 2051 // have the headers, we can find out which sections they point to. 2052 setReservedSymbolSections(); 2053 2054 { 2055 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2056 2057 finalizeSynthetic(in.bss.get()); 2058 finalizeSynthetic(in.bssRelRo.get()); 2059 finalizeSynthetic(in.symTabShndx.get()); 2060 finalizeSynthetic(in.shStrTab.get()); 2061 finalizeSynthetic(in.strTab.get()); 2062 finalizeSynthetic(in.got.get()); 2063 finalizeSynthetic(in.mipsGot.get()); 2064 finalizeSynthetic(in.igotPlt.get()); 2065 finalizeSynthetic(in.gotPlt.get()); 2066 finalizeSynthetic(in.relaIplt.get()); 2067 finalizeSynthetic(in.relaPlt.get()); 2068 finalizeSynthetic(in.plt.get()); 2069 finalizeSynthetic(in.iplt.get()); 2070 finalizeSynthetic(in.ppc32Got2.get()); 2071 finalizeSynthetic(in.partIndex.get()); 2072 2073 // Dynamic section must be the last one in this list and dynamic 2074 // symbol table section (dynSymTab) must be the first one. 2075 for (Partition &part : partitions) { 2076 if (part.relaDyn) { 2077 // Compute DT_RELACOUNT to be used by part.dynamic. 2078 part.relaDyn->partitionRels(); 2079 finalizeSynthetic(part.relaDyn.get()); 2080 } 2081 2082 finalizeSynthetic(part.dynSymTab.get()); 2083 finalizeSynthetic(part.gnuHashTab.get()); 2084 finalizeSynthetic(part.hashTab.get()); 2085 finalizeSynthetic(part.verDef.get()); 2086 finalizeSynthetic(part.relrDyn.get()); 2087 finalizeSynthetic(part.ehFrameHdr.get()); 2088 finalizeSynthetic(part.verSym.get()); 2089 finalizeSynthetic(part.verNeed.get()); 2090 finalizeSynthetic(part.dynamic.get()); 2091 } 2092 } 2093 2094 if (!script->hasSectionsCommand && !config->relocatable) 2095 fixSectionAlignments(); 2096 2097 // This is used to: 2098 // 1) Create "thunks": 2099 // Jump instructions in many ISAs have small displacements, and therefore 2100 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2101 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2102 // responsibility to create and insert small pieces of code between 2103 // sections to extend the ranges if jump targets are out of range. Such 2104 // code pieces are called "thunks". 2105 // 2106 // We add thunks at this stage. We couldn't do this before this point 2107 // because this is the earliest point where we know sizes of sections and 2108 // their layouts (that are needed to determine if jump targets are in 2109 // range). 2110 // 2111 // 2) Update the sections. We need to generate content that depends on the 2112 // address of InputSections. For example, MIPS GOT section content or 2113 // android packed relocations sections content. 2114 // 2115 // 3) Assign the final values for the linker script symbols. Linker scripts 2116 // sometimes using forward symbol declarations. We want to set the correct 2117 // values. They also might change after adding the thunks. 2118 finalizeAddressDependentContent(); 2119 2120 // All information needed for OutputSection part of Map file is available. 2121 if (errorCount()) 2122 return; 2123 2124 { 2125 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2126 // finalizeAddressDependentContent may have added local symbols to the 2127 // static symbol table. 2128 finalizeSynthetic(in.symTab.get()); 2129 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2130 } 2131 2132 // Relaxation to delete inter-basic block jumps created by basic block 2133 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2134 // can relax jump instructions based on symbol offset. 2135 if (config->optimizeBBJumps) 2136 optimizeBasicBlockJumps(); 2137 2138 // Fill other section headers. The dynamic table is finalized 2139 // at the end because some tags like RELSZ depend on result 2140 // of finalizing other sections. 2141 for (OutputSection *sec : outputSections) 2142 sec->finalize(); 2143 } 2144 2145 // Ensure data sections are not mixed with executable sections when 2146 // --execute-only is used. --execute-only make pages executable but not 2147 // readable. 2148 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2149 if (!config->executeOnly) 2150 return; 2151 2152 for (OutputSection *osec : outputSections) 2153 if (osec->flags & SHF_EXECINSTR) 2154 for (InputSection *isec : getInputSections(*osec)) 2155 if (!(isec->flags & SHF_EXECINSTR)) 2156 error("cannot place " + toString(isec) + " into " + 2157 toString(osec->name) + 2158 ": --execute-only does not support intermingling data and code"); 2159 } 2160 2161 // The linker is expected to define SECNAME_start and SECNAME_end 2162 // symbols for a few sections. This function defines them. 2163 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2164 // If a section does not exist, there's ambiguity as to how we 2165 // define _start and _end symbols for an init/fini section. Since 2166 // the loader assume that the symbols are always defined, we need to 2167 // always define them. But what value? The loader iterates over all 2168 // pointers between _start and _end to run global ctors/dtors, so if 2169 // the section is empty, their symbol values don't actually matter 2170 // as long as _start and _end point to the same location. 2171 // 2172 // That said, we don't want to set the symbols to 0 (which is 2173 // probably the simplest value) because that could cause some 2174 // program to fail to link due to relocation overflow, if their 2175 // program text is above 2 GiB. We use the address of the .text 2176 // section instead to prevent that failure. 2177 // 2178 // In rare situations, the .text section may not exist. If that's the 2179 // case, use the image base address as a last resort. 2180 OutputSection *Default = findSection(".text"); 2181 if (!Default) 2182 Default = Out::elfHeader; 2183 2184 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2185 if (os && !script->isDiscarded(os)) { 2186 addOptionalRegular(start, os, 0); 2187 addOptionalRegular(end, os, -1); 2188 } else { 2189 addOptionalRegular(start, Default, 0); 2190 addOptionalRegular(end, Default, 0); 2191 } 2192 }; 2193 2194 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2195 define("__init_array_start", "__init_array_end", Out::initArray); 2196 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2197 2198 if (OutputSection *sec = findSection(".ARM.exidx")) 2199 define("__exidx_start", "__exidx_end", sec); 2200 } 2201 2202 // If a section name is valid as a C identifier (which is rare because of 2203 // the leading '.'), linkers are expected to define __start_<secname> and 2204 // __stop_<secname> symbols. They are at beginning and end of the section, 2205 // respectively. This is not requested by the ELF standard, but GNU ld and 2206 // gold provide the feature, and used by many programs. 2207 template <class ELFT> 2208 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2209 StringRef s = sec->name; 2210 if (!isValidCIdentifier(s)) 2211 return; 2212 addOptionalRegular(saver().save("__start_" + s), sec, 0, 2213 config->zStartStopVisibility); 2214 addOptionalRegular(saver().save("__stop_" + s), sec, -1, 2215 config->zStartStopVisibility); 2216 } 2217 2218 static bool needsPtLoad(OutputSection *sec) { 2219 if (!(sec->flags & SHF_ALLOC)) 2220 return false; 2221 2222 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2223 // responsible for allocating space for them, not the PT_LOAD that 2224 // contains the TLS initialization image. 2225 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2226 return false; 2227 return true; 2228 } 2229 2230 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2231 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2232 // RW. This means that there is no alignment in the RO to RX transition and we 2233 // cannot create a PT_LOAD there. 2234 static uint64_t computeFlags(uint64_t flags) { 2235 if (config->omagic) 2236 return PF_R | PF_W | PF_X; 2237 if (config->executeOnly && (flags & PF_X)) 2238 return flags & ~PF_R; 2239 if (config->singleRoRx && !(flags & PF_W)) 2240 return flags | PF_X; 2241 return flags; 2242 } 2243 2244 // Decide which program headers to create and which sections to include in each 2245 // one. 2246 template <class ELFT> 2247 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2248 SmallVector<PhdrEntry *, 0> ret; 2249 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2250 ret.push_back(make<PhdrEntry>(type, flags)); 2251 return ret.back(); 2252 }; 2253 2254 unsigned partNo = part.getNumber(); 2255 bool isMain = partNo == 1; 2256 2257 // Add the first PT_LOAD segment for regular output sections. 2258 uint64_t flags = computeFlags(PF_R); 2259 PhdrEntry *load = nullptr; 2260 2261 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2262 // PT_LOAD. 2263 if (!config->nmagic && !config->omagic) { 2264 // The first phdr entry is PT_PHDR which describes the program header 2265 // itself. 2266 if (isMain) 2267 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2268 else 2269 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2270 2271 // PT_INTERP must be the second entry if exists. 2272 if (OutputSection *cmd = findSection(".interp", partNo)) 2273 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2274 2275 // Add the headers. We will remove them if they don't fit. 2276 // In the other partitions the headers are ordinary sections, so they don't 2277 // need to be added here. 2278 if (isMain) { 2279 load = addHdr(PT_LOAD, flags); 2280 load->add(Out::elfHeader); 2281 load->add(Out::programHeaders); 2282 } 2283 } 2284 2285 // PT_GNU_RELRO includes all sections that should be marked as 2286 // read-only by dynamic linker after processing relocations. 2287 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2288 // an error message if more than one PT_GNU_RELRO PHDR is required. 2289 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2290 bool inRelroPhdr = false; 2291 OutputSection *relroEnd = nullptr; 2292 for (OutputSection *sec : outputSections) { 2293 if (sec->partition != partNo || !needsPtLoad(sec)) 2294 continue; 2295 if (isRelroSection(sec)) { 2296 inRelroPhdr = true; 2297 if (!relroEnd) 2298 relRo->add(sec); 2299 else 2300 error("section: " + sec->name + " is not contiguous with other relro" + 2301 " sections"); 2302 } else if (inRelroPhdr) { 2303 inRelroPhdr = false; 2304 relroEnd = sec; 2305 } 2306 } 2307 2308 for (OutputSection *sec : outputSections) { 2309 if (!needsPtLoad(sec)) 2310 continue; 2311 2312 // Normally, sections in partitions other than the current partition are 2313 // ignored. But partition number 255 is a special case: it contains the 2314 // partition end marker (.part.end). It needs to be added to the main 2315 // partition so that a segment is created for it in the main partition, 2316 // which will cause the dynamic loader to reserve space for the other 2317 // partitions. 2318 if (sec->partition != partNo) { 2319 if (isMain && sec->partition == 255) 2320 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2321 continue; 2322 } 2323 2324 // Segments are contiguous memory regions that has the same attributes 2325 // (e.g. executable or writable). There is one phdr for each segment. 2326 // Therefore, we need to create a new phdr when the next section has 2327 // different flags or is loaded at a discontiguous address or memory 2328 // region using AT or AT> linker script command, respectively. At the same 2329 // time, we don't want to create a separate load segment for the headers, 2330 // even if the first output section has an AT or AT> attribute. 2331 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2332 bool sameLMARegion = 2333 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2334 if (!(load && newFlags == flags && sec != relroEnd && 2335 sec->memRegion == load->firstSec->memRegion && 2336 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2337 load = addHdr(PT_LOAD, newFlags); 2338 flags = newFlags; 2339 } 2340 2341 load->add(sec); 2342 } 2343 2344 // Add a TLS segment if any. 2345 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2346 for (OutputSection *sec : outputSections) 2347 if (sec->partition == partNo && sec->flags & SHF_TLS) 2348 tlsHdr->add(sec); 2349 if (tlsHdr->firstSec) 2350 ret.push_back(tlsHdr); 2351 2352 // Add an entry for .dynamic. 2353 if (OutputSection *sec = part.dynamic->getParent()) 2354 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2355 2356 if (relRo->firstSec) 2357 ret.push_back(relRo); 2358 2359 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2360 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2361 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2362 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2363 ->add(part.ehFrameHdr->getParent()); 2364 2365 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2366 // the dynamic linker fill the segment with random data. 2367 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2368 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2369 2370 if (config->zGnustack != GnuStackKind::None) { 2371 // PT_GNU_STACK is a special section to tell the loader to make the 2372 // pages for the stack non-executable. If you really want an executable 2373 // stack, you can pass -z execstack, but that's not recommended for 2374 // security reasons. 2375 unsigned perm = PF_R | PF_W; 2376 if (config->zGnustack == GnuStackKind::Exec) 2377 perm |= PF_X; 2378 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2379 } 2380 2381 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2382 // is expected to perform W^X violations, such as calling mprotect(2) or 2383 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2384 // OpenBSD. 2385 if (config->zWxneeded) 2386 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2387 2388 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2389 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2390 2391 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2392 // same alignment. 2393 PhdrEntry *note = nullptr; 2394 for (OutputSection *sec : outputSections) { 2395 if (sec->partition != partNo) 2396 continue; 2397 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2398 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2399 note = addHdr(PT_NOTE, PF_R); 2400 note->add(sec); 2401 } else { 2402 note = nullptr; 2403 } 2404 } 2405 return ret; 2406 } 2407 2408 template <class ELFT> 2409 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2410 unsigned pType, unsigned pFlags) { 2411 unsigned partNo = part.getNumber(); 2412 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2413 return cmd->partition == partNo && cmd->type == shType; 2414 }); 2415 if (i == outputSections.end()) 2416 return; 2417 2418 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2419 entry->add(*i); 2420 part.phdrs.push_back(entry); 2421 } 2422 2423 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2424 // This is achieved by assigning an alignment expression to addrExpr of each 2425 // such section. 2426 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2427 const PhdrEntry *prev; 2428 auto pageAlign = [&](const PhdrEntry *p) { 2429 OutputSection *cmd = p->firstSec; 2430 if (!cmd) 2431 return; 2432 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2433 if (!cmd->addrExpr) { 2434 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2435 // padding in the file contents. 2436 // 2437 // When -z separate-code is used we must not have any overlap in pages 2438 // between an executable segment and a non-executable segment. We align to 2439 // the next maximum page size boundary on transitions between executable 2440 // and non-executable segments. 2441 // 2442 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2443 // sections will be extracted to a separate file. Align to the next 2444 // maximum page size boundary so that we can find the ELF header at the 2445 // start. We cannot benefit from overlapping p_offset ranges with the 2446 // previous segment anyway. 2447 if (config->zSeparate == SeparateSegmentKind::Loadable || 2448 (config->zSeparate == SeparateSegmentKind::Code && prev && 2449 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2450 cmd->type == SHT_LLVM_PART_EHDR) 2451 cmd->addrExpr = [] { 2452 return alignTo(script->getDot(), config->maxPageSize); 2453 }; 2454 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2455 // it must be the RW. Align to p_align(PT_TLS) to make sure 2456 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2457 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2458 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2459 // be congruent to 0 modulo p_align(PT_TLS). 2460 // 2461 // Technically this is not required, but as of 2019, some dynamic loaders 2462 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2463 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2464 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2465 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2466 // blocks correctly. We need to keep the workaround for a while. 2467 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2468 cmd->addrExpr = [] { 2469 return alignTo(script->getDot(), config->maxPageSize) + 2470 alignTo(script->getDot() % config->maxPageSize, 2471 Out::tlsPhdr->p_align); 2472 }; 2473 else 2474 cmd->addrExpr = [] { 2475 return alignTo(script->getDot(), config->maxPageSize) + 2476 script->getDot() % config->maxPageSize; 2477 }; 2478 } 2479 }; 2480 2481 for (Partition &part : partitions) { 2482 prev = nullptr; 2483 for (const PhdrEntry *p : part.phdrs) 2484 if (p->p_type == PT_LOAD && p->firstSec) { 2485 pageAlign(p); 2486 prev = p; 2487 } 2488 } 2489 } 2490 2491 // Compute an in-file position for a given section. The file offset must be the 2492 // same with its virtual address modulo the page size, so that the loader can 2493 // load executables without any address adjustment. 2494 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2495 // The first section in a PT_LOAD has to have congruent offset and address 2496 // modulo the maximum page size. 2497 if (os->ptLoad && os->ptLoad->firstSec == os) 2498 return alignTo(off, os->ptLoad->p_align, os->addr); 2499 2500 // File offsets are not significant for .bss sections other than the first one 2501 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2502 // increasing rather than setting to zero. 2503 if (os->type == SHT_NOBITS && 2504 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2505 return off; 2506 2507 // If the section is not in a PT_LOAD, we just have to align it. 2508 if (!os->ptLoad) 2509 return alignTo(off, os->alignment); 2510 2511 // If two sections share the same PT_LOAD the file offset is calculated 2512 // using this formula: Off2 = Off1 + (VA2 - VA1). 2513 OutputSection *first = os->ptLoad->firstSec; 2514 return first->offset + os->addr - first->addr; 2515 } 2516 2517 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2518 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2519 auto needsOffset = [](OutputSection &sec) { 2520 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2521 }; 2522 uint64_t minAddr = UINT64_MAX; 2523 for (OutputSection *sec : outputSections) 2524 if (needsOffset(*sec)) { 2525 sec->offset = sec->getLMA(); 2526 minAddr = std::min(minAddr, sec->offset); 2527 } 2528 2529 // Sections are laid out at LMA minus minAddr. 2530 fileSize = 0; 2531 for (OutputSection *sec : outputSections) 2532 if (needsOffset(*sec)) { 2533 sec->offset -= minAddr; 2534 fileSize = std::max(fileSize, sec->offset + sec->size); 2535 } 2536 } 2537 2538 static std::string rangeToString(uint64_t addr, uint64_t len) { 2539 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2540 } 2541 2542 // Assign file offsets to output sections. 2543 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2544 Out::programHeaders->offset = Out::elfHeader->size; 2545 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2546 2547 PhdrEntry *lastRX = nullptr; 2548 for (Partition &part : partitions) 2549 for (PhdrEntry *p : part.phdrs) 2550 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2551 lastRX = p; 2552 2553 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2554 // will not occupy file offsets contained by a PT_LOAD. 2555 for (OutputSection *sec : outputSections) { 2556 if (!(sec->flags & SHF_ALLOC)) 2557 continue; 2558 off = computeFileOffset(sec, off); 2559 sec->offset = off; 2560 if (sec->type != SHT_NOBITS) 2561 off += sec->size; 2562 2563 // If this is a last section of the last executable segment and that 2564 // segment is the last loadable segment, align the offset of the 2565 // following section to avoid loading non-segments parts of the file. 2566 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2567 lastRX->lastSec == sec) 2568 off = alignTo(off, config->maxPageSize); 2569 } 2570 for (OutputSection *osec : outputSections) 2571 if (!(osec->flags & SHF_ALLOC)) { 2572 osec->offset = alignTo(off, osec->alignment); 2573 off = osec->offset + osec->size; 2574 } 2575 2576 sectionHeaderOff = alignTo(off, config->wordsize); 2577 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2578 2579 // Our logic assumes that sections have rising VA within the same segment. 2580 // With use of linker scripts it is possible to violate this rule and get file 2581 // offset overlaps or overflows. That should never happen with a valid script 2582 // which does not move the location counter backwards and usually scripts do 2583 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2584 // kernel, which control segment distribution explicitly and move the counter 2585 // backwards, so we have to allow doing that to support linking them. We 2586 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2587 // we want to prevent file size overflows because it would crash the linker. 2588 for (OutputSection *sec : outputSections) { 2589 if (sec->type == SHT_NOBITS) 2590 continue; 2591 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2592 error("unable to place section " + sec->name + " at file offset " + 2593 rangeToString(sec->offset, sec->size) + 2594 "; check your linker script for overflows"); 2595 } 2596 } 2597 2598 // Finalize the program headers. We call this function after we assign 2599 // file offsets and VAs to all sections. 2600 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2601 for (PhdrEntry *p : part.phdrs) { 2602 OutputSection *first = p->firstSec; 2603 OutputSection *last = p->lastSec; 2604 2605 if (first) { 2606 p->p_filesz = last->offset - first->offset; 2607 if (last->type != SHT_NOBITS) 2608 p->p_filesz += last->size; 2609 2610 p->p_memsz = last->addr + last->size - first->addr; 2611 p->p_offset = first->offset; 2612 p->p_vaddr = first->addr; 2613 2614 // File offsets in partitions other than the main partition are relative 2615 // to the offset of the ELF headers. Perform that adjustment now. 2616 if (part.elfHeader) 2617 p->p_offset -= part.elfHeader->getParent()->offset; 2618 2619 if (!p->hasLMA) 2620 p->p_paddr = first->getLMA(); 2621 } 2622 2623 if (p->p_type == PT_GNU_RELRO) { 2624 p->p_align = 1; 2625 // musl/glibc ld.so rounds the size down, so we need to round up 2626 // to protect the last page. This is a no-op on FreeBSD which always 2627 // rounds up. 2628 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2629 p->p_offset; 2630 } 2631 } 2632 } 2633 2634 // A helper struct for checkSectionOverlap. 2635 namespace { 2636 struct SectionOffset { 2637 OutputSection *sec; 2638 uint64_t offset; 2639 }; 2640 } // namespace 2641 2642 // Check whether sections overlap for a specific address range (file offsets, 2643 // load and virtual addresses). 2644 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2645 bool isVirtualAddr) { 2646 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2647 return a.offset < b.offset; 2648 }); 2649 2650 // Finding overlap is easy given a vector is sorted by start position. 2651 // If an element starts before the end of the previous element, they overlap. 2652 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2653 SectionOffset a = sections[i - 1]; 2654 SectionOffset b = sections[i]; 2655 if (b.offset >= a.offset + a.sec->size) 2656 continue; 2657 2658 // If both sections are in OVERLAY we allow the overlapping of virtual 2659 // addresses, because it is what OVERLAY was designed for. 2660 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2661 continue; 2662 2663 errorOrWarn("section " + a.sec->name + " " + name + 2664 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2665 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2666 b.sec->name + " range is " + 2667 rangeToString(b.offset, b.sec->size)); 2668 } 2669 } 2670 2671 // Check for overlapping sections and address overflows. 2672 // 2673 // In this function we check that none of the output sections have overlapping 2674 // file offsets. For SHF_ALLOC sections we also check that the load address 2675 // ranges and the virtual address ranges don't overlap 2676 template <class ELFT> void Writer<ELFT>::checkSections() { 2677 // First, check that section's VAs fit in available address space for target. 2678 for (OutputSection *os : outputSections) 2679 if ((os->addr + os->size < os->addr) || 2680 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2681 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2682 " of size 0x" + utohexstr(os->size) + 2683 " exceeds available address space"); 2684 2685 // Check for overlapping file offsets. In this case we need to skip any 2686 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2687 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2688 // binary is specified only add SHF_ALLOC sections are added to the output 2689 // file so we skip any non-allocated sections in that case. 2690 std::vector<SectionOffset> fileOffs; 2691 for (OutputSection *sec : outputSections) 2692 if (sec->size > 0 && sec->type != SHT_NOBITS && 2693 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2694 fileOffs.push_back({sec, sec->offset}); 2695 checkOverlap("file", fileOffs, false); 2696 2697 // When linking with -r there is no need to check for overlapping virtual/load 2698 // addresses since those addresses will only be assigned when the final 2699 // executable/shared object is created. 2700 if (config->relocatable) 2701 return; 2702 2703 // Checking for overlapping virtual and load addresses only needs to take 2704 // into account SHF_ALLOC sections since others will not be loaded. 2705 // Furthermore, we also need to skip SHF_TLS sections since these will be 2706 // mapped to other addresses at runtime and can therefore have overlapping 2707 // ranges in the file. 2708 std::vector<SectionOffset> vmas; 2709 for (OutputSection *sec : outputSections) 2710 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2711 vmas.push_back({sec, sec->addr}); 2712 checkOverlap("virtual address", vmas, true); 2713 2714 // Finally, check that the load addresses don't overlap. This will usually be 2715 // the same as the virtual addresses but can be different when using a linker 2716 // script with AT(). 2717 std::vector<SectionOffset> lmas; 2718 for (OutputSection *sec : outputSections) 2719 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2720 lmas.push_back({sec, sec->getLMA()}); 2721 checkOverlap("load address", lmas, false); 2722 } 2723 2724 // The entry point address is chosen in the following ways. 2725 // 2726 // 1. the '-e' entry command-line option; 2727 // 2. the ENTRY(symbol) command in a linker control script; 2728 // 3. the value of the symbol _start, if present; 2729 // 4. the number represented by the entry symbol, if it is a number; 2730 // 5. the address 0. 2731 static uint64_t getEntryAddr() { 2732 // Case 1, 2 or 3 2733 if (Symbol *b = symtab->find(config->entry)) 2734 return b->getVA(); 2735 2736 // Case 4 2737 uint64_t addr; 2738 if (to_integer(config->entry, addr)) 2739 return addr; 2740 2741 // Case 5 2742 if (config->warnMissingEntry) 2743 warn("cannot find entry symbol " + config->entry + 2744 "; not setting start address"); 2745 return 0; 2746 } 2747 2748 static uint16_t getELFType() { 2749 if (config->isPic) 2750 return ET_DYN; 2751 if (config->relocatable) 2752 return ET_REL; 2753 return ET_EXEC; 2754 } 2755 2756 template <class ELFT> void Writer<ELFT>::writeHeader() { 2757 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2758 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2759 2760 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2761 eHdr->e_type = getELFType(); 2762 eHdr->e_entry = getEntryAddr(); 2763 eHdr->e_shoff = sectionHeaderOff; 2764 2765 // Write the section header table. 2766 // 2767 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2768 // and e_shstrndx fields. When the value of one of these fields exceeds 2769 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2770 // use fields in the section header at index 0 to store 2771 // the value. The sentinel values and fields are: 2772 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2773 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2774 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2775 size_t num = outputSections.size() + 1; 2776 if (num >= SHN_LORESERVE) 2777 sHdrs->sh_size = num; 2778 else 2779 eHdr->e_shnum = num; 2780 2781 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2782 if (strTabIndex >= SHN_LORESERVE) { 2783 sHdrs->sh_link = strTabIndex; 2784 eHdr->e_shstrndx = SHN_XINDEX; 2785 } else { 2786 eHdr->e_shstrndx = strTabIndex; 2787 } 2788 2789 for (OutputSection *sec : outputSections) 2790 sec->writeHeaderTo<ELFT>(++sHdrs); 2791 } 2792 2793 // Open a result file. 2794 template <class ELFT> void Writer<ELFT>::openFile() { 2795 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2796 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2797 std::string msg; 2798 raw_string_ostream s(msg); 2799 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2800 << "section sizes:\n"; 2801 for (OutputSection *os : outputSections) 2802 s << os->name << ' ' << os->size << "\n"; 2803 error(s.str()); 2804 return; 2805 } 2806 2807 unlinkAsync(config->outputFile); 2808 unsigned flags = 0; 2809 if (!config->relocatable) 2810 flags |= FileOutputBuffer::F_executable; 2811 if (!config->mmapOutputFile) 2812 flags |= FileOutputBuffer::F_no_mmap; 2813 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2814 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2815 2816 if (!bufferOrErr) { 2817 error("failed to open " + config->outputFile + ": " + 2818 llvm::toString(bufferOrErr.takeError())); 2819 return; 2820 } 2821 buffer = std::move(*bufferOrErr); 2822 Out::bufferStart = buffer->getBufferStart(); 2823 } 2824 2825 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2826 for (OutputSection *sec : outputSections) 2827 if (sec->flags & SHF_ALLOC) 2828 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2829 } 2830 2831 static void fillTrap(uint8_t *i, uint8_t *end) { 2832 for (; i + 4 <= end; i += 4) 2833 memcpy(i, &target->trapInstr, 4); 2834 } 2835 2836 // Fill the last page of executable segments with trap instructions 2837 // instead of leaving them as zero. Even though it is not required by any 2838 // standard, it is in general a good thing to do for security reasons. 2839 // 2840 // We'll leave other pages in segments as-is because the rest will be 2841 // overwritten by output sections. 2842 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2843 for (Partition &part : partitions) { 2844 // Fill the last page. 2845 for (PhdrEntry *p : part.phdrs) 2846 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2847 fillTrap(Out::bufferStart + 2848 alignDown(p->firstSec->offset + p->p_filesz, 4), 2849 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2850 config->maxPageSize)); 2851 2852 // Round up the file size of the last segment to the page boundary iff it is 2853 // an executable segment to ensure that other tools don't accidentally 2854 // trim the instruction padding (e.g. when stripping the file). 2855 PhdrEntry *last = nullptr; 2856 for (PhdrEntry *p : part.phdrs) 2857 if (p->p_type == PT_LOAD) 2858 last = p; 2859 2860 if (last && (last->p_flags & PF_X)) 2861 last->p_memsz = last->p_filesz = 2862 alignTo(last->p_filesz, config->maxPageSize); 2863 } 2864 } 2865 2866 // Write section contents to a mmap'ed file. 2867 template <class ELFT> void Writer<ELFT>::writeSections() { 2868 llvm::TimeTraceScope timeScope("Write sections"); 2869 2870 // In -r or --emit-relocs mode, write the relocation sections first as in 2871 // ELf_Rel targets we might find out that we need to modify the relocated 2872 // section while doing it. 2873 for (OutputSection *sec : outputSections) 2874 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2875 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2876 2877 for (OutputSection *sec : outputSections) 2878 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2879 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2880 2881 // Finally, check that all dynamic relocation addends were written correctly. 2882 if (config->checkDynamicRelocs && config->writeAddends) { 2883 for (OutputSection *sec : outputSections) 2884 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2885 sec->checkDynRelAddends(Out::bufferStart); 2886 } 2887 } 2888 2889 // Computes a hash value of Data using a given hash function. 2890 // In order to utilize multiple cores, we first split data into 1MB 2891 // chunks, compute a hash for each chunk, and then compute a hash value 2892 // of the hash values. 2893 static void 2894 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2895 llvm::ArrayRef<uint8_t> data, 2896 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2897 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2898 const size_t hashesSize = chunks.size() * hashBuf.size(); 2899 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 2900 2901 // Compute hash values. 2902 parallelForEachN(0, chunks.size(), [&](size_t i) { 2903 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 2904 }); 2905 2906 // Write to the final output buffer. 2907 hashFn(hashBuf.data(), makeArrayRef(hashes.get(), hashesSize)); 2908 } 2909 2910 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2911 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2912 return; 2913 2914 if (config->buildId == BuildIdKind::Hexstring) { 2915 for (Partition &part : partitions) 2916 part.buildId->writeBuildId(config->buildIdVector); 2917 return; 2918 } 2919 2920 // Compute a hash of all sections of the output file. 2921 size_t hashSize = mainPart->buildId->hashSize; 2922 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 2923 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 2924 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 2925 2926 switch (config->buildId) { 2927 case BuildIdKind::Fast: 2928 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2929 write64le(dest, xxHash64(arr)); 2930 }); 2931 break; 2932 case BuildIdKind::Md5: 2933 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2934 memcpy(dest, MD5::hash(arr).data(), hashSize); 2935 }); 2936 break; 2937 case BuildIdKind::Sha1: 2938 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2939 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2940 }); 2941 break; 2942 case BuildIdKind::Uuid: 2943 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 2944 error("entropy source failure: " + ec.message()); 2945 break; 2946 default: 2947 llvm_unreachable("unknown BuildIdKind"); 2948 } 2949 for (Partition &part : partitions) 2950 part.buildId->writeBuildId(output); 2951 } 2952 2953 template void elf::createSyntheticSections<ELF32LE>(); 2954 template void elf::createSyntheticSections<ELF32BE>(); 2955 template void elf::createSyntheticSections<ELF64LE>(); 2956 template void elf::createSyntheticSections<ELF64BE>(); 2957 2958 template void elf::writeResult<ELF32LE>(); 2959 template void elf::writeResult<ELF32BE>(); 2960 template void elf::writeResult<ELF64LE>(); 2961 template void elf::writeResult<ELF64BE>(); 2962