xref: /llvm-project-15.0.7/lld/ELF/Writer.cpp (revision 981986cd)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "Writer.h"
11 #include "Config.h"
12 #include "LinkerScript.h"
13 #include "OutputSections.h"
14 #include "Relocations.h"
15 #include "SymbolTable.h"
16 #include "Target.h"
17 
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/Support/FileOutputBuffer.h"
21 #include "llvm/Support/StringSaver.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 using namespace llvm;
25 using namespace llvm::ELF;
26 using namespace llvm::object;
27 
28 using namespace lld;
29 using namespace lld::elf;
30 
31 namespace {
32 // The writer writes a SymbolTable result to a file.
33 template <class ELFT> class Writer {
34 public:
35   typedef typename ELFT::uint uintX_t;
36   typedef typename ELFT::Shdr Elf_Shdr;
37   typedef typename ELFT::Ehdr Elf_Ehdr;
38   typedef typename ELFT::Phdr Elf_Phdr;
39   typedef typename ELFT::Sym Elf_Sym;
40   typedef typename ELFT::SymRange Elf_Sym_Range;
41   typedef typename ELFT::Rela Elf_Rela;
42   Writer(SymbolTable<ELFT> &S) : Symtab(S) {}
43   void run();
44 
45 private:
46   // This describes a program header entry.
47   // Each contains type, access flags and range of output sections that will be
48   // placed in it.
49   struct Phdr {
50     Phdr(unsigned Type, unsigned Flags) {
51       H.p_type = Type;
52       H.p_flags = Flags;
53     }
54     Elf_Phdr H = {};
55     OutputSectionBase<ELFT> *First = nullptr;
56     OutputSectionBase<ELFT> *Last = nullptr;
57   };
58 
59   void copyLocalSymbols();
60   void addReservedSymbols();
61   void createSections();
62   void addPredefinedSections();
63   bool needsGot();
64 
65   void createPhdrs();
66   void assignAddresses();
67   void assignFileOffsets();
68   void setPhdrs();
69   void fixHeaders();
70   void fixSectionAlignments();
71   void fixAbsoluteSymbols();
72   void openFile();
73   void writeHeader();
74   void writeSections();
75   void writeBuildId();
76   bool isDiscarded(InputSectionBase<ELFT> *IS) const;
77   StringRef getOutputSectionName(InputSectionBase<ELFT> *S) const;
78   bool needsInterpSection() const {
79     return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty();
80   }
81   bool isOutputDynamic() const {
82     return !Symtab.getSharedFiles().empty() || Config->Pic;
83   }
84 
85   void addCommonSymbols(std::vector<DefinedCommon *> &Syms);
86 
87   std::unique_ptr<llvm::FileOutputBuffer> Buffer;
88 
89   BumpPtrAllocator Alloc;
90   std::vector<OutputSectionBase<ELFT> *> OutputSections;
91   std::vector<std::unique_ptr<OutputSectionBase<ELFT>>> OwningSections;
92 
93   void addRelIpltSymbols();
94   void addStartEndSymbols();
95   void addStartStopSymbols(OutputSectionBase<ELFT> *Sec);
96 
97   SymbolTable<ELFT> &Symtab;
98   std::vector<Phdr> Phdrs;
99 
100   uintX_t FileSize;
101   uintX_t SectionHeaderOff;
102 };
103 } // anonymous namespace
104 
105 template <class ELFT> void elf::writeResult(SymbolTable<ELFT> *Symtab) {
106   typedef typename ELFT::uint uintX_t;
107   typedef typename ELFT::Ehdr Elf_Ehdr;
108 
109   // Create singleton output sections.
110   OutputSection<ELFT> Bss(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE);
111   DynamicSection<ELFT> Dynamic;
112   EhOutputSection<ELFT> EhFrame;
113   GotSection<ELFT> Got;
114   InterpSection<ELFT> Interp;
115   PltSection<ELFT> Plt;
116   RelocationSection<ELFT> RelaDyn(Config->Rela ? ".rela.dyn" : ".rel.dyn",
117                                   Config->ZCombreloc);
118   StringTableSection<ELFT> DynStrTab(".dynstr", true);
119   StringTableSection<ELFT> ShStrTab(".shstrtab", false);
120   SymbolTableSection<ELFT> DynSymTab(DynStrTab);
121   VersionTableSection<ELFT> VerSym;
122   VersionNeedSection<ELFT> VerNeed;
123 
124   OutputSectionBase<ELFT> ElfHeader("", 0, SHF_ALLOC);
125   ElfHeader.setSize(sizeof(Elf_Ehdr));
126   OutputSectionBase<ELFT> ProgramHeaders("", 0, SHF_ALLOC);
127   ProgramHeaders.updateAlign(sizeof(uintX_t));
128 
129   // Instantiate optional output sections if they are needed.
130   std::unique_ptr<BuildIdSection<ELFT>> BuildId;
131   std::unique_ptr<EhFrameHeader<ELFT>> EhFrameHdr;
132   std::unique_ptr<GnuHashTableSection<ELFT>> GnuHashTab;
133   std::unique_ptr<GotPltSection<ELFT>> GotPlt;
134   std::unique_ptr<HashTableSection<ELFT>> HashTab;
135   std::unique_ptr<RelocationSection<ELFT>> RelaPlt;
136   std::unique_ptr<StringTableSection<ELFT>> StrTab;
137   std::unique_ptr<SymbolTableSection<ELFT>> SymTabSec;
138   std::unique_ptr<OutputSection<ELFT>> MipsRldMap;
139 
140   if (Config->BuildId == BuildIdKind::Fnv1)
141     BuildId.reset(new BuildIdFnv1<ELFT>);
142   else if (Config->BuildId == BuildIdKind::Md5)
143     BuildId.reset(new BuildIdMd5<ELFT>);
144   else if (Config->BuildId == BuildIdKind::Sha1)
145     BuildId.reset(new BuildIdSha1<ELFT>);
146   else if (Config->BuildId == BuildIdKind::Hexstring)
147     BuildId.reset(new BuildIdHexstring<ELFT>);
148 
149   if (Config->EhFrameHdr)
150     EhFrameHdr.reset(new EhFrameHeader<ELFT>);
151 
152   if (Config->GnuHash)
153     GnuHashTab.reset(new GnuHashTableSection<ELFT>);
154   if (Config->SysvHash)
155     HashTab.reset(new HashTableSection<ELFT>);
156   StringRef S = Config->Rela ? ".rela.plt" : ".rel.plt";
157   GotPlt.reset(new GotPltSection<ELFT>);
158   RelaPlt.reset(new RelocationSection<ELFT>(S, false /*Sort*/));
159   if (!Config->StripAll) {
160     StrTab.reset(new StringTableSection<ELFT>(".strtab", false));
161     SymTabSec.reset(new SymbolTableSection<ELFT>(*StrTab));
162   }
163   if (Config->EMachine == EM_MIPS && !Config->Shared) {
164     // This is a MIPS specific section to hold a space within the data segment
165     // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
166     // See "Dynamic section" in Chapter 5 in the following document:
167     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
168     MipsRldMap.reset(new OutputSection<ELFT>(".rld_map", SHT_PROGBITS,
169                                              SHF_ALLOC | SHF_WRITE));
170     MipsRldMap->setSize(sizeof(uintX_t));
171     MipsRldMap->updateAlign(sizeof(uintX_t));
172   }
173 
174   Out<ELFT>::Bss = &Bss;
175   Out<ELFT>::BuildId = BuildId.get();
176   Out<ELFT>::DynStrTab = &DynStrTab;
177   Out<ELFT>::DynSymTab = &DynSymTab;
178   Out<ELFT>::Dynamic = &Dynamic;
179   Out<ELFT>::EhFrame = &EhFrame;
180   Out<ELFT>::EhFrameHdr = EhFrameHdr.get();
181   Out<ELFT>::GnuHashTab = GnuHashTab.get();
182   Out<ELFT>::Got = &Got;
183   Out<ELFT>::GotPlt = GotPlt.get();
184   Out<ELFT>::HashTab = HashTab.get();
185   Out<ELFT>::Interp = &Interp;
186   Out<ELFT>::Plt = &Plt;
187   Out<ELFT>::RelaDyn = &RelaDyn;
188   Out<ELFT>::RelaPlt = RelaPlt.get();
189   Out<ELFT>::ShStrTab = &ShStrTab;
190   Out<ELFT>::StrTab = StrTab.get();
191   Out<ELFT>::SymTab = SymTabSec.get();
192   Out<ELFT>::VerSym = &VerSym;
193   Out<ELFT>::VerNeed = &VerNeed;
194   Out<ELFT>::MipsRldMap = MipsRldMap.get();
195   Out<ELFT>::Opd = nullptr;
196   Out<ELFT>::OpdBuf = nullptr;
197   Out<ELFT>::TlsPhdr = nullptr;
198   Out<ELFT>::ElfHeader = &ElfHeader;
199   Out<ELFT>::ProgramHeaders = &ProgramHeaders;
200 
201   Writer<ELFT>(*Symtab).run();
202 }
203 
204 // The main function of the writer.
205 template <class ELFT> void Writer<ELFT>::run() {
206   if (!Config->DiscardAll)
207     copyLocalSymbols();
208   addReservedSymbols();
209   createSections();
210   if (HasError)
211     return;
212 
213   if (Config->Relocatable) {
214     assignFileOffsets();
215   } else {
216     createPhdrs();
217     fixHeaders();
218     if (ScriptConfig->DoLayout) {
219       Script<ELFT>::X->assignAddresses(OutputSections);
220     } else {
221       fixSectionAlignments();
222       assignAddresses();
223     }
224     assignFileOffsets();
225     setPhdrs();
226     fixAbsoluteSymbols();
227   }
228 
229   openFile();
230   if (HasError)
231     return;
232   writeHeader();
233   writeSections();
234   writeBuildId();
235   if (HasError)
236     return;
237   check(Buffer->commit());
238 }
239 
240 namespace {
241 template <bool Is64Bits> struct SectionKey {
242   typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t;
243   StringRef Name;
244   uint32_t Type;
245   uintX_t Flags;
246   uintX_t Alignment;
247 };
248 }
249 namespace llvm {
250 template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> {
251   static SectionKey<Is64Bits> getEmptyKey() {
252     return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0,
253                                 0};
254   }
255   static SectionKey<Is64Bits> getTombstoneKey() {
256     return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0,
257                                 0, 0};
258   }
259   static unsigned getHashValue(const SectionKey<Is64Bits> &Val) {
260     return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment);
261   }
262   static bool isEqual(const SectionKey<Is64Bits> &LHS,
263                       const SectionKey<Is64Bits> &RHS) {
264     return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
265            LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
266            LHS.Alignment == RHS.Alignment;
267   }
268 };
269 }
270 
271 template <class ELFT>
272 static void reportUndefined(SymbolTable<ELFT> &Symtab, SymbolBody *Sym) {
273   if (!Config->NoUndefined) {
274     if (Config->Relocatable)
275       return;
276     if (Config->Shared && !Config->ZDefs)
277       if (Sym->symbol()->Visibility == STV_DEFAULT)
278         return;
279   }
280 
281   std::string Msg = "undefined symbol: " + Sym->getName().str();
282   if (InputFile *File = Sym->getSourceFile<ELFT>())
283     Msg += " in " + getFilename(File);
284   if (Config->NoinhibitExec)
285     warning(Msg);
286   else
287     error(Msg);
288 }
289 
290 template <class ELFT>
291 static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName,
292                                const SymbolBody &B) {
293   if (B.isFile())
294     return false;
295 
296   // We keep sections in symtab for relocatable output.
297   if (B.isSection())
298     return Config->Relocatable;
299 
300   // If sym references a section in a discarded group, don't keep it.
301   if (Sec == &InputSection<ELFT>::Discarded)
302     return false;
303 
304   if (Config->DiscardNone)
305     return true;
306 
307   // In ELF assembly .L symbols are normally discarded by the assembler.
308   // If the assembler fails to do so, the linker discards them if
309   // * --discard-locals is used.
310   // * The symbol is in a SHF_MERGE section, which is normally the reason for
311   //   the assembler keeping the .L symbol.
312   if (!SymName.startswith(".L") && !SymName.empty())
313     return true;
314 
315   if (Config->DiscardLocals)
316     return false;
317 
318   return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE);
319 }
320 
321 template <class ELFT> static bool includeInSymtab(const SymbolBody &B) {
322   if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj)
323     return false;
324 
325   if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) {
326     // Always include absolute symbols.
327     if (!D->Section)
328       return true;
329     // Exclude symbols pointing to garbage-collected sections.
330     if (!D->Section->Live)
331       return false;
332     if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section))
333       if (!S->getSectionPiece(D->Value)->Live)
334         return false;
335   }
336   return true;
337 }
338 
339 // Local symbols are not in the linker's symbol table. This function scans
340 // each object file's symbol table to copy local symbols to the output.
341 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
342   if (!Out<ELFT>::SymTab)
343     return;
344   for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
345        Symtab.getObjectFiles()) {
346     const char *StrTab = F->getStringTable().data();
347     for (SymbolBody *B : F->getLocalSymbols()) {
348       auto *DR = dyn_cast<DefinedRegular<ELFT>>(B);
349       // No reason to keep local undefined symbol in symtab.
350       if (!DR)
351         continue;
352       if (!includeInSymtab<ELFT>(*B))
353         continue;
354       StringRef SymName(StrTab + B->getNameOffset());
355       InputSectionBase<ELFT> *Sec = DR->Section;
356       if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B))
357         continue;
358       ++Out<ELFT>::SymTab->NumLocals;
359       if (Config->Relocatable)
360         B->DynsymIndex = Out<ELFT>::SymTab->NumLocals;
361       F->KeptLocalSyms.push_back(
362           std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName)));
363     }
364   }
365 }
366 
367 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that
368 // we would like to make sure appear is a specific order to maximize their
369 // coverage by a single signed 16-bit offset from the TOC base pointer.
370 // Conversely, the special .tocbss section should be first among all SHT_NOBITS
371 // sections. This will put it next to the loaded special PPC64 sections (and,
372 // thus, within reach of the TOC base pointer).
373 static int getPPC64SectionRank(StringRef SectionName) {
374   return StringSwitch<int>(SectionName)
375       .Case(".tocbss", 0)
376       .Case(".branch_lt", 2)
377       .Case(".toc", 3)
378       .Case(".toc1", 4)
379       .Case(".opd", 5)
380       .Default(1);
381 }
382 
383 template <class ELFT> static bool isRelroSection(OutputSectionBase<ELFT> *Sec) {
384   if (!Config->ZRelro)
385     return false;
386   typename ELFT::uint Flags = Sec->getFlags();
387   if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
388     return false;
389   if (Flags & SHF_TLS)
390     return true;
391   uint32_t Type = Sec->getType();
392   if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
393       Type == SHT_PREINIT_ARRAY)
394     return true;
395   if (Sec == Out<ELFT>::GotPlt)
396     return Config->ZNow;
397   if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got)
398     return true;
399   StringRef S = Sec->getName();
400   return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" ||
401          S == ".eh_frame";
402 }
403 
404 // Output section ordering is determined by this function.
405 template <class ELFT>
406 static bool compareSections(OutputSectionBase<ELFT> *A,
407                             OutputSectionBase<ELFT> *B) {
408   typedef typename ELFT::uint uintX_t;
409 
410   int Comp = Script<ELFT>::X->compareSections(A->getName(), B->getName());
411   if (Comp != 0)
412     return Comp < 0;
413 
414   uintX_t AFlags = A->getFlags();
415   uintX_t BFlags = B->getFlags();
416 
417   // Allocatable sections go first to reduce the total PT_LOAD size and
418   // so debug info doesn't change addresses in actual code.
419   bool AIsAlloc = AFlags & SHF_ALLOC;
420   bool BIsAlloc = BFlags & SHF_ALLOC;
421   if (AIsAlloc != BIsAlloc)
422     return AIsAlloc;
423 
424   // We don't have any special requirements for the relative order of
425   // two non allocatable sections.
426   if (!AIsAlloc)
427     return false;
428 
429   // We want the read only sections first so that they go in the PT_LOAD
430   // covering the program headers at the start of the file.
431   bool AIsWritable = AFlags & SHF_WRITE;
432   bool BIsWritable = BFlags & SHF_WRITE;
433   if (AIsWritable != BIsWritable)
434     return BIsWritable;
435 
436   // For a corresponding reason, put non exec sections first (the program
437   // header PT_LOAD is not executable).
438   bool AIsExec = AFlags & SHF_EXECINSTR;
439   bool BIsExec = BFlags & SHF_EXECINSTR;
440   if (AIsExec != BIsExec)
441     return BIsExec;
442 
443   // If we got here we know that both A and B are in the same PT_LOAD.
444 
445   // The TLS initialization block needs to be a single contiguous block in a R/W
446   // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS
447   // sections are placed here as they don't take up virtual address space in the
448   // PT_LOAD.
449   bool AIsTls = AFlags & SHF_TLS;
450   bool BIsTls = BFlags & SHF_TLS;
451   if (AIsTls != BIsTls)
452     return AIsTls;
453 
454   // The next requirement we have is to put nobits sections last. The
455   // reason is that the only thing the dynamic linker will see about
456   // them is a p_memsz that is larger than p_filesz. Seeing that it
457   // zeros the end of the PT_LOAD, so that has to correspond to the
458   // nobits sections.
459   bool AIsNoBits = A->getType() == SHT_NOBITS;
460   bool BIsNoBits = B->getType() == SHT_NOBITS;
461   if (AIsNoBits != BIsNoBits)
462     return BIsNoBits;
463 
464   // We place RelRo section before plain r/w ones.
465   bool AIsRelRo = isRelroSection(A);
466   bool BIsRelRo = isRelroSection(B);
467   if (AIsRelRo != BIsRelRo)
468     return AIsRelRo;
469 
470   // Some architectures have additional ordering restrictions for sections
471   // within the same PT_LOAD.
472   if (Config->EMachine == EM_PPC64)
473     return getPPC64SectionRank(A->getName()) <
474            getPPC64SectionRank(B->getName());
475 
476   return false;
477 }
478 
479 // Until this function is called, common symbols do not belong to any section.
480 // This function adds them to end of BSS section.
481 template <class ELFT>
482 void Writer<ELFT>::addCommonSymbols(std::vector<DefinedCommon *> &Syms) {
483   if (Syms.empty())
484     return;
485 
486   // Sort the common symbols by alignment as an heuristic to pack them better.
487   std::stable_sort(Syms.begin(), Syms.end(),
488                    [](const DefinedCommon *A, const DefinedCommon *B) {
489                      return A->Alignment > B->Alignment;
490                    });
491 
492   uintX_t Off = Out<ELFT>::Bss->getSize();
493   for (DefinedCommon *C : Syms) {
494     Off = alignTo(Off, C->Alignment);
495     Out<ELFT>::Bss->updateAlign(C->Alignment);
496     C->OffsetInBss = Off;
497     Off += C->Size;
498   }
499 
500   Out<ELFT>::Bss->setSize(Off);
501 }
502 
503 template <class ELFT>
504 StringRef Writer<ELFT>::getOutputSectionName(InputSectionBase<ELFT> *S) const {
505   StringRef Dest = Script<ELFT>::X->getOutputSection(S);
506   if (!Dest.empty())
507     return Dest;
508 
509   StringRef Name = S->getSectionName();
510   for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.",
511                       ".init_array.", ".fini_array.", ".ctors.", ".dtors.",
512                       ".tbss.", ".gcc_except_table.", ".tdata."})
513     if (Name.startswith(V))
514       return V.drop_back();
515   return Name;
516 }
517 
518 template <class ELFT>
519 void reportDiscarded(InputSectionBase<ELFT> *IS,
520                      const std::unique_ptr<elf::ObjectFile<ELFT>> &File) {
521   if (!Config->PrintGcSections || !IS || IS->Live)
522     return;
523   llvm::errs() << "removing unused section from '" << IS->getSectionName()
524                << "' in file '" << File->getName() << "'\n";
525 }
526 
527 template <class ELFT>
528 bool Writer<ELFT>::isDiscarded(InputSectionBase<ELFT> *S) const {
529   return !S || S == &InputSection<ELFT>::Discarded || !S->Live ||
530          Script<ELFT>::X->isDiscarded(S);
531 }
532 
533 template <class ELFT>
534 static Symbol *addOptionalSynthetic(SymbolTable<ELFT> &Table, StringRef Name,
535                                     OutputSectionBase<ELFT> *Sec,
536                                     typename ELFT::uint Val) {
537   SymbolBody *S = Table.find(Name);
538   if (!S)
539     return nullptr;
540   if (!S->isUndefined() && !S->isShared())
541     return S->symbol();
542   return Table.addSynthetic(Name, Sec, Val);
543 }
544 
545 // The beginning and the ending of .rel[a].plt section are marked
546 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
547 // executable. The runtime needs these symbols in order to resolve
548 // all IRELATIVE relocs on startup. For dynamic executables, we don't
549 // need these symbols, since IRELATIVE relocs are resolved through GOT
550 // and PLT. For details, see http://www.airs.com/blog/archives/403.
551 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
552   if (isOutputDynamic() || !Out<ELFT>::RelaPlt)
553     return;
554   StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start";
555   addOptionalSynthetic(Symtab, S, Out<ELFT>::RelaPlt, 0);
556 
557   S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end";
558   addOptionalSynthetic(Symtab, S, Out<ELFT>::RelaPlt,
559                        DefinedSynthetic<ELFT>::SectionEnd);
560 }
561 
562 // This class knows how to create an output section for a given
563 // input section. Output section type is determined by various
564 // factors, including input section's sh_flags, sh_type and
565 // linker scripts.
566 namespace {
567 template <class ELFT> class OutputSectionFactory {
568   typedef typename ELFT::Shdr Elf_Shdr;
569   typedef typename ELFT::uint uintX_t;
570 
571 public:
572   std::pair<OutputSectionBase<ELFT> *, bool> create(InputSectionBase<ELFT> *C,
573                                                     StringRef OutsecName);
574 
575   OutputSectionBase<ELFT> *lookup(StringRef Name, uint32_t Type,
576                                   uintX_t Flags) {
577     return Map.lookup({Name, Type, Flags, 0});
578   }
579 
580 private:
581   SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C,
582                                        StringRef OutsecName);
583 
584   SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map;
585 };
586 }
587 
588 template <class ELFT>
589 std::pair<OutputSectionBase<ELFT> *, bool>
590 OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C,
591                                    StringRef OutsecName) {
592   SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName);
593   OutputSectionBase<ELFT> *&Sec = Map[Key];
594   if (Sec)
595     return {Sec, false};
596 
597   switch (C->SectionKind) {
598   case InputSectionBase<ELFT>::Regular:
599     Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
600     break;
601   case InputSectionBase<ELFT>::EHFrame:
602     return {Out<ELFT>::EhFrame, false};
603   case InputSectionBase<ELFT>::Merge:
604     Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags,
605                                        Key.Alignment);
606     break;
607   case InputSectionBase<ELFT>::MipsReginfo:
608     Sec = new MipsReginfoOutputSection<ELFT>();
609     break;
610   case InputSectionBase<ELFT>::MipsOptions:
611     Sec = new MipsOptionsOutputSection<ELFT>();
612     break;
613   }
614   return {Sec, true};
615 }
616 
617 template <class ELFT>
618 SectionKey<ELFT::Is64Bits>
619 OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C,
620                                       StringRef OutsecName) {
621   const Elf_Shdr *H = C->getSectionHdr();
622   uintX_t Flags = H->sh_flags & ~SHF_GROUP;
623 
624   // For SHF_MERGE we create different output sections for each alignment.
625   // This makes each output section simple and keeps a single level mapping from
626   // input to output.
627   uintX_t Alignment = 0;
628   if (isa<MergeInputSection<ELFT>>(C))
629     Alignment = std::max(H->sh_addralign, H->sh_entsize);
630 
631   uint32_t Type = H->sh_type;
632   return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment};
633 }
634 
635 // The linker is expected to define some symbols depending on
636 // the linking result. This function defines such symbols.
637 template <class ELFT> void Writer<ELFT>::addReservedSymbols() {
638   if (Config->EMachine == EM_MIPS) {
639     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
640     // so that it points to an absolute address which is relative to GOT.
641     // See "Global Data Symbols" in Chapter 6 in the following document:
642     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
643     Symtab.addSynthetic("_gp", Out<ELFT>::Got, MipsGPOffset);
644 
645     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
646     // start of function and 'gp' pointer into GOT.
647     Symbol *Sym =
648         addOptionalSynthetic(Symtab, "_gp_disp", Out<ELFT>::Got, MipsGPOffset);
649     if (Sym)
650       ElfSym<ELFT>::MipsGpDisp = Sym->body();
651 
652     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
653     // pointer. This symbol is used in the code generated by .cpload pseudo-op
654     // in case of using -mno-shared option.
655     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
656     addOptionalSynthetic(Symtab, "__gnu_local_gp", Out<ELFT>::Got,
657                          MipsGPOffset);
658   }
659 
660   // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol
661   // is magical and is used to produce a R_386_GOTPC relocation.
662   // The R_386_GOTPC relocation value doesn't actually depend on the
663   // symbol value, so it could use an index of STN_UNDEF which, according
664   // to the spec, means the symbol value is 0.
665   // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in
666   // the object file.
667   // The situation is even stranger on x86_64 where the assembly doesn't
668   // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as
669   // an undefined symbol in the .o files.
670   // Given that the symbol is effectively unused, we just create a dummy
671   // hidden one to avoid the undefined symbol error.
672   if (!Config->Relocatable)
673     Symtab.addIgnored("_GLOBAL_OFFSET_TABLE_");
674 
675   // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For
676   // static linking the linker is required to optimize away any references to
677   // __tls_get_addr, so it's not defined anywhere. Create a hidden definition
678   // to avoid the undefined symbol error.
679   if (!isOutputDynamic())
680     Symtab.addIgnored("__tls_get_addr");
681 
682   auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1,
683                        DefinedRegular<ELFT> *&Sym2) {
684     Sym1 = Symtab.addIgnored(S, STV_DEFAULT);
685 
686     // The name without the underscore is not a reserved name,
687     // so it is defined only when there is a reference against it.
688     assert(S.startswith("_"));
689     S = S.substr(1);
690     if (SymbolBody *B = Symtab.find(S))
691       if (B->isUndefined())
692         Sym2 = Symtab.addAbsolute(S, STV_DEFAULT);
693   };
694 
695   Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2);
696   Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2);
697   Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2);
698 }
699 
700 // Sort input sections by section name suffixes for
701 // __attribute__((init_priority(N))).
702 template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) {
703   if (S)
704     reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini();
705 }
706 
707 // Sort input sections by the special rule for .ctors and .dtors.
708 template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) {
709   if (S)
710     reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors();
711 }
712 
713 // Create output section objects and add them to OutputSections.
714 template <class ELFT> void Writer<ELFT>::createSections() {
715   // Add .interp first because some loaders want to see that section
716   // on the first page of the executable file when loaded into memory.
717   if (needsInterpSection())
718     OutputSections.push_back(Out<ELFT>::Interp);
719 
720   // A core file does not usually contain unmodified segments except
721   // the first page of the executable. Add the build ID section now
722   // so that the section is included in the first page.
723   if (Out<ELFT>::BuildId)
724     OutputSections.push_back(Out<ELFT>::BuildId);
725 
726   // Create output sections for input object file sections.
727   std::vector<OutputSectionBase<ELFT> *> RegularSections;
728   OutputSectionFactory<ELFT> Factory;
729   for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
730        Symtab.getObjectFiles()) {
731     for (InputSectionBase<ELFT> *C : F->getSections()) {
732       if (isDiscarded(C)) {
733         reportDiscarded(C, F);
734         continue;
735       }
736       OutputSectionBase<ELFT> *Sec;
737       bool IsNew;
738       std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C));
739       if (IsNew) {
740         OwningSections.emplace_back(Sec);
741         OutputSections.push_back(Sec);
742         RegularSections.push_back(Sec);
743       }
744       Sec->addSection(C);
745     }
746   }
747 
748   // If we have a .opd section (used under PPC64 for function descriptors),
749   // store a pointer to it here so that we can use it later when processing
750   // relocations.
751   Out<ELFT>::Opd = Factory.lookup(".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC);
752 
753   Out<ELFT>::Dynamic->PreInitArraySec = Factory.lookup(
754       ".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC);
755   Out<ELFT>::Dynamic->InitArraySec =
756       Factory.lookup(".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC);
757   Out<ELFT>::Dynamic->FiniArraySec =
758       Factory.lookup(".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC);
759 
760   // Sort section contents for __attribute__((init_priority(N)).
761   sortInitFini(Out<ELFT>::Dynamic->InitArraySec);
762   sortInitFini(Out<ELFT>::Dynamic->FiniArraySec);
763   sortCtorsDtors(Factory.lookup(".ctors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC));
764   sortCtorsDtors(Factory.lookup(".dtors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC));
765 
766   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
767   // symbols for sections, so that the runtime can get the start and end
768   // addresses of each section by section name. Add such symbols.
769   if (!Config->Relocatable) {
770     addStartEndSymbols();
771     for (OutputSectionBase<ELFT> *Sec : RegularSections)
772       addStartStopSymbols(Sec);
773   }
774 
775   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
776   // It should be okay as no one seems to care about the type.
777   // Even the author of gold doesn't remember why gold behaves that way.
778   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
779   if (isOutputDynamic())
780     Symtab.addSynthetic("_DYNAMIC", Out<ELFT>::Dynamic, 0);
781 
782   // Define __rel[a]_iplt_{start,end} symbols if needed.
783   addRelIpltSymbols();
784 
785   if (!Out<ELFT>::EhFrame->empty()) {
786     OutputSections.push_back(Out<ELFT>::EhFrame);
787     Out<ELFT>::EhFrame->finalize();
788   }
789 
790   // Scan relocations. This must be done after every symbol is declared so that
791   // we can correctly decide if a dynamic relocation is needed.
792   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
793     Sec->forEachInputSection([&](InputSectionBase<ELFT> *S) {
794       if (auto *IS = dyn_cast<InputSection<ELFT>>(S)) {
795         // Set OutSecOff so that scanRelocations can use it.
796         uintX_t Off = alignTo(Sec->getSize(), S->Align);
797         IS->OutSecOff = Off;
798 
799         scanRelocations(*IS);
800 
801         // Now that scan relocs possibly changed the size, update the offset.
802         Sec->setSize(Off + S->getSize());
803       } else if (auto *EH = dyn_cast<EhInputSection<ELFT>>(S)) {
804         if (EH->RelocSection)
805           scanRelocations(*EH, *EH->RelocSection);
806       }
807     });
808   }
809 
810   // Now that we have defined all possible symbols including linker-
811   // synthesized ones. Visit all symbols to give the finishing touches.
812   std::vector<DefinedCommon *> CommonSymbols;
813   for (Symbol *S : Symtab.getSymbols()) {
814     SymbolBody *Body = S->body();
815 
816     // Set "used" bit for --as-needed.
817     if (S->IsUsedInRegularObj && !S->isWeak())
818       if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body))
819         SS->File->IsUsed = true;
820 
821     // We only report undefined symbols in regular objects. This means that we
822     // will accept an undefined reference in bitcode if it can be optimized out.
823     if (S->IsUsedInRegularObj && Body->isUndefined() && !S->isWeak())
824       reportUndefined<ELFT>(Symtab, Body);
825 
826     if (auto *C = dyn_cast<DefinedCommon>(Body))
827       CommonSymbols.push_back(C);
828 
829     if (!includeInSymtab<ELFT>(*Body))
830       continue;
831     if (Out<ELFT>::SymTab)
832       Out<ELFT>::SymTab->addSymbol(Body);
833 
834     if (isOutputDynamic() && S->includeInDynsym()) {
835       Out<ELFT>::DynSymTab->addSymbol(Body);
836       if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body))
837         Out<ELFT>::VerNeed->addSymbol(SS);
838     }
839   }
840 
841   // Do not proceed if there was an undefined symbol.
842   if (HasError)
843     return;
844 
845   addCommonSymbols(CommonSymbols);
846 
847   // So far we have added sections from input object files.
848   // This function adds linker-created Out<ELFT>::* sections.
849   addPredefinedSections();
850 
851   std::stable_sort(OutputSections.begin(), OutputSections.end(),
852                    compareSections<ELFT>);
853 
854   unsigned I = 1;
855   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
856     Sec->SectionIndex = I++;
857     Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName()));
858   }
859 
860   // Finalizers fix each section's size.
861   // .dynsym is finalized early since that may fill up .gnu.hash.
862   if (isOutputDynamic())
863     Out<ELFT>::DynSymTab->finalize();
864 
865   // Fill other section headers. The dynamic table is finalized
866   // at the end because some tags like RELSZ depend on result
867   // of finalizing other sections. The dynamic string table is
868   // finalized once the .dynamic finalizer has added a few last
869   // strings. See DynamicSection::finalize()
870   for (OutputSectionBase<ELFT> *Sec : OutputSections)
871     if (Sec != Out<ELFT>::DynStrTab && Sec != Out<ELFT>::Dynamic)
872       Sec->finalize();
873 
874   if (isOutputDynamic())
875     Out<ELFT>::Dynamic->finalize();
876 
877   // Now that all output offsets are fixed. Finalize mergeable sections
878   // to fix their maps from input offsets to output offsets.
879   for (OutputSectionBase<ELFT> *Sec : OutputSections)
880     Sec->finalizePieces();
881 }
882 
883 template <class ELFT> bool Writer<ELFT>::needsGot() {
884   if (!Out<ELFT>::Got->empty())
885     return true;
886 
887   // We add the .got section to the result for dynamic MIPS target because
888   // its address and properties are mentioned in the .dynamic section.
889   if (Config->EMachine == EM_MIPS)
890     return true;
891 
892   // If we have a relocation that is relative to GOT (such as GOTOFFREL),
893   // we need to emit a GOT even if it's empty.
894   return Out<ELFT>::Got->HasGotOffRel;
895 }
896 
897 // This function add Out<ELFT>::* sections to OutputSections.
898 template <class ELFT> void Writer<ELFT>::addPredefinedSections() {
899   auto Add = [&](OutputSectionBase<ELFT> *C) {
900     if (C)
901       OutputSections.push_back(C);
902   };
903 
904   // This order is not the same as the final output order
905   // because we sort the sections using their attributes below.
906   Add(Out<ELFT>::SymTab);
907   Add(Out<ELFT>::ShStrTab);
908   Add(Out<ELFT>::StrTab);
909   if (isOutputDynamic()) {
910     Add(Out<ELFT>::DynSymTab);
911     if (Out<ELFT>::VerNeed->getNeedNum() != 0) {
912       Add(Out<ELFT>::VerSym);
913       Add(Out<ELFT>::VerNeed);
914     }
915     Add(Out<ELFT>::GnuHashTab);
916     Add(Out<ELFT>::HashTab);
917     Add(Out<ELFT>::Dynamic);
918     Add(Out<ELFT>::DynStrTab);
919     if (Out<ELFT>::RelaDyn->hasRelocs())
920       Add(Out<ELFT>::RelaDyn);
921     Add(Out<ELFT>::MipsRldMap);
922   }
923 
924   // We always need to add rel[a].plt to output if it has entries.
925   // Even during static linking it can contain R_[*]_IRELATIVE relocations.
926   if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
927     Add(Out<ELFT>::RelaPlt);
928     Out<ELFT>::RelaPlt->Static = !isOutputDynamic();
929   }
930 
931   if (needsGot())
932     Add(Out<ELFT>::Got);
933   if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty())
934     Add(Out<ELFT>::GotPlt);
935   if (!Out<ELFT>::Plt->empty())
936     Add(Out<ELFT>::Plt);
937   if (!Out<ELFT>::EhFrame->empty())
938     Add(Out<ELFT>::EhFrameHdr);
939   if (Out<ELFT>::Bss->getSize() > 0)
940     Add(Out<ELFT>::Bss);
941 }
942 
943 // The linker is expected to define SECNAME_start and SECNAME_end
944 // symbols for a few sections. This function defines them.
945 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
946   auto Define = [&](StringRef Start, StringRef End,
947                     OutputSectionBase<ELFT> *OS) {
948     if (OS) {
949       this->Symtab.addSynthetic(Start, OS, 0);
950       this->Symtab.addSynthetic(End, OS, DefinedSynthetic<ELFT>::SectionEnd);
951     } else {
952       addOptionalSynthetic(this->Symtab, Start,
953                            (OutputSectionBase<ELFT> *)nullptr, 0);
954       addOptionalSynthetic(this->Symtab, End,
955                            (OutputSectionBase<ELFT> *)nullptr, 0);
956     }
957   };
958 
959   Define("__preinit_array_start", "__preinit_array_end",
960          Out<ELFT>::Dynamic->PreInitArraySec);
961   Define("__init_array_start", "__init_array_end",
962          Out<ELFT>::Dynamic->InitArraySec);
963   Define("__fini_array_start", "__fini_array_end",
964          Out<ELFT>::Dynamic->FiniArraySec);
965 }
966 
967 // If a section name is valid as a C identifier (which is rare because of
968 // the leading '.'), linkers are expected to define __start_<secname> and
969 // __stop_<secname> symbols. They are at beginning and end of the section,
970 // respectively. This is not requested by the ELF standard, but GNU ld and
971 // gold provide the feature, and used by many programs.
972 template <class ELFT>
973 void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) {
974   StringRef S = Sec->getName();
975   if (!isValidCIdentifier(S))
976     return;
977   StringSaver Saver(Alloc);
978   StringRef Start = Saver.save("__start_" + S);
979   StringRef Stop = Saver.save("__stop_" + S);
980   if (SymbolBody *B = Symtab.find(Start))
981     if (B->isUndefined())
982       Symtab.addSynthetic(Start, Sec, 0);
983   if (SymbolBody *B = Symtab.find(Stop))
984     if (B->isUndefined())
985       Symtab.addSynthetic(Stop, Sec, DefinedSynthetic<ELFT>::SectionEnd);
986 }
987 
988 template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) {
989   if (!(Sec->getFlags() & SHF_ALLOC))
990     return false;
991 
992   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
993   // responsible for allocating space for them, not the PT_LOAD that
994   // contains the TLS initialization image.
995   if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS)
996     return false;
997   return true;
998 }
999 
1000 static uint32_t toPhdrFlags(uint64_t Flags) {
1001   uint32_t Ret = PF_R;
1002   if (Flags & SHF_WRITE)
1003     Ret |= PF_W;
1004   if (Flags & SHF_EXECINSTR)
1005     Ret |= PF_X;
1006   return Ret;
1007 }
1008 
1009 // Decide which program headers to create and which sections to include in each
1010 // one.
1011 template <class ELFT> void Writer<ELFT>::createPhdrs() {
1012   auto AddHdr = [this](unsigned Type, unsigned Flags) {
1013     return &*Phdrs.emplace(Phdrs.end(), Type, Flags);
1014   };
1015 
1016   auto AddSec = [](Phdr &Hdr, OutputSectionBase<ELFT> *Sec) {
1017     Hdr.Last = Sec;
1018     if (!Hdr.First)
1019       Hdr.First = Sec;
1020     Hdr.H.p_align = std::max<uintX_t>(Hdr.H.p_align, Sec->getAlign());
1021   };
1022 
1023   // The first phdr entry is PT_PHDR which describes the program header itself.
1024   Phdr &Hdr = *AddHdr(PT_PHDR, PF_R);
1025   AddSec(Hdr, Out<ELFT>::ProgramHeaders);
1026 
1027   // PT_INTERP must be the second entry if exists.
1028   if (needsInterpSection()) {
1029     Phdr &Hdr = *AddHdr(PT_INTERP, toPhdrFlags(Out<ELFT>::Interp->getFlags()));
1030     AddSec(Hdr, Out<ELFT>::Interp);
1031   }
1032 
1033   // Add the first PT_LOAD segment for regular output sections.
1034   uintX_t Flags = PF_R;
1035   Phdr *Load = AddHdr(PT_LOAD, Flags);
1036   AddSec(*Load, Out<ELFT>::ElfHeader);
1037   AddSec(*Load, Out<ELFT>::ProgramHeaders);
1038 
1039   Phdr TlsHdr(PT_TLS, PF_R);
1040   Phdr RelRo(PT_GNU_RELRO, PF_R);
1041   Phdr Note(PT_NOTE, PF_R);
1042   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
1043     if (!(Sec->getFlags() & SHF_ALLOC))
1044       break;
1045 
1046     // If we meet TLS section then we create TLS header
1047     // and put all TLS sections inside for futher use when
1048     // assign addresses.
1049     if (Sec->getFlags() & SHF_TLS)
1050       AddSec(TlsHdr, Sec);
1051 
1052     if (!needsPtLoad<ELFT>(Sec))
1053       continue;
1054 
1055     // If flags changed then we want new load segment.
1056     uintX_t NewFlags = toPhdrFlags(Sec->getFlags());
1057     if (Flags != NewFlags) {
1058       Load = AddHdr(PT_LOAD, NewFlags);
1059       Flags = NewFlags;
1060     }
1061 
1062     AddSec(*Load, Sec);
1063 
1064     if (isRelroSection(Sec))
1065       AddSec(RelRo, Sec);
1066     if (Sec->getType() == SHT_NOTE)
1067       AddSec(Note, Sec);
1068   }
1069 
1070   // Add the TLS segment unless it's empty.
1071   if (TlsHdr.First)
1072     Phdrs.push_back(std::move(TlsHdr));
1073 
1074   // Add an entry for .dynamic.
1075   if (isOutputDynamic()) {
1076     Phdr &H = *AddHdr(PT_DYNAMIC, toPhdrFlags(Out<ELFT>::Dynamic->getFlags()));
1077     AddSec(H, Out<ELFT>::Dynamic);
1078   }
1079 
1080   // PT_GNU_RELRO includes all sections that should be marked as
1081   // read-only by dynamic linker after proccessing relocations.
1082   if (RelRo.First)
1083     Phdrs.push_back(std::move(RelRo));
1084 
1085   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
1086   if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) {
1087     Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME,
1088                         toPhdrFlags(Out<ELFT>::EhFrameHdr->getFlags()));
1089     AddSec(Hdr, Out<ELFT>::EhFrameHdr);
1090   }
1091 
1092   // PT_GNU_STACK is a special section to tell the loader to make the
1093   // pages for the stack non-executable.
1094   if (!Config->ZExecStack)
1095     AddHdr(PT_GNU_STACK, PF_R | PF_W);
1096 
1097   if (Note.First)
1098     Phdrs.push_back(std::move(Note));
1099 
1100   Out<ELFT>::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size());
1101 }
1102 
1103 // The first section of each PT_LOAD and the first section after PT_GNU_RELRO
1104 // have to be page aligned so that the dynamic linker can set the permissions.
1105 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
1106   for (const Phdr &P : Phdrs)
1107     if (P.H.p_type == PT_LOAD)
1108       P.First->PageAlign = true;
1109 
1110   for (const Phdr &P : Phdrs) {
1111     if (P.H.p_type != PT_GNU_RELRO)
1112       continue;
1113     // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
1114     // have to align it to a page.
1115     auto End = OutputSections.end();
1116     auto I = std::find(OutputSections.begin(), End, P.Last);
1117     if (I == End || (I + 1) == End)
1118       continue;
1119     OutputSectionBase<ELFT> *Sec = *(I + 1);
1120     if (needsPtLoad(Sec))
1121       Sec->PageAlign = true;
1122   }
1123 }
1124 
1125 // We should set file offsets and VAs for elf header and program headers
1126 // sections. These are special, we do not include them into output sections
1127 // list, but have them to simplify the code.
1128 template <class ELFT> void Writer<ELFT>::fixHeaders() {
1129   uintX_t BaseVA = ScriptConfig->DoLayout ? 0 : Target->getVAStart();
1130   Out<ELFT>::ElfHeader->setVA(BaseVA);
1131   Out<ELFT>::ElfHeader->setFileOffset(0);
1132   uintX_t Off = Out<ELFT>::ElfHeader->getSize();
1133   Out<ELFT>::ProgramHeaders->setVA(Off + BaseVA);
1134   Out<ELFT>::ProgramHeaders->setFileOffset(Off);
1135 }
1136 
1137 // Assign VAs (addresses at run-time) to output sections.
1138 template <class ELFT> void Writer<ELFT>::assignAddresses() {
1139   uintX_t VA = Target->getVAStart() + Out<ELFT>::ElfHeader->getSize() +
1140                Out<ELFT>::ProgramHeaders->getSize();
1141 
1142   uintX_t ThreadBssOffset = 0;
1143   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
1144     uintX_t Align = Sec->getAlign();
1145     if (Sec->PageAlign)
1146       Align = std::max<uintX_t>(Align, Target->PageSize);
1147 
1148     // We only assign VAs to allocated sections.
1149     if (needsPtLoad<ELFT>(Sec)) {
1150       VA = alignTo(VA, Align);
1151       Sec->setVA(VA);
1152       VA += Sec->getSize();
1153     } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) {
1154       uintX_t TVA = VA + ThreadBssOffset;
1155       TVA = alignTo(TVA, Align);
1156       Sec->setVA(TVA);
1157       ThreadBssOffset = TVA - VA + Sec->getSize();
1158     }
1159   }
1160 }
1161 
1162 // Adjusts the file alignment for a given output section and returns
1163 // its new file offset. The file offset must be the same with its
1164 // virtual address (modulo the page size) so that the loader can load
1165 // executables without any address adjustment.
1166 template <class ELFT, class uintX_t>
1167 static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase<ELFT> *Sec) {
1168   uintX_t Align = Sec->getAlign();
1169   if (Sec->PageAlign)
1170     Align = std::max<uintX_t>(Align, Target->PageSize);
1171   Off = alignTo(Off, Align);
1172 
1173   // Relocatable output does not have program headers
1174   // and does not need any other offset adjusting.
1175   if (Config->Relocatable || !(Sec->getFlags() & SHF_ALLOC))
1176     return Off;
1177   return alignTo(Off, Target->PageSize, Sec->getVA());
1178 }
1179 
1180 // Assign file offsets to output sections.
1181 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
1182   uintX_t Off =
1183       Out<ELFT>::ElfHeader->getSize() + Out<ELFT>::ProgramHeaders->getSize();
1184 
1185   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
1186     if (Sec->getType() == SHT_NOBITS) {
1187       Sec->setFileOffset(Off);
1188       continue;
1189     }
1190 
1191     Off = getFileAlignment<ELFT>(Off, Sec);
1192     Sec->setFileOffset(Off);
1193     Off += Sec->getSize();
1194   }
1195   SectionHeaderOff = alignTo(Off, sizeof(uintX_t));
1196   FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
1197 }
1198 
1199 // Finalize the program headers. We call this function after we assign
1200 // file offsets and VAs to all sections.
1201 template <class ELFT> void Writer<ELFT>::setPhdrs() {
1202   for (Phdr &P : Phdrs) {
1203     Elf_Phdr &H = P.H;
1204     OutputSectionBase<ELFT> *First = P.First;
1205     OutputSectionBase<ELFT> *Last = P.Last;
1206     if (First) {
1207       H.p_filesz = Last->getFileOff() - First->getFileOff();
1208       if (Last->getType() != SHT_NOBITS)
1209         H.p_filesz += Last->getSize();
1210       H.p_memsz = Last->getVA() + Last->getSize() - First->getVA();
1211       H.p_offset = First->getFileOff();
1212       H.p_vaddr = First->getVA();
1213     }
1214     if (H.p_type == PT_LOAD)
1215       H.p_align = Target->PageSize;
1216     else if (H.p_type == PT_GNU_RELRO)
1217       H.p_align = 1;
1218     H.p_paddr = H.p_vaddr;
1219 
1220     // The TLS pointer goes after PT_TLS. At least glibc will align it,
1221     // so round up the size to make sure the offsets are correct.
1222     if (H.p_type == PT_TLS) {
1223       Out<ELFT>::TlsPhdr = &H;
1224       H.p_memsz = alignTo(H.p_memsz, H.p_align);
1225     }
1226   }
1227 }
1228 
1229 static uint32_t getMipsEFlags(bool Is64Bits) {
1230   // FIXME: In fact ELF flags depends on ELF flags of input object files
1231   // and selected emulation. For now just use hard coded values.
1232   if (Is64Bits)
1233     return EF_MIPS_CPIC | EF_MIPS_PIC | EF_MIPS_ARCH_64R2;
1234 
1235   uint32_t V = EF_MIPS_CPIC | EF_MIPS_ABI_O32 | EF_MIPS_ARCH_32R2;
1236   if (Config->Shared)
1237     V |= EF_MIPS_PIC;
1238   return V;
1239 }
1240 
1241 template <class ELFT> static typename ELFT::uint getEntryAddr() {
1242   if (Symbol *S = Config->EntrySym)
1243     return S->body()->getVA<ELFT>();
1244   if (Config->EntryAddr != uint64_t(-1))
1245     return Config->EntryAddr;
1246   return 0;
1247 }
1248 
1249 template <class ELFT> static uint8_t getELFEncoding() {
1250   if (ELFT::TargetEndianness == llvm::support::little)
1251     return ELFDATA2LSB;
1252   return ELFDATA2MSB;
1253 }
1254 
1255 static uint16_t getELFType() {
1256   if (Config->Pic)
1257     return ET_DYN;
1258   if (Config->Relocatable)
1259     return ET_REL;
1260   return ET_EXEC;
1261 }
1262 
1263 // This function is called after we have assigned address and size
1264 // to each section. This function fixes some predefined absolute
1265 // symbol values that depend on section address and size.
1266 template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() {
1267   auto Set = [](DefinedRegular<ELFT> *&S1, DefinedRegular<ELFT> *&S2,
1268                 uintX_t V) {
1269     if (S1)
1270       S1->Value = V;
1271     if (S2)
1272       S2->Value = V;
1273   };
1274 
1275   // _etext is the first location after the last read-only loadable segment.
1276   // _edata is the first location after the last read-write loadable segment.
1277   // _end is the first location after the uninitialized data region.
1278   for (Phdr &P : Phdrs) {
1279     Elf_Phdr &H = P.H;
1280     if (H.p_type != PT_LOAD)
1281       continue;
1282     Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz);
1283 
1284     uintX_t Val = H.p_vaddr + H.p_filesz;
1285     if (H.p_flags & PF_W)
1286       Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val);
1287     else
1288       Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val);
1289   }
1290 }
1291 
1292 template <class ELFT> void Writer<ELFT>::writeHeader() {
1293   uint8_t *Buf = Buffer->getBufferStart();
1294   memcpy(Buf, "\177ELF", 4);
1295 
1296   auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
1297 
1298   // Write the ELF header.
1299   auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
1300   EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1301   EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>();
1302   EHdr->e_ident[EI_VERSION] = EV_CURRENT;
1303   EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI();
1304   EHdr->e_type = getELFType();
1305   EHdr->e_machine = FirstObj.getEMachine();
1306   EHdr->e_version = EV_CURRENT;
1307   EHdr->e_entry = getEntryAddr<ELFT>();
1308   EHdr->e_shoff = SectionHeaderOff;
1309   EHdr->e_ehsize = sizeof(Elf_Ehdr);
1310   EHdr->e_phnum = Phdrs.size();
1311   EHdr->e_shentsize = sizeof(Elf_Shdr);
1312   EHdr->e_shnum = OutputSections.size() + 1;
1313   EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex;
1314 
1315   if (Config->EMachine == EM_MIPS)
1316     EHdr->e_flags = getMipsEFlags(ELFT::Is64Bits);
1317 
1318   if (!Config->Relocatable) {
1319     EHdr->e_phoff = sizeof(Elf_Ehdr);
1320     EHdr->e_phentsize = sizeof(Elf_Phdr);
1321   }
1322 
1323   // Write the program header table.
1324   auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
1325   for (Phdr &P : Phdrs)
1326     *HBuf++ = P.H;
1327 
1328   // Write the section header table. Note that the first table entry is null.
1329   auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
1330   for (OutputSectionBase<ELFT> *Sec : OutputSections)
1331     Sec->writeHeaderTo(++SHdrs);
1332 }
1333 
1334 template <class ELFT> void Writer<ELFT>::openFile() {
1335   ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
1336       FileOutputBuffer::create(Config->OutputFile, FileSize,
1337                                FileOutputBuffer::F_executable);
1338   if (BufferOrErr)
1339     Buffer = std::move(*BufferOrErr);
1340   else
1341     error(BufferOrErr, "failed to open " + Config->OutputFile);
1342 }
1343 
1344 // Write section contents to a mmap'ed file.
1345 template <class ELFT> void Writer<ELFT>::writeSections() {
1346   uint8_t *Buf = Buffer->getBufferStart();
1347 
1348   // PPC64 needs to process relocations in the .opd section before processing
1349   // relocations in code-containing sections.
1350   if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) {
1351     Out<ELFT>::OpdBuf = Buf + Sec->getFileOff();
1352     Sec->writeTo(Buf + Sec->getFileOff());
1353   }
1354 
1355   for (OutputSectionBase<ELFT> *Sec : OutputSections)
1356     if (Sec != Out<ELFT>::Opd)
1357       Sec->writeTo(Buf + Sec->getFileOff());
1358 }
1359 
1360 template <class ELFT> void Writer<ELFT>::writeBuildId() {
1361   BuildIdSection<ELFT> *S = Out<ELFT>::BuildId;
1362   if (!S)
1363     return;
1364 
1365   // Compute a hash of all sections except .debug_* sections.
1366   // We skip debug sections because they tend to be very large
1367   // and their contents are very likely to be the same as long as
1368   // other sections are the same.
1369   uint8_t *Start = Buffer->getBufferStart();
1370   uint8_t *Last = Start;
1371   std::vector<ArrayRef<uint8_t>> Regions;
1372   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
1373     uint8_t *End = Start + Sec->getFileOff();
1374     if (!Sec->getName().startswith(".debug_"))
1375       Regions.push_back({Last, End});
1376     Last = End;
1377   }
1378   Regions.push_back({Last, Start + FileSize});
1379   S->writeBuildId(Regions);
1380 }
1381 
1382 template void elf::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab);
1383 template void elf::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab);
1384 template void elf::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab);
1385 template void elf::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab);
1386