1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 namespace elf { 42 namespace { 43 // The writer writes a SymbolTable result to a file. 44 template <class ELFT> class Writer { 45 public: 46 Writer() : buffer(errorHandler().outputBuffer) {} 47 using Elf_Shdr = typename ELFT::Shdr; 48 using Elf_Ehdr = typename ELFT::Ehdr; 49 using Elf_Phdr = typename ELFT::Phdr; 50 51 void run(); 52 53 private: 54 void copyLocalSymbols(); 55 void addSectionSymbols(); 56 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 57 void sortSections(); 58 void resolveShfLinkOrder(); 59 void finalizeAddressDependentContent(); 60 void sortInputSections(); 61 void finalizeSections(); 62 void checkExecuteOnly(); 63 void setReservedSymbolSections(); 64 65 std::vector<PhdrEntry *> createPhdrs(Partition &part); 66 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 67 unsigned pFlags); 68 void assignFileOffsets(); 69 void assignFileOffsetsBinary(); 70 void setPhdrs(Partition &part); 71 void checkSections(); 72 void fixSectionAlignments(); 73 void openFile(); 74 void writeTrapInstr(); 75 void writeHeader(); 76 void writeSections(); 77 void writeSectionsBinary(); 78 void writeBuildId(); 79 80 std::unique_ptr<FileOutputBuffer> &buffer; 81 82 void addRelIpltSymbols(); 83 void addStartEndSymbols(); 84 void addStartStopSymbols(OutputSection *sec); 85 86 uint64_t fileSize; 87 uint64_t sectionHeaderOff; 88 }; 89 } // anonymous namespace 90 91 static bool isSectionPrefix(StringRef prefix, StringRef name) { 92 return name.startswith(prefix) || name == prefix.drop_back(); 93 } 94 95 StringRef getOutputSectionName(const InputSectionBase *s) { 96 if (config->relocatable) 97 return s->name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if (auto *isec = dyn_cast<InputSection>(s)) { 103 if (InputSectionBase *rel = isec->getRelocatedSection()) { 104 OutputSection *out = rel->getOutputSection(); 105 if (s->type == SHT_RELA) 106 return saver.save(".rela" + out->name); 107 return saver.save(".rel" + out->name); 108 } 109 } 110 111 // This check is for -z keep-text-section-prefix. This option separates text 112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 113 // ".text.exit". 114 // When enabled, this allows identifying the hot code region (.text.hot) in 115 // the final binary which can be selectively mapped to huge pages or mlocked, 116 // for instance. 117 if (config->zKeepTextSectionPrefix) 118 for (StringRef v : 119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 120 if (isSectionPrefix(v, s->name)) 121 return v.drop_back(); 122 123 for (StringRef v : 124 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 125 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 126 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 127 if (isSectionPrefix(v, s->name)) 128 return v.drop_back(); 129 130 // CommonSection is identified as "COMMON" in linker scripts. 131 // By default, it should go to .bss section. 132 if (s->name == "COMMON") 133 return ".bss"; 134 135 return s->name; 136 } 137 138 static bool needsInterpSection() { 139 return !config->relocatable && !config->shared && 140 !config->dynamicLinker.empty() && script->needsInterpSection(); 141 } 142 143 template <class ELFT> void writeResult() { 144 llvm::TimeTraceScope timeScope("Write output file"); 145 Writer<ELFT>().run(); 146 } 147 148 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 149 llvm::erase_if(phdrs, [&](const PhdrEntry *p) { 150 if (p->p_type != PT_LOAD) 151 return false; 152 if (!p->firstSec) 153 return true; 154 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 155 return size == 0; 156 }); 157 } 158 159 void copySectionsIntoPartitions() { 160 std::vector<InputSectionBase *> newSections; 161 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 162 for (InputSectionBase *s : inputSections) { 163 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 164 continue; 165 InputSectionBase *copy; 166 if (s->type == SHT_NOTE) 167 copy = make<InputSection>(cast<InputSection>(*s)); 168 else if (auto *es = dyn_cast<EhInputSection>(s)) 169 copy = make<EhInputSection>(*es); 170 else 171 continue; 172 copy->partition = part; 173 newSections.push_back(copy); 174 } 175 } 176 177 inputSections.insert(inputSections.end(), newSections.begin(), 178 newSections.end()); 179 } 180 181 void combineEhSections() { 182 for (InputSectionBase *&s : inputSections) { 183 // Ignore dead sections and the partition end marker (.part.end), 184 // whose partition number is out of bounds. 185 if (!s->isLive() || s->partition == 255) 186 continue; 187 188 Partition &part = s->getPartition(); 189 if (auto *es = dyn_cast<EhInputSection>(s)) { 190 part.ehFrame->addSection(es); 191 s = nullptr; 192 } else if (s->kind() == SectionBase::Regular && part.armExidx && 193 part.armExidx->addSection(cast<InputSection>(s))) { 194 s = nullptr; 195 } 196 } 197 198 std::vector<InputSectionBase *> &v = inputSections; 199 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 200 } 201 202 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 203 uint64_t val, uint8_t stOther = STV_HIDDEN, 204 uint8_t binding = STB_GLOBAL) { 205 Symbol *s = symtab->find(name); 206 if (!s || s->isDefined()) 207 return nullptr; 208 209 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 210 /*size=*/0, sec}); 211 return cast<Defined>(s); 212 } 213 214 static Defined *addAbsolute(StringRef name) { 215 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 216 STT_NOTYPE, 0, 0, nullptr}); 217 return cast<Defined>(sym); 218 } 219 220 // The linker is expected to define some symbols depending on 221 // the linking result. This function defines such symbols. 222 void addReservedSymbols() { 223 if (config->emachine == EM_MIPS) { 224 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 225 // so that it points to an absolute address which by default is relative 226 // to GOT. Default offset is 0x7ff0. 227 // See "Global Data Symbols" in Chapter 6 in the following document: 228 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 229 ElfSym::mipsGp = addAbsolute("_gp"); 230 231 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 232 // start of function and 'gp' pointer into GOT. 233 if (symtab->find("_gp_disp")) 234 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 235 236 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 237 // pointer. This symbol is used in the code generated by .cpload pseudo-op 238 // in case of using -mno-shared option. 239 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 240 if (symtab->find("__gnu_local_gp")) 241 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 242 } else if (config->emachine == EM_PPC) { 243 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 244 // support Small Data Area, define it arbitrarily as 0. 245 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 246 } 247 248 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 249 // combines the typical ELF GOT with the small data sections. It commonly 250 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 251 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 252 // represent the TOC base which is offset by 0x8000 bytes from the start of 253 // the .got section. 254 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 255 // correctness of some relocations depends on its value. 256 StringRef gotSymName = 257 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 258 259 if (Symbol *s = symtab->find(gotSymName)) { 260 if (s->isDefined()) { 261 error(toString(s->file) + " cannot redefine linker defined symbol '" + 262 gotSymName + "'"); 263 return; 264 } 265 266 uint64_t gotOff = 0; 267 if (config->emachine == EM_PPC64) 268 gotOff = 0x8000; 269 270 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 271 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 272 ElfSym::globalOffsetTable = cast<Defined>(s); 273 } 274 275 // __ehdr_start is the location of ELF file headers. Note that we define 276 // this symbol unconditionally even when using a linker script, which 277 // differs from the behavior implemented by GNU linker which only define 278 // this symbol if ELF headers are in the memory mapped segment. 279 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 280 281 // __executable_start is not documented, but the expectation of at 282 // least the Android libc is that it points to the ELF header. 283 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 284 285 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 286 // each DSO. The address of the symbol doesn't matter as long as they are 287 // different in different DSOs, so we chose the start address of the DSO. 288 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 289 290 // If linker script do layout we do not need to create any standard symbols. 291 if (script->hasSectionsCommand) 292 return; 293 294 auto add = [](StringRef s, int64_t pos) { 295 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 296 }; 297 298 ElfSym::bss = add("__bss_start", 0); 299 ElfSym::end1 = add("end", -1); 300 ElfSym::end2 = add("_end", -1); 301 ElfSym::etext1 = add("etext", -1); 302 ElfSym::etext2 = add("_etext", -1); 303 ElfSym::edata1 = add("edata", -1); 304 ElfSym::edata2 = add("_edata", -1); 305 } 306 307 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 308 for (BaseCommand *base : script->sectionCommands) 309 if (auto *sec = dyn_cast<OutputSection>(base)) 310 if (sec->name == name && sec->partition == partition) 311 return sec; 312 return nullptr; 313 } 314 315 template <class ELFT> void createSyntheticSections() { 316 // Initialize all pointers with NULL. This is needed because 317 // you can call lld::elf::main more than once as a library. 318 memset(&Out::first, 0, sizeof(Out)); 319 320 // Add the .interp section first because it is not a SyntheticSection. 321 // The removeUnusedSyntheticSections() function relies on the 322 // SyntheticSections coming last. 323 if (needsInterpSection()) { 324 for (size_t i = 1; i <= partitions.size(); ++i) { 325 InputSection *sec = createInterpSection(); 326 sec->partition = i; 327 inputSections.push_back(sec); 328 } 329 } 330 331 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 332 333 in.shStrTab = make<StringTableSection>(".shstrtab", false); 334 335 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 336 Out::programHeaders->alignment = config->wordsize; 337 338 if (config->strip != StripPolicy::All) { 339 in.strTab = make<StringTableSection>(".strtab", false); 340 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 341 in.symTabShndx = make<SymtabShndxSection>(); 342 } 343 344 in.bss = make<BssSection>(".bss", 0, 1); 345 add(in.bss); 346 347 // If there is a SECTIONS command and a .data.rel.ro section name use name 348 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 349 // This makes sure our relro is contiguous. 350 bool hasDataRelRo = 351 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 352 in.bssRelRo = 353 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 354 add(in.bssRelRo); 355 356 // Add MIPS-specific sections. 357 if (config->emachine == EM_MIPS) { 358 if (!config->shared && config->hasDynSymTab) { 359 in.mipsRldMap = make<MipsRldMapSection>(); 360 add(in.mipsRldMap); 361 } 362 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 363 add(sec); 364 if (auto *sec = MipsOptionsSection<ELFT>::create()) 365 add(sec); 366 if (auto *sec = MipsReginfoSection<ELFT>::create()) 367 add(sec); 368 } 369 370 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 371 372 for (Partition &part : partitions) { 373 auto add = [&](SyntheticSection *sec) { 374 sec->partition = part.getNumber(); 375 inputSections.push_back(sec); 376 }; 377 378 if (!part.name.empty()) { 379 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 380 part.elfHeader->name = part.name; 381 add(part.elfHeader); 382 383 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 384 add(part.programHeaders); 385 } 386 387 if (config->buildId != BuildIdKind::None) { 388 part.buildId = make<BuildIdSection>(); 389 add(part.buildId); 390 } 391 392 part.dynStrTab = make<StringTableSection>(".dynstr", true); 393 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 394 part.dynamic = make<DynamicSection<ELFT>>(); 395 if (config->androidPackDynRelocs) 396 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 397 else 398 part.relaDyn = 399 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 400 401 if (config->hasDynSymTab) { 402 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 403 add(part.dynSymTab); 404 405 part.verSym = make<VersionTableSection>(); 406 add(part.verSym); 407 408 if (!namedVersionDefs().empty()) { 409 part.verDef = make<VersionDefinitionSection>(); 410 add(part.verDef); 411 } 412 413 part.verNeed = make<VersionNeedSection<ELFT>>(); 414 add(part.verNeed); 415 416 if (config->gnuHash) { 417 part.gnuHashTab = make<GnuHashTableSection>(); 418 add(part.gnuHashTab); 419 } 420 421 if (config->sysvHash) { 422 part.hashTab = make<HashTableSection>(); 423 add(part.hashTab); 424 } 425 426 add(part.dynamic); 427 add(part.dynStrTab); 428 add(part.relaDyn); 429 } 430 431 if (config->relrPackDynRelocs) { 432 part.relrDyn = make<RelrSection<ELFT>>(); 433 add(part.relrDyn); 434 } 435 436 if (!config->relocatable) { 437 if (config->ehFrameHdr) { 438 part.ehFrameHdr = make<EhFrameHeader>(); 439 add(part.ehFrameHdr); 440 } 441 part.ehFrame = make<EhFrameSection>(); 442 add(part.ehFrame); 443 } 444 445 if (config->emachine == EM_ARM && !config->relocatable) { 446 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 447 // InputSections. 448 part.armExidx = make<ARMExidxSyntheticSection>(); 449 add(part.armExidx); 450 } 451 } 452 453 if (partitions.size() != 1) { 454 // Create the partition end marker. This needs to be in partition number 255 455 // so that it is sorted after all other partitions. It also has other 456 // special handling (see createPhdrs() and combineEhSections()). 457 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 458 in.partEnd->partition = 255; 459 add(in.partEnd); 460 461 in.partIndex = make<PartitionIndexSection>(); 462 addOptionalRegular("__part_index_begin", in.partIndex, 0); 463 addOptionalRegular("__part_index_end", in.partIndex, 464 in.partIndex->getSize()); 465 add(in.partIndex); 466 } 467 468 // Add .got. MIPS' .got is so different from the other archs, 469 // it has its own class. 470 if (config->emachine == EM_MIPS) { 471 in.mipsGot = make<MipsGotSection>(); 472 add(in.mipsGot); 473 } else { 474 in.got = make<GotSection>(); 475 add(in.got); 476 } 477 478 if (config->emachine == EM_PPC) { 479 in.ppc32Got2 = make<PPC32Got2Section>(); 480 add(in.ppc32Got2); 481 } 482 483 if (config->emachine == EM_PPC64) { 484 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 485 add(in.ppc64LongBranchTarget); 486 } 487 488 in.gotPlt = make<GotPltSection>(); 489 add(in.gotPlt); 490 in.igotPlt = make<IgotPltSection>(); 491 add(in.igotPlt); 492 493 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 494 // it as a relocation and ensure the referenced section is created. 495 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 496 if (target->gotBaseSymInGotPlt) 497 in.gotPlt->hasGotPltOffRel = true; 498 else 499 in.got->hasGotOffRel = true; 500 } 501 502 if (config->gdbIndex) 503 add(GdbIndexSection::create<ELFT>()); 504 505 // We always need to add rel[a].plt to output if it has entries. 506 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 507 in.relaPlt = make<RelocationSection<ELFT>>( 508 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 509 add(in.relaPlt); 510 511 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 512 // relocations are processed last by the dynamic loader. We cannot place the 513 // iplt section in .rel.dyn when Android relocation packing is enabled because 514 // that would cause a section type mismatch. However, because the Android 515 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 516 // behaviour by placing the iplt section in .rel.plt. 517 in.relaIplt = make<RelocationSection<ELFT>>( 518 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 519 /*sort=*/false); 520 add(in.relaIplt); 521 522 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 523 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 524 in.ibtPlt = make<IBTPltSection>(); 525 add(in.ibtPlt); 526 } 527 528 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 529 : make<PltSection>(); 530 add(in.plt); 531 in.iplt = make<IpltSection>(); 532 add(in.iplt); 533 534 if (config->andFeatures) 535 add(make<GnuPropertySection>()); 536 537 // .note.GNU-stack is always added when we are creating a re-linkable 538 // object file. Other linkers are using the presence of this marker 539 // section to control the executable-ness of the stack area, but that 540 // is irrelevant these days. Stack area should always be non-executable 541 // by default. So we emit this section unconditionally. 542 if (config->relocatable) 543 add(make<GnuStackSection>()); 544 545 if (in.symTab) 546 add(in.symTab); 547 if (in.symTabShndx) 548 add(in.symTabShndx); 549 add(in.shStrTab); 550 if (in.strTab) 551 add(in.strTab); 552 } 553 554 // The main function of the writer. 555 template <class ELFT> void Writer<ELFT>::run() { 556 if (config->discard != DiscardPolicy::All) 557 copyLocalSymbols(); 558 559 if (config->copyRelocs) 560 addSectionSymbols(); 561 562 // Now that we have a complete set of output sections. This function 563 // completes section contents. For example, we need to add strings 564 // to the string table, and add entries to .got and .plt. 565 // finalizeSections does that. 566 finalizeSections(); 567 checkExecuteOnly(); 568 if (errorCount()) 569 return; 570 571 // If -compressed-debug-sections is specified, we need to compress 572 // .debug_* sections. Do it right now because it changes the size of 573 // output sections. 574 for (OutputSection *sec : outputSections) 575 sec->maybeCompress<ELFT>(); 576 577 if (script->hasSectionsCommand) 578 script->allocateHeaders(mainPart->phdrs); 579 580 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 581 // 0 sized region. This has to be done late since only after assignAddresses 582 // we know the size of the sections. 583 for (Partition &part : partitions) 584 removeEmptyPTLoad(part.phdrs); 585 586 if (!config->oFormatBinary) 587 assignFileOffsets(); 588 else 589 assignFileOffsetsBinary(); 590 591 for (Partition &part : partitions) 592 setPhdrs(part); 593 594 if (config->relocatable) 595 for (OutputSection *sec : outputSections) 596 sec->addr = 0; 597 598 if (config->checkSections) 599 checkSections(); 600 601 // It does not make sense try to open the file if we have error already. 602 if (errorCount()) 603 return; 604 // Write the result down to a file. 605 openFile(); 606 if (errorCount()) 607 return; 608 609 if (!config->oFormatBinary) { 610 if (config->zSeparate != SeparateSegmentKind::None) 611 writeTrapInstr(); 612 writeHeader(); 613 writeSections(); 614 } else { 615 writeSectionsBinary(); 616 } 617 618 // Backfill .note.gnu.build-id section content. This is done at last 619 // because the content is usually a hash value of the entire output file. 620 writeBuildId(); 621 if (errorCount()) 622 return; 623 624 // Handle -Map and -cref options. 625 writeMapFile(); 626 writeCrossReferenceTable(); 627 if (errorCount()) 628 return; 629 630 if (auto e = buffer->commit()) 631 error("failed to write to the output file: " + toString(std::move(e))); 632 } 633 634 static bool shouldKeepInSymtab(const Defined &sym) { 635 if (sym.isSection()) 636 return false; 637 638 if (config->discard == DiscardPolicy::None) 639 return true; 640 641 // If -emit-reloc is given, all symbols including local ones need to be 642 // copied because they may be referenced by relocations. 643 if (config->emitRelocs) 644 return true; 645 646 // In ELF assembly .L symbols are normally discarded by the assembler. 647 // If the assembler fails to do so, the linker discards them if 648 // * --discard-locals is used. 649 // * The symbol is in a SHF_MERGE section, which is normally the reason for 650 // the assembler keeping the .L symbol. 651 StringRef name = sym.getName(); 652 bool isLocal = name.startswith(".L") || name.empty(); 653 if (!isLocal) 654 return true; 655 656 if (config->discard == DiscardPolicy::Locals) 657 return false; 658 659 SectionBase *sec = sym.section; 660 return !sec || !(sec->flags & SHF_MERGE); 661 } 662 663 static bool includeInSymtab(const Symbol &b) { 664 if (!b.isLocal() && !b.isUsedInRegularObj) 665 return false; 666 667 if (auto *d = dyn_cast<Defined>(&b)) { 668 // Always include absolute symbols. 669 SectionBase *sec = d->section; 670 if (!sec) 671 return true; 672 sec = sec->repl; 673 674 // Exclude symbols pointing to garbage-collected sections. 675 if (isa<InputSectionBase>(sec) && !sec->isLive()) 676 return false; 677 678 if (auto *s = dyn_cast<MergeInputSection>(sec)) 679 if (!s->getSectionPiece(d->value)->live) 680 return false; 681 return true; 682 } 683 return b.used; 684 } 685 686 // Local symbols are not in the linker's symbol table. This function scans 687 // each object file's symbol table to copy local symbols to the output. 688 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 689 if (!in.symTab) 690 return; 691 for (InputFile *file : objectFiles) { 692 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 693 for (Symbol *b : f->getLocalSymbols()) { 694 if (!b->isLocal()) 695 fatal(toString(f) + 696 ": broken object: getLocalSymbols returns a non-local symbol"); 697 auto *dr = dyn_cast<Defined>(b); 698 699 // No reason to keep local undefined symbol in symtab. 700 if (!dr) 701 continue; 702 if (!includeInSymtab(*b)) 703 continue; 704 if (!shouldKeepInSymtab(*dr)) 705 continue; 706 in.symTab->addSymbol(b); 707 } 708 } 709 } 710 711 // Create a section symbol for each output section so that we can represent 712 // relocations that point to the section. If we know that no relocation is 713 // referring to a section (that happens if the section is a synthetic one), we 714 // don't create a section symbol for that section. 715 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 716 for (BaseCommand *base : script->sectionCommands) { 717 auto *sec = dyn_cast<OutputSection>(base); 718 if (!sec) 719 continue; 720 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 721 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 722 return !isd->sections.empty(); 723 return false; 724 }); 725 if (i == sec->sectionCommands.end()) 726 continue; 727 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 728 729 // Relocations are not using REL[A] section symbols. 730 if (isec->type == SHT_REL || isec->type == SHT_RELA) 731 continue; 732 733 // Unlike other synthetic sections, mergeable output sections contain data 734 // copied from input sections, and there may be a relocation pointing to its 735 // contents if -r or -emit-reloc are given. 736 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 737 continue; 738 739 auto *sym = 740 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 741 /*value=*/0, /*size=*/0, isec); 742 in.symTab->addSymbol(sym); 743 } 744 } 745 746 // Today's loaders have a feature to make segments read-only after 747 // processing dynamic relocations to enhance security. PT_GNU_RELRO 748 // is defined for that. 749 // 750 // This function returns true if a section needs to be put into a 751 // PT_GNU_RELRO segment. 752 static bool isRelroSection(const OutputSection *sec) { 753 if (!config->zRelro) 754 return false; 755 756 uint64_t flags = sec->flags; 757 758 // Non-allocatable or non-writable sections don't need RELRO because 759 // they are not writable or not even mapped to memory in the first place. 760 // RELRO is for sections that are essentially read-only but need to 761 // be writable only at process startup to allow dynamic linker to 762 // apply relocations. 763 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 764 return false; 765 766 // Once initialized, TLS data segments are used as data templates 767 // for a thread-local storage. For each new thread, runtime 768 // allocates memory for a TLS and copy templates there. No thread 769 // are supposed to use templates directly. Thus, it can be in RELRO. 770 if (flags & SHF_TLS) 771 return true; 772 773 // .init_array, .preinit_array and .fini_array contain pointers to 774 // functions that are executed on process startup or exit. These 775 // pointers are set by the static linker, and they are not expected 776 // to change at runtime. But if you are an attacker, you could do 777 // interesting things by manipulating pointers in .fini_array, for 778 // example. So they are put into RELRO. 779 uint32_t type = sec->type; 780 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 781 type == SHT_PREINIT_ARRAY) 782 return true; 783 784 // .got contains pointers to external symbols. They are resolved by 785 // the dynamic linker when a module is loaded into memory, and after 786 // that they are not expected to change. So, it can be in RELRO. 787 if (in.got && sec == in.got->getParent()) 788 return true; 789 790 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 791 // through r2 register, which is reserved for that purpose. Since r2 is used 792 // for accessing .got as well, .got and .toc need to be close enough in the 793 // virtual address space. Usually, .toc comes just after .got. Since we place 794 // .got into RELRO, .toc needs to be placed into RELRO too. 795 if (sec->name.equals(".toc")) 796 return true; 797 798 // .got.plt contains pointers to external function symbols. They are 799 // by default resolved lazily, so we usually cannot put it into RELRO. 800 // However, if "-z now" is given, the lazy symbol resolution is 801 // disabled, which enables us to put it into RELRO. 802 if (sec == in.gotPlt->getParent()) 803 return config->zNow; 804 805 // .dynamic section contains data for the dynamic linker, and 806 // there's no need to write to it at runtime, so it's better to put 807 // it into RELRO. 808 if (sec->name == ".dynamic") 809 return true; 810 811 // Sections with some special names are put into RELRO. This is a 812 // bit unfortunate because section names shouldn't be significant in 813 // ELF in spirit. But in reality many linker features depend on 814 // magic section names. 815 StringRef s = sec->name; 816 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 817 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 818 s == ".openbsd.randomdata"; 819 } 820 821 // We compute a rank for each section. The rank indicates where the 822 // section should be placed in the file. Instead of using simple 823 // numbers (0,1,2...), we use a series of flags. One for each decision 824 // point when placing the section. 825 // Using flags has two key properties: 826 // * It is easy to check if a give branch was taken. 827 // * It is easy two see how similar two ranks are (see getRankProximity). 828 enum RankFlags { 829 RF_NOT_ADDR_SET = 1 << 27, 830 RF_NOT_ALLOC = 1 << 26, 831 RF_PARTITION = 1 << 18, // Partition number (8 bits) 832 RF_NOT_PART_EHDR = 1 << 17, 833 RF_NOT_PART_PHDR = 1 << 16, 834 RF_NOT_INTERP = 1 << 15, 835 RF_NOT_NOTE = 1 << 14, 836 RF_WRITE = 1 << 13, 837 RF_EXEC_WRITE = 1 << 12, 838 RF_EXEC = 1 << 11, 839 RF_RODATA = 1 << 10, 840 RF_NOT_RELRO = 1 << 9, 841 RF_NOT_TLS = 1 << 8, 842 RF_BSS = 1 << 7, 843 RF_PPC_NOT_TOCBSS = 1 << 6, 844 RF_PPC_TOCL = 1 << 5, 845 RF_PPC_TOC = 1 << 4, 846 RF_PPC_GOT = 1 << 3, 847 RF_PPC_BRANCH_LT = 1 << 2, 848 RF_MIPS_GPREL = 1 << 1, 849 RF_MIPS_NOT_GOT = 1 << 0 850 }; 851 852 static unsigned getSectionRank(const OutputSection *sec) { 853 unsigned rank = sec->partition * RF_PARTITION; 854 855 // We want to put section specified by -T option first, so we 856 // can start assigning VA starting from them later. 857 if (config->sectionStartMap.count(sec->name)) 858 return rank; 859 rank |= RF_NOT_ADDR_SET; 860 861 // Allocatable sections go first to reduce the total PT_LOAD size and 862 // so debug info doesn't change addresses in actual code. 863 if (!(sec->flags & SHF_ALLOC)) 864 return rank | RF_NOT_ALLOC; 865 866 if (sec->type == SHT_LLVM_PART_EHDR) 867 return rank; 868 rank |= RF_NOT_PART_EHDR; 869 870 if (sec->type == SHT_LLVM_PART_PHDR) 871 return rank; 872 rank |= RF_NOT_PART_PHDR; 873 874 // Put .interp first because some loaders want to see that section 875 // on the first page of the executable file when loaded into memory. 876 if (sec->name == ".interp") 877 return rank; 878 rank |= RF_NOT_INTERP; 879 880 // Put .note sections (which make up one PT_NOTE) at the beginning so that 881 // they are likely to be included in a core file even if core file size is 882 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 883 // included in a core to match core files with executables. 884 if (sec->type == SHT_NOTE) 885 return rank; 886 rank |= RF_NOT_NOTE; 887 888 // Sort sections based on their access permission in the following 889 // order: R, RX, RWX, RW. This order is based on the following 890 // considerations: 891 // * Read-only sections come first such that they go in the 892 // PT_LOAD covering the program headers at the start of the file. 893 // * Read-only, executable sections come next. 894 // * Writable, executable sections follow such that .plt on 895 // architectures where it needs to be writable will be placed 896 // between .text and .data. 897 // * Writable sections come last, such that .bss lands at the very 898 // end of the last PT_LOAD. 899 bool isExec = sec->flags & SHF_EXECINSTR; 900 bool isWrite = sec->flags & SHF_WRITE; 901 902 if (isExec) { 903 if (isWrite) 904 rank |= RF_EXEC_WRITE; 905 else 906 rank |= RF_EXEC; 907 } else if (isWrite) { 908 rank |= RF_WRITE; 909 } else if (sec->type == SHT_PROGBITS) { 910 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 911 // .eh_frame) closer to .text. They likely contain PC or GOT relative 912 // relocations and there could be relocation overflow if other huge sections 913 // (.dynstr .dynsym) were placed in between. 914 rank |= RF_RODATA; 915 } 916 917 // Place RelRo sections first. After considering SHT_NOBITS below, the 918 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 919 // where | marks where page alignment happens. An alternative ordering is 920 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 921 // waste more bytes due to 2 alignment places. 922 if (!isRelroSection(sec)) 923 rank |= RF_NOT_RELRO; 924 925 // If we got here we know that both A and B are in the same PT_LOAD. 926 927 // The TLS initialization block needs to be a single contiguous block in a R/W 928 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 929 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 930 // after PROGBITS. 931 if (!(sec->flags & SHF_TLS)) 932 rank |= RF_NOT_TLS; 933 934 // Within TLS sections, or within other RelRo sections, or within non-RelRo 935 // sections, place non-NOBITS sections first. 936 if (sec->type == SHT_NOBITS) 937 rank |= RF_BSS; 938 939 // Some architectures have additional ordering restrictions for sections 940 // within the same PT_LOAD. 941 if (config->emachine == EM_PPC64) { 942 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 943 // that we would like to make sure appear is a specific order to maximize 944 // their coverage by a single signed 16-bit offset from the TOC base 945 // pointer. Conversely, the special .tocbss section should be first among 946 // all SHT_NOBITS sections. This will put it next to the loaded special 947 // PPC64 sections (and, thus, within reach of the TOC base pointer). 948 StringRef name = sec->name; 949 if (name != ".tocbss") 950 rank |= RF_PPC_NOT_TOCBSS; 951 952 if (name == ".toc1") 953 rank |= RF_PPC_TOCL; 954 955 if (name == ".toc") 956 rank |= RF_PPC_TOC; 957 958 if (name == ".got") 959 rank |= RF_PPC_GOT; 960 961 if (name == ".branch_lt") 962 rank |= RF_PPC_BRANCH_LT; 963 } 964 965 if (config->emachine == EM_MIPS) { 966 // All sections with SHF_MIPS_GPREL flag should be grouped together 967 // because data in these sections is addressable with a gp relative address. 968 if (sec->flags & SHF_MIPS_GPREL) 969 rank |= RF_MIPS_GPREL; 970 971 if (sec->name != ".got") 972 rank |= RF_MIPS_NOT_GOT; 973 } 974 975 return rank; 976 } 977 978 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 979 const OutputSection *a = cast<OutputSection>(aCmd); 980 const OutputSection *b = cast<OutputSection>(bCmd); 981 982 if (a->sortRank != b->sortRank) 983 return a->sortRank < b->sortRank; 984 985 if (!(a->sortRank & RF_NOT_ADDR_SET)) 986 return config->sectionStartMap.lookup(a->name) < 987 config->sectionStartMap.lookup(b->name); 988 return false; 989 } 990 991 void PhdrEntry::add(OutputSection *sec) { 992 lastSec = sec; 993 if (!firstSec) 994 firstSec = sec; 995 p_align = std::max(p_align, sec->alignment); 996 if (p_type == PT_LOAD) 997 sec->ptLoad = this; 998 } 999 1000 // The beginning and the ending of .rel[a].plt section are marked 1001 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1002 // executable. The runtime needs these symbols in order to resolve 1003 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1004 // need these symbols, since IRELATIVE relocs are resolved through GOT 1005 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1006 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1007 if (config->relocatable || needsInterpSection()) 1008 return; 1009 1010 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1011 // because .rela.plt might be empty and thus removed from output. 1012 // We'll override Out::elfHeader with In.relaIplt later when we are 1013 // sure that .rela.plt exists in output. 1014 ElfSym::relaIpltStart = addOptionalRegular( 1015 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1016 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1017 1018 ElfSym::relaIpltEnd = addOptionalRegular( 1019 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1020 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1021 } 1022 1023 template <class ELFT> 1024 void Writer<ELFT>::forEachRelSec( 1025 llvm::function_ref<void(InputSectionBase &)> fn) { 1026 // Scan all relocations. Each relocation goes through a series 1027 // of tests to determine if it needs special treatment, such as 1028 // creating GOT, PLT, copy relocations, etc. 1029 // Note that relocations for non-alloc sections are directly 1030 // processed by InputSection::relocateNonAlloc. 1031 for (InputSectionBase *isec : inputSections) 1032 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1033 fn(*isec); 1034 for (Partition &part : partitions) { 1035 for (EhInputSection *es : part.ehFrame->sections) 1036 fn(*es); 1037 if (part.armExidx && part.armExidx->isLive()) 1038 for (InputSection *ex : part.armExidx->exidxSections) 1039 fn(*ex); 1040 } 1041 } 1042 1043 // This function generates assignments for predefined symbols (e.g. _end or 1044 // _etext) and inserts them into the commands sequence to be processed at the 1045 // appropriate time. This ensures that the value is going to be correct by the 1046 // time any references to these symbols are processed and is equivalent to 1047 // defining these symbols explicitly in the linker script. 1048 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1049 if (ElfSym::globalOffsetTable) { 1050 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1051 // to the start of the .got or .got.plt section. 1052 InputSection *gotSection = in.gotPlt; 1053 if (!target->gotBaseSymInGotPlt) 1054 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1055 : cast<InputSection>(in.got); 1056 ElfSym::globalOffsetTable->section = gotSection; 1057 } 1058 1059 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1060 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1061 ElfSym::relaIpltStart->section = in.relaIplt; 1062 ElfSym::relaIpltEnd->section = in.relaIplt; 1063 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1064 } 1065 1066 PhdrEntry *last = nullptr; 1067 PhdrEntry *lastRO = nullptr; 1068 1069 for (Partition &part : partitions) { 1070 for (PhdrEntry *p : part.phdrs) { 1071 if (p->p_type != PT_LOAD) 1072 continue; 1073 last = p; 1074 if (!(p->p_flags & PF_W)) 1075 lastRO = p; 1076 } 1077 } 1078 1079 if (lastRO) { 1080 // _etext is the first location after the last read-only loadable segment. 1081 if (ElfSym::etext1) 1082 ElfSym::etext1->section = lastRO->lastSec; 1083 if (ElfSym::etext2) 1084 ElfSym::etext2->section = lastRO->lastSec; 1085 } 1086 1087 if (last) { 1088 // _edata points to the end of the last mapped initialized section. 1089 OutputSection *edata = nullptr; 1090 for (OutputSection *os : outputSections) { 1091 if (os->type != SHT_NOBITS) 1092 edata = os; 1093 if (os == last->lastSec) 1094 break; 1095 } 1096 1097 if (ElfSym::edata1) 1098 ElfSym::edata1->section = edata; 1099 if (ElfSym::edata2) 1100 ElfSym::edata2->section = edata; 1101 1102 // _end is the first location after the uninitialized data region. 1103 if (ElfSym::end1) 1104 ElfSym::end1->section = last->lastSec; 1105 if (ElfSym::end2) 1106 ElfSym::end2->section = last->lastSec; 1107 } 1108 1109 if (ElfSym::bss) 1110 ElfSym::bss->section = findSection(".bss"); 1111 1112 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1113 // be equal to the _gp symbol's value. 1114 if (ElfSym::mipsGp) { 1115 // Find GP-relative section with the lowest address 1116 // and use this address to calculate default _gp value. 1117 for (OutputSection *os : outputSections) { 1118 if (os->flags & SHF_MIPS_GPREL) { 1119 ElfSym::mipsGp->section = os; 1120 ElfSym::mipsGp->value = 0x7ff0; 1121 break; 1122 } 1123 } 1124 } 1125 } 1126 1127 // We want to find how similar two ranks are. 1128 // The more branches in getSectionRank that match, the more similar they are. 1129 // Since each branch corresponds to a bit flag, we can just use 1130 // countLeadingZeros. 1131 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1132 return countLeadingZeros(a->sortRank ^ b->sortRank); 1133 } 1134 1135 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1136 auto *sec = dyn_cast<OutputSection>(b); 1137 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1138 } 1139 1140 // When placing orphan sections, we want to place them after symbol assignments 1141 // so that an orphan after 1142 // begin_foo = .; 1143 // foo : { *(foo) } 1144 // end_foo = .; 1145 // doesn't break the intended meaning of the begin/end symbols. 1146 // We don't want to go over sections since findOrphanPos is the 1147 // one in charge of deciding the order of the sections. 1148 // We don't want to go over changes to '.', since doing so in 1149 // rx_sec : { *(rx_sec) } 1150 // . = ALIGN(0x1000); 1151 // /* The RW PT_LOAD starts here*/ 1152 // rw_sec : { *(rw_sec) } 1153 // would mean that the RW PT_LOAD would become unaligned. 1154 static bool shouldSkip(BaseCommand *cmd) { 1155 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1156 return assign->name != "."; 1157 return false; 1158 } 1159 1160 // We want to place orphan sections so that they share as much 1161 // characteristics with their neighbors as possible. For example, if 1162 // both are rw, or both are tls. 1163 static std::vector<BaseCommand *>::iterator 1164 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1165 std::vector<BaseCommand *>::iterator e) { 1166 OutputSection *sec = cast<OutputSection>(*e); 1167 1168 // Find the first element that has as close a rank as possible. 1169 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1170 return getRankProximity(sec, a) < getRankProximity(sec, b); 1171 }); 1172 if (i == e) 1173 return e; 1174 1175 // Consider all existing sections with the same proximity. 1176 int proximity = getRankProximity(sec, *i); 1177 for (; i != e; ++i) { 1178 auto *curSec = dyn_cast<OutputSection>(*i); 1179 if (!curSec || !curSec->hasInputSections) 1180 continue; 1181 if (getRankProximity(sec, curSec) != proximity || 1182 sec->sortRank < curSec->sortRank) 1183 break; 1184 } 1185 1186 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1187 auto *os = dyn_cast<OutputSection>(cmd); 1188 return os && os->hasInputSections; 1189 }; 1190 auto j = std::find_if(llvm::make_reverse_iterator(i), 1191 llvm::make_reverse_iterator(b), 1192 isOutputSecWithInputSections); 1193 i = j.base(); 1194 1195 // As a special case, if the orphan section is the last section, put 1196 // it at the very end, past any other commands. 1197 // This matches bfd's behavior and is convenient when the linker script fully 1198 // specifies the start of the file, but doesn't care about the end (the non 1199 // alloc sections for example). 1200 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1201 if (nextSec == e) 1202 return e; 1203 1204 while (i != e && shouldSkip(*i)) 1205 ++i; 1206 return i; 1207 } 1208 1209 // Adds random priorities to sections not already in the map. 1210 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1211 if (!config->shuffleSectionSeed) 1212 return; 1213 1214 std::vector<int> priorities(inputSections.size() - order.size()); 1215 // Existing priorities are < 0, so use priorities >= 0 for the missing 1216 // sections. 1217 int curPrio = 0; 1218 for (int &prio : priorities) 1219 prio = curPrio++; 1220 uint32_t seed = *config->shuffleSectionSeed; 1221 std::mt19937 g(seed ? seed : std::random_device()()); 1222 llvm::shuffle(priorities.begin(), priorities.end(), g); 1223 int prioIndex = 0; 1224 for (InputSectionBase *sec : inputSections) { 1225 if (order.try_emplace(sec, priorities[prioIndex]).second) 1226 ++prioIndex; 1227 } 1228 } 1229 1230 // Builds section order for handling --symbol-ordering-file. 1231 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1232 DenseMap<const InputSectionBase *, int> sectionOrder; 1233 // Use the rarely used option -call-graph-ordering-file to sort sections. 1234 if (!config->callGraphProfile.empty()) 1235 return computeCallGraphProfileOrder(); 1236 1237 if (config->symbolOrderingFile.empty()) 1238 return sectionOrder; 1239 1240 struct SymbolOrderEntry { 1241 int priority; 1242 bool present; 1243 }; 1244 1245 // Build a map from symbols to their priorities. Symbols that didn't 1246 // appear in the symbol ordering file have the lowest priority 0. 1247 // All explicitly mentioned symbols have negative (higher) priorities. 1248 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1249 int priority = -config->symbolOrderingFile.size(); 1250 for (StringRef s : config->symbolOrderingFile) 1251 symbolOrder.insert({s, {priority++, false}}); 1252 1253 // Build a map from sections to their priorities. 1254 auto addSym = [&](Symbol &sym) { 1255 auto it = symbolOrder.find(sym.getName()); 1256 if (it == symbolOrder.end()) 1257 return; 1258 SymbolOrderEntry &ent = it->second; 1259 ent.present = true; 1260 1261 maybeWarnUnorderableSymbol(&sym); 1262 1263 if (auto *d = dyn_cast<Defined>(&sym)) { 1264 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1265 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1266 priority = std::min(priority, ent.priority); 1267 } 1268 } 1269 }; 1270 1271 // We want both global and local symbols. We get the global ones from the 1272 // symbol table and iterate the object files for the local ones. 1273 for (Symbol *sym : symtab->symbols()) 1274 if (!sym->isLazy()) 1275 addSym(*sym); 1276 1277 for (InputFile *file : objectFiles) 1278 for (Symbol *sym : file->getSymbols()) 1279 if (sym->isLocal()) 1280 addSym(*sym); 1281 1282 if (config->warnSymbolOrdering) 1283 for (auto orderEntry : symbolOrder) 1284 if (!orderEntry.second.present) 1285 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1286 1287 return sectionOrder; 1288 } 1289 1290 // Sorts the sections in ISD according to the provided section order. 1291 static void 1292 sortISDBySectionOrder(InputSectionDescription *isd, 1293 const DenseMap<const InputSectionBase *, int> &order) { 1294 std::vector<InputSection *> unorderedSections; 1295 std::vector<std::pair<InputSection *, int>> orderedSections; 1296 uint64_t unorderedSize = 0; 1297 1298 for (InputSection *isec : isd->sections) { 1299 auto i = order.find(isec); 1300 if (i == order.end()) { 1301 unorderedSections.push_back(isec); 1302 unorderedSize += isec->getSize(); 1303 continue; 1304 } 1305 orderedSections.push_back({isec, i->second}); 1306 } 1307 llvm::sort(orderedSections, llvm::less_second()); 1308 1309 // Find an insertion point for the ordered section list in the unordered 1310 // section list. On targets with limited-range branches, this is the mid-point 1311 // of the unordered section list. This decreases the likelihood that a range 1312 // extension thunk will be needed to enter or exit the ordered region. If the 1313 // ordered section list is a list of hot functions, we can generally expect 1314 // the ordered functions to be called more often than the unordered functions, 1315 // making it more likely that any particular call will be within range, and 1316 // therefore reducing the number of thunks required. 1317 // 1318 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1319 // If the layout is: 1320 // 1321 // 8MB hot 1322 // 32MB cold 1323 // 1324 // only the first 8-16MB of the cold code (depending on which hot function it 1325 // is actually calling) can call the hot code without a range extension thunk. 1326 // However, if we use this layout: 1327 // 1328 // 16MB cold 1329 // 8MB hot 1330 // 16MB cold 1331 // 1332 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1333 // of the second block of cold code can call the hot code without a thunk. So 1334 // we effectively double the amount of code that could potentially call into 1335 // the hot code without a thunk. 1336 size_t insPt = 0; 1337 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1338 uint64_t unorderedPos = 0; 1339 for (; insPt != unorderedSections.size(); ++insPt) { 1340 unorderedPos += unorderedSections[insPt]->getSize(); 1341 if (unorderedPos > unorderedSize / 2) 1342 break; 1343 } 1344 } 1345 1346 isd->sections.clear(); 1347 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1348 isd->sections.push_back(isec); 1349 for (std::pair<InputSection *, int> p : orderedSections) 1350 isd->sections.push_back(p.first); 1351 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1352 isd->sections.push_back(isec); 1353 } 1354 1355 static void sortSection(OutputSection *sec, 1356 const DenseMap<const InputSectionBase *, int> &order) { 1357 StringRef name = sec->name; 1358 1359 // Never sort these. 1360 if (name == ".init" || name == ".fini") 1361 return; 1362 1363 // Sort input sections by priority using the list provided by 1364 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1365 // digit radix sort. The sections may be sorted stably again by a more 1366 // significant key. 1367 if (!order.empty()) 1368 for (BaseCommand *b : sec->sectionCommands) 1369 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1370 sortISDBySectionOrder(isd, order); 1371 1372 // Sort input sections by section name suffixes for 1373 // __attribute__((init_priority(N))). 1374 if (name == ".init_array" || name == ".fini_array") { 1375 if (!script->hasSectionsCommand) 1376 sec->sortInitFini(); 1377 return; 1378 } 1379 1380 // Sort input sections by the special rule for .ctors and .dtors. 1381 if (name == ".ctors" || name == ".dtors") { 1382 if (!script->hasSectionsCommand) 1383 sec->sortCtorsDtors(); 1384 return; 1385 } 1386 1387 // .toc is allocated just after .got and is accessed using GOT-relative 1388 // relocations. Object files compiled with small code model have an 1389 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1390 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1391 // sections having smaller relocation offsets are at beginning of .toc 1392 if (config->emachine == EM_PPC64 && name == ".toc") { 1393 if (script->hasSectionsCommand) 1394 return; 1395 assert(sec->sectionCommands.size() == 1); 1396 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1397 llvm::stable_sort(isd->sections, 1398 [](const InputSection *a, const InputSection *b) -> bool { 1399 return a->file->ppc64SmallCodeModelTocRelocs && 1400 !b->file->ppc64SmallCodeModelTocRelocs; 1401 }); 1402 return; 1403 } 1404 } 1405 1406 // If no layout was provided by linker script, we want to apply default 1407 // sorting for special input sections. This also handles --symbol-ordering-file. 1408 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1409 // Build the order once since it is expensive. 1410 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1411 maybeShuffle(order); 1412 for (BaseCommand *base : script->sectionCommands) 1413 if (auto *sec = dyn_cast<OutputSection>(base)) 1414 sortSection(sec, order); 1415 } 1416 1417 template <class ELFT> void Writer<ELFT>::sortSections() { 1418 script->adjustSectionsBeforeSorting(); 1419 1420 // Don't sort if using -r. It is not necessary and we want to preserve the 1421 // relative order for SHF_LINK_ORDER sections. 1422 if (config->relocatable) 1423 return; 1424 1425 sortInputSections(); 1426 1427 for (BaseCommand *base : script->sectionCommands) { 1428 auto *os = dyn_cast<OutputSection>(base); 1429 if (!os) 1430 continue; 1431 os->sortRank = getSectionRank(os); 1432 1433 // We want to assign rude approximation values to outSecOff fields 1434 // to know the relative order of the input sections. We use it for 1435 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1436 uint64_t i = 0; 1437 for (InputSection *sec : getInputSections(os)) 1438 sec->outSecOff = i++; 1439 } 1440 1441 if (!script->hasSectionsCommand) { 1442 // We know that all the OutputSections are contiguous in this case. 1443 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1444 std::stable_sort( 1445 llvm::find_if(script->sectionCommands, isSection), 1446 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1447 compareSections); 1448 1449 // Process INSERT commands. From this point onwards the order of 1450 // script->sectionCommands is fixed. 1451 script->processInsertCommands(); 1452 return; 1453 } 1454 1455 script->processInsertCommands(); 1456 1457 // Orphan sections are sections present in the input files which are 1458 // not explicitly placed into the output file by the linker script. 1459 // 1460 // The sections in the linker script are already in the correct 1461 // order. We have to figuere out where to insert the orphan 1462 // sections. 1463 // 1464 // The order of the sections in the script is arbitrary and may not agree with 1465 // compareSections. This means that we cannot easily define a strict weak 1466 // ordering. To see why, consider a comparison of a section in the script and 1467 // one not in the script. We have a two simple options: 1468 // * Make them equivalent (a is not less than b, and b is not less than a). 1469 // The problem is then that equivalence has to be transitive and we can 1470 // have sections a, b and c with only b in a script and a less than c 1471 // which breaks this property. 1472 // * Use compareSectionsNonScript. Given that the script order doesn't have 1473 // to match, we can end up with sections a, b, c, d where b and c are in the 1474 // script and c is compareSectionsNonScript less than b. In which case d 1475 // can be equivalent to c, a to b and d < a. As a concrete example: 1476 // .a (rx) # not in script 1477 // .b (rx) # in script 1478 // .c (ro) # in script 1479 // .d (ro) # not in script 1480 // 1481 // The way we define an order then is: 1482 // * Sort only the orphan sections. They are in the end right now. 1483 // * Move each orphan section to its preferred position. We try 1484 // to put each section in the last position where it can share 1485 // a PT_LOAD. 1486 // 1487 // There is some ambiguity as to where exactly a new entry should be 1488 // inserted, because Commands contains not only output section 1489 // commands but also other types of commands such as symbol assignment 1490 // expressions. There's no correct answer here due to the lack of the 1491 // formal specification of the linker script. We use heuristics to 1492 // determine whether a new output command should be added before or 1493 // after another commands. For the details, look at shouldSkip 1494 // function. 1495 1496 auto i = script->sectionCommands.begin(); 1497 auto e = script->sectionCommands.end(); 1498 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1499 if (auto *sec = dyn_cast<OutputSection>(base)) 1500 return sec->sectionIndex == UINT32_MAX; 1501 return false; 1502 }); 1503 1504 // Sort the orphan sections. 1505 std::stable_sort(nonScriptI, e, compareSections); 1506 1507 // As a horrible special case, skip the first . assignment if it is before any 1508 // section. We do this because it is common to set a load address by starting 1509 // the script with ". = 0xabcd" and the expectation is that every section is 1510 // after that. 1511 auto firstSectionOrDotAssignment = 1512 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1513 if (firstSectionOrDotAssignment != e && 1514 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1515 ++firstSectionOrDotAssignment; 1516 i = firstSectionOrDotAssignment; 1517 1518 while (nonScriptI != e) { 1519 auto pos = findOrphanPos(i, nonScriptI); 1520 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1521 1522 // As an optimization, find all sections with the same sort rank 1523 // and insert them with one rotate. 1524 unsigned rank = orphan->sortRank; 1525 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1526 return cast<OutputSection>(cmd)->sortRank != rank; 1527 }); 1528 std::rotate(pos, nonScriptI, end); 1529 nonScriptI = end; 1530 } 1531 1532 script->adjustSectionsAfterSorting(); 1533 } 1534 1535 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1536 InputSection *la = a->getLinkOrderDep(); 1537 InputSection *lb = b->getLinkOrderDep(); 1538 OutputSection *aOut = la->getParent(); 1539 OutputSection *bOut = lb->getParent(); 1540 1541 if (aOut != bOut) 1542 return aOut->sectionIndex < bOut->sectionIndex; 1543 return la->outSecOff < lb->outSecOff; 1544 } 1545 1546 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1547 for (OutputSection *sec : outputSections) { 1548 if (!(sec->flags & SHF_LINK_ORDER)) 1549 continue; 1550 1551 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1552 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1553 if (!config->relocatable && config->emachine == EM_ARM && 1554 sec->type == SHT_ARM_EXIDX) 1555 continue; 1556 1557 // Link order may be distributed across several InputSectionDescriptions 1558 // but sort must consider them all at once. 1559 std::vector<InputSection **> scriptSections; 1560 std::vector<InputSection *> sections; 1561 for (BaseCommand *base : sec->sectionCommands) { 1562 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1563 for (InputSection *&isec : isd->sections) { 1564 scriptSections.push_back(&isec); 1565 sections.push_back(isec); 1566 1567 InputSection *link = isec->getLinkOrderDep(); 1568 if (!link->getParent()) 1569 error(toString(isec) + ": sh_link points to discarded section " + 1570 toString(link)); 1571 } 1572 } 1573 } 1574 1575 if (errorCount()) 1576 continue; 1577 1578 llvm::stable_sort(sections, compareByFilePosition); 1579 1580 for (int i = 0, n = sections.size(); i < n; ++i) 1581 *scriptSections[i] = sections[i]; 1582 } 1583 } 1584 1585 // We need to generate and finalize the content that depends on the address of 1586 // InputSections. As the generation of the content may also alter InputSection 1587 // addresses we must converge to a fixed point. We do that here. See the comment 1588 // in Writer<ELFT>::finalizeSections(). 1589 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1590 ThunkCreator tc; 1591 AArch64Err843419Patcher a64p; 1592 ARMErr657417Patcher a32p; 1593 script->assignAddresses(); 1594 1595 int assignPasses = 0; 1596 for (;;) { 1597 bool changed = target->needsThunks && tc.createThunks(outputSections); 1598 1599 // With Thunk Size much smaller than branch range we expect to 1600 // converge quickly; if we get to 10 something has gone wrong. 1601 if (changed && tc.pass >= 10) { 1602 error("thunk creation not converged"); 1603 break; 1604 } 1605 1606 if (config->fixCortexA53Errata843419) { 1607 if (changed) 1608 script->assignAddresses(); 1609 changed |= a64p.createFixes(); 1610 } 1611 if (config->fixCortexA8) { 1612 if (changed) 1613 script->assignAddresses(); 1614 changed |= a32p.createFixes(); 1615 } 1616 1617 if (in.mipsGot) 1618 in.mipsGot->updateAllocSize(); 1619 1620 for (Partition &part : partitions) { 1621 changed |= part.relaDyn->updateAllocSize(); 1622 if (part.relrDyn) 1623 changed |= part.relrDyn->updateAllocSize(); 1624 } 1625 1626 const Defined *changedSym = script->assignAddresses(); 1627 if (!changed) { 1628 // Some symbols may be dependent on section addresses. When we break the 1629 // loop, the symbol values are finalized because a previous 1630 // assignAddresses() finalized section addresses. 1631 if (!changedSym) 1632 break; 1633 if (++assignPasses == 5) { 1634 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1635 " does not converge"); 1636 break; 1637 } 1638 } 1639 } 1640 1641 // If a SECTIONS command is given, addrExpr, if set, is the specified output 1642 // section address. Warn if the computed value is different from the actual 1643 // address. 1644 if (!script->hasSectionsCommand) 1645 return; 1646 for (auto changed : script->changedSectionAddresses) { 1647 const OutputSection *os = changed.first; 1648 warn("start of section " + os->name + " changes from 0x" + 1649 utohexstr(changed.second) + " to 0x" + utohexstr(os->addr)); 1650 } 1651 } 1652 1653 static void finalizeSynthetic(SyntheticSection *sec) { 1654 if (sec && sec->isNeeded() && sec->getParent()) 1655 sec->finalizeContents(); 1656 } 1657 1658 // In order to allow users to manipulate linker-synthesized sections, 1659 // we had to add synthetic sections to the input section list early, 1660 // even before we make decisions whether they are needed. This allows 1661 // users to write scripts like this: ".mygot : { .got }". 1662 // 1663 // Doing it has an unintended side effects. If it turns out that we 1664 // don't need a .got (for example) at all because there's no 1665 // relocation that needs a .got, we don't want to emit .got. 1666 // 1667 // To deal with the above problem, this function is called after 1668 // scanRelocations is called to remove synthetic sections that turn 1669 // out to be empty. 1670 static void removeUnusedSyntheticSections() { 1671 // All input synthetic sections that can be empty are placed after 1672 // all regular ones. We iterate over them all and exit at first 1673 // non-synthetic. 1674 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1675 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1676 if (!ss) 1677 return; 1678 OutputSection *os = ss->getParent(); 1679 if (!os || ss->isNeeded()) 1680 continue; 1681 1682 // If we reach here, then ss is an unused synthetic section and we want to 1683 // remove it from the corresponding input section description, and 1684 // orphanSections. 1685 for (BaseCommand *b : os->sectionCommands) 1686 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1687 llvm::erase_if(isd->sections, 1688 [=](InputSection *isec) { return isec == ss; }); 1689 llvm::erase_if(script->orphanSections, 1690 [=](const InputSectionBase *isec) { return isec == ss; }); 1691 } 1692 } 1693 1694 // Create output section objects and add them to OutputSections. 1695 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1696 Out::preinitArray = findSection(".preinit_array"); 1697 Out::initArray = findSection(".init_array"); 1698 Out::finiArray = findSection(".fini_array"); 1699 1700 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1701 // symbols for sections, so that the runtime can get the start and end 1702 // addresses of each section by section name. Add such symbols. 1703 if (!config->relocatable) { 1704 addStartEndSymbols(); 1705 for (BaseCommand *base : script->sectionCommands) 1706 if (auto *sec = dyn_cast<OutputSection>(base)) 1707 addStartStopSymbols(sec); 1708 } 1709 1710 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1711 // It should be okay as no one seems to care about the type. 1712 // Even the author of gold doesn't remember why gold behaves that way. 1713 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1714 if (mainPart->dynamic->parent) 1715 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1716 STV_HIDDEN, STT_NOTYPE, 1717 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1718 1719 // Define __rel[a]_iplt_{start,end} symbols if needed. 1720 addRelIpltSymbols(); 1721 1722 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1723 // should only be defined in an executable. If .sdata does not exist, its 1724 // value/section does not matter but it has to be relative, so set its 1725 // st_shndx arbitrarily to 1 (Out::elfHeader). 1726 if (config->emachine == EM_RISCV && !config->shared) { 1727 OutputSection *sec = findSection(".sdata"); 1728 ElfSym::riscvGlobalPointer = 1729 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1730 0x800, STV_DEFAULT, STB_GLOBAL); 1731 } 1732 1733 if (config->emachine == EM_X86_64) { 1734 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1735 // way that: 1736 // 1737 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1738 // computes 0. 1739 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1740 // the TLS block). 1741 // 1742 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1743 // an absolute symbol of zero. This is different from GNU linkers which 1744 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1745 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1746 if (s && s->isUndefined()) { 1747 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1748 STT_TLS, /*value=*/0, 0, 1749 /*section=*/nullptr}); 1750 ElfSym::tlsModuleBase = cast<Defined>(s); 1751 } 1752 } 1753 1754 // This responsible for splitting up .eh_frame section into 1755 // pieces. The relocation scan uses those pieces, so this has to be 1756 // earlier. 1757 for (Partition &part : partitions) 1758 finalizeSynthetic(part.ehFrame); 1759 1760 for (Symbol *sym : symtab->symbols()) 1761 sym->isPreemptible = computeIsPreemptible(*sym); 1762 1763 // Change values of linker-script-defined symbols from placeholders (assigned 1764 // by declareSymbols) to actual definitions. 1765 script->processSymbolAssignments(); 1766 1767 // Scan relocations. This must be done after every symbol is declared so that 1768 // we can correctly decide if a dynamic relocation is needed. This is called 1769 // after processSymbolAssignments() because it needs to know whether a 1770 // linker-script-defined symbol is absolute. 1771 if (!config->relocatable) { 1772 forEachRelSec(scanRelocations<ELFT>); 1773 reportUndefinedSymbols<ELFT>(); 1774 } 1775 1776 if (in.plt && in.plt->isNeeded()) 1777 in.plt->addSymbols(); 1778 if (in.iplt && in.iplt->isNeeded()) 1779 in.iplt->addSymbols(); 1780 1781 if (!config->allowShlibUndefined) { 1782 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1783 // entries are seen. These cases would otherwise lead to runtime errors 1784 // reported by the dynamic linker. 1785 // 1786 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1787 // catch more cases. That is too much for us. Our approach resembles the one 1788 // used in ld.gold, achieves a good balance to be useful but not too smart. 1789 for (SharedFile *file : sharedFiles) 1790 file->allNeededIsKnown = 1791 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1792 return symtab->soNames.count(needed); 1793 }); 1794 1795 for (Symbol *sym : symtab->symbols()) 1796 if (sym->isUndefined() && !sym->isWeak()) 1797 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1798 if (f->allNeededIsKnown) 1799 error(toString(f) + ": undefined reference to " + toString(*sym)); 1800 } 1801 1802 // Now that we have defined all possible global symbols including linker- 1803 // synthesized ones. Visit all symbols to give the finishing touches. 1804 for (Symbol *sym : symtab->symbols()) { 1805 if (!includeInSymtab(*sym)) 1806 continue; 1807 if (in.symTab) 1808 in.symTab->addSymbol(sym); 1809 1810 if (sym->includeInDynsym()) { 1811 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1812 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1813 if (file->isNeeded && !sym->isUndefined()) 1814 addVerneed(sym); 1815 } 1816 } 1817 1818 // We also need to scan the dynamic relocation tables of the other partitions 1819 // and add any referenced symbols to the partition's dynsym. 1820 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1821 DenseSet<Symbol *> syms; 1822 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1823 syms.insert(e.sym); 1824 for (DynamicReloc &reloc : part.relaDyn->relocs) 1825 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 1826 part.dynSymTab->addSymbol(reloc.sym); 1827 } 1828 1829 // Do not proceed if there was an undefined symbol. 1830 if (errorCount()) 1831 return; 1832 1833 if (in.mipsGot) 1834 in.mipsGot->build(); 1835 1836 removeUnusedSyntheticSections(); 1837 script->diagnoseOrphanHandling(); 1838 1839 sortSections(); 1840 1841 // Now that we have the final list, create a list of all the 1842 // OutputSections for convenience. 1843 for (BaseCommand *base : script->sectionCommands) 1844 if (auto *sec = dyn_cast<OutputSection>(base)) 1845 outputSections.push_back(sec); 1846 1847 // Prefer command line supplied address over other constraints. 1848 for (OutputSection *sec : outputSections) { 1849 auto i = config->sectionStartMap.find(sec->name); 1850 if (i != config->sectionStartMap.end()) 1851 sec->addrExpr = [=] { return i->second; }; 1852 } 1853 1854 // This is a bit of a hack. A value of 0 means undef, so we set it 1855 // to 1 to make __ehdr_start defined. The section number is not 1856 // particularly relevant. 1857 Out::elfHeader->sectionIndex = 1; 1858 1859 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 1860 OutputSection *sec = outputSections[i]; 1861 sec->sectionIndex = i + 1; 1862 sec->shName = in.shStrTab->addString(sec->name); 1863 } 1864 1865 // Binary and relocatable output does not have PHDRS. 1866 // The headers have to be created before finalize as that can influence the 1867 // image base and the dynamic section on mips includes the image base. 1868 if (!config->relocatable && !config->oFormatBinary) { 1869 for (Partition &part : partitions) { 1870 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 1871 : createPhdrs(part); 1872 if (config->emachine == EM_ARM) { 1873 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1874 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1875 } 1876 if (config->emachine == EM_MIPS) { 1877 // Add separate segments for MIPS-specific sections. 1878 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1879 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1880 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1881 } 1882 } 1883 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 1884 1885 // Find the TLS segment. This happens before the section layout loop so that 1886 // Android relocation packing can look up TLS symbol addresses. We only need 1887 // to care about the main partition here because all TLS symbols were moved 1888 // to the main partition (see MarkLive.cpp). 1889 for (PhdrEntry *p : mainPart->phdrs) 1890 if (p->p_type == PT_TLS) 1891 Out::tlsPhdr = p; 1892 } 1893 1894 // Some symbols are defined in term of program headers. Now that we 1895 // have the headers, we can find out which sections they point to. 1896 setReservedSymbolSections(); 1897 1898 finalizeSynthetic(in.bss); 1899 finalizeSynthetic(in.bssRelRo); 1900 finalizeSynthetic(in.symTabShndx); 1901 finalizeSynthetic(in.shStrTab); 1902 finalizeSynthetic(in.strTab); 1903 finalizeSynthetic(in.got); 1904 finalizeSynthetic(in.mipsGot); 1905 finalizeSynthetic(in.igotPlt); 1906 finalizeSynthetic(in.gotPlt); 1907 finalizeSynthetic(in.relaIplt); 1908 finalizeSynthetic(in.relaPlt); 1909 finalizeSynthetic(in.plt); 1910 finalizeSynthetic(in.iplt); 1911 finalizeSynthetic(in.ppc32Got2); 1912 finalizeSynthetic(in.partIndex); 1913 1914 // Dynamic section must be the last one in this list and dynamic 1915 // symbol table section (dynSymTab) must be the first one. 1916 for (Partition &part : partitions) { 1917 finalizeSynthetic(part.armExidx); 1918 finalizeSynthetic(part.dynSymTab); 1919 finalizeSynthetic(part.gnuHashTab); 1920 finalizeSynthetic(part.hashTab); 1921 finalizeSynthetic(part.verDef); 1922 finalizeSynthetic(part.relaDyn); 1923 finalizeSynthetic(part.relrDyn); 1924 finalizeSynthetic(part.ehFrameHdr); 1925 finalizeSynthetic(part.verSym); 1926 finalizeSynthetic(part.verNeed); 1927 finalizeSynthetic(part.dynamic); 1928 } 1929 1930 if (!script->hasSectionsCommand && !config->relocatable) 1931 fixSectionAlignments(); 1932 1933 // SHFLinkOrder processing must be processed after relative section placements are 1934 // known but before addresses are allocated. 1935 resolveShfLinkOrder(); 1936 if (errorCount()) 1937 return; 1938 1939 // This is used to: 1940 // 1) Create "thunks": 1941 // Jump instructions in many ISAs have small displacements, and therefore 1942 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1943 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1944 // responsibility to create and insert small pieces of code between 1945 // sections to extend the ranges if jump targets are out of range. Such 1946 // code pieces are called "thunks". 1947 // 1948 // We add thunks at this stage. We couldn't do this before this point 1949 // because this is the earliest point where we know sizes of sections and 1950 // their layouts (that are needed to determine if jump targets are in 1951 // range). 1952 // 1953 // 2) Update the sections. We need to generate content that depends on the 1954 // address of InputSections. For example, MIPS GOT section content or 1955 // android packed relocations sections content. 1956 // 1957 // 3) Assign the final values for the linker script symbols. Linker scripts 1958 // sometimes using forward symbol declarations. We want to set the correct 1959 // values. They also might change after adding the thunks. 1960 finalizeAddressDependentContent(); 1961 1962 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1963 finalizeSynthetic(in.symTab); 1964 finalizeSynthetic(in.ppc64LongBranchTarget); 1965 1966 // Fill other section headers. The dynamic table is finalized 1967 // at the end because some tags like RELSZ depend on result 1968 // of finalizing other sections. 1969 for (OutputSection *sec : outputSections) 1970 sec->finalize(); 1971 } 1972 1973 // Ensure data sections are not mixed with executable sections when 1974 // -execute-only is used. -execute-only is a feature to make pages executable 1975 // but not readable, and the feature is currently supported only on AArch64. 1976 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1977 if (!config->executeOnly) 1978 return; 1979 1980 for (OutputSection *os : outputSections) 1981 if (os->flags & SHF_EXECINSTR) 1982 for (InputSection *isec : getInputSections(os)) 1983 if (!(isec->flags & SHF_EXECINSTR)) 1984 error("cannot place " + toString(isec) + " into " + toString(os->name) + 1985 ": -execute-only does not support intermingling data and code"); 1986 } 1987 1988 // The linker is expected to define SECNAME_start and SECNAME_end 1989 // symbols for a few sections. This function defines them. 1990 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1991 // If a section does not exist, there's ambiguity as to how we 1992 // define _start and _end symbols for an init/fini section. Since 1993 // the loader assume that the symbols are always defined, we need to 1994 // always define them. But what value? The loader iterates over all 1995 // pointers between _start and _end to run global ctors/dtors, so if 1996 // the section is empty, their symbol values don't actually matter 1997 // as long as _start and _end point to the same location. 1998 // 1999 // That said, we don't want to set the symbols to 0 (which is 2000 // probably the simplest value) because that could cause some 2001 // program to fail to link due to relocation overflow, if their 2002 // program text is above 2 GiB. We use the address of the .text 2003 // section instead to prevent that failure. 2004 // 2005 // In rare situations, the .text section may not exist. If that's the 2006 // case, use the image base address as a last resort. 2007 OutputSection *Default = findSection(".text"); 2008 if (!Default) 2009 Default = Out::elfHeader; 2010 2011 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2012 if (os) { 2013 addOptionalRegular(start, os, 0); 2014 addOptionalRegular(end, os, -1); 2015 } else { 2016 addOptionalRegular(start, Default, 0); 2017 addOptionalRegular(end, Default, 0); 2018 } 2019 }; 2020 2021 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2022 define("__init_array_start", "__init_array_end", Out::initArray); 2023 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2024 2025 if (OutputSection *sec = findSection(".ARM.exidx")) 2026 define("__exidx_start", "__exidx_end", sec); 2027 } 2028 2029 // If a section name is valid as a C identifier (which is rare because of 2030 // the leading '.'), linkers are expected to define __start_<secname> and 2031 // __stop_<secname> symbols. They are at beginning and end of the section, 2032 // respectively. This is not requested by the ELF standard, but GNU ld and 2033 // gold provide the feature, and used by many programs. 2034 template <class ELFT> 2035 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2036 StringRef s = sec->name; 2037 if (!isValidCIdentifier(s)) 2038 return; 2039 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 2040 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 2041 } 2042 2043 static bool needsPtLoad(OutputSection *sec) { 2044 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2045 return false; 2046 2047 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2048 // responsible for allocating space for them, not the PT_LOAD that 2049 // contains the TLS initialization image. 2050 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2051 return false; 2052 return true; 2053 } 2054 2055 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2056 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2057 // RW. This means that there is no alignment in the RO to RX transition and we 2058 // cannot create a PT_LOAD there. 2059 static uint64_t computeFlags(uint64_t flags) { 2060 if (config->omagic) 2061 return PF_R | PF_W | PF_X; 2062 if (config->executeOnly && (flags & PF_X)) 2063 return flags & ~PF_R; 2064 if (config->singleRoRx && !(flags & PF_W)) 2065 return flags | PF_X; 2066 return flags; 2067 } 2068 2069 // Decide which program headers to create and which sections to include in each 2070 // one. 2071 template <class ELFT> 2072 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2073 std::vector<PhdrEntry *> ret; 2074 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2075 ret.push_back(make<PhdrEntry>(type, flags)); 2076 return ret.back(); 2077 }; 2078 2079 unsigned partNo = part.getNumber(); 2080 bool isMain = partNo == 1; 2081 2082 // Add the first PT_LOAD segment for regular output sections. 2083 uint64_t flags = computeFlags(PF_R); 2084 PhdrEntry *load = nullptr; 2085 2086 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2087 // PT_LOAD. 2088 if (!config->nmagic && !config->omagic) { 2089 // The first phdr entry is PT_PHDR which describes the program header 2090 // itself. 2091 if (isMain) 2092 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2093 else 2094 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2095 2096 // PT_INTERP must be the second entry if exists. 2097 if (OutputSection *cmd = findSection(".interp", partNo)) 2098 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2099 2100 // Add the headers. We will remove them if they don't fit. 2101 // In the other partitions the headers are ordinary sections, so they don't 2102 // need to be added here. 2103 if (isMain) { 2104 load = addHdr(PT_LOAD, flags); 2105 load->add(Out::elfHeader); 2106 load->add(Out::programHeaders); 2107 } 2108 } 2109 2110 // PT_GNU_RELRO includes all sections that should be marked as 2111 // read-only by dynamic linker after processing relocations. 2112 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2113 // an error message if more than one PT_GNU_RELRO PHDR is required. 2114 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2115 bool inRelroPhdr = false; 2116 OutputSection *relroEnd = nullptr; 2117 for (OutputSection *sec : outputSections) { 2118 if (sec->partition != partNo || !needsPtLoad(sec)) 2119 continue; 2120 if (isRelroSection(sec)) { 2121 inRelroPhdr = true; 2122 if (!relroEnd) 2123 relRo->add(sec); 2124 else 2125 error("section: " + sec->name + " is not contiguous with other relro" + 2126 " sections"); 2127 } else if (inRelroPhdr) { 2128 inRelroPhdr = false; 2129 relroEnd = sec; 2130 } 2131 } 2132 2133 for (OutputSection *sec : outputSections) { 2134 if (!(sec->flags & SHF_ALLOC)) 2135 break; 2136 if (!needsPtLoad(sec)) 2137 continue; 2138 2139 // Normally, sections in partitions other than the current partition are 2140 // ignored. But partition number 255 is a special case: it contains the 2141 // partition end marker (.part.end). It needs to be added to the main 2142 // partition so that a segment is created for it in the main partition, 2143 // which will cause the dynamic loader to reserve space for the other 2144 // partitions. 2145 if (sec->partition != partNo) { 2146 if (isMain && sec->partition == 255) 2147 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2148 continue; 2149 } 2150 2151 // Segments are contiguous memory regions that has the same attributes 2152 // (e.g. executable or writable). There is one phdr for each segment. 2153 // Therefore, we need to create a new phdr when the next section has 2154 // different flags or is loaded at a discontiguous address or memory 2155 // region using AT or AT> linker script command, respectively. At the same 2156 // time, we don't want to create a separate load segment for the headers, 2157 // even if the first output section has an AT or AT> attribute. 2158 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2159 bool sameLMARegion = 2160 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2161 if (!(load && newFlags == flags && sec != relroEnd && 2162 sec->memRegion == load->firstSec->memRegion && 2163 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2164 load = addHdr(PT_LOAD, newFlags); 2165 flags = newFlags; 2166 } 2167 2168 load->add(sec); 2169 } 2170 2171 // Add a TLS segment if any. 2172 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2173 for (OutputSection *sec : outputSections) 2174 if (sec->partition == partNo && sec->flags & SHF_TLS) 2175 tlsHdr->add(sec); 2176 if (tlsHdr->firstSec) 2177 ret.push_back(tlsHdr); 2178 2179 // Add an entry for .dynamic. 2180 if (OutputSection *sec = part.dynamic->getParent()) 2181 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2182 2183 if (relRo->firstSec) 2184 ret.push_back(relRo); 2185 2186 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2187 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2188 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2189 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2190 ->add(part.ehFrameHdr->getParent()); 2191 2192 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2193 // the dynamic linker fill the segment with random data. 2194 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2195 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2196 2197 if (config->zGnustack != GnuStackKind::None) { 2198 // PT_GNU_STACK is a special section to tell the loader to make the 2199 // pages for the stack non-executable. If you really want an executable 2200 // stack, you can pass -z execstack, but that's not recommended for 2201 // security reasons. 2202 unsigned perm = PF_R | PF_W; 2203 if (config->zGnustack == GnuStackKind::Exec) 2204 perm |= PF_X; 2205 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2206 } 2207 2208 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2209 // is expected to perform W^X violations, such as calling mprotect(2) or 2210 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2211 // OpenBSD. 2212 if (config->zWxneeded) 2213 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2214 2215 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2216 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2217 2218 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2219 // same alignment. 2220 PhdrEntry *note = nullptr; 2221 for (OutputSection *sec : outputSections) { 2222 if (sec->partition != partNo) 2223 continue; 2224 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2225 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2226 note = addHdr(PT_NOTE, PF_R); 2227 note->add(sec); 2228 } else { 2229 note = nullptr; 2230 } 2231 } 2232 return ret; 2233 } 2234 2235 template <class ELFT> 2236 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2237 unsigned pType, unsigned pFlags) { 2238 unsigned partNo = part.getNumber(); 2239 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2240 return cmd->partition == partNo && cmd->type == shType; 2241 }); 2242 if (i == outputSections.end()) 2243 return; 2244 2245 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2246 entry->add(*i); 2247 part.phdrs.push_back(entry); 2248 } 2249 2250 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2251 // This is achieved by assigning an alignment expression to addrExpr of each 2252 // such section. 2253 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2254 const PhdrEntry *prev; 2255 auto pageAlign = [&](const PhdrEntry *p) { 2256 OutputSection *cmd = p->firstSec; 2257 if (!cmd) 2258 return; 2259 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2260 if (!cmd->addrExpr) { 2261 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2262 // padding in the file contents. 2263 // 2264 // When -z separate-code is used we must not have any overlap in pages 2265 // between an executable segment and a non-executable segment. We align to 2266 // the next maximum page size boundary on transitions between executable 2267 // and non-executable segments. 2268 // 2269 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2270 // sections will be extracted to a separate file. Align to the next 2271 // maximum page size boundary so that we can find the ELF header at the 2272 // start. We cannot benefit from overlapping p_offset ranges with the 2273 // previous segment anyway. 2274 if (config->zSeparate == SeparateSegmentKind::Loadable || 2275 (config->zSeparate == SeparateSegmentKind::Code && prev && 2276 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2277 cmd->type == SHT_LLVM_PART_EHDR) 2278 cmd->addrExpr = [] { 2279 return alignTo(script->getDot(), config->maxPageSize); 2280 }; 2281 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2282 // it must be the RW. Align to p_align(PT_TLS) to make sure 2283 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2284 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2285 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2286 // be congruent to 0 modulo p_align(PT_TLS). 2287 // 2288 // Technically this is not required, but as of 2019, some dynamic loaders 2289 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2290 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2291 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2292 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2293 // blocks correctly. We need to keep the workaround for a while. 2294 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2295 cmd->addrExpr = [] { 2296 return alignTo(script->getDot(), config->maxPageSize) + 2297 alignTo(script->getDot() % config->maxPageSize, 2298 Out::tlsPhdr->p_align); 2299 }; 2300 else 2301 cmd->addrExpr = [] { 2302 return alignTo(script->getDot(), config->maxPageSize) + 2303 script->getDot() % config->maxPageSize; 2304 }; 2305 } 2306 }; 2307 2308 for (Partition &part : partitions) { 2309 prev = nullptr; 2310 for (const PhdrEntry *p : part.phdrs) 2311 if (p->p_type == PT_LOAD && p->firstSec) { 2312 pageAlign(p); 2313 prev = p; 2314 } 2315 } 2316 } 2317 2318 // Compute an in-file position for a given section. The file offset must be the 2319 // same with its virtual address modulo the page size, so that the loader can 2320 // load executables without any address adjustment. 2321 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2322 // The first section in a PT_LOAD has to have congruent offset and address 2323 // modulo the maximum page size. 2324 if (os->ptLoad && os->ptLoad->firstSec == os) 2325 return alignTo(off, os->ptLoad->p_align, os->addr); 2326 2327 // File offsets are not significant for .bss sections other than the first one 2328 // in a PT_LOAD. By convention, we keep section offsets monotonically 2329 // increasing rather than setting to zero. 2330 if (os->type == SHT_NOBITS) 2331 return off; 2332 2333 // If the section is not in a PT_LOAD, we just have to align it. 2334 if (!os->ptLoad) 2335 return alignTo(off, os->alignment); 2336 2337 // If two sections share the same PT_LOAD the file offset is calculated 2338 // using this formula: Off2 = Off1 + (VA2 - VA1). 2339 OutputSection *first = os->ptLoad->firstSec; 2340 return first->offset + os->addr - first->addr; 2341 } 2342 2343 // Set an in-file position to a given section and returns the end position of 2344 // the section. 2345 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2346 off = computeFileOffset(os, off); 2347 os->offset = off; 2348 2349 if (os->type == SHT_NOBITS) 2350 return off; 2351 return off + os->size; 2352 } 2353 2354 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2355 uint64_t off = 0; 2356 for (OutputSection *sec : outputSections) 2357 if (sec->flags & SHF_ALLOC) 2358 off = setFileOffset(sec, off); 2359 fileSize = alignTo(off, config->wordsize); 2360 } 2361 2362 static std::string rangeToString(uint64_t addr, uint64_t len) { 2363 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2364 } 2365 2366 // Assign file offsets to output sections. 2367 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2368 uint64_t off = 0; 2369 off = setFileOffset(Out::elfHeader, off); 2370 off = setFileOffset(Out::programHeaders, off); 2371 2372 PhdrEntry *lastRX = nullptr; 2373 for (Partition &part : partitions) 2374 for (PhdrEntry *p : part.phdrs) 2375 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2376 lastRX = p; 2377 2378 for (OutputSection *sec : outputSections) { 2379 off = setFileOffset(sec, off); 2380 2381 // If this is a last section of the last executable segment and that 2382 // segment is the last loadable segment, align the offset of the 2383 // following section to avoid loading non-segments parts of the file. 2384 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2385 lastRX->lastSec == sec) 2386 off = alignTo(off, config->commonPageSize); 2387 } 2388 2389 sectionHeaderOff = alignTo(off, config->wordsize); 2390 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2391 2392 // Our logic assumes that sections have rising VA within the same segment. 2393 // With use of linker scripts it is possible to violate this rule and get file 2394 // offset overlaps or overflows. That should never happen with a valid script 2395 // which does not move the location counter backwards and usually scripts do 2396 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2397 // kernel, which control segment distribution explicitly and move the counter 2398 // backwards, so we have to allow doing that to support linking them. We 2399 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2400 // we want to prevent file size overflows because it would crash the linker. 2401 for (OutputSection *sec : outputSections) { 2402 if (sec->type == SHT_NOBITS) 2403 continue; 2404 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2405 error("unable to place section " + sec->name + " at file offset " + 2406 rangeToString(sec->offset, sec->size) + 2407 "; check your linker script for overflows"); 2408 } 2409 } 2410 2411 // Finalize the program headers. We call this function after we assign 2412 // file offsets and VAs to all sections. 2413 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2414 for (PhdrEntry *p : part.phdrs) { 2415 OutputSection *first = p->firstSec; 2416 OutputSection *last = p->lastSec; 2417 2418 if (first) { 2419 p->p_filesz = last->offset - first->offset; 2420 if (last->type != SHT_NOBITS) 2421 p->p_filesz += last->size; 2422 2423 p->p_memsz = last->addr + last->size - first->addr; 2424 p->p_offset = first->offset; 2425 p->p_vaddr = first->addr; 2426 2427 // File offsets in partitions other than the main partition are relative 2428 // to the offset of the ELF headers. Perform that adjustment now. 2429 if (part.elfHeader) 2430 p->p_offset -= part.elfHeader->getParent()->offset; 2431 2432 if (!p->hasLMA) 2433 p->p_paddr = first->getLMA(); 2434 } 2435 2436 if (p->p_type == PT_GNU_RELRO) { 2437 p->p_align = 1; 2438 // musl/glibc ld.so rounds the size down, so we need to round up 2439 // to protect the last page. This is a no-op on FreeBSD which always 2440 // rounds up. 2441 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2442 p->p_offset; 2443 } 2444 } 2445 } 2446 2447 // A helper struct for checkSectionOverlap. 2448 namespace { 2449 struct SectionOffset { 2450 OutputSection *sec; 2451 uint64_t offset; 2452 }; 2453 } // namespace 2454 2455 // Check whether sections overlap for a specific address range (file offsets, 2456 // load and virtual addresses). 2457 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2458 bool isVirtualAddr) { 2459 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2460 return a.offset < b.offset; 2461 }); 2462 2463 // Finding overlap is easy given a vector is sorted by start position. 2464 // If an element starts before the end of the previous element, they overlap. 2465 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2466 SectionOffset a = sections[i - 1]; 2467 SectionOffset b = sections[i]; 2468 if (b.offset >= a.offset + a.sec->size) 2469 continue; 2470 2471 // If both sections are in OVERLAY we allow the overlapping of virtual 2472 // addresses, because it is what OVERLAY was designed for. 2473 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2474 continue; 2475 2476 errorOrWarn("section " + a.sec->name + " " + name + 2477 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2478 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2479 b.sec->name + " range is " + 2480 rangeToString(b.offset, b.sec->size)); 2481 } 2482 } 2483 2484 // Check for overlapping sections and address overflows. 2485 // 2486 // In this function we check that none of the output sections have overlapping 2487 // file offsets. For SHF_ALLOC sections we also check that the load address 2488 // ranges and the virtual address ranges don't overlap 2489 template <class ELFT> void Writer<ELFT>::checkSections() { 2490 // First, check that section's VAs fit in available address space for target. 2491 for (OutputSection *os : outputSections) 2492 if ((os->addr + os->size < os->addr) || 2493 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2494 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2495 " of size 0x" + utohexstr(os->size) + 2496 " exceeds available address space"); 2497 2498 // Check for overlapping file offsets. In this case we need to skip any 2499 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2500 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2501 // binary is specified only add SHF_ALLOC sections are added to the output 2502 // file so we skip any non-allocated sections in that case. 2503 std::vector<SectionOffset> fileOffs; 2504 for (OutputSection *sec : outputSections) 2505 if (sec->size > 0 && sec->type != SHT_NOBITS && 2506 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2507 fileOffs.push_back({sec, sec->offset}); 2508 checkOverlap("file", fileOffs, false); 2509 2510 // When linking with -r there is no need to check for overlapping virtual/load 2511 // addresses since those addresses will only be assigned when the final 2512 // executable/shared object is created. 2513 if (config->relocatable) 2514 return; 2515 2516 // Checking for overlapping virtual and load addresses only needs to take 2517 // into account SHF_ALLOC sections since others will not be loaded. 2518 // Furthermore, we also need to skip SHF_TLS sections since these will be 2519 // mapped to other addresses at runtime and can therefore have overlapping 2520 // ranges in the file. 2521 std::vector<SectionOffset> vmas; 2522 for (OutputSection *sec : outputSections) 2523 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2524 vmas.push_back({sec, sec->addr}); 2525 checkOverlap("virtual address", vmas, true); 2526 2527 // Finally, check that the load addresses don't overlap. This will usually be 2528 // the same as the virtual addresses but can be different when using a linker 2529 // script with AT(). 2530 std::vector<SectionOffset> lmas; 2531 for (OutputSection *sec : outputSections) 2532 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2533 lmas.push_back({sec, sec->getLMA()}); 2534 checkOverlap("load address", lmas, false); 2535 } 2536 2537 // The entry point address is chosen in the following ways. 2538 // 2539 // 1. the '-e' entry command-line option; 2540 // 2. the ENTRY(symbol) command in a linker control script; 2541 // 3. the value of the symbol _start, if present; 2542 // 4. the number represented by the entry symbol, if it is a number; 2543 // 5. the address of the first byte of the .text section, if present; 2544 // 6. the address 0. 2545 static uint64_t getEntryAddr() { 2546 // Case 1, 2 or 3 2547 if (Symbol *b = symtab->find(config->entry)) 2548 return b->getVA(); 2549 2550 // Case 4 2551 uint64_t addr; 2552 if (to_integer(config->entry, addr)) 2553 return addr; 2554 2555 // Case 5 2556 if (OutputSection *sec = findSection(".text")) { 2557 if (config->warnMissingEntry) 2558 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2559 utohexstr(sec->addr)); 2560 return sec->addr; 2561 } 2562 2563 // Case 6 2564 if (config->warnMissingEntry) 2565 warn("cannot find entry symbol " + config->entry + 2566 "; not setting start address"); 2567 return 0; 2568 } 2569 2570 static uint16_t getELFType() { 2571 if (config->isPic) 2572 return ET_DYN; 2573 if (config->relocatable) 2574 return ET_REL; 2575 return ET_EXEC; 2576 } 2577 2578 template <class ELFT> void Writer<ELFT>::writeHeader() { 2579 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2580 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2581 2582 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2583 eHdr->e_type = getELFType(); 2584 eHdr->e_entry = getEntryAddr(); 2585 eHdr->e_shoff = sectionHeaderOff; 2586 2587 // Write the section header table. 2588 // 2589 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2590 // and e_shstrndx fields. When the value of one of these fields exceeds 2591 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2592 // use fields in the section header at index 0 to store 2593 // the value. The sentinel values and fields are: 2594 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2595 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2596 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2597 size_t num = outputSections.size() + 1; 2598 if (num >= SHN_LORESERVE) 2599 sHdrs->sh_size = num; 2600 else 2601 eHdr->e_shnum = num; 2602 2603 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2604 if (strTabIndex >= SHN_LORESERVE) { 2605 sHdrs->sh_link = strTabIndex; 2606 eHdr->e_shstrndx = SHN_XINDEX; 2607 } else { 2608 eHdr->e_shstrndx = strTabIndex; 2609 } 2610 2611 for (OutputSection *sec : outputSections) 2612 sec->writeHeaderTo<ELFT>(++sHdrs); 2613 } 2614 2615 // Open a result file. 2616 template <class ELFT> void Writer<ELFT>::openFile() { 2617 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2618 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2619 error("output file too large: " + Twine(fileSize) + " bytes"); 2620 return; 2621 } 2622 2623 unlinkAsync(config->outputFile); 2624 unsigned flags = 0; 2625 if (!config->relocatable) 2626 flags |= FileOutputBuffer::F_executable; 2627 if (!config->mmapOutputFile) 2628 flags |= FileOutputBuffer::F_no_mmap; 2629 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2630 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2631 2632 if (!bufferOrErr) { 2633 error("failed to open " + config->outputFile + ": " + 2634 llvm::toString(bufferOrErr.takeError())); 2635 return; 2636 } 2637 buffer = std::move(*bufferOrErr); 2638 Out::bufferStart = buffer->getBufferStart(); 2639 } 2640 2641 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2642 for (OutputSection *sec : outputSections) 2643 if (sec->flags & SHF_ALLOC) 2644 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2645 } 2646 2647 static void fillTrap(uint8_t *i, uint8_t *end) { 2648 for (; i + 4 <= end; i += 4) 2649 memcpy(i, &target->trapInstr, 4); 2650 } 2651 2652 // Fill the last page of executable segments with trap instructions 2653 // instead of leaving them as zero. Even though it is not required by any 2654 // standard, it is in general a good thing to do for security reasons. 2655 // 2656 // We'll leave other pages in segments as-is because the rest will be 2657 // overwritten by output sections. 2658 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2659 for (Partition &part : partitions) { 2660 // Fill the last page. 2661 for (PhdrEntry *p : part.phdrs) 2662 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2663 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2664 config->commonPageSize), 2665 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2666 config->commonPageSize)); 2667 2668 // Round up the file size of the last segment to the page boundary iff it is 2669 // an executable segment to ensure that other tools don't accidentally 2670 // trim the instruction padding (e.g. when stripping the file). 2671 PhdrEntry *last = nullptr; 2672 for (PhdrEntry *p : part.phdrs) 2673 if (p->p_type == PT_LOAD) 2674 last = p; 2675 2676 if (last && (last->p_flags & PF_X)) 2677 last->p_memsz = last->p_filesz = 2678 alignTo(last->p_filesz, config->commonPageSize); 2679 } 2680 } 2681 2682 // Write section contents to a mmap'ed file. 2683 template <class ELFT> void Writer<ELFT>::writeSections() { 2684 // In -r or -emit-relocs mode, write the relocation sections first as in 2685 // ELf_Rel targets we might find out that we need to modify the relocated 2686 // section while doing it. 2687 for (OutputSection *sec : outputSections) 2688 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2689 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2690 2691 for (OutputSection *sec : outputSections) 2692 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2693 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2694 } 2695 2696 // Split one uint8 array into small pieces of uint8 arrays. 2697 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2698 size_t chunkSize) { 2699 std::vector<ArrayRef<uint8_t>> ret; 2700 while (arr.size() > chunkSize) { 2701 ret.push_back(arr.take_front(chunkSize)); 2702 arr = arr.drop_front(chunkSize); 2703 } 2704 if (!arr.empty()) 2705 ret.push_back(arr); 2706 return ret; 2707 } 2708 2709 // Computes a hash value of Data using a given hash function. 2710 // In order to utilize multiple cores, we first split data into 1MB 2711 // chunks, compute a hash for each chunk, and then compute a hash value 2712 // of the hash values. 2713 static void 2714 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2715 llvm::ArrayRef<uint8_t> data, 2716 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2717 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2718 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2719 2720 // Compute hash values. 2721 parallelForEachN(0, chunks.size(), [&](size_t i) { 2722 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2723 }); 2724 2725 // Write to the final output buffer. 2726 hashFn(hashBuf.data(), hashes); 2727 } 2728 2729 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2730 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2731 return; 2732 2733 if (config->buildId == BuildIdKind::Hexstring) { 2734 for (Partition &part : partitions) 2735 part.buildId->writeBuildId(config->buildIdVector); 2736 return; 2737 } 2738 2739 // Compute a hash of all sections of the output file. 2740 size_t hashSize = mainPart->buildId->hashSize; 2741 std::vector<uint8_t> buildId(hashSize); 2742 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2743 2744 switch (config->buildId) { 2745 case BuildIdKind::Fast: 2746 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2747 write64le(dest, xxHash64(arr)); 2748 }); 2749 break; 2750 case BuildIdKind::Md5: 2751 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2752 memcpy(dest, MD5::hash(arr).data(), hashSize); 2753 }); 2754 break; 2755 case BuildIdKind::Sha1: 2756 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2757 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2758 }); 2759 break; 2760 case BuildIdKind::Uuid: 2761 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2762 error("entropy source failure: " + ec.message()); 2763 break; 2764 default: 2765 llvm_unreachable("unknown BuildIdKind"); 2766 } 2767 for (Partition &part : partitions) 2768 part.buildId->writeBuildId(buildId); 2769 } 2770 2771 template void createSyntheticSections<ELF32LE>(); 2772 template void createSyntheticSections<ELF32BE>(); 2773 template void createSyntheticSections<ELF64LE>(); 2774 template void createSyntheticSections<ELF64BE>(); 2775 2776 template void writeResult<ELF32LE>(); 2777 template void writeResult<ELF32BE>(); 2778 template void writeResult<ELF64LE>(); 2779 template void writeResult<ELF64BE>(); 2780 2781 } // namespace elf 2782 } // namespace lld 2783