1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/xxhash.h" 31 #include <climits> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 39 namespace lld { 40 namespace elf { 41 namespace { 42 // The writer writes a SymbolTable result to a file. 43 template <class ELFT> class Writer { 44 public: 45 Writer() : buffer(errorHandler().outputBuffer) {} 46 using Elf_Shdr = typename ELFT::Shdr; 47 using Elf_Ehdr = typename ELFT::Ehdr; 48 using Elf_Phdr = typename ELFT::Phdr; 49 50 void run(); 51 52 private: 53 void copyLocalSymbols(); 54 void addSectionSymbols(); 55 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 56 void sortSections(); 57 void resolveShfLinkOrder(); 58 void finalizeAddressDependentContent(); 59 void sortInputSections(); 60 void finalizeSections(); 61 void checkExecuteOnly(); 62 void setReservedSymbolSections(); 63 64 std::vector<PhdrEntry *> createPhdrs(Partition &part); 65 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 66 unsigned pFlags); 67 void assignFileOffsets(); 68 void assignFileOffsetsBinary(); 69 void setPhdrs(Partition &part); 70 void checkSections(); 71 void fixSectionAlignments(); 72 void openFile(); 73 void writeTrapInstr(); 74 void writeHeader(); 75 void writeSections(); 76 void writeSectionsBinary(); 77 void writeBuildId(); 78 79 std::unique_ptr<FileOutputBuffer> &buffer; 80 81 void addRelIpltSymbols(); 82 void addStartEndSymbols(); 83 void addStartStopSymbols(OutputSection *sec); 84 85 uint64_t fileSize; 86 uint64_t sectionHeaderOff; 87 }; 88 } // anonymous namespace 89 90 static bool isSectionPrefix(StringRef prefix, StringRef name) { 91 return name.startswith(prefix) || name == prefix.drop_back(); 92 } 93 94 StringRef getOutputSectionName(const InputSectionBase *s) { 95 if (config->relocatable) 96 return s->name; 97 98 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 99 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 100 // technically required, but not doing it is odd). This code guarantees that. 101 if (auto *isec = dyn_cast<InputSection>(s)) { 102 if (InputSectionBase *rel = isec->getRelocatedSection()) { 103 OutputSection *out = rel->getOutputSection(); 104 if (s->type == SHT_RELA) 105 return saver.save(".rela" + out->name); 106 return saver.save(".rel" + out->name); 107 } 108 } 109 110 // This check is for -z keep-text-section-prefix. This option separates text 111 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 112 // ".text.exit". 113 // When enabled, this allows identifying the hot code region (.text.hot) in 114 // the final binary which can be selectively mapped to huge pages or mlocked, 115 // for instance. 116 if (config->zKeepTextSectionPrefix) 117 for (StringRef v : 118 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 119 if (isSectionPrefix(v, s->name)) 120 return v.drop_back(); 121 122 for (StringRef v : 123 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 124 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 125 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 126 if (isSectionPrefix(v, s->name)) 127 return v.drop_back(); 128 129 // CommonSection is identified as "COMMON" in linker scripts. 130 // By default, it should go to .bss section. 131 if (s->name == "COMMON") 132 return ".bss"; 133 134 return s->name; 135 } 136 137 static bool needsInterpSection() { 138 return !config->shared && !config->dynamicLinker.empty() && 139 script->needsInterpSection(); 140 } 141 142 template <class ELFT> void writeResult() { Writer<ELFT>().run(); } 143 144 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 145 llvm::erase_if(phdrs, [&](const PhdrEntry *p) { 146 if (p->p_type != PT_LOAD) 147 return false; 148 if (!p->firstSec) 149 return true; 150 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 151 return size == 0; 152 }); 153 } 154 155 void copySectionsIntoPartitions() { 156 std::vector<InputSectionBase *> newSections; 157 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 158 for (InputSectionBase *s : inputSections) { 159 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 160 continue; 161 InputSectionBase *copy; 162 if (s->type == SHT_NOTE) 163 copy = make<InputSection>(cast<InputSection>(*s)); 164 else if (auto *es = dyn_cast<EhInputSection>(s)) 165 copy = make<EhInputSection>(*es); 166 else 167 continue; 168 copy->partition = part; 169 newSections.push_back(copy); 170 } 171 } 172 173 inputSections.insert(inputSections.end(), newSections.begin(), 174 newSections.end()); 175 } 176 177 void combineEhSections() { 178 for (InputSectionBase *&s : inputSections) { 179 // Ignore dead sections and the partition end marker (.part.end), 180 // whose partition number is out of bounds. 181 if (!s->isLive() || s->partition == 255) 182 continue; 183 184 Partition &part = s->getPartition(); 185 if (auto *es = dyn_cast<EhInputSection>(s)) { 186 part.ehFrame->addSection(es); 187 s = nullptr; 188 } else if (s->kind() == SectionBase::Regular && part.armExidx && 189 part.armExidx->addSection(cast<InputSection>(s))) { 190 s = nullptr; 191 } 192 } 193 194 std::vector<InputSectionBase *> &v = inputSections; 195 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 196 } 197 198 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 199 uint64_t val, uint8_t stOther = STV_HIDDEN, 200 uint8_t binding = STB_GLOBAL) { 201 Symbol *s = symtab->find(name); 202 if (!s || s->isDefined()) 203 return nullptr; 204 205 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 206 /*size=*/0, sec}); 207 return cast<Defined>(s); 208 } 209 210 static Defined *addAbsolute(StringRef name) { 211 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 212 STT_NOTYPE, 0, 0, nullptr}); 213 return cast<Defined>(sym); 214 } 215 216 // The linker is expected to define some symbols depending on 217 // the linking result. This function defines such symbols. 218 void addReservedSymbols() { 219 if (config->emachine == EM_MIPS) { 220 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 221 // so that it points to an absolute address which by default is relative 222 // to GOT. Default offset is 0x7ff0. 223 // See "Global Data Symbols" in Chapter 6 in the following document: 224 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 225 ElfSym::mipsGp = addAbsolute("_gp"); 226 227 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 228 // start of function and 'gp' pointer into GOT. 229 if (symtab->find("_gp_disp")) 230 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 231 232 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 233 // pointer. This symbol is used in the code generated by .cpload pseudo-op 234 // in case of using -mno-shared option. 235 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 236 if (symtab->find("__gnu_local_gp")) 237 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 238 } else if (config->emachine == EM_PPC) { 239 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 240 // support Small Data Area, define it arbitrarily as 0. 241 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 242 } 243 244 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 245 // combines the typical ELF GOT with the small data sections. It commonly 246 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 247 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 248 // represent the TOC base which is offset by 0x8000 bytes from the start of 249 // the .got section. 250 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 251 // correctness of some relocations depends on its value. 252 StringRef gotSymName = 253 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 254 255 if (Symbol *s = symtab->find(gotSymName)) { 256 if (s->isDefined()) { 257 error(toString(s->file) + " cannot redefine linker defined symbol '" + 258 gotSymName + "'"); 259 return; 260 } 261 262 uint64_t gotOff = 0; 263 if (config->emachine == EM_PPC64) 264 gotOff = 0x8000; 265 266 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 267 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 268 ElfSym::globalOffsetTable = cast<Defined>(s); 269 } 270 271 // __ehdr_start is the location of ELF file headers. Note that we define 272 // this symbol unconditionally even when using a linker script, which 273 // differs from the behavior implemented by GNU linker which only define 274 // this symbol if ELF headers are in the memory mapped segment. 275 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 276 277 // __executable_start is not documented, but the expectation of at 278 // least the Android libc is that it points to the ELF header. 279 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 280 281 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 282 // each DSO. The address of the symbol doesn't matter as long as they are 283 // different in different DSOs, so we chose the start address of the DSO. 284 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 285 286 // If linker script do layout we do not need to create any standard symbols. 287 if (script->hasSectionsCommand) 288 return; 289 290 auto add = [](StringRef s, int64_t pos) { 291 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 292 }; 293 294 ElfSym::bss = add("__bss_start", 0); 295 ElfSym::end1 = add("end", -1); 296 ElfSym::end2 = add("_end", -1); 297 ElfSym::etext1 = add("etext", -1); 298 ElfSym::etext2 = add("_etext", -1); 299 ElfSym::edata1 = add("edata", -1); 300 ElfSym::edata2 = add("_edata", -1); 301 } 302 303 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 304 for (BaseCommand *base : script->sectionCommands) 305 if (auto *sec = dyn_cast<OutputSection>(base)) 306 if (sec->name == name && sec->partition == partition) 307 return sec; 308 return nullptr; 309 } 310 311 template <class ELFT> void createSyntheticSections() { 312 // Initialize all pointers with NULL. This is needed because 313 // you can call lld::elf::main more than once as a library. 314 memset(&Out::first, 0, sizeof(Out)); 315 316 // Add the .interp section first because it is not a SyntheticSection. 317 // The removeUnusedSyntheticSections() function relies on the 318 // SyntheticSections coming last. 319 if (needsInterpSection()) { 320 for (size_t i = 1; i <= partitions.size(); ++i) { 321 InputSection *sec = createInterpSection(); 322 sec->partition = i; 323 inputSections.push_back(sec); 324 } 325 } 326 327 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 328 329 in.shStrTab = make<StringTableSection>(".shstrtab", false); 330 331 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 332 Out::programHeaders->alignment = config->wordsize; 333 334 if (config->strip != StripPolicy::All) { 335 in.strTab = make<StringTableSection>(".strtab", false); 336 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 337 in.symTabShndx = make<SymtabShndxSection>(); 338 } 339 340 in.bss = make<BssSection>(".bss", 0, 1); 341 add(in.bss); 342 343 // If there is a SECTIONS command and a .data.rel.ro section name use name 344 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 345 // This makes sure our relro is contiguous. 346 bool hasDataRelRo = 347 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 348 in.bssRelRo = 349 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 350 add(in.bssRelRo); 351 352 // Add MIPS-specific sections. 353 if (config->emachine == EM_MIPS) { 354 if (!config->shared && config->hasDynSymTab) { 355 in.mipsRldMap = make<MipsRldMapSection>(); 356 add(in.mipsRldMap); 357 } 358 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 359 add(sec); 360 if (auto *sec = MipsOptionsSection<ELFT>::create()) 361 add(sec); 362 if (auto *sec = MipsReginfoSection<ELFT>::create()) 363 add(sec); 364 } 365 366 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 367 368 for (Partition &part : partitions) { 369 auto add = [&](SyntheticSection *sec) { 370 sec->partition = part.getNumber(); 371 inputSections.push_back(sec); 372 }; 373 374 if (!part.name.empty()) { 375 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 376 part.elfHeader->name = part.name; 377 add(part.elfHeader); 378 379 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 380 add(part.programHeaders); 381 } 382 383 if (config->buildId != BuildIdKind::None) { 384 part.buildId = make<BuildIdSection>(); 385 add(part.buildId); 386 } 387 388 part.dynStrTab = make<StringTableSection>(".dynstr", true); 389 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 390 part.dynamic = make<DynamicSection<ELFT>>(); 391 if (config->androidPackDynRelocs) 392 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 393 else 394 part.relaDyn = 395 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 396 397 if (config->hasDynSymTab) { 398 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 399 add(part.dynSymTab); 400 401 part.verSym = make<VersionTableSection>(); 402 add(part.verSym); 403 404 if (!namedVersionDefs().empty()) { 405 part.verDef = make<VersionDefinitionSection>(); 406 add(part.verDef); 407 } 408 409 part.verNeed = make<VersionNeedSection<ELFT>>(); 410 add(part.verNeed); 411 412 if (config->gnuHash) { 413 part.gnuHashTab = make<GnuHashTableSection>(); 414 add(part.gnuHashTab); 415 } 416 417 if (config->sysvHash) { 418 part.hashTab = make<HashTableSection>(); 419 add(part.hashTab); 420 } 421 422 add(part.dynamic); 423 add(part.dynStrTab); 424 add(part.relaDyn); 425 } 426 427 if (config->relrPackDynRelocs) { 428 part.relrDyn = make<RelrSection<ELFT>>(); 429 add(part.relrDyn); 430 } 431 432 if (!config->relocatable) { 433 if (config->ehFrameHdr) { 434 part.ehFrameHdr = make<EhFrameHeader>(); 435 add(part.ehFrameHdr); 436 } 437 part.ehFrame = make<EhFrameSection>(); 438 add(part.ehFrame); 439 } 440 441 if (config->emachine == EM_ARM && !config->relocatable) { 442 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 443 // InputSections. 444 part.armExidx = make<ARMExidxSyntheticSection>(); 445 add(part.armExidx); 446 } 447 } 448 449 if (partitions.size() != 1) { 450 // Create the partition end marker. This needs to be in partition number 255 451 // so that it is sorted after all other partitions. It also has other 452 // special handling (see createPhdrs() and combineEhSections()). 453 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 454 in.partEnd->partition = 255; 455 add(in.partEnd); 456 457 in.partIndex = make<PartitionIndexSection>(); 458 addOptionalRegular("__part_index_begin", in.partIndex, 0); 459 addOptionalRegular("__part_index_end", in.partIndex, 460 in.partIndex->getSize()); 461 add(in.partIndex); 462 } 463 464 // Add .got. MIPS' .got is so different from the other archs, 465 // it has its own class. 466 if (config->emachine == EM_MIPS) { 467 in.mipsGot = make<MipsGotSection>(); 468 add(in.mipsGot); 469 } else { 470 in.got = make<GotSection>(); 471 add(in.got); 472 } 473 474 if (config->emachine == EM_PPC) { 475 in.ppc32Got2 = make<PPC32Got2Section>(); 476 add(in.ppc32Got2); 477 } 478 479 if (config->emachine == EM_PPC64) { 480 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 481 add(in.ppc64LongBranchTarget); 482 } 483 484 in.gotPlt = make<GotPltSection>(); 485 add(in.gotPlt); 486 in.igotPlt = make<IgotPltSection>(); 487 add(in.igotPlt); 488 489 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 490 // it as a relocation and ensure the referenced section is created. 491 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 492 if (target->gotBaseSymInGotPlt) 493 in.gotPlt->hasGotPltOffRel = true; 494 else 495 in.got->hasGotOffRel = true; 496 } 497 498 if (config->gdbIndex) 499 add(GdbIndexSection::create<ELFT>()); 500 501 // We always need to add rel[a].plt to output if it has entries. 502 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 503 in.relaPlt = make<RelocationSection<ELFT>>( 504 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 505 add(in.relaPlt); 506 507 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 508 // relocations are processed last by the dynamic loader. We cannot place the 509 // iplt section in .rel.dyn when Android relocation packing is enabled because 510 // that would cause a section type mismatch. However, because the Android 511 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 512 // behaviour by placing the iplt section in .rel.plt. 513 in.relaIplt = make<RelocationSection<ELFT>>( 514 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 515 /*sort=*/false); 516 add(in.relaIplt); 517 518 in.plt = make<PltSection>(); 519 add(in.plt); 520 in.iplt = make<IpltSection>(); 521 add(in.iplt); 522 523 if (config->andFeatures) 524 add(make<GnuPropertySection>()); 525 526 // .note.GNU-stack is always added when we are creating a re-linkable 527 // object file. Other linkers are using the presence of this marker 528 // section to control the executable-ness of the stack area, but that 529 // is irrelevant these days. Stack area should always be non-executable 530 // by default. So we emit this section unconditionally. 531 if (config->relocatable) 532 add(make<GnuStackSection>()); 533 534 if (in.symTab) 535 add(in.symTab); 536 if (in.symTabShndx) 537 add(in.symTabShndx); 538 add(in.shStrTab); 539 if (in.strTab) 540 add(in.strTab); 541 } 542 543 // The main function of the writer. 544 template <class ELFT> void Writer<ELFT>::run() { 545 if (config->discard != DiscardPolicy::All) 546 copyLocalSymbols(); 547 548 if (config->copyRelocs) 549 addSectionSymbols(); 550 551 // Now that we have a complete set of output sections. This function 552 // completes section contents. For example, we need to add strings 553 // to the string table, and add entries to .got and .plt. 554 // finalizeSections does that. 555 finalizeSections(); 556 checkExecuteOnly(); 557 if (errorCount()) 558 return; 559 560 // If -compressed-debug-sections is specified, we need to compress 561 // .debug_* sections. Do it right now because it changes the size of 562 // output sections. 563 for (OutputSection *sec : outputSections) 564 sec->maybeCompress<ELFT>(); 565 566 if (script->hasSectionsCommand) 567 script->allocateHeaders(mainPart->phdrs); 568 569 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 570 // 0 sized region. This has to be done late since only after assignAddresses 571 // we know the size of the sections. 572 for (Partition &part : partitions) 573 removeEmptyPTLoad(part.phdrs); 574 575 if (!config->oFormatBinary) 576 assignFileOffsets(); 577 else 578 assignFileOffsetsBinary(); 579 580 for (Partition &part : partitions) 581 setPhdrs(part); 582 583 if (config->relocatable) 584 for (OutputSection *sec : outputSections) 585 sec->addr = 0; 586 587 if (config->checkSections) 588 checkSections(); 589 590 // It does not make sense try to open the file if we have error already. 591 if (errorCount()) 592 return; 593 // Write the result down to a file. 594 openFile(); 595 if (errorCount()) 596 return; 597 598 if (!config->oFormatBinary) { 599 if (config->zSeparate != SeparateSegmentKind::None) 600 writeTrapInstr(); 601 writeHeader(); 602 writeSections(); 603 } else { 604 writeSectionsBinary(); 605 } 606 607 // Backfill .note.gnu.build-id section content. This is done at last 608 // because the content is usually a hash value of the entire output file. 609 writeBuildId(); 610 if (errorCount()) 611 return; 612 613 // Handle -Map and -cref options. 614 writeMapFile(); 615 writeCrossReferenceTable(); 616 if (errorCount()) 617 return; 618 619 if (auto e = buffer->commit()) 620 error("failed to write to the output file: " + toString(std::move(e))); 621 } 622 623 static bool shouldKeepInSymtab(const Defined &sym) { 624 if (sym.isSection()) 625 return false; 626 627 if (config->discard == DiscardPolicy::None) 628 return true; 629 630 // If -emit-reloc is given, all symbols including local ones need to be 631 // copied because they may be referenced by relocations. 632 if (config->emitRelocs) 633 return true; 634 635 // In ELF assembly .L symbols are normally discarded by the assembler. 636 // If the assembler fails to do so, the linker discards them if 637 // * --discard-locals is used. 638 // * The symbol is in a SHF_MERGE section, which is normally the reason for 639 // the assembler keeping the .L symbol. 640 StringRef name = sym.getName(); 641 bool isLocal = name.startswith(".L") || name.empty(); 642 if (!isLocal) 643 return true; 644 645 if (config->discard == DiscardPolicy::Locals) 646 return false; 647 648 SectionBase *sec = sym.section; 649 return !sec || !(sec->flags & SHF_MERGE); 650 } 651 652 static bool includeInSymtab(const Symbol &b) { 653 if (!b.isLocal() && !b.isUsedInRegularObj) 654 return false; 655 656 if (auto *d = dyn_cast<Defined>(&b)) { 657 // Always include absolute symbols. 658 SectionBase *sec = d->section; 659 if (!sec) 660 return true; 661 sec = sec->repl; 662 663 // Exclude symbols pointing to garbage-collected sections. 664 if (isa<InputSectionBase>(sec) && !sec->isLive()) 665 return false; 666 667 if (auto *s = dyn_cast<MergeInputSection>(sec)) 668 if (!s->getSectionPiece(d->value)->live) 669 return false; 670 return true; 671 } 672 return b.used; 673 } 674 675 // Local symbols are not in the linker's symbol table. This function scans 676 // each object file's symbol table to copy local symbols to the output. 677 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 678 if (!in.symTab) 679 return; 680 for (InputFile *file : objectFiles) { 681 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 682 for (Symbol *b : f->getLocalSymbols()) { 683 if (!b->isLocal()) 684 fatal(toString(f) + 685 ": broken object: getLocalSymbols returns a non-local symbol"); 686 auto *dr = dyn_cast<Defined>(b); 687 688 // No reason to keep local undefined symbol in symtab. 689 if (!dr) 690 continue; 691 if (!includeInSymtab(*b)) 692 continue; 693 if (!shouldKeepInSymtab(*dr)) 694 continue; 695 in.symTab->addSymbol(b); 696 } 697 } 698 } 699 700 // Create a section symbol for each output section so that we can represent 701 // relocations that point to the section. If we know that no relocation is 702 // referring to a section (that happens if the section is a synthetic one), we 703 // don't create a section symbol for that section. 704 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 705 for (BaseCommand *base : script->sectionCommands) { 706 auto *sec = dyn_cast<OutputSection>(base); 707 if (!sec) 708 continue; 709 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 710 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 711 return !isd->sections.empty(); 712 return false; 713 }); 714 if (i == sec->sectionCommands.end()) 715 continue; 716 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 717 718 // Relocations are not using REL[A] section symbols. 719 if (isec->type == SHT_REL || isec->type == SHT_RELA) 720 continue; 721 722 // Unlike other synthetic sections, mergeable output sections contain data 723 // copied from input sections, and there may be a relocation pointing to its 724 // contents if -r or -emit-reloc are given. 725 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 726 continue; 727 728 auto *sym = 729 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 730 /*value=*/0, /*size=*/0, isec); 731 in.symTab->addSymbol(sym); 732 } 733 } 734 735 // Today's loaders have a feature to make segments read-only after 736 // processing dynamic relocations to enhance security. PT_GNU_RELRO 737 // is defined for that. 738 // 739 // This function returns true if a section needs to be put into a 740 // PT_GNU_RELRO segment. 741 static bool isRelroSection(const OutputSection *sec) { 742 if (!config->zRelro) 743 return false; 744 745 uint64_t flags = sec->flags; 746 747 // Non-allocatable or non-writable sections don't need RELRO because 748 // they are not writable or not even mapped to memory in the first place. 749 // RELRO is for sections that are essentially read-only but need to 750 // be writable only at process startup to allow dynamic linker to 751 // apply relocations. 752 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 753 return false; 754 755 // Once initialized, TLS data segments are used as data templates 756 // for a thread-local storage. For each new thread, runtime 757 // allocates memory for a TLS and copy templates there. No thread 758 // are supposed to use templates directly. Thus, it can be in RELRO. 759 if (flags & SHF_TLS) 760 return true; 761 762 // .init_array, .preinit_array and .fini_array contain pointers to 763 // functions that are executed on process startup or exit. These 764 // pointers are set by the static linker, and they are not expected 765 // to change at runtime. But if you are an attacker, you could do 766 // interesting things by manipulating pointers in .fini_array, for 767 // example. So they are put into RELRO. 768 uint32_t type = sec->type; 769 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 770 type == SHT_PREINIT_ARRAY) 771 return true; 772 773 // .got contains pointers to external symbols. They are resolved by 774 // the dynamic linker when a module is loaded into memory, and after 775 // that they are not expected to change. So, it can be in RELRO. 776 if (in.got && sec == in.got->getParent()) 777 return true; 778 779 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 780 // through r2 register, which is reserved for that purpose. Since r2 is used 781 // for accessing .got as well, .got and .toc need to be close enough in the 782 // virtual address space. Usually, .toc comes just after .got. Since we place 783 // .got into RELRO, .toc needs to be placed into RELRO too. 784 if (sec->name.equals(".toc")) 785 return true; 786 787 // .got.plt contains pointers to external function symbols. They are 788 // by default resolved lazily, so we usually cannot put it into RELRO. 789 // However, if "-z now" is given, the lazy symbol resolution is 790 // disabled, which enables us to put it into RELRO. 791 if (sec == in.gotPlt->getParent()) 792 return config->zNow; 793 794 // .dynamic section contains data for the dynamic linker, and 795 // there's no need to write to it at runtime, so it's better to put 796 // it into RELRO. 797 if (sec->name == ".dynamic") 798 return true; 799 800 // Sections with some special names are put into RELRO. This is a 801 // bit unfortunate because section names shouldn't be significant in 802 // ELF in spirit. But in reality many linker features depend on 803 // magic section names. 804 StringRef s = sec->name; 805 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 806 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 807 s == ".openbsd.randomdata"; 808 } 809 810 // We compute a rank for each section. The rank indicates where the 811 // section should be placed in the file. Instead of using simple 812 // numbers (0,1,2...), we use a series of flags. One for each decision 813 // point when placing the section. 814 // Using flags has two key properties: 815 // * It is easy to check if a give branch was taken. 816 // * It is easy two see how similar two ranks are (see getRankProximity). 817 enum RankFlags { 818 RF_NOT_ADDR_SET = 1 << 27, 819 RF_NOT_ALLOC = 1 << 26, 820 RF_PARTITION = 1 << 18, // Partition number (8 bits) 821 RF_NOT_PART_EHDR = 1 << 17, 822 RF_NOT_PART_PHDR = 1 << 16, 823 RF_NOT_INTERP = 1 << 15, 824 RF_NOT_NOTE = 1 << 14, 825 RF_WRITE = 1 << 13, 826 RF_EXEC_WRITE = 1 << 12, 827 RF_EXEC = 1 << 11, 828 RF_RODATA = 1 << 10, 829 RF_NOT_RELRO = 1 << 9, 830 RF_NOT_TLS = 1 << 8, 831 RF_BSS = 1 << 7, 832 RF_PPC_NOT_TOCBSS = 1 << 6, 833 RF_PPC_TOCL = 1 << 5, 834 RF_PPC_TOC = 1 << 4, 835 RF_PPC_GOT = 1 << 3, 836 RF_PPC_BRANCH_LT = 1 << 2, 837 RF_MIPS_GPREL = 1 << 1, 838 RF_MIPS_NOT_GOT = 1 << 0 839 }; 840 841 static unsigned getSectionRank(const OutputSection *sec) { 842 unsigned rank = sec->partition * RF_PARTITION; 843 844 // We want to put section specified by -T option first, so we 845 // can start assigning VA starting from them later. 846 if (config->sectionStartMap.count(sec->name)) 847 return rank; 848 rank |= RF_NOT_ADDR_SET; 849 850 // Allocatable sections go first to reduce the total PT_LOAD size and 851 // so debug info doesn't change addresses in actual code. 852 if (!(sec->flags & SHF_ALLOC)) 853 return rank | RF_NOT_ALLOC; 854 855 if (sec->type == SHT_LLVM_PART_EHDR) 856 return rank; 857 rank |= RF_NOT_PART_EHDR; 858 859 if (sec->type == SHT_LLVM_PART_PHDR) 860 return rank; 861 rank |= RF_NOT_PART_PHDR; 862 863 // Put .interp first because some loaders want to see that section 864 // on the first page of the executable file when loaded into memory. 865 if (sec->name == ".interp") 866 return rank; 867 rank |= RF_NOT_INTERP; 868 869 // Put .note sections (which make up one PT_NOTE) at the beginning so that 870 // they are likely to be included in a core file even if core file size is 871 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 872 // included in a core to match core files with executables. 873 if (sec->type == SHT_NOTE) 874 return rank; 875 rank |= RF_NOT_NOTE; 876 877 // Sort sections based on their access permission in the following 878 // order: R, RX, RWX, RW. This order is based on the following 879 // considerations: 880 // * Read-only sections come first such that they go in the 881 // PT_LOAD covering the program headers at the start of the file. 882 // * Read-only, executable sections come next. 883 // * Writable, executable sections follow such that .plt on 884 // architectures where it needs to be writable will be placed 885 // between .text and .data. 886 // * Writable sections come last, such that .bss lands at the very 887 // end of the last PT_LOAD. 888 bool isExec = sec->flags & SHF_EXECINSTR; 889 bool isWrite = sec->flags & SHF_WRITE; 890 891 if (isExec) { 892 if (isWrite) 893 rank |= RF_EXEC_WRITE; 894 else 895 rank |= RF_EXEC; 896 } else if (isWrite) { 897 rank |= RF_WRITE; 898 } else if (sec->type == SHT_PROGBITS) { 899 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 900 // .eh_frame) closer to .text. They likely contain PC or GOT relative 901 // relocations and there could be relocation overflow if other huge sections 902 // (.dynstr .dynsym) were placed in between. 903 rank |= RF_RODATA; 904 } 905 906 // Place RelRo sections first. After considering SHT_NOBITS below, the 907 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 908 // where | marks where page alignment happens. An alternative ordering is 909 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 910 // waste more bytes due to 2 alignment places. 911 if (!isRelroSection(sec)) 912 rank |= RF_NOT_RELRO; 913 914 // If we got here we know that both A and B are in the same PT_LOAD. 915 916 // The TLS initialization block needs to be a single contiguous block in a R/W 917 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 918 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 919 // after PROGBITS. 920 if (!(sec->flags & SHF_TLS)) 921 rank |= RF_NOT_TLS; 922 923 // Within TLS sections, or within other RelRo sections, or within non-RelRo 924 // sections, place non-NOBITS sections first. 925 if (sec->type == SHT_NOBITS) 926 rank |= RF_BSS; 927 928 // Some architectures have additional ordering restrictions for sections 929 // within the same PT_LOAD. 930 if (config->emachine == EM_PPC64) { 931 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 932 // that we would like to make sure appear is a specific order to maximize 933 // their coverage by a single signed 16-bit offset from the TOC base 934 // pointer. Conversely, the special .tocbss section should be first among 935 // all SHT_NOBITS sections. This will put it next to the loaded special 936 // PPC64 sections (and, thus, within reach of the TOC base pointer). 937 StringRef name = sec->name; 938 if (name != ".tocbss") 939 rank |= RF_PPC_NOT_TOCBSS; 940 941 if (name == ".toc1") 942 rank |= RF_PPC_TOCL; 943 944 if (name == ".toc") 945 rank |= RF_PPC_TOC; 946 947 if (name == ".got") 948 rank |= RF_PPC_GOT; 949 950 if (name == ".branch_lt") 951 rank |= RF_PPC_BRANCH_LT; 952 } 953 954 if (config->emachine == EM_MIPS) { 955 // All sections with SHF_MIPS_GPREL flag should be grouped together 956 // because data in these sections is addressable with a gp relative address. 957 if (sec->flags & SHF_MIPS_GPREL) 958 rank |= RF_MIPS_GPREL; 959 960 if (sec->name != ".got") 961 rank |= RF_MIPS_NOT_GOT; 962 } 963 964 return rank; 965 } 966 967 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 968 const OutputSection *a = cast<OutputSection>(aCmd); 969 const OutputSection *b = cast<OutputSection>(bCmd); 970 971 if (a->sortRank != b->sortRank) 972 return a->sortRank < b->sortRank; 973 974 if (!(a->sortRank & RF_NOT_ADDR_SET)) 975 return config->sectionStartMap.lookup(a->name) < 976 config->sectionStartMap.lookup(b->name); 977 return false; 978 } 979 980 void PhdrEntry::add(OutputSection *sec) { 981 lastSec = sec; 982 if (!firstSec) 983 firstSec = sec; 984 p_align = std::max(p_align, sec->alignment); 985 if (p_type == PT_LOAD) 986 sec->ptLoad = this; 987 } 988 989 // The beginning and the ending of .rel[a].plt section are marked 990 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 991 // executable. The runtime needs these symbols in order to resolve 992 // all IRELATIVE relocs on startup. For dynamic executables, we don't 993 // need these symbols, since IRELATIVE relocs are resolved through GOT 994 // and PLT. For details, see http://www.airs.com/blog/archives/403. 995 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 996 if (config->relocatable || needsInterpSection()) 997 return; 998 999 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1000 // because .rela.plt might be empty and thus removed from output. 1001 // We'll override Out::elfHeader with In.relaIplt later when we are 1002 // sure that .rela.plt exists in output. 1003 ElfSym::relaIpltStart = addOptionalRegular( 1004 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1005 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1006 1007 ElfSym::relaIpltEnd = addOptionalRegular( 1008 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1009 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1010 } 1011 1012 template <class ELFT> 1013 void Writer<ELFT>::forEachRelSec( 1014 llvm::function_ref<void(InputSectionBase &)> fn) { 1015 // Scan all relocations. Each relocation goes through a series 1016 // of tests to determine if it needs special treatment, such as 1017 // creating GOT, PLT, copy relocations, etc. 1018 // Note that relocations for non-alloc sections are directly 1019 // processed by InputSection::relocateNonAlloc. 1020 for (InputSectionBase *isec : inputSections) 1021 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1022 fn(*isec); 1023 for (Partition &part : partitions) { 1024 for (EhInputSection *es : part.ehFrame->sections) 1025 fn(*es); 1026 if (part.armExidx && part.armExidx->isLive()) 1027 for (InputSection *ex : part.armExidx->exidxSections) 1028 fn(*ex); 1029 } 1030 } 1031 1032 // This function generates assignments for predefined symbols (e.g. _end or 1033 // _etext) and inserts them into the commands sequence to be processed at the 1034 // appropriate time. This ensures that the value is going to be correct by the 1035 // time any references to these symbols are processed and is equivalent to 1036 // defining these symbols explicitly in the linker script. 1037 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1038 if (ElfSym::globalOffsetTable) { 1039 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1040 // to the start of the .got or .got.plt section. 1041 InputSection *gotSection = in.gotPlt; 1042 if (!target->gotBaseSymInGotPlt) 1043 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1044 : cast<InputSection>(in.got); 1045 ElfSym::globalOffsetTable->section = gotSection; 1046 } 1047 1048 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1049 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1050 ElfSym::relaIpltStart->section = in.relaIplt; 1051 ElfSym::relaIpltEnd->section = in.relaIplt; 1052 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1053 } 1054 1055 PhdrEntry *last = nullptr; 1056 PhdrEntry *lastRO = nullptr; 1057 1058 for (Partition &part : partitions) { 1059 for (PhdrEntry *p : part.phdrs) { 1060 if (p->p_type != PT_LOAD) 1061 continue; 1062 last = p; 1063 if (!(p->p_flags & PF_W)) 1064 lastRO = p; 1065 } 1066 } 1067 1068 if (lastRO) { 1069 // _etext is the first location after the last read-only loadable segment. 1070 if (ElfSym::etext1) 1071 ElfSym::etext1->section = lastRO->lastSec; 1072 if (ElfSym::etext2) 1073 ElfSym::etext2->section = lastRO->lastSec; 1074 } 1075 1076 if (last) { 1077 // _edata points to the end of the last mapped initialized section. 1078 OutputSection *edata = nullptr; 1079 for (OutputSection *os : outputSections) { 1080 if (os->type != SHT_NOBITS) 1081 edata = os; 1082 if (os == last->lastSec) 1083 break; 1084 } 1085 1086 if (ElfSym::edata1) 1087 ElfSym::edata1->section = edata; 1088 if (ElfSym::edata2) 1089 ElfSym::edata2->section = edata; 1090 1091 // _end is the first location after the uninitialized data region. 1092 if (ElfSym::end1) 1093 ElfSym::end1->section = last->lastSec; 1094 if (ElfSym::end2) 1095 ElfSym::end2->section = last->lastSec; 1096 } 1097 1098 if (ElfSym::bss) 1099 ElfSym::bss->section = findSection(".bss"); 1100 1101 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1102 // be equal to the _gp symbol's value. 1103 if (ElfSym::mipsGp) { 1104 // Find GP-relative section with the lowest address 1105 // and use this address to calculate default _gp value. 1106 for (OutputSection *os : outputSections) { 1107 if (os->flags & SHF_MIPS_GPREL) { 1108 ElfSym::mipsGp->section = os; 1109 ElfSym::mipsGp->value = 0x7ff0; 1110 break; 1111 } 1112 } 1113 } 1114 } 1115 1116 // We want to find how similar two ranks are. 1117 // The more branches in getSectionRank that match, the more similar they are. 1118 // Since each branch corresponds to a bit flag, we can just use 1119 // countLeadingZeros. 1120 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1121 return countLeadingZeros(a->sortRank ^ b->sortRank); 1122 } 1123 1124 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1125 auto *sec = dyn_cast<OutputSection>(b); 1126 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1127 } 1128 1129 // When placing orphan sections, we want to place them after symbol assignments 1130 // so that an orphan after 1131 // begin_foo = .; 1132 // foo : { *(foo) } 1133 // end_foo = .; 1134 // doesn't break the intended meaning of the begin/end symbols. 1135 // We don't want to go over sections since findOrphanPos is the 1136 // one in charge of deciding the order of the sections. 1137 // We don't want to go over changes to '.', since doing so in 1138 // rx_sec : { *(rx_sec) } 1139 // . = ALIGN(0x1000); 1140 // /* The RW PT_LOAD starts here*/ 1141 // rw_sec : { *(rw_sec) } 1142 // would mean that the RW PT_LOAD would become unaligned. 1143 static bool shouldSkip(BaseCommand *cmd) { 1144 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1145 return assign->name != "."; 1146 return false; 1147 } 1148 1149 // We want to place orphan sections so that they share as much 1150 // characteristics with their neighbors as possible. For example, if 1151 // both are rw, or both are tls. 1152 static std::vector<BaseCommand *>::iterator 1153 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1154 std::vector<BaseCommand *>::iterator e) { 1155 OutputSection *sec = cast<OutputSection>(*e); 1156 1157 // Find the first element that has as close a rank as possible. 1158 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1159 return getRankProximity(sec, a) < getRankProximity(sec, b); 1160 }); 1161 if (i == e) 1162 return e; 1163 1164 // Consider all existing sections with the same proximity. 1165 int proximity = getRankProximity(sec, *i); 1166 for (; i != e; ++i) { 1167 auto *curSec = dyn_cast<OutputSection>(*i); 1168 if (!curSec || !curSec->hasInputSections) 1169 continue; 1170 if (getRankProximity(sec, curSec) != proximity || 1171 sec->sortRank < curSec->sortRank) 1172 break; 1173 } 1174 1175 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1176 auto *os = dyn_cast<OutputSection>(cmd); 1177 return os && os->hasInputSections; 1178 }; 1179 auto j = std::find_if(llvm::make_reverse_iterator(i), 1180 llvm::make_reverse_iterator(b), 1181 isOutputSecWithInputSections); 1182 i = j.base(); 1183 1184 // As a special case, if the orphan section is the last section, put 1185 // it at the very end, past any other commands. 1186 // This matches bfd's behavior and is convenient when the linker script fully 1187 // specifies the start of the file, but doesn't care about the end (the non 1188 // alloc sections for example). 1189 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1190 if (nextSec == e) 1191 return e; 1192 1193 while (i != e && shouldSkip(*i)) 1194 ++i; 1195 return i; 1196 } 1197 1198 // Builds section order for handling --symbol-ordering-file. 1199 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1200 DenseMap<const InputSectionBase *, int> sectionOrder; 1201 // Use the rarely used option -call-graph-ordering-file to sort sections. 1202 if (!config->callGraphProfile.empty()) 1203 return computeCallGraphProfileOrder(); 1204 1205 if (config->symbolOrderingFile.empty()) 1206 return sectionOrder; 1207 1208 struct SymbolOrderEntry { 1209 int priority; 1210 bool present; 1211 }; 1212 1213 // Build a map from symbols to their priorities. Symbols that didn't 1214 // appear in the symbol ordering file have the lowest priority 0. 1215 // All explicitly mentioned symbols have negative (higher) priorities. 1216 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1217 int priority = -config->symbolOrderingFile.size(); 1218 for (StringRef s : config->symbolOrderingFile) 1219 symbolOrder.insert({s, {priority++, false}}); 1220 1221 // Build a map from sections to their priorities. 1222 auto addSym = [&](Symbol &sym) { 1223 auto it = symbolOrder.find(sym.getName()); 1224 if (it == symbolOrder.end()) 1225 return; 1226 SymbolOrderEntry &ent = it->second; 1227 ent.present = true; 1228 1229 maybeWarnUnorderableSymbol(&sym); 1230 1231 if (auto *d = dyn_cast<Defined>(&sym)) { 1232 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1233 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1234 priority = std::min(priority, ent.priority); 1235 } 1236 } 1237 }; 1238 1239 // We want both global and local symbols. We get the global ones from the 1240 // symbol table and iterate the object files for the local ones. 1241 for (Symbol *sym : symtab->symbols()) 1242 if (!sym->isLazy()) 1243 addSym(*sym); 1244 1245 for (InputFile *file : objectFiles) 1246 for (Symbol *sym : file->getSymbols()) 1247 if (sym->isLocal()) 1248 addSym(*sym); 1249 1250 if (config->warnSymbolOrdering) 1251 for (auto orderEntry : symbolOrder) 1252 if (!orderEntry.second.present) 1253 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1254 1255 return sectionOrder; 1256 } 1257 1258 // Sorts the sections in ISD according to the provided section order. 1259 static void 1260 sortISDBySectionOrder(InputSectionDescription *isd, 1261 const DenseMap<const InputSectionBase *, int> &order) { 1262 std::vector<InputSection *> unorderedSections; 1263 std::vector<std::pair<InputSection *, int>> orderedSections; 1264 uint64_t unorderedSize = 0; 1265 1266 for (InputSection *isec : isd->sections) { 1267 auto i = order.find(isec); 1268 if (i == order.end()) { 1269 unorderedSections.push_back(isec); 1270 unorderedSize += isec->getSize(); 1271 continue; 1272 } 1273 orderedSections.push_back({isec, i->second}); 1274 } 1275 llvm::sort(orderedSections, llvm::less_second()); 1276 1277 // Find an insertion point for the ordered section list in the unordered 1278 // section list. On targets with limited-range branches, this is the mid-point 1279 // of the unordered section list. This decreases the likelihood that a range 1280 // extension thunk will be needed to enter or exit the ordered region. If the 1281 // ordered section list is a list of hot functions, we can generally expect 1282 // the ordered functions to be called more often than the unordered functions, 1283 // making it more likely that any particular call will be within range, and 1284 // therefore reducing the number of thunks required. 1285 // 1286 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1287 // If the layout is: 1288 // 1289 // 8MB hot 1290 // 32MB cold 1291 // 1292 // only the first 8-16MB of the cold code (depending on which hot function it 1293 // is actually calling) can call the hot code without a range extension thunk. 1294 // However, if we use this layout: 1295 // 1296 // 16MB cold 1297 // 8MB hot 1298 // 16MB cold 1299 // 1300 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1301 // of the second block of cold code can call the hot code without a thunk. So 1302 // we effectively double the amount of code that could potentially call into 1303 // the hot code without a thunk. 1304 size_t insPt = 0; 1305 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1306 uint64_t unorderedPos = 0; 1307 for (; insPt != unorderedSections.size(); ++insPt) { 1308 unorderedPos += unorderedSections[insPt]->getSize(); 1309 if (unorderedPos > unorderedSize / 2) 1310 break; 1311 } 1312 } 1313 1314 isd->sections.clear(); 1315 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1316 isd->sections.push_back(isec); 1317 for (std::pair<InputSection *, int> p : orderedSections) 1318 isd->sections.push_back(p.first); 1319 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1320 isd->sections.push_back(isec); 1321 } 1322 1323 static void sortSection(OutputSection *sec, 1324 const DenseMap<const InputSectionBase *, int> &order) { 1325 StringRef name = sec->name; 1326 1327 // Sort input sections by section name suffixes for 1328 // __attribute__((init_priority(N))). 1329 if (name == ".init_array" || name == ".fini_array") { 1330 if (!script->hasSectionsCommand) 1331 sec->sortInitFini(); 1332 return; 1333 } 1334 1335 // Sort input sections by the special rule for .ctors and .dtors. 1336 if (name == ".ctors" || name == ".dtors") { 1337 if (!script->hasSectionsCommand) 1338 sec->sortCtorsDtors(); 1339 return; 1340 } 1341 1342 // Never sort these. 1343 if (name == ".init" || name == ".fini") 1344 return; 1345 1346 // .toc is allocated just after .got and is accessed using GOT-relative 1347 // relocations. Object files compiled with small code model have an 1348 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1349 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1350 // sections having smaller relocation offsets are at beginning of .toc 1351 if (config->emachine == EM_PPC64 && name == ".toc") { 1352 if (script->hasSectionsCommand) 1353 return; 1354 assert(sec->sectionCommands.size() == 1); 1355 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1356 llvm::stable_sort(isd->sections, 1357 [](const InputSection *a, const InputSection *b) -> bool { 1358 return a->file->ppc64SmallCodeModelTocRelocs && 1359 !b->file->ppc64SmallCodeModelTocRelocs; 1360 }); 1361 return; 1362 } 1363 1364 // Sort input sections by priority using the list provided 1365 // by --symbol-ordering-file. 1366 if (!order.empty()) 1367 for (BaseCommand *b : sec->sectionCommands) 1368 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1369 sortISDBySectionOrder(isd, order); 1370 } 1371 1372 // If no layout was provided by linker script, we want to apply default 1373 // sorting for special input sections. This also handles --symbol-ordering-file. 1374 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1375 // Build the order once since it is expensive. 1376 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1377 for (BaseCommand *base : script->sectionCommands) 1378 if (auto *sec = dyn_cast<OutputSection>(base)) 1379 sortSection(sec, order); 1380 } 1381 1382 template <class ELFT> void Writer<ELFT>::sortSections() { 1383 script->adjustSectionsBeforeSorting(); 1384 1385 // Don't sort if using -r. It is not necessary and we want to preserve the 1386 // relative order for SHF_LINK_ORDER sections. 1387 if (config->relocatable) 1388 return; 1389 1390 sortInputSections(); 1391 1392 for (BaseCommand *base : script->sectionCommands) { 1393 auto *os = dyn_cast<OutputSection>(base); 1394 if (!os) 1395 continue; 1396 os->sortRank = getSectionRank(os); 1397 1398 // We want to assign rude approximation values to outSecOff fields 1399 // to know the relative order of the input sections. We use it for 1400 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1401 uint64_t i = 0; 1402 for (InputSection *sec : getInputSections(os)) 1403 sec->outSecOff = i++; 1404 } 1405 1406 if (!script->hasSectionsCommand) { 1407 // We know that all the OutputSections are contiguous in this case. 1408 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1409 std::stable_sort( 1410 llvm::find_if(script->sectionCommands, isSection), 1411 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1412 compareSections); 1413 return; 1414 } 1415 1416 // Orphan sections are sections present in the input files which are 1417 // not explicitly placed into the output file by the linker script. 1418 // 1419 // The sections in the linker script are already in the correct 1420 // order. We have to figuere out where to insert the orphan 1421 // sections. 1422 // 1423 // The order of the sections in the script is arbitrary and may not agree with 1424 // compareSections. This means that we cannot easily define a strict weak 1425 // ordering. To see why, consider a comparison of a section in the script and 1426 // one not in the script. We have a two simple options: 1427 // * Make them equivalent (a is not less than b, and b is not less than a). 1428 // The problem is then that equivalence has to be transitive and we can 1429 // have sections a, b and c with only b in a script and a less than c 1430 // which breaks this property. 1431 // * Use compareSectionsNonScript. Given that the script order doesn't have 1432 // to match, we can end up with sections a, b, c, d where b and c are in the 1433 // script and c is compareSectionsNonScript less than b. In which case d 1434 // can be equivalent to c, a to b and d < a. As a concrete example: 1435 // .a (rx) # not in script 1436 // .b (rx) # in script 1437 // .c (ro) # in script 1438 // .d (ro) # not in script 1439 // 1440 // The way we define an order then is: 1441 // * Sort only the orphan sections. They are in the end right now. 1442 // * Move each orphan section to its preferred position. We try 1443 // to put each section in the last position where it can share 1444 // a PT_LOAD. 1445 // 1446 // There is some ambiguity as to where exactly a new entry should be 1447 // inserted, because Commands contains not only output section 1448 // commands but also other types of commands such as symbol assignment 1449 // expressions. There's no correct answer here due to the lack of the 1450 // formal specification of the linker script. We use heuristics to 1451 // determine whether a new output command should be added before or 1452 // after another commands. For the details, look at shouldSkip 1453 // function. 1454 1455 auto i = script->sectionCommands.begin(); 1456 auto e = script->sectionCommands.end(); 1457 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1458 if (auto *sec = dyn_cast<OutputSection>(base)) 1459 return sec->sectionIndex == UINT32_MAX; 1460 return false; 1461 }); 1462 1463 // Sort the orphan sections. 1464 std::stable_sort(nonScriptI, e, compareSections); 1465 1466 // As a horrible special case, skip the first . assignment if it is before any 1467 // section. We do this because it is common to set a load address by starting 1468 // the script with ". = 0xabcd" and the expectation is that every section is 1469 // after that. 1470 auto firstSectionOrDotAssignment = 1471 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1472 if (firstSectionOrDotAssignment != e && 1473 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1474 ++firstSectionOrDotAssignment; 1475 i = firstSectionOrDotAssignment; 1476 1477 while (nonScriptI != e) { 1478 auto pos = findOrphanPos(i, nonScriptI); 1479 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1480 1481 // As an optimization, find all sections with the same sort rank 1482 // and insert them with one rotate. 1483 unsigned rank = orphan->sortRank; 1484 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1485 return cast<OutputSection>(cmd)->sortRank != rank; 1486 }); 1487 std::rotate(pos, nonScriptI, end); 1488 nonScriptI = end; 1489 } 1490 1491 script->adjustSectionsAfterSorting(); 1492 } 1493 1494 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1495 InputSection *la = a->getLinkOrderDep(); 1496 InputSection *lb = b->getLinkOrderDep(); 1497 OutputSection *aOut = la->getParent(); 1498 OutputSection *bOut = lb->getParent(); 1499 1500 if (aOut != bOut) 1501 return aOut->sectionIndex < bOut->sectionIndex; 1502 return la->outSecOff < lb->outSecOff; 1503 } 1504 1505 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1506 for (OutputSection *sec : outputSections) { 1507 if (!(sec->flags & SHF_LINK_ORDER)) 1508 continue; 1509 1510 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1511 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1512 if (!config->relocatable && config->emachine == EM_ARM && 1513 sec->type == SHT_ARM_EXIDX) 1514 continue; 1515 1516 // Link order may be distributed across several InputSectionDescriptions 1517 // but sort must consider them all at once. 1518 std::vector<InputSection **> scriptSections; 1519 std::vector<InputSection *> sections; 1520 for (BaseCommand *base : sec->sectionCommands) { 1521 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1522 for (InputSection *&isec : isd->sections) { 1523 scriptSections.push_back(&isec); 1524 sections.push_back(isec); 1525 1526 InputSection *link = isec->getLinkOrderDep(); 1527 if (!link->getParent()) 1528 error(toString(isec) + ": sh_link points to discarded section " + 1529 toString(link)); 1530 } 1531 } 1532 } 1533 1534 if (errorCount()) 1535 continue; 1536 1537 llvm::stable_sort(sections, compareByFilePosition); 1538 1539 for (int i = 0, n = sections.size(); i < n; ++i) 1540 *scriptSections[i] = sections[i]; 1541 } 1542 } 1543 1544 // We need to generate and finalize the content that depends on the address of 1545 // InputSections. As the generation of the content may also alter InputSection 1546 // addresses we must converge to a fixed point. We do that here. See the comment 1547 // in Writer<ELFT>::finalizeSections(). 1548 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1549 ThunkCreator tc; 1550 AArch64Err843419Patcher a64p; 1551 ARMErr657417Patcher a32p; 1552 script->assignAddresses(); 1553 1554 int assignPasses = 0; 1555 for (;;) { 1556 bool changed = target->needsThunks && tc.createThunks(outputSections); 1557 1558 // With Thunk Size much smaller than branch range we expect to 1559 // converge quickly; if we get to 10 something has gone wrong. 1560 if (changed && tc.pass >= 10) { 1561 error("thunk creation not converged"); 1562 break; 1563 } 1564 1565 if (config->fixCortexA53Errata843419) { 1566 if (changed) 1567 script->assignAddresses(); 1568 changed |= a64p.createFixes(); 1569 } 1570 if (config->fixCortexA8) { 1571 if (changed) 1572 script->assignAddresses(); 1573 changed |= a32p.createFixes(); 1574 } 1575 1576 if (in.mipsGot) 1577 in.mipsGot->updateAllocSize(); 1578 1579 for (Partition &part : partitions) { 1580 changed |= part.relaDyn->updateAllocSize(); 1581 if (part.relrDyn) 1582 changed |= part.relrDyn->updateAllocSize(); 1583 } 1584 1585 const Defined *changedSym = script->assignAddresses(); 1586 if (!changed) { 1587 // Some symbols may be dependent on section addresses. When we break the 1588 // loop, the symbol values are finalized because a previous 1589 // assignAddresses() finalized section addresses. 1590 if (!changedSym) 1591 break; 1592 if (++assignPasses == 5) { 1593 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1594 " does not converge"); 1595 break; 1596 } 1597 } 1598 } 1599 } 1600 1601 static void finalizeSynthetic(SyntheticSection *sec) { 1602 if (sec && sec->isNeeded() && sec->getParent()) 1603 sec->finalizeContents(); 1604 } 1605 1606 // In order to allow users to manipulate linker-synthesized sections, 1607 // we had to add synthetic sections to the input section list early, 1608 // even before we make decisions whether they are needed. This allows 1609 // users to write scripts like this: ".mygot : { .got }". 1610 // 1611 // Doing it has an unintended side effects. If it turns out that we 1612 // don't need a .got (for example) at all because there's no 1613 // relocation that needs a .got, we don't want to emit .got. 1614 // 1615 // To deal with the above problem, this function is called after 1616 // scanRelocations is called to remove synthetic sections that turn 1617 // out to be empty. 1618 static void removeUnusedSyntheticSections() { 1619 // All input synthetic sections that can be empty are placed after 1620 // all regular ones. We iterate over them all and exit at first 1621 // non-synthetic. 1622 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1623 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1624 if (!ss) 1625 return; 1626 OutputSection *os = ss->getParent(); 1627 if (!os || ss->isNeeded()) 1628 continue; 1629 1630 // If we reach here, then SS is an unused synthetic section and we want to 1631 // remove it from corresponding input section description of output section. 1632 for (BaseCommand *b : os->sectionCommands) 1633 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1634 llvm::erase_if(isd->sections, 1635 [=](InputSection *isec) { return isec == ss; }); 1636 } 1637 } 1638 1639 // Create output section objects and add them to OutputSections. 1640 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1641 Out::preinitArray = findSection(".preinit_array"); 1642 Out::initArray = findSection(".init_array"); 1643 Out::finiArray = findSection(".fini_array"); 1644 1645 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1646 // symbols for sections, so that the runtime can get the start and end 1647 // addresses of each section by section name. Add such symbols. 1648 if (!config->relocatable) { 1649 addStartEndSymbols(); 1650 for (BaseCommand *base : script->sectionCommands) 1651 if (auto *sec = dyn_cast<OutputSection>(base)) 1652 addStartStopSymbols(sec); 1653 } 1654 1655 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1656 // It should be okay as no one seems to care about the type. 1657 // Even the author of gold doesn't remember why gold behaves that way. 1658 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1659 if (mainPart->dynamic->parent) 1660 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1661 STV_HIDDEN, STT_NOTYPE, 1662 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1663 1664 // Define __rel[a]_iplt_{start,end} symbols if needed. 1665 addRelIpltSymbols(); 1666 1667 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1668 // should only be defined in an executable. If .sdata does not exist, its 1669 // value/section does not matter but it has to be relative, so set its 1670 // st_shndx arbitrarily to 1 (Out::elfHeader). 1671 if (config->emachine == EM_RISCV && !config->shared) { 1672 OutputSection *sec = findSection(".sdata"); 1673 ElfSym::riscvGlobalPointer = 1674 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1675 0x800, STV_DEFAULT, STB_GLOBAL); 1676 } 1677 1678 if (config->emachine == EM_X86_64) { 1679 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1680 // way that: 1681 // 1682 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1683 // computes 0. 1684 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1685 // the TLS block). 1686 // 1687 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1688 // an absolute symbol of zero. This is different from GNU linkers which 1689 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1690 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1691 if (s && s->isUndefined()) { 1692 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1693 STT_TLS, /*value=*/0, 0, 1694 /*section=*/nullptr}); 1695 ElfSym::tlsModuleBase = cast<Defined>(s); 1696 } 1697 } 1698 1699 // This responsible for splitting up .eh_frame section into 1700 // pieces. The relocation scan uses those pieces, so this has to be 1701 // earlier. 1702 for (Partition &part : partitions) 1703 finalizeSynthetic(part.ehFrame); 1704 1705 for (Symbol *sym : symtab->symbols()) 1706 sym->isPreemptible = computeIsPreemptible(*sym); 1707 1708 // Change values of linker-script-defined symbols from placeholders (assigned 1709 // by declareSymbols) to actual definitions. 1710 script->processSymbolAssignments(); 1711 1712 // Scan relocations. This must be done after every symbol is declared so that 1713 // we can correctly decide if a dynamic relocation is needed. This is called 1714 // after processSymbolAssignments() because it needs to know whether a 1715 // linker-script-defined symbol is absolute. 1716 if (!config->relocatable) { 1717 forEachRelSec(scanRelocations<ELFT>); 1718 reportUndefinedSymbols<ELFT>(); 1719 } 1720 1721 if (in.plt && in.plt->isNeeded()) 1722 in.plt->addSymbols(); 1723 if (in.iplt && in.iplt->isNeeded()) 1724 in.iplt->addSymbols(); 1725 1726 if (!config->allowShlibUndefined) { 1727 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1728 // entries are seen. These cases would otherwise lead to runtime errors 1729 // reported by the dynamic linker. 1730 // 1731 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1732 // catch more cases. That is too much for us. Our approach resembles the one 1733 // used in ld.gold, achieves a good balance to be useful but not too smart. 1734 for (SharedFile *file : sharedFiles) 1735 file->allNeededIsKnown = 1736 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1737 return symtab->soNames.count(needed); 1738 }); 1739 1740 for (Symbol *sym : symtab->symbols()) 1741 if (sym->isUndefined() && !sym->isWeak()) 1742 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1743 if (f->allNeededIsKnown) 1744 error(toString(f) + ": undefined reference to " + toString(*sym)); 1745 } 1746 1747 // Now that we have defined all possible global symbols including linker- 1748 // synthesized ones. Visit all symbols to give the finishing touches. 1749 for (Symbol *sym : symtab->symbols()) { 1750 if (!includeInSymtab(*sym)) 1751 continue; 1752 if (in.symTab) 1753 in.symTab->addSymbol(sym); 1754 1755 if (sym->includeInDynsym()) { 1756 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1757 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1758 if (file->isNeeded && !sym->isUndefined()) 1759 addVerneed(sym); 1760 } 1761 } 1762 1763 // We also need to scan the dynamic relocation tables of the other partitions 1764 // and add any referenced symbols to the partition's dynsym. 1765 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1766 DenseSet<Symbol *> syms; 1767 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1768 syms.insert(e.sym); 1769 for (DynamicReloc &reloc : part.relaDyn->relocs) 1770 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 1771 part.dynSymTab->addSymbol(reloc.sym); 1772 } 1773 1774 // Do not proceed if there was an undefined symbol. 1775 if (errorCount()) 1776 return; 1777 1778 if (in.mipsGot) 1779 in.mipsGot->build(); 1780 1781 removeUnusedSyntheticSections(); 1782 1783 sortSections(); 1784 1785 // Now that we have the final list, create a list of all the 1786 // OutputSections for convenience. 1787 for (BaseCommand *base : script->sectionCommands) 1788 if (auto *sec = dyn_cast<OutputSection>(base)) 1789 outputSections.push_back(sec); 1790 1791 // Prefer command line supplied address over other constraints. 1792 for (OutputSection *sec : outputSections) { 1793 auto i = config->sectionStartMap.find(sec->name); 1794 if (i != config->sectionStartMap.end()) 1795 sec->addrExpr = [=] { return i->second; }; 1796 } 1797 1798 // This is a bit of a hack. A value of 0 means undef, so we set it 1799 // to 1 to make __ehdr_start defined. The section number is not 1800 // particularly relevant. 1801 Out::elfHeader->sectionIndex = 1; 1802 1803 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 1804 OutputSection *sec = outputSections[i]; 1805 sec->sectionIndex = i + 1; 1806 sec->shName = in.shStrTab->addString(sec->name); 1807 } 1808 1809 // Binary and relocatable output does not have PHDRS. 1810 // The headers have to be created before finalize as that can influence the 1811 // image base and the dynamic section on mips includes the image base. 1812 if (!config->relocatable && !config->oFormatBinary) { 1813 for (Partition &part : partitions) { 1814 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 1815 : createPhdrs(part); 1816 if (config->emachine == EM_ARM) { 1817 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1818 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1819 } 1820 if (config->emachine == EM_MIPS) { 1821 // Add separate segments for MIPS-specific sections. 1822 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1823 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1824 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1825 } 1826 } 1827 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 1828 1829 // Find the TLS segment. This happens before the section layout loop so that 1830 // Android relocation packing can look up TLS symbol addresses. We only need 1831 // to care about the main partition here because all TLS symbols were moved 1832 // to the main partition (see MarkLive.cpp). 1833 for (PhdrEntry *p : mainPart->phdrs) 1834 if (p->p_type == PT_TLS) 1835 Out::tlsPhdr = p; 1836 } 1837 1838 // Some symbols are defined in term of program headers. Now that we 1839 // have the headers, we can find out which sections they point to. 1840 setReservedSymbolSections(); 1841 1842 finalizeSynthetic(in.bss); 1843 finalizeSynthetic(in.bssRelRo); 1844 finalizeSynthetic(in.symTabShndx); 1845 finalizeSynthetic(in.shStrTab); 1846 finalizeSynthetic(in.strTab); 1847 finalizeSynthetic(in.got); 1848 finalizeSynthetic(in.mipsGot); 1849 finalizeSynthetic(in.igotPlt); 1850 finalizeSynthetic(in.gotPlt); 1851 finalizeSynthetic(in.relaIplt); 1852 finalizeSynthetic(in.relaPlt); 1853 finalizeSynthetic(in.plt); 1854 finalizeSynthetic(in.iplt); 1855 finalizeSynthetic(in.ppc32Got2); 1856 finalizeSynthetic(in.partIndex); 1857 1858 // Dynamic section must be the last one in this list and dynamic 1859 // symbol table section (dynSymTab) must be the first one. 1860 for (Partition &part : partitions) { 1861 finalizeSynthetic(part.armExidx); 1862 finalizeSynthetic(part.dynSymTab); 1863 finalizeSynthetic(part.gnuHashTab); 1864 finalizeSynthetic(part.hashTab); 1865 finalizeSynthetic(part.verDef); 1866 finalizeSynthetic(part.relaDyn); 1867 finalizeSynthetic(part.relrDyn); 1868 finalizeSynthetic(part.ehFrameHdr); 1869 finalizeSynthetic(part.verSym); 1870 finalizeSynthetic(part.verNeed); 1871 finalizeSynthetic(part.dynamic); 1872 } 1873 1874 if (!script->hasSectionsCommand && !config->relocatable) 1875 fixSectionAlignments(); 1876 1877 // SHFLinkOrder processing must be processed after relative section placements are 1878 // known but before addresses are allocated. 1879 resolveShfLinkOrder(); 1880 if (errorCount()) 1881 return; 1882 1883 // This is used to: 1884 // 1) Create "thunks": 1885 // Jump instructions in many ISAs have small displacements, and therefore 1886 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1887 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1888 // responsibility to create and insert small pieces of code between 1889 // sections to extend the ranges if jump targets are out of range. Such 1890 // code pieces are called "thunks". 1891 // 1892 // We add thunks at this stage. We couldn't do this before this point 1893 // because this is the earliest point where we know sizes of sections and 1894 // their layouts (that are needed to determine if jump targets are in 1895 // range). 1896 // 1897 // 2) Update the sections. We need to generate content that depends on the 1898 // address of InputSections. For example, MIPS GOT section content or 1899 // android packed relocations sections content. 1900 // 1901 // 3) Assign the final values for the linker script symbols. Linker scripts 1902 // sometimes using forward symbol declarations. We want to set the correct 1903 // values. They also might change after adding the thunks. 1904 finalizeAddressDependentContent(); 1905 1906 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1907 finalizeSynthetic(in.symTab); 1908 finalizeSynthetic(in.ppc64LongBranchTarget); 1909 1910 // Fill other section headers. The dynamic table is finalized 1911 // at the end because some tags like RELSZ depend on result 1912 // of finalizing other sections. 1913 for (OutputSection *sec : outputSections) 1914 sec->finalize(); 1915 } 1916 1917 // Ensure data sections are not mixed with executable sections when 1918 // -execute-only is used. -execute-only is a feature to make pages executable 1919 // but not readable, and the feature is currently supported only on AArch64. 1920 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1921 if (!config->executeOnly) 1922 return; 1923 1924 for (OutputSection *os : outputSections) 1925 if (os->flags & SHF_EXECINSTR) 1926 for (InputSection *isec : getInputSections(os)) 1927 if (!(isec->flags & SHF_EXECINSTR)) 1928 error("cannot place " + toString(isec) + " into " + toString(os->name) + 1929 ": -execute-only does not support intermingling data and code"); 1930 } 1931 1932 // The linker is expected to define SECNAME_start and SECNAME_end 1933 // symbols for a few sections. This function defines them. 1934 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1935 // If a section does not exist, there's ambiguity as to how we 1936 // define _start and _end symbols for an init/fini section. Since 1937 // the loader assume that the symbols are always defined, we need to 1938 // always define them. But what value? The loader iterates over all 1939 // pointers between _start and _end to run global ctors/dtors, so if 1940 // the section is empty, their symbol values don't actually matter 1941 // as long as _start and _end point to the same location. 1942 // 1943 // That said, we don't want to set the symbols to 0 (which is 1944 // probably the simplest value) because that could cause some 1945 // program to fail to link due to relocation overflow, if their 1946 // program text is above 2 GiB. We use the address of the .text 1947 // section instead to prevent that failure. 1948 // 1949 // In rare situations, the .text section may not exist. If that's the 1950 // case, use the image base address as a last resort. 1951 OutputSection *Default = findSection(".text"); 1952 if (!Default) 1953 Default = Out::elfHeader; 1954 1955 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 1956 if (os) { 1957 addOptionalRegular(start, os, 0); 1958 addOptionalRegular(end, os, -1); 1959 } else { 1960 addOptionalRegular(start, Default, 0); 1961 addOptionalRegular(end, Default, 0); 1962 } 1963 }; 1964 1965 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 1966 define("__init_array_start", "__init_array_end", Out::initArray); 1967 define("__fini_array_start", "__fini_array_end", Out::finiArray); 1968 1969 if (OutputSection *sec = findSection(".ARM.exidx")) 1970 define("__exidx_start", "__exidx_end", sec); 1971 } 1972 1973 // If a section name is valid as a C identifier (which is rare because of 1974 // the leading '.'), linkers are expected to define __start_<secname> and 1975 // __stop_<secname> symbols. They are at beginning and end of the section, 1976 // respectively. This is not requested by the ELF standard, but GNU ld and 1977 // gold provide the feature, and used by many programs. 1978 template <class ELFT> 1979 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 1980 StringRef s = sec->name; 1981 if (!isValidCIdentifier(s)) 1982 return; 1983 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 1984 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 1985 } 1986 1987 static bool needsPtLoad(OutputSection *sec) { 1988 if (!(sec->flags & SHF_ALLOC) || sec->noload) 1989 return false; 1990 1991 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1992 // responsible for allocating space for them, not the PT_LOAD that 1993 // contains the TLS initialization image. 1994 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 1995 return false; 1996 return true; 1997 } 1998 1999 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2000 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2001 // RW. This means that there is no alignment in the RO to RX transition and we 2002 // cannot create a PT_LOAD there. 2003 static uint64_t computeFlags(uint64_t flags) { 2004 if (config->omagic) 2005 return PF_R | PF_W | PF_X; 2006 if (config->executeOnly && (flags & PF_X)) 2007 return flags & ~PF_R; 2008 if (config->singleRoRx && !(flags & PF_W)) 2009 return flags | PF_X; 2010 return flags; 2011 } 2012 2013 // Decide which program headers to create and which sections to include in each 2014 // one. 2015 template <class ELFT> 2016 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2017 std::vector<PhdrEntry *> ret; 2018 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2019 ret.push_back(make<PhdrEntry>(type, flags)); 2020 return ret.back(); 2021 }; 2022 2023 unsigned partNo = part.getNumber(); 2024 bool isMain = partNo == 1; 2025 2026 // Add the first PT_LOAD segment for regular output sections. 2027 uint64_t flags = computeFlags(PF_R); 2028 PhdrEntry *load = nullptr; 2029 2030 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2031 // PT_LOAD. 2032 if (!config->nmagic && !config->omagic) { 2033 // The first phdr entry is PT_PHDR which describes the program header 2034 // itself. 2035 if (isMain) 2036 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2037 else 2038 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2039 2040 // PT_INTERP must be the second entry if exists. 2041 if (OutputSection *cmd = findSection(".interp", partNo)) 2042 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2043 2044 // Add the headers. We will remove them if they don't fit. 2045 // In the other partitions the headers are ordinary sections, so they don't 2046 // need to be added here. 2047 if (isMain) { 2048 load = addHdr(PT_LOAD, flags); 2049 load->add(Out::elfHeader); 2050 load->add(Out::programHeaders); 2051 } 2052 } 2053 2054 // PT_GNU_RELRO includes all sections that should be marked as 2055 // read-only by dynamic linker after processing relocations. 2056 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2057 // an error message if more than one PT_GNU_RELRO PHDR is required. 2058 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2059 bool inRelroPhdr = false; 2060 OutputSection *relroEnd = nullptr; 2061 for (OutputSection *sec : outputSections) { 2062 if (sec->partition != partNo || !needsPtLoad(sec)) 2063 continue; 2064 if (isRelroSection(sec)) { 2065 inRelroPhdr = true; 2066 if (!relroEnd) 2067 relRo->add(sec); 2068 else 2069 error("section: " + sec->name + " is not contiguous with other relro" + 2070 " sections"); 2071 } else if (inRelroPhdr) { 2072 inRelroPhdr = false; 2073 relroEnd = sec; 2074 } 2075 } 2076 2077 for (OutputSection *sec : outputSections) { 2078 if (!(sec->flags & SHF_ALLOC)) 2079 break; 2080 if (!needsPtLoad(sec)) 2081 continue; 2082 2083 // Normally, sections in partitions other than the current partition are 2084 // ignored. But partition number 255 is a special case: it contains the 2085 // partition end marker (.part.end). It needs to be added to the main 2086 // partition so that a segment is created for it in the main partition, 2087 // which will cause the dynamic loader to reserve space for the other 2088 // partitions. 2089 if (sec->partition != partNo) { 2090 if (isMain && sec->partition == 255) 2091 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2092 continue; 2093 } 2094 2095 // Segments are contiguous memory regions that has the same attributes 2096 // (e.g. executable or writable). There is one phdr for each segment. 2097 // Therefore, we need to create a new phdr when the next section has 2098 // different flags or is loaded at a discontiguous address or memory 2099 // region using AT or AT> linker script command, respectively. At the same 2100 // time, we don't want to create a separate load segment for the headers, 2101 // even if the first output section has an AT or AT> attribute. 2102 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2103 if (!load || 2104 ((sec->lmaExpr || 2105 (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) && 2106 load->lastSec != Out::programHeaders) || 2107 sec->memRegion != load->firstSec->memRegion || flags != newFlags || 2108 sec == relroEnd) { 2109 load = addHdr(PT_LOAD, newFlags); 2110 flags = newFlags; 2111 } 2112 2113 load->add(sec); 2114 } 2115 2116 // Add a TLS segment if any. 2117 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2118 for (OutputSection *sec : outputSections) 2119 if (sec->partition == partNo && sec->flags & SHF_TLS) 2120 tlsHdr->add(sec); 2121 if (tlsHdr->firstSec) 2122 ret.push_back(tlsHdr); 2123 2124 // Add an entry for .dynamic. 2125 if (OutputSection *sec = part.dynamic->getParent()) 2126 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2127 2128 if (relRo->firstSec) 2129 ret.push_back(relRo); 2130 2131 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2132 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2133 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2134 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2135 ->add(part.ehFrameHdr->getParent()); 2136 2137 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2138 // the dynamic linker fill the segment with random data. 2139 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2140 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2141 2142 if (config->zGnustack != GnuStackKind::None) { 2143 // PT_GNU_STACK is a special section to tell the loader to make the 2144 // pages for the stack non-executable. If you really want an executable 2145 // stack, you can pass -z execstack, but that's not recommended for 2146 // security reasons. 2147 unsigned perm = PF_R | PF_W; 2148 if (config->zGnustack == GnuStackKind::Exec) 2149 perm |= PF_X; 2150 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2151 } 2152 2153 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2154 // is expected to perform W^X violations, such as calling mprotect(2) or 2155 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2156 // OpenBSD. 2157 if (config->zWxneeded) 2158 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2159 2160 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2161 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2162 2163 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2164 // same alignment. 2165 PhdrEntry *note = nullptr; 2166 for (OutputSection *sec : outputSections) { 2167 if (sec->partition != partNo) 2168 continue; 2169 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2170 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2171 note = addHdr(PT_NOTE, PF_R); 2172 note->add(sec); 2173 } else { 2174 note = nullptr; 2175 } 2176 } 2177 return ret; 2178 } 2179 2180 template <class ELFT> 2181 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2182 unsigned pType, unsigned pFlags) { 2183 unsigned partNo = part.getNumber(); 2184 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2185 return cmd->partition == partNo && cmd->type == shType; 2186 }); 2187 if (i == outputSections.end()) 2188 return; 2189 2190 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2191 entry->add(*i); 2192 part.phdrs.push_back(entry); 2193 } 2194 2195 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2196 // This is achieved by assigning an alignment expression to addrExpr of each 2197 // such section. 2198 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2199 const PhdrEntry *prev; 2200 auto pageAlign = [&](const PhdrEntry *p) { 2201 OutputSection *cmd = p->firstSec; 2202 if (cmd && !cmd->addrExpr) { 2203 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2204 // padding in the file contents. 2205 // 2206 // When -z separate-code is used we must not have any overlap in pages 2207 // between an executable segment and a non-executable segment. We align to 2208 // the next maximum page size boundary on transitions between executable 2209 // and non-executable segments. 2210 // 2211 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2212 // sections will be extracted to a separate file. Align to the next 2213 // maximum page size boundary so that we can find the ELF header at the 2214 // start. We cannot benefit from overlapping p_offset ranges with the 2215 // previous segment anyway. 2216 if (config->zSeparate == SeparateSegmentKind::Loadable || 2217 (config->zSeparate == SeparateSegmentKind::Code && prev && 2218 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2219 cmd->type == SHT_LLVM_PART_EHDR) 2220 cmd->addrExpr = [] { 2221 return alignTo(script->getDot(), config->maxPageSize); 2222 }; 2223 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2224 // it must be the RW. Align to p_align(PT_TLS) to make sure 2225 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2226 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2227 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2228 // be congruent to 0 modulo p_align(PT_TLS). 2229 // 2230 // Technically this is not required, but as of 2019, some dynamic loaders 2231 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2232 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2233 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2234 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2235 // blocks correctly. We need to keep the workaround for a while. 2236 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2237 cmd->addrExpr = [] { 2238 return alignTo(script->getDot(), config->maxPageSize) + 2239 alignTo(script->getDot() % config->maxPageSize, 2240 Out::tlsPhdr->p_align); 2241 }; 2242 else 2243 cmd->addrExpr = [] { 2244 return alignTo(script->getDot(), config->maxPageSize) + 2245 script->getDot() % config->maxPageSize; 2246 }; 2247 } 2248 }; 2249 2250 for (Partition &part : partitions) { 2251 prev = nullptr; 2252 for (const PhdrEntry *p : part.phdrs) 2253 if (p->p_type == PT_LOAD && p->firstSec) { 2254 pageAlign(p); 2255 prev = p; 2256 } 2257 } 2258 } 2259 2260 // Compute an in-file position for a given section. The file offset must be the 2261 // same with its virtual address modulo the page size, so that the loader can 2262 // load executables without any address adjustment. 2263 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2264 // The first section in a PT_LOAD has to have congruent offset and address 2265 // modulo the maximum page size. 2266 if (os->ptLoad && os->ptLoad->firstSec == os) 2267 return alignTo(off, os->ptLoad->p_align, os->addr); 2268 2269 // File offsets are not significant for .bss sections other than the first one 2270 // in a PT_LOAD. By convention, we keep section offsets monotonically 2271 // increasing rather than setting to zero. 2272 if (os->type == SHT_NOBITS) 2273 return off; 2274 2275 // If the section is not in a PT_LOAD, we just have to align it. 2276 if (!os->ptLoad) 2277 return alignTo(off, os->alignment); 2278 2279 // If two sections share the same PT_LOAD the file offset is calculated 2280 // using this formula: Off2 = Off1 + (VA2 - VA1). 2281 OutputSection *first = os->ptLoad->firstSec; 2282 return first->offset + os->addr - first->addr; 2283 } 2284 2285 // Set an in-file position to a given section and returns the end position of 2286 // the section. 2287 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2288 off = computeFileOffset(os, off); 2289 os->offset = off; 2290 2291 if (os->type == SHT_NOBITS) 2292 return off; 2293 return off + os->size; 2294 } 2295 2296 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2297 uint64_t off = 0; 2298 for (OutputSection *sec : outputSections) 2299 if (sec->flags & SHF_ALLOC) 2300 off = setFileOffset(sec, off); 2301 fileSize = alignTo(off, config->wordsize); 2302 } 2303 2304 static std::string rangeToString(uint64_t addr, uint64_t len) { 2305 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2306 } 2307 2308 // Assign file offsets to output sections. 2309 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2310 uint64_t off = 0; 2311 off = setFileOffset(Out::elfHeader, off); 2312 off = setFileOffset(Out::programHeaders, off); 2313 2314 PhdrEntry *lastRX = nullptr; 2315 for (Partition &part : partitions) 2316 for (PhdrEntry *p : part.phdrs) 2317 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2318 lastRX = p; 2319 2320 for (OutputSection *sec : outputSections) { 2321 off = setFileOffset(sec, off); 2322 2323 // If this is a last section of the last executable segment and that 2324 // segment is the last loadable segment, align the offset of the 2325 // following section to avoid loading non-segments parts of the file. 2326 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2327 lastRX->lastSec == sec) 2328 off = alignTo(off, config->commonPageSize); 2329 } 2330 2331 sectionHeaderOff = alignTo(off, config->wordsize); 2332 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2333 2334 // Our logic assumes that sections have rising VA within the same segment. 2335 // With use of linker scripts it is possible to violate this rule and get file 2336 // offset overlaps or overflows. That should never happen with a valid script 2337 // which does not move the location counter backwards and usually scripts do 2338 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2339 // kernel, which control segment distribution explicitly and move the counter 2340 // backwards, so we have to allow doing that to support linking them. We 2341 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2342 // we want to prevent file size overflows because it would crash the linker. 2343 for (OutputSection *sec : outputSections) { 2344 if (sec->type == SHT_NOBITS) 2345 continue; 2346 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2347 error("unable to place section " + sec->name + " at file offset " + 2348 rangeToString(sec->offset, sec->size) + 2349 "; check your linker script for overflows"); 2350 } 2351 } 2352 2353 // Finalize the program headers. We call this function after we assign 2354 // file offsets and VAs to all sections. 2355 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2356 for (PhdrEntry *p : part.phdrs) { 2357 OutputSection *first = p->firstSec; 2358 OutputSection *last = p->lastSec; 2359 2360 if (first) { 2361 p->p_filesz = last->offset - first->offset; 2362 if (last->type != SHT_NOBITS) 2363 p->p_filesz += last->size; 2364 2365 p->p_memsz = last->addr + last->size - first->addr; 2366 p->p_offset = first->offset; 2367 p->p_vaddr = first->addr; 2368 2369 // File offsets in partitions other than the main partition are relative 2370 // to the offset of the ELF headers. Perform that adjustment now. 2371 if (part.elfHeader) 2372 p->p_offset -= part.elfHeader->getParent()->offset; 2373 2374 if (!p->hasLMA) 2375 p->p_paddr = first->getLMA(); 2376 } 2377 2378 if (p->p_type == PT_GNU_RELRO) { 2379 p->p_align = 1; 2380 // musl/glibc ld.so rounds the size down, so we need to round up 2381 // to protect the last page. This is a no-op on FreeBSD which always 2382 // rounds up. 2383 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2384 p->p_offset; 2385 } 2386 } 2387 } 2388 2389 // A helper struct for checkSectionOverlap. 2390 namespace { 2391 struct SectionOffset { 2392 OutputSection *sec; 2393 uint64_t offset; 2394 }; 2395 } // namespace 2396 2397 // Check whether sections overlap for a specific address range (file offsets, 2398 // load and virtual addresses). 2399 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2400 bool isVirtualAddr) { 2401 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2402 return a.offset < b.offset; 2403 }); 2404 2405 // Finding overlap is easy given a vector is sorted by start position. 2406 // If an element starts before the end of the previous element, they overlap. 2407 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2408 SectionOffset a = sections[i - 1]; 2409 SectionOffset b = sections[i]; 2410 if (b.offset >= a.offset + a.sec->size) 2411 continue; 2412 2413 // If both sections are in OVERLAY we allow the overlapping of virtual 2414 // addresses, because it is what OVERLAY was designed for. 2415 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2416 continue; 2417 2418 errorOrWarn("section " + a.sec->name + " " + name + 2419 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2420 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2421 b.sec->name + " range is " + 2422 rangeToString(b.offset, b.sec->size)); 2423 } 2424 } 2425 2426 // Check for overlapping sections and address overflows. 2427 // 2428 // In this function we check that none of the output sections have overlapping 2429 // file offsets. For SHF_ALLOC sections we also check that the load address 2430 // ranges and the virtual address ranges don't overlap 2431 template <class ELFT> void Writer<ELFT>::checkSections() { 2432 // First, check that section's VAs fit in available address space for target. 2433 for (OutputSection *os : outputSections) 2434 if ((os->addr + os->size < os->addr) || 2435 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2436 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2437 " of size 0x" + utohexstr(os->size) + 2438 " exceeds available address space"); 2439 2440 // Check for overlapping file offsets. In this case we need to skip any 2441 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2442 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2443 // binary is specified only add SHF_ALLOC sections are added to the output 2444 // file so we skip any non-allocated sections in that case. 2445 std::vector<SectionOffset> fileOffs; 2446 for (OutputSection *sec : outputSections) 2447 if (sec->size > 0 && sec->type != SHT_NOBITS && 2448 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2449 fileOffs.push_back({sec, sec->offset}); 2450 checkOverlap("file", fileOffs, false); 2451 2452 // When linking with -r there is no need to check for overlapping virtual/load 2453 // addresses since those addresses will only be assigned when the final 2454 // executable/shared object is created. 2455 if (config->relocatable) 2456 return; 2457 2458 // Checking for overlapping virtual and load addresses only needs to take 2459 // into account SHF_ALLOC sections since others will not be loaded. 2460 // Furthermore, we also need to skip SHF_TLS sections since these will be 2461 // mapped to other addresses at runtime and can therefore have overlapping 2462 // ranges in the file. 2463 std::vector<SectionOffset> vmas; 2464 for (OutputSection *sec : outputSections) 2465 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2466 vmas.push_back({sec, sec->addr}); 2467 checkOverlap("virtual address", vmas, true); 2468 2469 // Finally, check that the load addresses don't overlap. This will usually be 2470 // the same as the virtual addresses but can be different when using a linker 2471 // script with AT(). 2472 std::vector<SectionOffset> lmas; 2473 for (OutputSection *sec : outputSections) 2474 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2475 lmas.push_back({sec, sec->getLMA()}); 2476 checkOverlap("load address", lmas, false); 2477 } 2478 2479 // The entry point address is chosen in the following ways. 2480 // 2481 // 1. the '-e' entry command-line option; 2482 // 2. the ENTRY(symbol) command in a linker control script; 2483 // 3. the value of the symbol _start, if present; 2484 // 4. the number represented by the entry symbol, if it is a number; 2485 // 5. the address of the first byte of the .text section, if present; 2486 // 6. the address 0. 2487 static uint64_t getEntryAddr() { 2488 // Case 1, 2 or 3 2489 if (Symbol *b = symtab->find(config->entry)) 2490 return b->getVA(); 2491 2492 // Case 4 2493 uint64_t addr; 2494 if (to_integer(config->entry, addr)) 2495 return addr; 2496 2497 // Case 5 2498 if (OutputSection *sec = findSection(".text")) { 2499 if (config->warnMissingEntry) 2500 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2501 utohexstr(sec->addr)); 2502 return sec->addr; 2503 } 2504 2505 // Case 6 2506 if (config->warnMissingEntry) 2507 warn("cannot find entry symbol " + config->entry + 2508 "; not setting start address"); 2509 return 0; 2510 } 2511 2512 static uint16_t getELFType() { 2513 if (config->isPic) 2514 return ET_DYN; 2515 if (config->relocatable) 2516 return ET_REL; 2517 return ET_EXEC; 2518 } 2519 2520 template <class ELFT> void Writer<ELFT>::writeHeader() { 2521 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2522 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2523 2524 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2525 eHdr->e_type = getELFType(); 2526 eHdr->e_entry = getEntryAddr(); 2527 eHdr->e_shoff = sectionHeaderOff; 2528 2529 // Write the section header table. 2530 // 2531 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2532 // and e_shstrndx fields. When the value of one of these fields exceeds 2533 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2534 // use fields in the section header at index 0 to store 2535 // the value. The sentinel values and fields are: 2536 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2537 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2538 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2539 size_t num = outputSections.size() + 1; 2540 if (num >= SHN_LORESERVE) 2541 sHdrs->sh_size = num; 2542 else 2543 eHdr->e_shnum = num; 2544 2545 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2546 if (strTabIndex >= SHN_LORESERVE) { 2547 sHdrs->sh_link = strTabIndex; 2548 eHdr->e_shstrndx = SHN_XINDEX; 2549 } else { 2550 eHdr->e_shstrndx = strTabIndex; 2551 } 2552 2553 for (OutputSection *sec : outputSections) 2554 sec->writeHeaderTo<ELFT>(++sHdrs); 2555 } 2556 2557 // Open a result file. 2558 template <class ELFT> void Writer<ELFT>::openFile() { 2559 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2560 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2561 error("output file too large: " + Twine(fileSize) + " bytes"); 2562 return; 2563 } 2564 2565 unlinkAsync(config->outputFile); 2566 unsigned flags = 0; 2567 if (!config->relocatable) 2568 flags |= FileOutputBuffer::F_executable; 2569 if (!config->mmapOutputFile) 2570 flags |= FileOutputBuffer::F_no_mmap; 2571 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2572 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2573 2574 if (!bufferOrErr) { 2575 error("failed to open " + config->outputFile + ": " + 2576 llvm::toString(bufferOrErr.takeError())); 2577 return; 2578 } 2579 buffer = std::move(*bufferOrErr); 2580 Out::bufferStart = buffer->getBufferStart(); 2581 } 2582 2583 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2584 for (OutputSection *sec : outputSections) 2585 if (sec->flags & SHF_ALLOC) 2586 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2587 } 2588 2589 static void fillTrap(uint8_t *i, uint8_t *end) { 2590 for (; i + 4 <= end; i += 4) 2591 memcpy(i, &target->trapInstr, 4); 2592 } 2593 2594 // Fill the last page of executable segments with trap instructions 2595 // instead of leaving them as zero. Even though it is not required by any 2596 // standard, it is in general a good thing to do for security reasons. 2597 // 2598 // We'll leave other pages in segments as-is because the rest will be 2599 // overwritten by output sections. 2600 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2601 for (Partition &part : partitions) { 2602 // Fill the last page. 2603 for (PhdrEntry *p : part.phdrs) 2604 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2605 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2606 config->commonPageSize), 2607 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2608 config->commonPageSize)); 2609 2610 // Round up the file size of the last segment to the page boundary iff it is 2611 // an executable segment to ensure that other tools don't accidentally 2612 // trim the instruction padding (e.g. when stripping the file). 2613 PhdrEntry *last = nullptr; 2614 for (PhdrEntry *p : part.phdrs) 2615 if (p->p_type == PT_LOAD) 2616 last = p; 2617 2618 if (last && (last->p_flags & PF_X)) 2619 last->p_memsz = last->p_filesz = 2620 alignTo(last->p_filesz, config->commonPageSize); 2621 } 2622 } 2623 2624 // Write section contents to a mmap'ed file. 2625 template <class ELFT> void Writer<ELFT>::writeSections() { 2626 // In -r or -emit-relocs mode, write the relocation sections first as in 2627 // ELf_Rel targets we might find out that we need to modify the relocated 2628 // section while doing it. 2629 for (OutputSection *sec : outputSections) 2630 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2631 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2632 2633 for (OutputSection *sec : outputSections) 2634 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2635 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2636 } 2637 2638 // Split one uint8 array into small pieces of uint8 arrays. 2639 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2640 size_t chunkSize) { 2641 std::vector<ArrayRef<uint8_t>> ret; 2642 while (arr.size() > chunkSize) { 2643 ret.push_back(arr.take_front(chunkSize)); 2644 arr = arr.drop_front(chunkSize); 2645 } 2646 if (!arr.empty()) 2647 ret.push_back(arr); 2648 return ret; 2649 } 2650 2651 // Computes a hash value of Data using a given hash function. 2652 // In order to utilize multiple cores, we first split data into 1MB 2653 // chunks, compute a hash for each chunk, and then compute a hash value 2654 // of the hash values. 2655 static void 2656 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2657 llvm::ArrayRef<uint8_t> data, 2658 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2659 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2660 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2661 2662 // Compute hash values. 2663 parallelForEachN(0, chunks.size(), [&](size_t i) { 2664 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2665 }); 2666 2667 // Write to the final output buffer. 2668 hashFn(hashBuf.data(), hashes); 2669 } 2670 2671 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2672 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2673 return; 2674 2675 if (config->buildId == BuildIdKind::Hexstring) { 2676 for (Partition &part : partitions) 2677 part.buildId->writeBuildId(config->buildIdVector); 2678 return; 2679 } 2680 2681 // Compute a hash of all sections of the output file. 2682 size_t hashSize = mainPart->buildId->hashSize; 2683 std::vector<uint8_t> buildId(hashSize); 2684 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2685 2686 switch (config->buildId) { 2687 case BuildIdKind::Fast: 2688 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2689 write64le(dest, xxHash64(arr)); 2690 }); 2691 break; 2692 case BuildIdKind::Md5: 2693 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2694 memcpy(dest, MD5::hash(arr).data(), hashSize); 2695 }); 2696 break; 2697 case BuildIdKind::Sha1: 2698 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2699 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2700 }); 2701 break; 2702 case BuildIdKind::Uuid: 2703 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2704 error("entropy source failure: " + ec.message()); 2705 break; 2706 default: 2707 llvm_unreachable("unknown BuildIdKind"); 2708 } 2709 for (Partition &part : partitions) 2710 part.buildId->writeBuildId(buildId); 2711 } 2712 2713 template void createSyntheticSections<ELF32LE>(); 2714 template void createSyntheticSections<ELF32BE>(); 2715 template void createSyntheticSections<ELF64LE>(); 2716 template void createSyntheticSections<ELF64BE>(); 2717 2718 template void writeResult<ELF32LE>(); 2719 template void writeResult<ELF32BE>(); 2720 template void writeResult<ELF64LE>(); 2721 template void writeResult<ELF64BE>(); 2722 2723 } // namespace elf 2724 } // namespace lld 2725