xref: /llvm-project-15.0.7/lld/ELF/Writer.cpp (revision 8580397f)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "LinkerScript.h"
15 #include "MapFile.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "lld/Common/Filesystem.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Support/RandomNumberGenerator.h"
29 #include "llvm/Support/SHA1.h"
30 #include "llvm/Support/xxhash.h"
31 #include <climits>
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::support;
37 using namespace llvm::support::endian;
38 
39 namespace lld {
40 namespace elf {
41 namespace {
42 // The writer writes a SymbolTable result to a file.
43 template <class ELFT> class Writer {
44 public:
45   Writer() : buffer(errorHandler().outputBuffer) {}
46   using Elf_Shdr = typename ELFT::Shdr;
47   using Elf_Ehdr = typename ELFT::Ehdr;
48   using Elf_Phdr = typename ELFT::Phdr;
49 
50   void run();
51 
52 private:
53   void copyLocalSymbols();
54   void addSectionSymbols();
55   void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
56   void sortSections();
57   void resolveShfLinkOrder();
58   void finalizeAddressDependentContent();
59   void sortInputSections();
60   void finalizeSections();
61   void checkExecuteOnly();
62   void setReservedSymbolSections();
63 
64   std::vector<PhdrEntry *> createPhdrs(Partition &part);
65   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
66                          unsigned pFlags);
67   void assignFileOffsets();
68   void assignFileOffsetsBinary();
69   void setPhdrs(Partition &part);
70   void checkSections();
71   void fixSectionAlignments();
72   void openFile();
73   void writeTrapInstr();
74   void writeHeader();
75   void writeSections();
76   void writeSectionsBinary();
77   void writeBuildId();
78 
79   std::unique_ptr<FileOutputBuffer> &buffer;
80 
81   void addRelIpltSymbols();
82   void addStartEndSymbols();
83   void addStartStopSymbols(OutputSection *sec);
84 
85   uint64_t fileSize;
86   uint64_t sectionHeaderOff;
87 };
88 } // anonymous namespace
89 
90 static bool isSectionPrefix(StringRef prefix, StringRef name) {
91   return name.startswith(prefix) || name == prefix.drop_back();
92 }
93 
94 StringRef getOutputSectionName(const InputSectionBase *s) {
95   if (config->relocatable)
96     return s->name;
97 
98   // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
99   // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
100   // technically required, but not doing it is odd). This code guarantees that.
101   if (auto *isec = dyn_cast<InputSection>(s)) {
102     if (InputSectionBase *rel = isec->getRelocatedSection()) {
103       OutputSection *out = rel->getOutputSection();
104       if (s->type == SHT_RELA)
105         return saver.save(".rela" + out->name);
106       return saver.save(".rel" + out->name);
107     }
108   }
109 
110   // This check is for -z keep-text-section-prefix.  This option separates text
111   // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
112   // ".text.exit".
113   // When enabled, this allows identifying the hot code region (.text.hot) in
114   // the final binary which can be selectively mapped to huge pages or mlocked,
115   // for instance.
116   if (config->zKeepTextSectionPrefix)
117     for (StringRef v :
118          {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
119       if (isSectionPrefix(v, s->name))
120         return v.drop_back();
121 
122   for (StringRef v :
123        {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
124         ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
125         ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
126     if (isSectionPrefix(v, s->name))
127       return v.drop_back();
128 
129   // CommonSection is identified as "COMMON" in linker scripts.
130   // By default, it should go to .bss section.
131   if (s->name == "COMMON")
132     return ".bss";
133 
134   return s->name;
135 }
136 
137 static bool needsInterpSection() {
138   return !config->shared && !config->dynamicLinker.empty() &&
139          script->needsInterpSection();
140 }
141 
142 template <class ELFT> void writeResult() { Writer<ELFT>().run(); }
143 
144 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
145   llvm::erase_if(phdrs, [&](const PhdrEntry *p) {
146     if (p->p_type != PT_LOAD)
147       return false;
148     if (!p->firstSec)
149       return true;
150     uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
151     return size == 0;
152   });
153 }
154 
155 void copySectionsIntoPartitions() {
156   std::vector<InputSectionBase *> newSections;
157   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
158     for (InputSectionBase *s : inputSections) {
159       if (!(s->flags & SHF_ALLOC) || !s->isLive())
160         continue;
161       InputSectionBase *copy;
162       if (s->type == SHT_NOTE)
163         copy = make<InputSection>(cast<InputSection>(*s));
164       else if (auto *es = dyn_cast<EhInputSection>(s))
165         copy = make<EhInputSection>(*es);
166       else
167         continue;
168       copy->partition = part;
169       newSections.push_back(copy);
170     }
171   }
172 
173   inputSections.insert(inputSections.end(), newSections.begin(),
174                        newSections.end());
175 }
176 
177 void combineEhSections() {
178   for (InputSectionBase *&s : inputSections) {
179     // Ignore dead sections and the partition end marker (.part.end),
180     // whose partition number is out of bounds.
181     if (!s->isLive() || s->partition == 255)
182       continue;
183 
184     Partition &part = s->getPartition();
185     if (auto *es = dyn_cast<EhInputSection>(s)) {
186       part.ehFrame->addSection(es);
187       s = nullptr;
188     } else if (s->kind() == SectionBase::Regular && part.armExidx &&
189                part.armExidx->addSection(cast<InputSection>(s))) {
190       s = nullptr;
191     }
192   }
193 
194   std::vector<InputSectionBase *> &v = inputSections;
195   v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
196 }
197 
198 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
199                                    uint64_t val, uint8_t stOther = STV_HIDDEN,
200                                    uint8_t binding = STB_GLOBAL) {
201   Symbol *s = symtab->find(name);
202   if (!s || s->isDefined())
203     return nullptr;
204 
205   s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
206                      /*size=*/0, sec});
207   return cast<Defined>(s);
208 }
209 
210 static Defined *addAbsolute(StringRef name) {
211   Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
212                                           STT_NOTYPE, 0, 0, nullptr});
213   return cast<Defined>(sym);
214 }
215 
216 // The linker is expected to define some symbols depending on
217 // the linking result. This function defines such symbols.
218 void addReservedSymbols() {
219   if (config->emachine == EM_MIPS) {
220     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
221     // so that it points to an absolute address which by default is relative
222     // to GOT. Default offset is 0x7ff0.
223     // See "Global Data Symbols" in Chapter 6 in the following document:
224     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
225     ElfSym::mipsGp = addAbsolute("_gp");
226 
227     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
228     // start of function and 'gp' pointer into GOT.
229     if (symtab->find("_gp_disp"))
230       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
231 
232     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
233     // pointer. This symbol is used in the code generated by .cpload pseudo-op
234     // in case of using -mno-shared option.
235     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
236     if (symtab->find("__gnu_local_gp"))
237       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
238   } else if (config->emachine == EM_PPC) {
239     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
240     // support Small Data Area, define it arbitrarily as 0.
241     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
242   }
243 
244   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
245   // combines the typical ELF GOT with the small data sections. It commonly
246   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
247   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
248   // represent the TOC base which is offset by 0x8000 bytes from the start of
249   // the .got section.
250   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
251   // correctness of some relocations depends on its value.
252   StringRef gotSymName =
253       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
254 
255   if (Symbol *s = symtab->find(gotSymName)) {
256     if (s->isDefined()) {
257       error(toString(s->file) + " cannot redefine linker defined symbol '" +
258             gotSymName + "'");
259       return;
260     }
261 
262     uint64_t gotOff = 0;
263     if (config->emachine == EM_PPC64)
264       gotOff = 0x8000;
265 
266     s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
267                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
268     ElfSym::globalOffsetTable = cast<Defined>(s);
269   }
270 
271   // __ehdr_start is the location of ELF file headers. Note that we define
272   // this symbol unconditionally even when using a linker script, which
273   // differs from the behavior implemented by GNU linker which only define
274   // this symbol if ELF headers are in the memory mapped segment.
275   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
276 
277   // __executable_start is not documented, but the expectation of at
278   // least the Android libc is that it points to the ELF header.
279   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
280 
281   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
282   // each DSO. The address of the symbol doesn't matter as long as they are
283   // different in different DSOs, so we chose the start address of the DSO.
284   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
285 
286   // If linker script do layout we do not need to create any standard symbols.
287   if (script->hasSectionsCommand)
288     return;
289 
290   auto add = [](StringRef s, int64_t pos) {
291     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
292   };
293 
294   ElfSym::bss = add("__bss_start", 0);
295   ElfSym::end1 = add("end", -1);
296   ElfSym::end2 = add("_end", -1);
297   ElfSym::etext1 = add("etext", -1);
298   ElfSym::etext2 = add("_etext", -1);
299   ElfSym::edata1 = add("edata", -1);
300   ElfSym::edata2 = add("_edata", -1);
301 }
302 
303 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
304   for (BaseCommand *base : script->sectionCommands)
305     if (auto *sec = dyn_cast<OutputSection>(base))
306       if (sec->name == name && sec->partition == partition)
307         return sec;
308   return nullptr;
309 }
310 
311 template <class ELFT> void createSyntheticSections() {
312   // Initialize all pointers with NULL. This is needed because
313   // you can call lld::elf::main more than once as a library.
314   memset(&Out::first, 0, sizeof(Out));
315 
316   // Add the .interp section first because it is not a SyntheticSection.
317   // The removeUnusedSyntheticSections() function relies on the
318   // SyntheticSections coming last.
319   if (needsInterpSection()) {
320     for (size_t i = 1; i <= partitions.size(); ++i) {
321       InputSection *sec = createInterpSection();
322       sec->partition = i;
323       inputSections.push_back(sec);
324     }
325   }
326 
327   auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
328 
329   in.shStrTab = make<StringTableSection>(".shstrtab", false);
330 
331   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
332   Out::programHeaders->alignment = config->wordsize;
333 
334   if (config->strip != StripPolicy::All) {
335     in.strTab = make<StringTableSection>(".strtab", false);
336     in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
337     in.symTabShndx = make<SymtabShndxSection>();
338   }
339 
340   in.bss = make<BssSection>(".bss", 0, 1);
341   add(in.bss);
342 
343   // If there is a SECTIONS command and a .data.rel.ro section name use name
344   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
345   // This makes sure our relro is contiguous.
346   bool hasDataRelRo =
347       script->hasSectionsCommand && findSection(".data.rel.ro", 0);
348   in.bssRelRo =
349       make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
350   add(in.bssRelRo);
351 
352   // Add MIPS-specific sections.
353   if (config->emachine == EM_MIPS) {
354     if (!config->shared && config->hasDynSymTab) {
355       in.mipsRldMap = make<MipsRldMapSection>();
356       add(in.mipsRldMap);
357     }
358     if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
359       add(sec);
360     if (auto *sec = MipsOptionsSection<ELFT>::create())
361       add(sec);
362     if (auto *sec = MipsReginfoSection<ELFT>::create())
363       add(sec);
364   }
365 
366   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
367 
368   for (Partition &part : partitions) {
369     auto add = [&](SyntheticSection *sec) {
370       sec->partition = part.getNumber();
371       inputSections.push_back(sec);
372     };
373 
374     if (!part.name.empty()) {
375       part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
376       part.elfHeader->name = part.name;
377       add(part.elfHeader);
378 
379       part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
380       add(part.programHeaders);
381     }
382 
383     if (config->buildId != BuildIdKind::None) {
384       part.buildId = make<BuildIdSection>();
385       add(part.buildId);
386     }
387 
388     part.dynStrTab = make<StringTableSection>(".dynstr", true);
389     part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
390     part.dynamic = make<DynamicSection<ELFT>>();
391     if (config->androidPackDynRelocs)
392       part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
393     else
394       part.relaDyn =
395           make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
396 
397     if (config->hasDynSymTab) {
398       part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
399       add(part.dynSymTab);
400 
401       part.verSym = make<VersionTableSection>();
402       add(part.verSym);
403 
404       if (!namedVersionDefs().empty()) {
405         part.verDef = make<VersionDefinitionSection>();
406         add(part.verDef);
407       }
408 
409       part.verNeed = make<VersionNeedSection<ELFT>>();
410       add(part.verNeed);
411 
412       if (config->gnuHash) {
413         part.gnuHashTab = make<GnuHashTableSection>();
414         add(part.gnuHashTab);
415       }
416 
417       if (config->sysvHash) {
418         part.hashTab = make<HashTableSection>();
419         add(part.hashTab);
420       }
421 
422       add(part.dynamic);
423       add(part.dynStrTab);
424       add(part.relaDyn);
425     }
426 
427     if (config->relrPackDynRelocs) {
428       part.relrDyn = make<RelrSection<ELFT>>();
429       add(part.relrDyn);
430     }
431 
432     if (!config->relocatable) {
433       if (config->ehFrameHdr) {
434         part.ehFrameHdr = make<EhFrameHeader>();
435         add(part.ehFrameHdr);
436       }
437       part.ehFrame = make<EhFrameSection>();
438       add(part.ehFrame);
439     }
440 
441     if (config->emachine == EM_ARM && !config->relocatable) {
442       // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
443       // InputSections.
444       part.armExidx = make<ARMExidxSyntheticSection>();
445       add(part.armExidx);
446     }
447   }
448 
449   if (partitions.size() != 1) {
450     // Create the partition end marker. This needs to be in partition number 255
451     // so that it is sorted after all other partitions. It also has other
452     // special handling (see createPhdrs() and combineEhSections()).
453     in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
454     in.partEnd->partition = 255;
455     add(in.partEnd);
456 
457     in.partIndex = make<PartitionIndexSection>();
458     addOptionalRegular("__part_index_begin", in.partIndex, 0);
459     addOptionalRegular("__part_index_end", in.partIndex,
460                        in.partIndex->getSize());
461     add(in.partIndex);
462   }
463 
464   // Add .got. MIPS' .got is so different from the other archs,
465   // it has its own class.
466   if (config->emachine == EM_MIPS) {
467     in.mipsGot = make<MipsGotSection>();
468     add(in.mipsGot);
469   } else {
470     in.got = make<GotSection>();
471     add(in.got);
472   }
473 
474   if (config->emachine == EM_PPC) {
475     in.ppc32Got2 = make<PPC32Got2Section>();
476     add(in.ppc32Got2);
477   }
478 
479   if (config->emachine == EM_PPC64) {
480     in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
481     add(in.ppc64LongBranchTarget);
482   }
483 
484   in.gotPlt = make<GotPltSection>();
485   add(in.gotPlt);
486   in.igotPlt = make<IgotPltSection>();
487   add(in.igotPlt);
488 
489   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
490   // it as a relocation and ensure the referenced section is created.
491   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
492     if (target->gotBaseSymInGotPlt)
493       in.gotPlt->hasGotPltOffRel = true;
494     else
495       in.got->hasGotOffRel = true;
496   }
497 
498   if (config->gdbIndex)
499     add(GdbIndexSection::create<ELFT>());
500 
501   // We always need to add rel[a].plt to output if it has entries.
502   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
503   in.relaPlt = make<RelocationSection<ELFT>>(
504       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
505   add(in.relaPlt);
506 
507   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
508   // relocations are processed last by the dynamic loader. We cannot place the
509   // iplt section in .rel.dyn when Android relocation packing is enabled because
510   // that would cause a section type mismatch. However, because the Android
511   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
512   // behaviour by placing the iplt section in .rel.plt.
513   in.relaIplt = make<RelocationSection<ELFT>>(
514       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
515       /*sort=*/false);
516   add(in.relaIplt);
517 
518   in.plt = make<PltSection>();
519   add(in.plt);
520   in.iplt = make<IpltSection>();
521   add(in.iplt);
522 
523   if (config->andFeatures)
524     add(make<GnuPropertySection>());
525 
526   // .note.GNU-stack is always added when we are creating a re-linkable
527   // object file. Other linkers are using the presence of this marker
528   // section to control the executable-ness of the stack area, but that
529   // is irrelevant these days. Stack area should always be non-executable
530   // by default. So we emit this section unconditionally.
531   if (config->relocatable)
532     add(make<GnuStackSection>());
533 
534   if (in.symTab)
535     add(in.symTab);
536   if (in.symTabShndx)
537     add(in.symTabShndx);
538   add(in.shStrTab);
539   if (in.strTab)
540     add(in.strTab);
541 }
542 
543 // The main function of the writer.
544 template <class ELFT> void Writer<ELFT>::run() {
545   if (config->discard != DiscardPolicy::All)
546     copyLocalSymbols();
547 
548   if (config->copyRelocs)
549     addSectionSymbols();
550 
551   // Now that we have a complete set of output sections. This function
552   // completes section contents. For example, we need to add strings
553   // to the string table, and add entries to .got and .plt.
554   // finalizeSections does that.
555   finalizeSections();
556   checkExecuteOnly();
557   if (errorCount())
558     return;
559 
560   // If -compressed-debug-sections is specified, we need to compress
561   // .debug_* sections. Do it right now because it changes the size of
562   // output sections.
563   for (OutputSection *sec : outputSections)
564     sec->maybeCompress<ELFT>();
565 
566   if (script->hasSectionsCommand)
567     script->allocateHeaders(mainPart->phdrs);
568 
569   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
570   // 0 sized region. This has to be done late since only after assignAddresses
571   // we know the size of the sections.
572   for (Partition &part : partitions)
573     removeEmptyPTLoad(part.phdrs);
574 
575   if (!config->oFormatBinary)
576     assignFileOffsets();
577   else
578     assignFileOffsetsBinary();
579 
580   for (Partition &part : partitions)
581     setPhdrs(part);
582 
583   if (config->relocatable)
584     for (OutputSection *sec : outputSections)
585       sec->addr = 0;
586 
587   if (config->checkSections)
588     checkSections();
589 
590   // It does not make sense try to open the file if we have error already.
591   if (errorCount())
592     return;
593   // Write the result down to a file.
594   openFile();
595   if (errorCount())
596     return;
597 
598   if (!config->oFormatBinary) {
599     if (config->zSeparate != SeparateSegmentKind::None)
600       writeTrapInstr();
601     writeHeader();
602     writeSections();
603   } else {
604     writeSectionsBinary();
605   }
606 
607   // Backfill .note.gnu.build-id section content. This is done at last
608   // because the content is usually a hash value of the entire output file.
609   writeBuildId();
610   if (errorCount())
611     return;
612 
613   // Handle -Map and -cref options.
614   writeMapFile();
615   writeCrossReferenceTable();
616   if (errorCount())
617     return;
618 
619   if (auto e = buffer->commit())
620     error("failed to write to the output file: " + toString(std::move(e)));
621 }
622 
623 static bool shouldKeepInSymtab(const Defined &sym) {
624   if (sym.isSection())
625     return false;
626 
627   if (config->discard == DiscardPolicy::None)
628     return true;
629 
630   // If -emit-reloc is given, all symbols including local ones need to be
631   // copied because they may be referenced by relocations.
632   if (config->emitRelocs)
633     return true;
634 
635   // In ELF assembly .L symbols are normally discarded by the assembler.
636   // If the assembler fails to do so, the linker discards them if
637   // * --discard-locals is used.
638   // * The symbol is in a SHF_MERGE section, which is normally the reason for
639   //   the assembler keeping the .L symbol.
640   StringRef name = sym.getName();
641   bool isLocal = name.startswith(".L") || name.empty();
642   if (!isLocal)
643     return true;
644 
645   if (config->discard == DiscardPolicy::Locals)
646     return false;
647 
648   SectionBase *sec = sym.section;
649   return !sec || !(sec->flags & SHF_MERGE);
650 }
651 
652 static bool includeInSymtab(const Symbol &b) {
653   if (!b.isLocal() && !b.isUsedInRegularObj)
654     return false;
655 
656   if (auto *d = dyn_cast<Defined>(&b)) {
657     // Always include absolute symbols.
658     SectionBase *sec = d->section;
659     if (!sec)
660       return true;
661     sec = sec->repl;
662 
663     // Exclude symbols pointing to garbage-collected sections.
664     if (isa<InputSectionBase>(sec) && !sec->isLive())
665       return false;
666 
667     if (auto *s = dyn_cast<MergeInputSection>(sec))
668       if (!s->getSectionPiece(d->value)->live)
669         return false;
670     return true;
671   }
672   return b.used;
673 }
674 
675 // Local symbols are not in the linker's symbol table. This function scans
676 // each object file's symbol table to copy local symbols to the output.
677 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
678   if (!in.symTab)
679     return;
680   for (InputFile *file : objectFiles) {
681     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
682     for (Symbol *b : f->getLocalSymbols()) {
683       if (!b->isLocal())
684         fatal(toString(f) +
685               ": broken object: getLocalSymbols returns a non-local symbol");
686       auto *dr = dyn_cast<Defined>(b);
687 
688       // No reason to keep local undefined symbol in symtab.
689       if (!dr)
690         continue;
691       if (!includeInSymtab(*b))
692         continue;
693       if (!shouldKeepInSymtab(*dr))
694         continue;
695       in.symTab->addSymbol(b);
696     }
697   }
698 }
699 
700 // Create a section symbol for each output section so that we can represent
701 // relocations that point to the section. If we know that no relocation is
702 // referring to a section (that happens if the section is a synthetic one), we
703 // don't create a section symbol for that section.
704 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
705   for (BaseCommand *base : script->sectionCommands) {
706     auto *sec = dyn_cast<OutputSection>(base);
707     if (!sec)
708       continue;
709     auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
710       if (auto *isd = dyn_cast<InputSectionDescription>(base))
711         return !isd->sections.empty();
712       return false;
713     });
714     if (i == sec->sectionCommands.end())
715       continue;
716     InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
717 
718     // Relocations are not using REL[A] section symbols.
719     if (isec->type == SHT_REL || isec->type == SHT_RELA)
720       continue;
721 
722     // Unlike other synthetic sections, mergeable output sections contain data
723     // copied from input sections, and there may be a relocation pointing to its
724     // contents if -r or -emit-reloc are given.
725     if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
726       continue;
727 
728     auto *sym =
729         make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
730                       /*value=*/0, /*size=*/0, isec);
731     in.symTab->addSymbol(sym);
732   }
733 }
734 
735 // Today's loaders have a feature to make segments read-only after
736 // processing dynamic relocations to enhance security. PT_GNU_RELRO
737 // is defined for that.
738 //
739 // This function returns true if a section needs to be put into a
740 // PT_GNU_RELRO segment.
741 static bool isRelroSection(const OutputSection *sec) {
742   if (!config->zRelro)
743     return false;
744 
745   uint64_t flags = sec->flags;
746 
747   // Non-allocatable or non-writable sections don't need RELRO because
748   // they are not writable or not even mapped to memory in the first place.
749   // RELRO is for sections that are essentially read-only but need to
750   // be writable only at process startup to allow dynamic linker to
751   // apply relocations.
752   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
753     return false;
754 
755   // Once initialized, TLS data segments are used as data templates
756   // for a thread-local storage. For each new thread, runtime
757   // allocates memory for a TLS and copy templates there. No thread
758   // are supposed to use templates directly. Thus, it can be in RELRO.
759   if (flags & SHF_TLS)
760     return true;
761 
762   // .init_array, .preinit_array and .fini_array contain pointers to
763   // functions that are executed on process startup or exit. These
764   // pointers are set by the static linker, and they are not expected
765   // to change at runtime. But if you are an attacker, you could do
766   // interesting things by manipulating pointers in .fini_array, for
767   // example. So they are put into RELRO.
768   uint32_t type = sec->type;
769   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
770       type == SHT_PREINIT_ARRAY)
771     return true;
772 
773   // .got contains pointers to external symbols. They are resolved by
774   // the dynamic linker when a module is loaded into memory, and after
775   // that they are not expected to change. So, it can be in RELRO.
776   if (in.got && sec == in.got->getParent())
777     return true;
778 
779   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
780   // through r2 register, which is reserved for that purpose. Since r2 is used
781   // for accessing .got as well, .got and .toc need to be close enough in the
782   // virtual address space. Usually, .toc comes just after .got. Since we place
783   // .got into RELRO, .toc needs to be placed into RELRO too.
784   if (sec->name.equals(".toc"))
785     return true;
786 
787   // .got.plt contains pointers to external function symbols. They are
788   // by default resolved lazily, so we usually cannot put it into RELRO.
789   // However, if "-z now" is given, the lazy symbol resolution is
790   // disabled, which enables us to put it into RELRO.
791   if (sec == in.gotPlt->getParent())
792     return config->zNow;
793 
794   // .dynamic section contains data for the dynamic linker, and
795   // there's no need to write to it at runtime, so it's better to put
796   // it into RELRO.
797   if (sec->name == ".dynamic")
798     return true;
799 
800   // Sections with some special names are put into RELRO. This is a
801   // bit unfortunate because section names shouldn't be significant in
802   // ELF in spirit. But in reality many linker features depend on
803   // magic section names.
804   StringRef s = sec->name;
805   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
806          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
807          s == ".openbsd.randomdata";
808 }
809 
810 // We compute a rank for each section. The rank indicates where the
811 // section should be placed in the file.  Instead of using simple
812 // numbers (0,1,2...), we use a series of flags. One for each decision
813 // point when placing the section.
814 // Using flags has two key properties:
815 // * It is easy to check if a give branch was taken.
816 // * It is easy two see how similar two ranks are (see getRankProximity).
817 enum RankFlags {
818   RF_NOT_ADDR_SET = 1 << 27,
819   RF_NOT_ALLOC = 1 << 26,
820   RF_PARTITION = 1 << 18, // Partition number (8 bits)
821   RF_NOT_PART_EHDR = 1 << 17,
822   RF_NOT_PART_PHDR = 1 << 16,
823   RF_NOT_INTERP = 1 << 15,
824   RF_NOT_NOTE = 1 << 14,
825   RF_WRITE = 1 << 13,
826   RF_EXEC_WRITE = 1 << 12,
827   RF_EXEC = 1 << 11,
828   RF_RODATA = 1 << 10,
829   RF_NOT_RELRO = 1 << 9,
830   RF_NOT_TLS = 1 << 8,
831   RF_BSS = 1 << 7,
832   RF_PPC_NOT_TOCBSS = 1 << 6,
833   RF_PPC_TOCL = 1 << 5,
834   RF_PPC_TOC = 1 << 4,
835   RF_PPC_GOT = 1 << 3,
836   RF_PPC_BRANCH_LT = 1 << 2,
837   RF_MIPS_GPREL = 1 << 1,
838   RF_MIPS_NOT_GOT = 1 << 0
839 };
840 
841 static unsigned getSectionRank(const OutputSection *sec) {
842   unsigned rank = sec->partition * RF_PARTITION;
843 
844   // We want to put section specified by -T option first, so we
845   // can start assigning VA starting from them later.
846   if (config->sectionStartMap.count(sec->name))
847     return rank;
848   rank |= RF_NOT_ADDR_SET;
849 
850   // Allocatable sections go first to reduce the total PT_LOAD size and
851   // so debug info doesn't change addresses in actual code.
852   if (!(sec->flags & SHF_ALLOC))
853     return rank | RF_NOT_ALLOC;
854 
855   if (sec->type == SHT_LLVM_PART_EHDR)
856     return rank;
857   rank |= RF_NOT_PART_EHDR;
858 
859   if (sec->type == SHT_LLVM_PART_PHDR)
860     return rank;
861   rank |= RF_NOT_PART_PHDR;
862 
863   // Put .interp first because some loaders want to see that section
864   // on the first page of the executable file when loaded into memory.
865   if (sec->name == ".interp")
866     return rank;
867   rank |= RF_NOT_INTERP;
868 
869   // Put .note sections (which make up one PT_NOTE) at the beginning so that
870   // they are likely to be included in a core file even if core file size is
871   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
872   // included in a core to match core files with executables.
873   if (sec->type == SHT_NOTE)
874     return rank;
875   rank |= RF_NOT_NOTE;
876 
877   // Sort sections based on their access permission in the following
878   // order: R, RX, RWX, RW.  This order is based on the following
879   // considerations:
880   // * Read-only sections come first such that they go in the
881   //   PT_LOAD covering the program headers at the start of the file.
882   // * Read-only, executable sections come next.
883   // * Writable, executable sections follow such that .plt on
884   //   architectures where it needs to be writable will be placed
885   //   between .text and .data.
886   // * Writable sections come last, such that .bss lands at the very
887   //   end of the last PT_LOAD.
888   bool isExec = sec->flags & SHF_EXECINSTR;
889   bool isWrite = sec->flags & SHF_WRITE;
890 
891   if (isExec) {
892     if (isWrite)
893       rank |= RF_EXEC_WRITE;
894     else
895       rank |= RF_EXEC;
896   } else if (isWrite) {
897     rank |= RF_WRITE;
898   } else if (sec->type == SHT_PROGBITS) {
899     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
900     // .eh_frame) closer to .text. They likely contain PC or GOT relative
901     // relocations and there could be relocation overflow if other huge sections
902     // (.dynstr .dynsym) were placed in between.
903     rank |= RF_RODATA;
904   }
905 
906   // Place RelRo sections first. After considering SHT_NOBITS below, the
907   // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
908   // where | marks where page alignment happens. An alternative ordering is
909   // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
910   // waste more bytes due to 2 alignment places.
911   if (!isRelroSection(sec))
912     rank |= RF_NOT_RELRO;
913 
914   // If we got here we know that both A and B are in the same PT_LOAD.
915 
916   // The TLS initialization block needs to be a single contiguous block in a R/W
917   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
918   // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
919   // after PROGBITS.
920   if (!(sec->flags & SHF_TLS))
921     rank |= RF_NOT_TLS;
922 
923   // Within TLS sections, or within other RelRo sections, or within non-RelRo
924   // sections, place non-NOBITS sections first.
925   if (sec->type == SHT_NOBITS)
926     rank |= RF_BSS;
927 
928   // Some architectures have additional ordering restrictions for sections
929   // within the same PT_LOAD.
930   if (config->emachine == EM_PPC64) {
931     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
932     // that we would like to make sure appear is a specific order to maximize
933     // their coverage by a single signed 16-bit offset from the TOC base
934     // pointer. Conversely, the special .tocbss section should be first among
935     // all SHT_NOBITS sections. This will put it next to the loaded special
936     // PPC64 sections (and, thus, within reach of the TOC base pointer).
937     StringRef name = sec->name;
938     if (name != ".tocbss")
939       rank |= RF_PPC_NOT_TOCBSS;
940 
941     if (name == ".toc1")
942       rank |= RF_PPC_TOCL;
943 
944     if (name == ".toc")
945       rank |= RF_PPC_TOC;
946 
947     if (name == ".got")
948       rank |= RF_PPC_GOT;
949 
950     if (name == ".branch_lt")
951       rank |= RF_PPC_BRANCH_LT;
952   }
953 
954   if (config->emachine == EM_MIPS) {
955     // All sections with SHF_MIPS_GPREL flag should be grouped together
956     // because data in these sections is addressable with a gp relative address.
957     if (sec->flags & SHF_MIPS_GPREL)
958       rank |= RF_MIPS_GPREL;
959 
960     if (sec->name != ".got")
961       rank |= RF_MIPS_NOT_GOT;
962   }
963 
964   return rank;
965 }
966 
967 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
968   const OutputSection *a = cast<OutputSection>(aCmd);
969   const OutputSection *b = cast<OutputSection>(bCmd);
970 
971   if (a->sortRank != b->sortRank)
972     return a->sortRank < b->sortRank;
973 
974   if (!(a->sortRank & RF_NOT_ADDR_SET))
975     return config->sectionStartMap.lookup(a->name) <
976            config->sectionStartMap.lookup(b->name);
977   return false;
978 }
979 
980 void PhdrEntry::add(OutputSection *sec) {
981   lastSec = sec;
982   if (!firstSec)
983     firstSec = sec;
984   p_align = std::max(p_align, sec->alignment);
985   if (p_type == PT_LOAD)
986     sec->ptLoad = this;
987 }
988 
989 // The beginning and the ending of .rel[a].plt section are marked
990 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
991 // executable. The runtime needs these symbols in order to resolve
992 // all IRELATIVE relocs on startup. For dynamic executables, we don't
993 // need these symbols, since IRELATIVE relocs are resolved through GOT
994 // and PLT. For details, see http://www.airs.com/blog/archives/403.
995 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
996   if (config->relocatable || needsInterpSection())
997     return;
998 
999   // By default, __rela_iplt_{start,end} belong to a dummy section 0
1000   // because .rela.plt might be empty and thus removed from output.
1001   // We'll override Out::elfHeader with In.relaIplt later when we are
1002   // sure that .rela.plt exists in output.
1003   ElfSym::relaIpltStart = addOptionalRegular(
1004       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1005       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1006 
1007   ElfSym::relaIpltEnd = addOptionalRegular(
1008       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1009       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1010 }
1011 
1012 template <class ELFT>
1013 void Writer<ELFT>::forEachRelSec(
1014     llvm::function_ref<void(InputSectionBase &)> fn) {
1015   // Scan all relocations. Each relocation goes through a series
1016   // of tests to determine if it needs special treatment, such as
1017   // creating GOT, PLT, copy relocations, etc.
1018   // Note that relocations for non-alloc sections are directly
1019   // processed by InputSection::relocateNonAlloc.
1020   for (InputSectionBase *isec : inputSections)
1021     if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1022       fn(*isec);
1023   for (Partition &part : partitions) {
1024     for (EhInputSection *es : part.ehFrame->sections)
1025       fn(*es);
1026     if (part.armExidx && part.armExidx->isLive())
1027       for (InputSection *ex : part.armExidx->exidxSections)
1028         fn(*ex);
1029   }
1030 }
1031 
1032 // This function generates assignments for predefined symbols (e.g. _end or
1033 // _etext) and inserts them into the commands sequence to be processed at the
1034 // appropriate time. This ensures that the value is going to be correct by the
1035 // time any references to these symbols are processed and is equivalent to
1036 // defining these symbols explicitly in the linker script.
1037 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1038   if (ElfSym::globalOffsetTable) {
1039     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1040     // to the start of the .got or .got.plt section.
1041     InputSection *gotSection = in.gotPlt;
1042     if (!target->gotBaseSymInGotPlt)
1043       gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1044                               : cast<InputSection>(in.got);
1045     ElfSym::globalOffsetTable->section = gotSection;
1046   }
1047 
1048   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1049   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1050     ElfSym::relaIpltStart->section = in.relaIplt;
1051     ElfSym::relaIpltEnd->section = in.relaIplt;
1052     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1053   }
1054 
1055   PhdrEntry *last = nullptr;
1056   PhdrEntry *lastRO = nullptr;
1057 
1058   for (Partition &part : partitions) {
1059     for (PhdrEntry *p : part.phdrs) {
1060       if (p->p_type != PT_LOAD)
1061         continue;
1062       last = p;
1063       if (!(p->p_flags & PF_W))
1064         lastRO = p;
1065     }
1066   }
1067 
1068   if (lastRO) {
1069     // _etext is the first location after the last read-only loadable segment.
1070     if (ElfSym::etext1)
1071       ElfSym::etext1->section = lastRO->lastSec;
1072     if (ElfSym::etext2)
1073       ElfSym::etext2->section = lastRO->lastSec;
1074   }
1075 
1076   if (last) {
1077     // _edata points to the end of the last mapped initialized section.
1078     OutputSection *edata = nullptr;
1079     for (OutputSection *os : outputSections) {
1080       if (os->type != SHT_NOBITS)
1081         edata = os;
1082       if (os == last->lastSec)
1083         break;
1084     }
1085 
1086     if (ElfSym::edata1)
1087       ElfSym::edata1->section = edata;
1088     if (ElfSym::edata2)
1089       ElfSym::edata2->section = edata;
1090 
1091     // _end is the first location after the uninitialized data region.
1092     if (ElfSym::end1)
1093       ElfSym::end1->section = last->lastSec;
1094     if (ElfSym::end2)
1095       ElfSym::end2->section = last->lastSec;
1096   }
1097 
1098   if (ElfSym::bss)
1099     ElfSym::bss->section = findSection(".bss");
1100 
1101   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1102   // be equal to the _gp symbol's value.
1103   if (ElfSym::mipsGp) {
1104     // Find GP-relative section with the lowest address
1105     // and use this address to calculate default _gp value.
1106     for (OutputSection *os : outputSections) {
1107       if (os->flags & SHF_MIPS_GPREL) {
1108         ElfSym::mipsGp->section = os;
1109         ElfSym::mipsGp->value = 0x7ff0;
1110         break;
1111       }
1112     }
1113   }
1114 }
1115 
1116 // We want to find how similar two ranks are.
1117 // The more branches in getSectionRank that match, the more similar they are.
1118 // Since each branch corresponds to a bit flag, we can just use
1119 // countLeadingZeros.
1120 static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1121   return countLeadingZeros(a->sortRank ^ b->sortRank);
1122 }
1123 
1124 static int getRankProximity(OutputSection *a, BaseCommand *b) {
1125   auto *sec = dyn_cast<OutputSection>(b);
1126   return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1127 }
1128 
1129 // When placing orphan sections, we want to place them after symbol assignments
1130 // so that an orphan after
1131 //   begin_foo = .;
1132 //   foo : { *(foo) }
1133 //   end_foo = .;
1134 // doesn't break the intended meaning of the begin/end symbols.
1135 // We don't want to go over sections since findOrphanPos is the
1136 // one in charge of deciding the order of the sections.
1137 // We don't want to go over changes to '.', since doing so in
1138 //  rx_sec : { *(rx_sec) }
1139 //  . = ALIGN(0x1000);
1140 //  /* The RW PT_LOAD starts here*/
1141 //  rw_sec : { *(rw_sec) }
1142 // would mean that the RW PT_LOAD would become unaligned.
1143 static bool shouldSkip(BaseCommand *cmd) {
1144   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1145     return assign->name != ".";
1146   return false;
1147 }
1148 
1149 // We want to place orphan sections so that they share as much
1150 // characteristics with their neighbors as possible. For example, if
1151 // both are rw, or both are tls.
1152 static std::vector<BaseCommand *>::iterator
1153 findOrphanPos(std::vector<BaseCommand *>::iterator b,
1154               std::vector<BaseCommand *>::iterator e) {
1155   OutputSection *sec = cast<OutputSection>(*e);
1156 
1157   // Find the first element that has as close a rank as possible.
1158   auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
1159     return getRankProximity(sec, a) < getRankProximity(sec, b);
1160   });
1161   if (i == e)
1162     return e;
1163 
1164   // Consider all existing sections with the same proximity.
1165   int proximity = getRankProximity(sec, *i);
1166   for (; i != e; ++i) {
1167     auto *curSec = dyn_cast<OutputSection>(*i);
1168     if (!curSec || !curSec->hasInputSections)
1169       continue;
1170     if (getRankProximity(sec, curSec) != proximity ||
1171         sec->sortRank < curSec->sortRank)
1172       break;
1173   }
1174 
1175   auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
1176     auto *os = dyn_cast<OutputSection>(cmd);
1177     return os && os->hasInputSections;
1178   };
1179   auto j = std::find_if(llvm::make_reverse_iterator(i),
1180                         llvm::make_reverse_iterator(b),
1181                         isOutputSecWithInputSections);
1182   i = j.base();
1183 
1184   // As a special case, if the orphan section is the last section, put
1185   // it at the very end, past any other commands.
1186   // This matches bfd's behavior and is convenient when the linker script fully
1187   // specifies the start of the file, but doesn't care about the end (the non
1188   // alloc sections for example).
1189   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1190   if (nextSec == e)
1191     return e;
1192 
1193   while (i != e && shouldSkip(*i))
1194     ++i;
1195   return i;
1196 }
1197 
1198 // Builds section order for handling --symbol-ordering-file.
1199 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1200   DenseMap<const InputSectionBase *, int> sectionOrder;
1201   // Use the rarely used option -call-graph-ordering-file to sort sections.
1202   if (!config->callGraphProfile.empty())
1203     return computeCallGraphProfileOrder();
1204 
1205   if (config->symbolOrderingFile.empty())
1206     return sectionOrder;
1207 
1208   struct SymbolOrderEntry {
1209     int priority;
1210     bool present;
1211   };
1212 
1213   // Build a map from symbols to their priorities. Symbols that didn't
1214   // appear in the symbol ordering file have the lowest priority 0.
1215   // All explicitly mentioned symbols have negative (higher) priorities.
1216   DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1217   int priority = -config->symbolOrderingFile.size();
1218   for (StringRef s : config->symbolOrderingFile)
1219     symbolOrder.insert({s, {priority++, false}});
1220 
1221   // Build a map from sections to their priorities.
1222   auto addSym = [&](Symbol &sym) {
1223     auto it = symbolOrder.find(sym.getName());
1224     if (it == symbolOrder.end())
1225       return;
1226     SymbolOrderEntry &ent = it->second;
1227     ent.present = true;
1228 
1229     maybeWarnUnorderableSymbol(&sym);
1230 
1231     if (auto *d = dyn_cast<Defined>(&sym)) {
1232       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1233         int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1234         priority = std::min(priority, ent.priority);
1235       }
1236     }
1237   };
1238 
1239   // We want both global and local symbols. We get the global ones from the
1240   // symbol table and iterate the object files for the local ones.
1241   for (Symbol *sym : symtab->symbols())
1242     if (!sym->isLazy())
1243       addSym(*sym);
1244 
1245   for (InputFile *file : objectFiles)
1246     for (Symbol *sym : file->getSymbols())
1247       if (sym->isLocal())
1248         addSym(*sym);
1249 
1250   if (config->warnSymbolOrdering)
1251     for (auto orderEntry : symbolOrder)
1252       if (!orderEntry.second.present)
1253         warn("symbol ordering file: no such symbol: " + orderEntry.first);
1254 
1255   return sectionOrder;
1256 }
1257 
1258 // Sorts the sections in ISD according to the provided section order.
1259 static void
1260 sortISDBySectionOrder(InputSectionDescription *isd,
1261                       const DenseMap<const InputSectionBase *, int> &order) {
1262   std::vector<InputSection *> unorderedSections;
1263   std::vector<std::pair<InputSection *, int>> orderedSections;
1264   uint64_t unorderedSize = 0;
1265 
1266   for (InputSection *isec : isd->sections) {
1267     auto i = order.find(isec);
1268     if (i == order.end()) {
1269       unorderedSections.push_back(isec);
1270       unorderedSize += isec->getSize();
1271       continue;
1272     }
1273     orderedSections.push_back({isec, i->second});
1274   }
1275   llvm::sort(orderedSections, llvm::less_second());
1276 
1277   // Find an insertion point for the ordered section list in the unordered
1278   // section list. On targets with limited-range branches, this is the mid-point
1279   // of the unordered section list. This decreases the likelihood that a range
1280   // extension thunk will be needed to enter or exit the ordered region. If the
1281   // ordered section list is a list of hot functions, we can generally expect
1282   // the ordered functions to be called more often than the unordered functions,
1283   // making it more likely that any particular call will be within range, and
1284   // therefore reducing the number of thunks required.
1285   //
1286   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1287   // If the layout is:
1288   //
1289   // 8MB hot
1290   // 32MB cold
1291   //
1292   // only the first 8-16MB of the cold code (depending on which hot function it
1293   // is actually calling) can call the hot code without a range extension thunk.
1294   // However, if we use this layout:
1295   //
1296   // 16MB cold
1297   // 8MB hot
1298   // 16MB cold
1299   //
1300   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1301   // of the second block of cold code can call the hot code without a thunk. So
1302   // we effectively double the amount of code that could potentially call into
1303   // the hot code without a thunk.
1304   size_t insPt = 0;
1305   if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1306     uint64_t unorderedPos = 0;
1307     for (; insPt != unorderedSections.size(); ++insPt) {
1308       unorderedPos += unorderedSections[insPt]->getSize();
1309       if (unorderedPos > unorderedSize / 2)
1310         break;
1311     }
1312   }
1313 
1314   isd->sections.clear();
1315   for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1316     isd->sections.push_back(isec);
1317   for (std::pair<InputSection *, int> p : orderedSections)
1318     isd->sections.push_back(p.first);
1319   for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1320     isd->sections.push_back(isec);
1321 }
1322 
1323 static void sortSection(OutputSection *sec,
1324                         const DenseMap<const InputSectionBase *, int> &order) {
1325   StringRef name = sec->name;
1326 
1327   // Sort input sections by section name suffixes for
1328   // __attribute__((init_priority(N))).
1329   if (name == ".init_array" || name == ".fini_array") {
1330     if (!script->hasSectionsCommand)
1331       sec->sortInitFini();
1332     return;
1333   }
1334 
1335   // Sort input sections by the special rule for .ctors and .dtors.
1336   if (name == ".ctors" || name == ".dtors") {
1337     if (!script->hasSectionsCommand)
1338       sec->sortCtorsDtors();
1339     return;
1340   }
1341 
1342   // Never sort these.
1343   if (name == ".init" || name == ".fini")
1344     return;
1345 
1346   // .toc is allocated just after .got and is accessed using GOT-relative
1347   // relocations. Object files compiled with small code model have an
1348   // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1349   // To reduce the risk of relocation overflow, .toc contents are sorted so that
1350   // sections having smaller relocation offsets are at beginning of .toc
1351   if (config->emachine == EM_PPC64 && name == ".toc") {
1352     if (script->hasSectionsCommand)
1353       return;
1354     assert(sec->sectionCommands.size() == 1);
1355     auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
1356     llvm::stable_sort(isd->sections,
1357                       [](const InputSection *a, const InputSection *b) -> bool {
1358                         return a->file->ppc64SmallCodeModelTocRelocs &&
1359                                !b->file->ppc64SmallCodeModelTocRelocs;
1360                       });
1361     return;
1362   }
1363 
1364   // Sort input sections by priority using the list provided
1365   // by --symbol-ordering-file.
1366   if (!order.empty())
1367     for (BaseCommand *b : sec->sectionCommands)
1368       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1369         sortISDBySectionOrder(isd, order);
1370 }
1371 
1372 // If no layout was provided by linker script, we want to apply default
1373 // sorting for special input sections. This also handles --symbol-ordering-file.
1374 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1375   // Build the order once since it is expensive.
1376   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1377   for (BaseCommand *base : script->sectionCommands)
1378     if (auto *sec = dyn_cast<OutputSection>(base))
1379       sortSection(sec, order);
1380 }
1381 
1382 template <class ELFT> void Writer<ELFT>::sortSections() {
1383   script->adjustSectionsBeforeSorting();
1384 
1385   // Don't sort if using -r. It is not necessary and we want to preserve the
1386   // relative order for SHF_LINK_ORDER sections.
1387   if (config->relocatable)
1388     return;
1389 
1390   sortInputSections();
1391 
1392   for (BaseCommand *base : script->sectionCommands) {
1393     auto *os = dyn_cast<OutputSection>(base);
1394     if (!os)
1395       continue;
1396     os->sortRank = getSectionRank(os);
1397 
1398     // We want to assign rude approximation values to outSecOff fields
1399     // to know the relative order of the input sections. We use it for
1400     // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1401     uint64_t i = 0;
1402     for (InputSection *sec : getInputSections(os))
1403       sec->outSecOff = i++;
1404   }
1405 
1406   if (!script->hasSectionsCommand) {
1407     // We know that all the OutputSections are contiguous in this case.
1408     auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
1409     std::stable_sort(
1410         llvm::find_if(script->sectionCommands, isSection),
1411         llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1412         compareSections);
1413     return;
1414   }
1415 
1416   // Orphan sections are sections present in the input files which are
1417   // not explicitly placed into the output file by the linker script.
1418   //
1419   // The sections in the linker script are already in the correct
1420   // order. We have to figuere out where to insert the orphan
1421   // sections.
1422   //
1423   // The order of the sections in the script is arbitrary and may not agree with
1424   // compareSections. This means that we cannot easily define a strict weak
1425   // ordering. To see why, consider a comparison of a section in the script and
1426   // one not in the script. We have a two simple options:
1427   // * Make them equivalent (a is not less than b, and b is not less than a).
1428   //   The problem is then that equivalence has to be transitive and we can
1429   //   have sections a, b and c with only b in a script and a less than c
1430   //   which breaks this property.
1431   // * Use compareSectionsNonScript. Given that the script order doesn't have
1432   //   to match, we can end up with sections a, b, c, d where b and c are in the
1433   //   script and c is compareSectionsNonScript less than b. In which case d
1434   //   can be equivalent to c, a to b and d < a. As a concrete example:
1435   //   .a (rx) # not in script
1436   //   .b (rx) # in script
1437   //   .c (ro) # in script
1438   //   .d (ro) # not in script
1439   //
1440   // The way we define an order then is:
1441   // *  Sort only the orphan sections. They are in the end right now.
1442   // *  Move each orphan section to its preferred position. We try
1443   //    to put each section in the last position where it can share
1444   //    a PT_LOAD.
1445   //
1446   // There is some ambiguity as to where exactly a new entry should be
1447   // inserted, because Commands contains not only output section
1448   // commands but also other types of commands such as symbol assignment
1449   // expressions. There's no correct answer here due to the lack of the
1450   // formal specification of the linker script. We use heuristics to
1451   // determine whether a new output command should be added before or
1452   // after another commands. For the details, look at shouldSkip
1453   // function.
1454 
1455   auto i = script->sectionCommands.begin();
1456   auto e = script->sectionCommands.end();
1457   auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
1458     if (auto *sec = dyn_cast<OutputSection>(base))
1459       return sec->sectionIndex == UINT32_MAX;
1460     return false;
1461   });
1462 
1463   // Sort the orphan sections.
1464   std::stable_sort(nonScriptI, e, compareSections);
1465 
1466   // As a horrible special case, skip the first . assignment if it is before any
1467   // section. We do this because it is common to set a load address by starting
1468   // the script with ". = 0xabcd" and the expectation is that every section is
1469   // after that.
1470   auto firstSectionOrDotAssignment =
1471       std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
1472   if (firstSectionOrDotAssignment != e &&
1473       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1474     ++firstSectionOrDotAssignment;
1475   i = firstSectionOrDotAssignment;
1476 
1477   while (nonScriptI != e) {
1478     auto pos = findOrphanPos(i, nonScriptI);
1479     OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1480 
1481     // As an optimization, find all sections with the same sort rank
1482     // and insert them with one rotate.
1483     unsigned rank = orphan->sortRank;
1484     auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
1485       return cast<OutputSection>(cmd)->sortRank != rank;
1486     });
1487     std::rotate(pos, nonScriptI, end);
1488     nonScriptI = end;
1489   }
1490 
1491   script->adjustSectionsAfterSorting();
1492 }
1493 
1494 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1495   InputSection *la = a->getLinkOrderDep();
1496   InputSection *lb = b->getLinkOrderDep();
1497   OutputSection *aOut = la->getParent();
1498   OutputSection *bOut = lb->getParent();
1499 
1500   if (aOut != bOut)
1501     return aOut->sectionIndex < bOut->sectionIndex;
1502   return la->outSecOff < lb->outSecOff;
1503 }
1504 
1505 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1506   for (OutputSection *sec : outputSections) {
1507     if (!(sec->flags & SHF_LINK_ORDER))
1508       continue;
1509 
1510     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1511     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1512     if (!config->relocatable && config->emachine == EM_ARM &&
1513         sec->type == SHT_ARM_EXIDX)
1514       continue;
1515 
1516     // Link order may be distributed across several InputSectionDescriptions
1517     // but sort must consider them all at once.
1518     std::vector<InputSection **> scriptSections;
1519     std::vector<InputSection *> sections;
1520     for (BaseCommand *base : sec->sectionCommands) {
1521       if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
1522         for (InputSection *&isec : isd->sections) {
1523           scriptSections.push_back(&isec);
1524           sections.push_back(isec);
1525 
1526           InputSection *link = isec->getLinkOrderDep();
1527           if (!link->getParent())
1528             error(toString(isec) + ": sh_link points to discarded section " +
1529                   toString(link));
1530         }
1531       }
1532     }
1533 
1534     if (errorCount())
1535       continue;
1536 
1537     llvm::stable_sort(sections, compareByFilePosition);
1538 
1539     for (int i = 0, n = sections.size(); i < n; ++i)
1540       *scriptSections[i] = sections[i];
1541   }
1542 }
1543 
1544 // We need to generate and finalize the content that depends on the address of
1545 // InputSections. As the generation of the content may also alter InputSection
1546 // addresses we must converge to a fixed point. We do that here. See the comment
1547 // in Writer<ELFT>::finalizeSections().
1548 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1549   ThunkCreator tc;
1550   AArch64Err843419Patcher a64p;
1551   ARMErr657417Patcher a32p;
1552   script->assignAddresses();
1553 
1554   int assignPasses = 0;
1555   for (;;) {
1556     bool changed = target->needsThunks && tc.createThunks(outputSections);
1557 
1558     // With Thunk Size much smaller than branch range we expect to
1559     // converge quickly; if we get to 10 something has gone wrong.
1560     if (changed && tc.pass >= 10) {
1561       error("thunk creation not converged");
1562       break;
1563     }
1564 
1565     if (config->fixCortexA53Errata843419) {
1566       if (changed)
1567         script->assignAddresses();
1568       changed |= a64p.createFixes();
1569     }
1570     if (config->fixCortexA8) {
1571       if (changed)
1572         script->assignAddresses();
1573       changed |= a32p.createFixes();
1574     }
1575 
1576     if (in.mipsGot)
1577       in.mipsGot->updateAllocSize();
1578 
1579     for (Partition &part : partitions) {
1580       changed |= part.relaDyn->updateAllocSize();
1581       if (part.relrDyn)
1582         changed |= part.relrDyn->updateAllocSize();
1583     }
1584 
1585     const Defined *changedSym = script->assignAddresses();
1586     if (!changed) {
1587       // Some symbols may be dependent on section addresses. When we break the
1588       // loop, the symbol values are finalized because a previous
1589       // assignAddresses() finalized section addresses.
1590       if (!changedSym)
1591         break;
1592       if (++assignPasses == 5) {
1593         errorOrWarn("assignment to symbol " + toString(*changedSym) +
1594                     " does not converge");
1595         break;
1596       }
1597     }
1598   }
1599 }
1600 
1601 static void finalizeSynthetic(SyntheticSection *sec) {
1602   if (sec && sec->isNeeded() && sec->getParent())
1603     sec->finalizeContents();
1604 }
1605 
1606 // In order to allow users to manipulate linker-synthesized sections,
1607 // we had to add synthetic sections to the input section list early,
1608 // even before we make decisions whether they are needed. This allows
1609 // users to write scripts like this: ".mygot : { .got }".
1610 //
1611 // Doing it has an unintended side effects. If it turns out that we
1612 // don't need a .got (for example) at all because there's no
1613 // relocation that needs a .got, we don't want to emit .got.
1614 //
1615 // To deal with the above problem, this function is called after
1616 // scanRelocations is called to remove synthetic sections that turn
1617 // out to be empty.
1618 static void removeUnusedSyntheticSections() {
1619   // All input synthetic sections that can be empty are placed after
1620   // all regular ones. We iterate over them all and exit at first
1621   // non-synthetic.
1622   for (InputSectionBase *s : llvm::reverse(inputSections)) {
1623     SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
1624     if (!ss)
1625       return;
1626     OutputSection *os = ss->getParent();
1627     if (!os || ss->isNeeded())
1628       continue;
1629 
1630     // If we reach here, then SS is an unused synthetic section and we want to
1631     // remove it from corresponding input section description of output section.
1632     for (BaseCommand *b : os->sectionCommands)
1633       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1634         llvm::erase_if(isd->sections,
1635                        [=](InputSection *isec) { return isec == ss; });
1636   }
1637 }
1638 
1639 // Create output section objects and add them to OutputSections.
1640 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1641   Out::preinitArray = findSection(".preinit_array");
1642   Out::initArray = findSection(".init_array");
1643   Out::finiArray = findSection(".fini_array");
1644 
1645   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1646   // symbols for sections, so that the runtime can get the start and end
1647   // addresses of each section by section name. Add such symbols.
1648   if (!config->relocatable) {
1649     addStartEndSymbols();
1650     for (BaseCommand *base : script->sectionCommands)
1651       if (auto *sec = dyn_cast<OutputSection>(base))
1652         addStartStopSymbols(sec);
1653   }
1654 
1655   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1656   // It should be okay as no one seems to care about the type.
1657   // Even the author of gold doesn't remember why gold behaves that way.
1658   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1659   if (mainPart->dynamic->parent)
1660     symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1661                               STV_HIDDEN, STT_NOTYPE,
1662                               /*value=*/0, /*size=*/0, mainPart->dynamic});
1663 
1664   // Define __rel[a]_iplt_{start,end} symbols if needed.
1665   addRelIpltSymbols();
1666 
1667   // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1668   // should only be defined in an executable. If .sdata does not exist, its
1669   // value/section does not matter but it has to be relative, so set its
1670   // st_shndx arbitrarily to 1 (Out::elfHeader).
1671   if (config->emachine == EM_RISCV && !config->shared) {
1672     OutputSection *sec = findSection(".sdata");
1673     ElfSym::riscvGlobalPointer =
1674         addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1675                            0x800, STV_DEFAULT, STB_GLOBAL);
1676   }
1677 
1678   if (config->emachine == EM_X86_64) {
1679     // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1680     // way that:
1681     //
1682     // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1683     // computes 0.
1684     // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1685     // the TLS block).
1686     //
1687     // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1688     // an absolute symbol of zero. This is different from GNU linkers which
1689     // define _TLS_MODULE_BASE_ relative to the first TLS section.
1690     Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1691     if (s && s->isUndefined()) {
1692       s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1693                          STT_TLS, /*value=*/0, 0,
1694                          /*section=*/nullptr});
1695       ElfSym::tlsModuleBase = cast<Defined>(s);
1696     }
1697   }
1698 
1699   // This responsible for splitting up .eh_frame section into
1700   // pieces. The relocation scan uses those pieces, so this has to be
1701   // earlier.
1702   for (Partition &part : partitions)
1703     finalizeSynthetic(part.ehFrame);
1704 
1705   for (Symbol *sym : symtab->symbols())
1706     sym->isPreemptible = computeIsPreemptible(*sym);
1707 
1708   // Change values of linker-script-defined symbols from placeholders (assigned
1709   // by declareSymbols) to actual definitions.
1710   script->processSymbolAssignments();
1711 
1712   // Scan relocations. This must be done after every symbol is declared so that
1713   // we can correctly decide if a dynamic relocation is needed. This is called
1714   // after processSymbolAssignments() because it needs to know whether a
1715   // linker-script-defined symbol is absolute.
1716   if (!config->relocatable) {
1717     forEachRelSec(scanRelocations<ELFT>);
1718     reportUndefinedSymbols<ELFT>();
1719   }
1720 
1721   if (in.plt && in.plt->isNeeded())
1722     in.plt->addSymbols();
1723   if (in.iplt && in.iplt->isNeeded())
1724     in.iplt->addSymbols();
1725 
1726   if (!config->allowShlibUndefined) {
1727     // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1728     // entries are seen. These cases would otherwise lead to runtime errors
1729     // reported by the dynamic linker.
1730     //
1731     // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1732     // catch more cases. That is too much for us. Our approach resembles the one
1733     // used in ld.gold, achieves a good balance to be useful but not too smart.
1734     for (SharedFile *file : sharedFiles)
1735       file->allNeededIsKnown =
1736           llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1737             return symtab->soNames.count(needed);
1738           });
1739 
1740     for (Symbol *sym : symtab->symbols())
1741       if (sym->isUndefined() && !sym->isWeak())
1742         if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
1743           if (f->allNeededIsKnown)
1744             error(toString(f) + ": undefined reference to " + toString(*sym));
1745   }
1746 
1747   // Now that we have defined all possible global symbols including linker-
1748   // synthesized ones. Visit all symbols to give the finishing touches.
1749   for (Symbol *sym : symtab->symbols()) {
1750     if (!includeInSymtab(*sym))
1751       continue;
1752     if (in.symTab)
1753       in.symTab->addSymbol(sym);
1754 
1755     if (sym->includeInDynsym()) {
1756       partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1757       if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
1758         if (file->isNeeded && !sym->isUndefined())
1759           addVerneed(sym);
1760     }
1761   }
1762 
1763   // We also need to scan the dynamic relocation tables of the other partitions
1764   // and add any referenced symbols to the partition's dynsym.
1765   for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
1766     DenseSet<Symbol *> syms;
1767     for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
1768       syms.insert(e.sym);
1769     for (DynamicReloc &reloc : part.relaDyn->relocs)
1770       if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
1771         part.dynSymTab->addSymbol(reloc.sym);
1772   }
1773 
1774   // Do not proceed if there was an undefined symbol.
1775   if (errorCount())
1776     return;
1777 
1778   if (in.mipsGot)
1779     in.mipsGot->build();
1780 
1781   removeUnusedSyntheticSections();
1782 
1783   sortSections();
1784 
1785   // Now that we have the final list, create a list of all the
1786   // OutputSections for convenience.
1787   for (BaseCommand *base : script->sectionCommands)
1788     if (auto *sec = dyn_cast<OutputSection>(base))
1789       outputSections.push_back(sec);
1790 
1791   // Prefer command line supplied address over other constraints.
1792   for (OutputSection *sec : outputSections) {
1793     auto i = config->sectionStartMap.find(sec->name);
1794     if (i != config->sectionStartMap.end())
1795       sec->addrExpr = [=] { return i->second; };
1796   }
1797 
1798   // This is a bit of a hack. A value of 0 means undef, so we set it
1799   // to 1 to make __ehdr_start defined. The section number is not
1800   // particularly relevant.
1801   Out::elfHeader->sectionIndex = 1;
1802 
1803   for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
1804     OutputSection *sec = outputSections[i];
1805     sec->sectionIndex = i + 1;
1806     sec->shName = in.shStrTab->addString(sec->name);
1807   }
1808 
1809   // Binary and relocatable output does not have PHDRS.
1810   // The headers have to be created before finalize as that can influence the
1811   // image base and the dynamic section on mips includes the image base.
1812   if (!config->relocatable && !config->oFormatBinary) {
1813     for (Partition &part : partitions) {
1814       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
1815                                               : createPhdrs(part);
1816       if (config->emachine == EM_ARM) {
1817         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
1818         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
1819       }
1820       if (config->emachine == EM_MIPS) {
1821         // Add separate segments for MIPS-specific sections.
1822         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
1823         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
1824         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
1825       }
1826     }
1827     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
1828 
1829     // Find the TLS segment. This happens before the section layout loop so that
1830     // Android relocation packing can look up TLS symbol addresses. We only need
1831     // to care about the main partition here because all TLS symbols were moved
1832     // to the main partition (see MarkLive.cpp).
1833     for (PhdrEntry *p : mainPart->phdrs)
1834       if (p->p_type == PT_TLS)
1835         Out::tlsPhdr = p;
1836   }
1837 
1838   // Some symbols are defined in term of program headers. Now that we
1839   // have the headers, we can find out which sections they point to.
1840   setReservedSymbolSections();
1841 
1842   finalizeSynthetic(in.bss);
1843   finalizeSynthetic(in.bssRelRo);
1844   finalizeSynthetic(in.symTabShndx);
1845   finalizeSynthetic(in.shStrTab);
1846   finalizeSynthetic(in.strTab);
1847   finalizeSynthetic(in.got);
1848   finalizeSynthetic(in.mipsGot);
1849   finalizeSynthetic(in.igotPlt);
1850   finalizeSynthetic(in.gotPlt);
1851   finalizeSynthetic(in.relaIplt);
1852   finalizeSynthetic(in.relaPlt);
1853   finalizeSynthetic(in.plt);
1854   finalizeSynthetic(in.iplt);
1855   finalizeSynthetic(in.ppc32Got2);
1856   finalizeSynthetic(in.partIndex);
1857 
1858   // Dynamic section must be the last one in this list and dynamic
1859   // symbol table section (dynSymTab) must be the first one.
1860   for (Partition &part : partitions) {
1861     finalizeSynthetic(part.armExidx);
1862     finalizeSynthetic(part.dynSymTab);
1863     finalizeSynthetic(part.gnuHashTab);
1864     finalizeSynthetic(part.hashTab);
1865     finalizeSynthetic(part.verDef);
1866     finalizeSynthetic(part.relaDyn);
1867     finalizeSynthetic(part.relrDyn);
1868     finalizeSynthetic(part.ehFrameHdr);
1869     finalizeSynthetic(part.verSym);
1870     finalizeSynthetic(part.verNeed);
1871     finalizeSynthetic(part.dynamic);
1872   }
1873 
1874   if (!script->hasSectionsCommand && !config->relocatable)
1875     fixSectionAlignments();
1876 
1877   // SHFLinkOrder processing must be processed after relative section placements are
1878   // known but before addresses are allocated.
1879   resolveShfLinkOrder();
1880   if (errorCount())
1881     return;
1882 
1883   // This is used to:
1884   // 1) Create "thunks":
1885   //    Jump instructions in many ISAs have small displacements, and therefore
1886   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
1887   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
1888   //    responsibility to create and insert small pieces of code between
1889   //    sections to extend the ranges if jump targets are out of range. Such
1890   //    code pieces are called "thunks".
1891   //
1892   //    We add thunks at this stage. We couldn't do this before this point
1893   //    because this is the earliest point where we know sizes of sections and
1894   //    their layouts (that are needed to determine if jump targets are in
1895   //    range).
1896   //
1897   // 2) Update the sections. We need to generate content that depends on the
1898   //    address of InputSections. For example, MIPS GOT section content or
1899   //    android packed relocations sections content.
1900   //
1901   // 3) Assign the final values for the linker script symbols. Linker scripts
1902   //    sometimes using forward symbol declarations. We want to set the correct
1903   //    values. They also might change after adding the thunks.
1904   finalizeAddressDependentContent();
1905 
1906   // finalizeAddressDependentContent may have added local symbols to the static symbol table.
1907   finalizeSynthetic(in.symTab);
1908   finalizeSynthetic(in.ppc64LongBranchTarget);
1909 
1910   // Fill other section headers. The dynamic table is finalized
1911   // at the end because some tags like RELSZ depend on result
1912   // of finalizing other sections.
1913   for (OutputSection *sec : outputSections)
1914     sec->finalize();
1915 }
1916 
1917 // Ensure data sections are not mixed with executable sections when
1918 // -execute-only is used. -execute-only is a feature to make pages executable
1919 // but not readable, and the feature is currently supported only on AArch64.
1920 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
1921   if (!config->executeOnly)
1922     return;
1923 
1924   for (OutputSection *os : outputSections)
1925     if (os->flags & SHF_EXECINSTR)
1926       for (InputSection *isec : getInputSections(os))
1927         if (!(isec->flags & SHF_EXECINSTR))
1928           error("cannot place " + toString(isec) + " into " + toString(os->name) +
1929                 ": -execute-only does not support intermingling data and code");
1930 }
1931 
1932 // The linker is expected to define SECNAME_start and SECNAME_end
1933 // symbols for a few sections. This function defines them.
1934 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
1935   // If a section does not exist, there's ambiguity as to how we
1936   // define _start and _end symbols for an init/fini section. Since
1937   // the loader assume that the symbols are always defined, we need to
1938   // always define them. But what value? The loader iterates over all
1939   // pointers between _start and _end to run global ctors/dtors, so if
1940   // the section is empty, their symbol values don't actually matter
1941   // as long as _start and _end point to the same location.
1942   //
1943   // That said, we don't want to set the symbols to 0 (which is
1944   // probably the simplest value) because that could cause some
1945   // program to fail to link due to relocation overflow, if their
1946   // program text is above 2 GiB. We use the address of the .text
1947   // section instead to prevent that failure.
1948   //
1949   // In rare situations, the .text section may not exist. If that's the
1950   // case, use the image base address as a last resort.
1951   OutputSection *Default = findSection(".text");
1952   if (!Default)
1953     Default = Out::elfHeader;
1954 
1955   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
1956     if (os) {
1957       addOptionalRegular(start, os, 0);
1958       addOptionalRegular(end, os, -1);
1959     } else {
1960       addOptionalRegular(start, Default, 0);
1961       addOptionalRegular(end, Default, 0);
1962     }
1963   };
1964 
1965   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
1966   define("__init_array_start", "__init_array_end", Out::initArray);
1967   define("__fini_array_start", "__fini_array_end", Out::finiArray);
1968 
1969   if (OutputSection *sec = findSection(".ARM.exidx"))
1970     define("__exidx_start", "__exidx_end", sec);
1971 }
1972 
1973 // If a section name is valid as a C identifier (which is rare because of
1974 // the leading '.'), linkers are expected to define __start_<secname> and
1975 // __stop_<secname> symbols. They are at beginning and end of the section,
1976 // respectively. This is not requested by the ELF standard, but GNU ld and
1977 // gold provide the feature, and used by many programs.
1978 template <class ELFT>
1979 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
1980   StringRef s = sec->name;
1981   if (!isValidCIdentifier(s))
1982     return;
1983   addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED);
1984   addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED);
1985 }
1986 
1987 static bool needsPtLoad(OutputSection *sec) {
1988   if (!(sec->flags & SHF_ALLOC) || sec->noload)
1989     return false;
1990 
1991   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
1992   // responsible for allocating space for them, not the PT_LOAD that
1993   // contains the TLS initialization image.
1994   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
1995     return false;
1996   return true;
1997 }
1998 
1999 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2000 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2001 // RW. This means that there is no alignment in the RO to RX transition and we
2002 // cannot create a PT_LOAD there.
2003 static uint64_t computeFlags(uint64_t flags) {
2004   if (config->omagic)
2005     return PF_R | PF_W | PF_X;
2006   if (config->executeOnly && (flags & PF_X))
2007     return flags & ~PF_R;
2008   if (config->singleRoRx && !(flags & PF_W))
2009     return flags | PF_X;
2010   return flags;
2011 }
2012 
2013 // Decide which program headers to create and which sections to include in each
2014 // one.
2015 template <class ELFT>
2016 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2017   std::vector<PhdrEntry *> ret;
2018   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2019     ret.push_back(make<PhdrEntry>(type, flags));
2020     return ret.back();
2021   };
2022 
2023   unsigned partNo = part.getNumber();
2024   bool isMain = partNo == 1;
2025 
2026   // Add the first PT_LOAD segment for regular output sections.
2027   uint64_t flags = computeFlags(PF_R);
2028   PhdrEntry *load = nullptr;
2029 
2030   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2031   // PT_LOAD.
2032   if (!config->nmagic && !config->omagic) {
2033     // The first phdr entry is PT_PHDR which describes the program header
2034     // itself.
2035     if (isMain)
2036       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2037     else
2038       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2039 
2040     // PT_INTERP must be the second entry if exists.
2041     if (OutputSection *cmd = findSection(".interp", partNo))
2042       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2043 
2044     // Add the headers. We will remove them if they don't fit.
2045     // In the other partitions the headers are ordinary sections, so they don't
2046     // need to be added here.
2047     if (isMain) {
2048       load = addHdr(PT_LOAD, flags);
2049       load->add(Out::elfHeader);
2050       load->add(Out::programHeaders);
2051     }
2052   }
2053 
2054   // PT_GNU_RELRO includes all sections that should be marked as
2055   // read-only by dynamic linker after processing relocations.
2056   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2057   // an error message if more than one PT_GNU_RELRO PHDR is required.
2058   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2059   bool inRelroPhdr = false;
2060   OutputSection *relroEnd = nullptr;
2061   for (OutputSection *sec : outputSections) {
2062     if (sec->partition != partNo || !needsPtLoad(sec))
2063       continue;
2064     if (isRelroSection(sec)) {
2065       inRelroPhdr = true;
2066       if (!relroEnd)
2067         relRo->add(sec);
2068       else
2069         error("section: " + sec->name + " is not contiguous with other relro" +
2070               " sections");
2071     } else if (inRelroPhdr) {
2072       inRelroPhdr = false;
2073       relroEnd = sec;
2074     }
2075   }
2076 
2077   for (OutputSection *sec : outputSections) {
2078     if (!(sec->flags & SHF_ALLOC))
2079       break;
2080     if (!needsPtLoad(sec))
2081       continue;
2082 
2083     // Normally, sections in partitions other than the current partition are
2084     // ignored. But partition number 255 is a special case: it contains the
2085     // partition end marker (.part.end). It needs to be added to the main
2086     // partition so that a segment is created for it in the main partition,
2087     // which will cause the dynamic loader to reserve space for the other
2088     // partitions.
2089     if (sec->partition != partNo) {
2090       if (isMain && sec->partition == 255)
2091         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2092       continue;
2093     }
2094 
2095     // Segments are contiguous memory regions that has the same attributes
2096     // (e.g. executable or writable). There is one phdr for each segment.
2097     // Therefore, we need to create a new phdr when the next section has
2098     // different flags or is loaded at a discontiguous address or memory
2099     // region using AT or AT> linker script command, respectively. At the same
2100     // time, we don't want to create a separate load segment for the headers,
2101     // even if the first output section has an AT or AT> attribute.
2102     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2103     if (!load ||
2104         ((sec->lmaExpr ||
2105           (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) &&
2106          load->lastSec != Out::programHeaders) ||
2107         sec->memRegion != load->firstSec->memRegion || flags != newFlags ||
2108         sec == relroEnd) {
2109       load = addHdr(PT_LOAD, newFlags);
2110       flags = newFlags;
2111     }
2112 
2113     load->add(sec);
2114   }
2115 
2116   // Add a TLS segment if any.
2117   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2118   for (OutputSection *sec : outputSections)
2119     if (sec->partition == partNo && sec->flags & SHF_TLS)
2120       tlsHdr->add(sec);
2121   if (tlsHdr->firstSec)
2122     ret.push_back(tlsHdr);
2123 
2124   // Add an entry for .dynamic.
2125   if (OutputSection *sec = part.dynamic->getParent())
2126     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2127 
2128   if (relRo->firstSec)
2129     ret.push_back(relRo);
2130 
2131   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2132   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2133       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2134     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2135         ->add(part.ehFrameHdr->getParent());
2136 
2137   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2138   // the dynamic linker fill the segment with random data.
2139   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2140     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2141 
2142   if (config->zGnustack != GnuStackKind::None) {
2143     // PT_GNU_STACK is a special section to tell the loader to make the
2144     // pages for the stack non-executable. If you really want an executable
2145     // stack, you can pass -z execstack, but that's not recommended for
2146     // security reasons.
2147     unsigned perm = PF_R | PF_W;
2148     if (config->zGnustack == GnuStackKind::Exec)
2149       perm |= PF_X;
2150     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2151   }
2152 
2153   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2154   // is expected to perform W^X violations, such as calling mprotect(2) or
2155   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2156   // OpenBSD.
2157   if (config->zWxneeded)
2158     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2159 
2160   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2161     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2162 
2163   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2164   // same alignment.
2165   PhdrEntry *note = nullptr;
2166   for (OutputSection *sec : outputSections) {
2167     if (sec->partition != partNo)
2168       continue;
2169     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2170       if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2171         note = addHdr(PT_NOTE, PF_R);
2172       note->add(sec);
2173     } else {
2174       note = nullptr;
2175     }
2176   }
2177   return ret;
2178 }
2179 
2180 template <class ELFT>
2181 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2182                                      unsigned pType, unsigned pFlags) {
2183   unsigned partNo = part.getNumber();
2184   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2185     return cmd->partition == partNo && cmd->type == shType;
2186   });
2187   if (i == outputSections.end())
2188     return;
2189 
2190   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2191   entry->add(*i);
2192   part.phdrs.push_back(entry);
2193 }
2194 
2195 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2196 // This is achieved by assigning an alignment expression to addrExpr of each
2197 // such section.
2198 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2199   const PhdrEntry *prev;
2200   auto pageAlign = [&](const PhdrEntry *p) {
2201     OutputSection *cmd = p->firstSec;
2202     if (cmd && !cmd->addrExpr) {
2203       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2204       // padding in the file contents.
2205       //
2206       // When -z separate-code is used we must not have any overlap in pages
2207       // between an executable segment and a non-executable segment. We align to
2208       // the next maximum page size boundary on transitions between executable
2209       // and non-executable segments.
2210       //
2211       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2212       // sections will be extracted to a separate file. Align to the next
2213       // maximum page size boundary so that we can find the ELF header at the
2214       // start. We cannot benefit from overlapping p_offset ranges with the
2215       // previous segment anyway.
2216       if (config->zSeparate == SeparateSegmentKind::Loadable ||
2217           (config->zSeparate == SeparateSegmentKind::Code && prev &&
2218            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2219           cmd->type == SHT_LLVM_PART_EHDR)
2220         cmd->addrExpr = [] {
2221           return alignTo(script->getDot(), config->maxPageSize);
2222         };
2223       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2224       // it must be the RW. Align to p_align(PT_TLS) to make sure
2225       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2226       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2227       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2228       // be congruent to 0 modulo p_align(PT_TLS).
2229       //
2230       // Technically this is not required, but as of 2019, some dynamic loaders
2231       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2232       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2233       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2234       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2235       // blocks correctly. We need to keep the workaround for a while.
2236       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2237         cmd->addrExpr = [] {
2238           return alignTo(script->getDot(), config->maxPageSize) +
2239                  alignTo(script->getDot() % config->maxPageSize,
2240                          Out::tlsPhdr->p_align);
2241         };
2242       else
2243         cmd->addrExpr = [] {
2244           return alignTo(script->getDot(), config->maxPageSize) +
2245                  script->getDot() % config->maxPageSize;
2246         };
2247     }
2248   };
2249 
2250   for (Partition &part : partitions) {
2251     prev = nullptr;
2252     for (const PhdrEntry *p : part.phdrs)
2253       if (p->p_type == PT_LOAD && p->firstSec) {
2254         pageAlign(p);
2255         prev = p;
2256       }
2257   }
2258 }
2259 
2260 // Compute an in-file position for a given section. The file offset must be the
2261 // same with its virtual address modulo the page size, so that the loader can
2262 // load executables without any address adjustment.
2263 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2264   // The first section in a PT_LOAD has to have congruent offset and address
2265   // modulo the maximum page size.
2266   if (os->ptLoad && os->ptLoad->firstSec == os)
2267     return alignTo(off, os->ptLoad->p_align, os->addr);
2268 
2269   // File offsets are not significant for .bss sections other than the first one
2270   // in a PT_LOAD. By convention, we keep section offsets monotonically
2271   // increasing rather than setting to zero.
2272    if (os->type == SHT_NOBITS)
2273      return off;
2274 
2275   // If the section is not in a PT_LOAD, we just have to align it.
2276   if (!os->ptLoad)
2277     return alignTo(off, os->alignment);
2278 
2279   // If two sections share the same PT_LOAD the file offset is calculated
2280   // using this formula: Off2 = Off1 + (VA2 - VA1).
2281   OutputSection *first = os->ptLoad->firstSec;
2282   return first->offset + os->addr - first->addr;
2283 }
2284 
2285 // Set an in-file position to a given section and returns the end position of
2286 // the section.
2287 static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
2288   off = computeFileOffset(os, off);
2289   os->offset = off;
2290 
2291   if (os->type == SHT_NOBITS)
2292     return off;
2293   return off + os->size;
2294 }
2295 
2296 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2297   uint64_t off = 0;
2298   for (OutputSection *sec : outputSections)
2299     if (sec->flags & SHF_ALLOC)
2300       off = setFileOffset(sec, off);
2301   fileSize = alignTo(off, config->wordsize);
2302 }
2303 
2304 static std::string rangeToString(uint64_t addr, uint64_t len) {
2305   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2306 }
2307 
2308 // Assign file offsets to output sections.
2309 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2310   uint64_t off = 0;
2311   off = setFileOffset(Out::elfHeader, off);
2312   off = setFileOffset(Out::programHeaders, off);
2313 
2314   PhdrEntry *lastRX = nullptr;
2315   for (Partition &part : partitions)
2316     for (PhdrEntry *p : part.phdrs)
2317       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2318         lastRX = p;
2319 
2320   for (OutputSection *sec : outputSections) {
2321     off = setFileOffset(sec, off);
2322 
2323     // If this is a last section of the last executable segment and that
2324     // segment is the last loadable segment, align the offset of the
2325     // following section to avoid loading non-segments parts of the file.
2326     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2327         lastRX->lastSec == sec)
2328       off = alignTo(off, config->commonPageSize);
2329   }
2330 
2331   sectionHeaderOff = alignTo(off, config->wordsize);
2332   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2333 
2334   // Our logic assumes that sections have rising VA within the same segment.
2335   // With use of linker scripts it is possible to violate this rule and get file
2336   // offset overlaps or overflows. That should never happen with a valid script
2337   // which does not move the location counter backwards and usually scripts do
2338   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2339   // kernel, which control segment distribution explicitly and move the counter
2340   // backwards, so we have to allow doing that to support linking them. We
2341   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2342   // we want to prevent file size overflows because it would crash the linker.
2343   for (OutputSection *sec : outputSections) {
2344     if (sec->type == SHT_NOBITS)
2345       continue;
2346     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2347       error("unable to place section " + sec->name + " at file offset " +
2348             rangeToString(sec->offset, sec->size) +
2349             "; check your linker script for overflows");
2350   }
2351 }
2352 
2353 // Finalize the program headers. We call this function after we assign
2354 // file offsets and VAs to all sections.
2355 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2356   for (PhdrEntry *p : part.phdrs) {
2357     OutputSection *first = p->firstSec;
2358     OutputSection *last = p->lastSec;
2359 
2360     if (first) {
2361       p->p_filesz = last->offset - first->offset;
2362       if (last->type != SHT_NOBITS)
2363         p->p_filesz += last->size;
2364 
2365       p->p_memsz = last->addr + last->size - first->addr;
2366       p->p_offset = first->offset;
2367       p->p_vaddr = first->addr;
2368 
2369       // File offsets in partitions other than the main partition are relative
2370       // to the offset of the ELF headers. Perform that adjustment now.
2371       if (part.elfHeader)
2372         p->p_offset -= part.elfHeader->getParent()->offset;
2373 
2374       if (!p->hasLMA)
2375         p->p_paddr = first->getLMA();
2376     }
2377 
2378     if (p->p_type == PT_GNU_RELRO) {
2379       p->p_align = 1;
2380       // musl/glibc ld.so rounds the size down, so we need to round up
2381       // to protect the last page. This is a no-op on FreeBSD which always
2382       // rounds up.
2383       p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2384                    p->p_offset;
2385     }
2386   }
2387 }
2388 
2389 // A helper struct for checkSectionOverlap.
2390 namespace {
2391 struct SectionOffset {
2392   OutputSection *sec;
2393   uint64_t offset;
2394 };
2395 } // namespace
2396 
2397 // Check whether sections overlap for a specific address range (file offsets,
2398 // load and virtual addresses).
2399 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2400                          bool isVirtualAddr) {
2401   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2402     return a.offset < b.offset;
2403   });
2404 
2405   // Finding overlap is easy given a vector is sorted by start position.
2406   // If an element starts before the end of the previous element, they overlap.
2407   for (size_t i = 1, end = sections.size(); i < end; ++i) {
2408     SectionOffset a = sections[i - 1];
2409     SectionOffset b = sections[i];
2410     if (b.offset >= a.offset + a.sec->size)
2411       continue;
2412 
2413     // If both sections are in OVERLAY we allow the overlapping of virtual
2414     // addresses, because it is what OVERLAY was designed for.
2415     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2416       continue;
2417 
2418     errorOrWarn("section " + a.sec->name + " " + name +
2419                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2420                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2421                 b.sec->name + " range is " +
2422                 rangeToString(b.offset, b.sec->size));
2423   }
2424 }
2425 
2426 // Check for overlapping sections and address overflows.
2427 //
2428 // In this function we check that none of the output sections have overlapping
2429 // file offsets. For SHF_ALLOC sections we also check that the load address
2430 // ranges and the virtual address ranges don't overlap
2431 template <class ELFT> void Writer<ELFT>::checkSections() {
2432   // First, check that section's VAs fit in available address space for target.
2433   for (OutputSection *os : outputSections)
2434     if ((os->addr + os->size < os->addr) ||
2435         (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2436       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2437                   " of size 0x" + utohexstr(os->size) +
2438                   " exceeds available address space");
2439 
2440   // Check for overlapping file offsets. In this case we need to skip any
2441   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2442   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2443   // binary is specified only add SHF_ALLOC sections are added to the output
2444   // file so we skip any non-allocated sections in that case.
2445   std::vector<SectionOffset> fileOffs;
2446   for (OutputSection *sec : outputSections)
2447     if (sec->size > 0 && sec->type != SHT_NOBITS &&
2448         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2449       fileOffs.push_back({sec, sec->offset});
2450   checkOverlap("file", fileOffs, false);
2451 
2452   // When linking with -r there is no need to check for overlapping virtual/load
2453   // addresses since those addresses will only be assigned when the final
2454   // executable/shared object is created.
2455   if (config->relocatable)
2456     return;
2457 
2458   // Checking for overlapping virtual and load addresses only needs to take
2459   // into account SHF_ALLOC sections since others will not be loaded.
2460   // Furthermore, we also need to skip SHF_TLS sections since these will be
2461   // mapped to other addresses at runtime and can therefore have overlapping
2462   // ranges in the file.
2463   std::vector<SectionOffset> vmas;
2464   for (OutputSection *sec : outputSections)
2465     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2466       vmas.push_back({sec, sec->addr});
2467   checkOverlap("virtual address", vmas, true);
2468 
2469   // Finally, check that the load addresses don't overlap. This will usually be
2470   // the same as the virtual addresses but can be different when using a linker
2471   // script with AT().
2472   std::vector<SectionOffset> lmas;
2473   for (OutputSection *sec : outputSections)
2474     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2475       lmas.push_back({sec, sec->getLMA()});
2476   checkOverlap("load address", lmas, false);
2477 }
2478 
2479 // The entry point address is chosen in the following ways.
2480 //
2481 // 1. the '-e' entry command-line option;
2482 // 2. the ENTRY(symbol) command in a linker control script;
2483 // 3. the value of the symbol _start, if present;
2484 // 4. the number represented by the entry symbol, if it is a number;
2485 // 5. the address of the first byte of the .text section, if present;
2486 // 6. the address 0.
2487 static uint64_t getEntryAddr() {
2488   // Case 1, 2 or 3
2489   if (Symbol *b = symtab->find(config->entry))
2490     return b->getVA();
2491 
2492   // Case 4
2493   uint64_t addr;
2494   if (to_integer(config->entry, addr))
2495     return addr;
2496 
2497   // Case 5
2498   if (OutputSection *sec = findSection(".text")) {
2499     if (config->warnMissingEntry)
2500       warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
2501            utohexstr(sec->addr));
2502     return sec->addr;
2503   }
2504 
2505   // Case 6
2506   if (config->warnMissingEntry)
2507     warn("cannot find entry symbol " + config->entry +
2508          "; not setting start address");
2509   return 0;
2510 }
2511 
2512 static uint16_t getELFType() {
2513   if (config->isPic)
2514     return ET_DYN;
2515   if (config->relocatable)
2516     return ET_REL;
2517   return ET_EXEC;
2518 }
2519 
2520 template <class ELFT> void Writer<ELFT>::writeHeader() {
2521   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2522   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2523 
2524   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2525   eHdr->e_type = getELFType();
2526   eHdr->e_entry = getEntryAddr();
2527   eHdr->e_shoff = sectionHeaderOff;
2528 
2529   // Write the section header table.
2530   //
2531   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2532   // and e_shstrndx fields. When the value of one of these fields exceeds
2533   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2534   // use fields in the section header at index 0 to store
2535   // the value. The sentinel values and fields are:
2536   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2537   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2538   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2539   size_t num = outputSections.size() + 1;
2540   if (num >= SHN_LORESERVE)
2541     sHdrs->sh_size = num;
2542   else
2543     eHdr->e_shnum = num;
2544 
2545   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2546   if (strTabIndex >= SHN_LORESERVE) {
2547     sHdrs->sh_link = strTabIndex;
2548     eHdr->e_shstrndx = SHN_XINDEX;
2549   } else {
2550     eHdr->e_shstrndx = strTabIndex;
2551   }
2552 
2553   for (OutputSection *sec : outputSections)
2554     sec->writeHeaderTo<ELFT>(++sHdrs);
2555 }
2556 
2557 // Open a result file.
2558 template <class ELFT> void Writer<ELFT>::openFile() {
2559   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2560   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2561     error("output file too large: " + Twine(fileSize) + " bytes");
2562     return;
2563   }
2564 
2565   unlinkAsync(config->outputFile);
2566   unsigned flags = 0;
2567   if (!config->relocatable)
2568     flags |= FileOutputBuffer::F_executable;
2569   if (!config->mmapOutputFile)
2570     flags |= FileOutputBuffer::F_no_mmap;
2571   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2572       FileOutputBuffer::create(config->outputFile, fileSize, flags);
2573 
2574   if (!bufferOrErr) {
2575     error("failed to open " + config->outputFile + ": " +
2576           llvm::toString(bufferOrErr.takeError()));
2577     return;
2578   }
2579   buffer = std::move(*bufferOrErr);
2580   Out::bufferStart = buffer->getBufferStart();
2581 }
2582 
2583 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2584   for (OutputSection *sec : outputSections)
2585     if (sec->flags & SHF_ALLOC)
2586       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2587 }
2588 
2589 static void fillTrap(uint8_t *i, uint8_t *end) {
2590   for (; i + 4 <= end; i += 4)
2591     memcpy(i, &target->trapInstr, 4);
2592 }
2593 
2594 // Fill the last page of executable segments with trap instructions
2595 // instead of leaving them as zero. Even though it is not required by any
2596 // standard, it is in general a good thing to do for security reasons.
2597 //
2598 // We'll leave other pages in segments as-is because the rest will be
2599 // overwritten by output sections.
2600 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2601   for (Partition &part : partitions) {
2602     // Fill the last page.
2603     for (PhdrEntry *p : part.phdrs)
2604       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2605         fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2606                                               config->commonPageSize),
2607                  Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2608                                             config->commonPageSize));
2609 
2610     // Round up the file size of the last segment to the page boundary iff it is
2611     // an executable segment to ensure that other tools don't accidentally
2612     // trim the instruction padding (e.g. when stripping the file).
2613     PhdrEntry *last = nullptr;
2614     for (PhdrEntry *p : part.phdrs)
2615       if (p->p_type == PT_LOAD)
2616         last = p;
2617 
2618     if (last && (last->p_flags & PF_X))
2619       last->p_memsz = last->p_filesz =
2620           alignTo(last->p_filesz, config->commonPageSize);
2621   }
2622 }
2623 
2624 // Write section contents to a mmap'ed file.
2625 template <class ELFT> void Writer<ELFT>::writeSections() {
2626   // In -r or -emit-relocs mode, write the relocation sections first as in
2627   // ELf_Rel targets we might find out that we need to modify the relocated
2628   // section while doing it.
2629   for (OutputSection *sec : outputSections)
2630     if (sec->type == SHT_REL || sec->type == SHT_RELA)
2631       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2632 
2633   for (OutputSection *sec : outputSections)
2634     if (sec->type != SHT_REL && sec->type != SHT_RELA)
2635       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2636 }
2637 
2638 // Split one uint8 array into small pieces of uint8 arrays.
2639 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
2640                                             size_t chunkSize) {
2641   std::vector<ArrayRef<uint8_t>> ret;
2642   while (arr.size() > chunkSize) {
2643     ret.push_back(arr.take_front(chunkSize));
2644     arr = arr.drop_front(chunkSize);
2645   }
2646   if (!arr.empty())
2647     ret.push_back(arr);
2648   return ret;
2649 }
2650 
2651 // Computes a hash value of Data using a given hash function.
2652 // In order to utilize multiple cores, we first split data into 1MB
2653 // chunks, compute a hash for each chunk, and then compute a hash value
2654 // of the hash values.
2655 static void
2656 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2657             llvm::ArrayRef<uint8_t> data,
2658             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2659   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2660   std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
2661 
2662   // Compute hash values.
2663   parallelForEachN(0, chunks.size(), [&](size_t i) {
2664     hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
2665   });
2666 
2667   // Write to the final output buffer.
2668   hashFn(hashBuf.data(), hashes);
2669 }
2670 
2671 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2672   if (!mainPart->buildId || !mainPart->buildId->getParent())
2673     return;
2674 
2675   if (config->buildId == BuildIdKind::Hexstring) {
2676     for (Partition &part : partitions)
2677       part.buildId->writeBuildId(config->buildIdVector);
2678     return;
2679   }
2680 
2681   // Compute a hash of all sections of the output file.
2682   size_t hashSize = mainPart->buildId->hashSize;
2683   std::vector<uint8_t> buildId(hashSize);
2684   llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
2685 
2686   switch (config->buildId) {
2687   case BuildIdKind::Fast:
2688     computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2689       write64le(dest, xxHash64(arr));
2690     });
2691     break;
2692   case BuildIdKind::Md5:
2693     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2694       memcpy(dest, MD5::hash(arr).data(), hashSize);
2695     });
2696     break;
2697   case BuildIdKind::Sha1:
2698     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2699       memcpy(dest, SHA1::hash(arr).data(), hashSize);
2700     });
2701     break;
2702   case BuildIdKind::Uuid:
2703     if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
2704       error("entropy source failure: " + ec.message());
2705     break;
2706   default:
2707     llvm_unreachable("unknown BuildIdKind");
2708   }
2709   for (Partition &part : partitions)
2710     part.buildId->writeBuildId(buildId);
2711 }
2712 
2713 template void createSyntheticSections<ELF32LE>();
2714 template void createSyntheticSections<ELF32BE>();
2715 template void createSyntheticSections<ELF64LE>();
2716 template void createSyntheticSections<ELF64BE>();
2717 
2718 template void writeResult<ELF32LE>();
2719 template void writeResult<ELF32BE>();
2720 template void writeResult<ELF64LE>();
2721 template void writeResult<ELF64BE>();
2722 
2723 } // namespace elf
2724 } // namespace lld
2725