1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Arrays.h" 23 #include "lld/Common/CommonLinkerContext.h" 24 #include "lld/Common/Filesystem.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 #define DEBUG_TYPE "lld" 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::support; 40 using namespace llvm::support::endian; 41 using namespace lld; 42 using namespace lld::elf; 43 44 namespace { 45 // The writer writes a SymbolTable result to a file. 46 template <class ELFT> class Writer { 47 public: 48 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 49 50 Writer() : buffer(errorHandler().outputBuffer) {} 51 52 void run(); 53 54 private: 55 void copyLocalSymbols(); 56 void addSectionSymbols(); 57 void sortSections(); 58 void resolveShfLinkOrder(); 59 void finalizeAddressDependentContent(); 60 void optimizeBasicBlockJumps(); 61 void sortInputSections(); 62 void finalizeSections(); 63 void checkExecuteOnly(); 64 void setReservedSymbolSections(); 65 66 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 67 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 68 unsigned pFlags); 69 void assignFileOffsets(); 70 void assignFileOffsetsBinary(); 71 void setPhdrs(Partition &part); 72 void checkSections(); 73 void fixSectionAlignments(); 74 void openFile(); 75 void writeTrapInstr(); 76 void writeHeader(); 77 void writeSections(); 78 void writeSectionsBinary(); 79 void writeBuildId(); 80 81 std::unique_ptr<FileOutputBuffer> &buffer; 82 83 void addRelIpltSymbols(); 84 void addStartEndSymbols(); 85 void addStartStopSymbols(OutputSection *sec); 86 87 uint64_t fileSize; 88 uint64_t sectionHeaderOff; 89 }; 90 } // anonymous namespace 91 92 static bool needsInterpSection() { 93 return !config->relocatable && !config->shared && 94 !config->dynamicLinker.empty() && script->needsInterpSection(); 95 } 96 97 template <class ELFT> void elf::writeResult() { 98 Writer<ELFT>().run(); 99 } 100 101 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 102 auto it = std::stable_partition( 103 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 104 if (p->p_type != PT_LOAD) 105 return true; 106 if (!p->firstSec) 107 return false; 108 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 109 return size != 0; 110 }); 111 112 // Clear OutputSection::ptLoad for sections contained in removed 113 // segments. 114 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 115 for (OutputSection *sec : outputSections) 116 if (removed.count(sec->ptLoad)) 117 sec->ptLoad = nullptr; 118 phdrs.erase(it, phdrs.end()); 119 } 120 121 void elf::copySectionsIntoPartitions() { 122 SmallVector<InputSectionBase *, 0> newSections; 123 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 124 for (InputSectionBase *s : inputSections) { 125 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 126 continue; 127 InputSectionBase *copy; 128 if (s->type == SHT_NOTE) 129 copy = make<InputSection>(cast<InputSection>(*s)); 130 else if (auto *es = dyn_cast<EhInputSection>(s)) 131 copy = make<EhInputSection>(*es); 132 else 133 continue; 134 copy->partition = part; 135 newSections.push_back(copy); 136 } 137 } 138 139 inputSections.insert(inputSections.end(), newSections.begin(), 140 newSections.end()); 141 } 142 143 void elf::combineEhSections() { 144 llvm::TimeTraceScope timeScope("Combine EH sections"); 145 for (InputSectionBase *&s : inputSections) { 146 // Ignore dead sections and the partition end marker (.part.end), 147 // whose partition number is out of bounds. 148 if (!s->isLive() || s->partition == 255) 149 continue; 150 151 Partition &part = s->getPartition(); 152 if (auto *es = dyn_cast<EhInputSection>(s)) { 153 part.ehFrame->addSection(es); 154 s = nullptr; 155 } else if (s->kind() == SectionBase::Regular && part.armExidx && 156 part.armExidx->addSection(cast<InputSection>(s))) { 157 s = nullptr; 158 } 159 } 160 161 llvm::erase_value(inputSections, nullptr); 162 } 163 164 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 165 uint64_t val, uint8_t stOther = STV_HIDDEN) { 166 Symbol *s = symtab->find(name); 167 if (!s || s->isDefined()) 168 return nullptr; 169 170 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val, 171 /*size=*/0, sec}); 172 return cast<Defined>(s); 173 } 174 175 static Defined *addAbsolute(StringRef name) { 176 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 177 STT_NOTYPE, 0, 0, nullptr}); 178 return cast<Defined>(sym); 179 } 180 181 // The linker is expected to define some symbols depending on 182 // the linking result. This function defines such symbols. 183 void elf::addReservedSymbols() { 184 if (config->emachine == EM_MIPS) { 185 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 186 // so that it points to an absolute address which by default is relative 187 // to GOT. Default offset is 0x7ff0. 188 // See "Global Data Symbols" in Chapter 6 in the following document: 189 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 190 ElfSym::mipsGp = addAbsolute("_gp"); 191 192 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 193 // start of function and 'gp' pointer into GOT. 194 if (symtab->find("_gp_disp")) 195 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 196 197 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 198 // pointer. This symbol is used in the code generated by .cpload pseudo-op 199 // in case of using -mno-shared option. 200 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 201 if (symtab->find("__gnu_local_gp")) 202 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 203 } else if (config->emachine == EM_PPC) { 204 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 205 // support Small Data Area, define it arbitrarily as 0. 206 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 207 } else if (config->emachine == EM_PPC64) { 208 addPPC64SaveRestore(); 209 } 210 211 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 212 // combines the typical ELF GOT with the small data sections. It commonly 213 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 214 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 215 // represent the TOC base which is offset by 0x8000 bytes from the start of 216 // the .got section. 217 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 218 // correctness of some relocations depends on its value. 219 StringRef gotSymName = 220 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 221 222 if (Symbol *s = symtab->find(gotSymName)) { 223 if (s->isDefined()) { 224 error(toString(s->file) + " cannot redefine linker defined symbol '" + 225 gotSymName + "'"); 226 return; 227 } 228 229 uint64_t gotOff = 0; 230 if (config->emachine == EM_PPC64) 231 gotOff = 0x8000; 232 233 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 234 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 235 ElfSym::globalOffsetTable = cast<Defined>(s); 236 } 237 238 // __ehdr_start is the location of ELF file headers. Note that we define 239 // this symbol unconditionally even when using a linker script, which 240 // differs from the behavior implemented by GNU linker which only define 241 // this symbol if ELF headers are in the memory mapped segment. 242 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 243 244 // __executable_start is not documented, but the expectation of at 245 // least the Android libc is that it points to the ELF header. 246 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 247 248 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 249 // each DSO. The address of the symbol doesn't matter as long as they are 250 // different in different DSOs, so we chose the start address of the DSO. 251 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 252 253 // If linker script do layout we do not need to create any standard symbols. 254 if (script->hasSectionsCommand) 255 return; 256 257 auto add = [](StringRef s, int64_t pos) { 258 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 259 }; 260 261 ElfSym::bss = add("__bss_start", 0); 262 ElfSym::end1 = add("end", -1); 263 ElfSym::end2 = add("_end", -1); 264 ElfSym::etext1 = add("etext", -1); 265 ElfSym::etext2 = add("_etext", -1); 266 ElfSym::edata1 = add("edata", -1); 267 ElfSym::edata2 = add("_edata", -1); 268 } 269 270 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 271 for (SectionCommand *cmd : script->sectionCommands) 272 if (auto *sec = dyn_cast<OutputSection>(cmd)) 273 if (sec->name == name && sec->partition == partition) 274 return sec; 275 return nullptr; 276 } 277 278 template <class ELFT> void elf::createSyntheticSections() { 279 // Initialize all pointers with NULL. This is needed because 280 // you can call lld::elf::main more than once as a library. 281 Out::tlsPhdr = nullptr; 282 Out::preinitArray = nullptr; 283 Out::initArray = nullptr; 284 Out::finiArray = nullptr; 285 286 // Add the .interp section first because it is not a SyntheticSection. 287 // The removeUnusedSyntheticSections() function relies on the 288 // SyntheticSections coming last. 289 if (needsInterpSection()) { 290 for (size_t i = 1; i <= partitions.size(); ++i) { 291 InputSection *sec = createInterpSection(); 292 sec->partition = i; 293 inputSections.push_back(sec); 294 } 295 } 296 297 auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); }; 298 299 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 300 301 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 302 Out::programHeaders->alignment = config->wordsize; 303 304 if (config->strip != StripPolicy::All) { 305 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 306 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 307 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 308 } 309 310 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 311 add(*in.bss); 312 313 // If there is a SECTIONS command and a .data.rel.ro section name use name 314 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 315 // This makes sure our relro is contiguous. 316 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 317 in.bssRelRo = std::make_unique<BssSection>( 318 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 319 add(*in.bssRelRo); 320 321 // Add MIPS-specific sections. 322 if (config->emachine == EM_MIPS) { 323 if (!config->shared && config->hasDynSymTab) { 324 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 325 add(*in.mipsRldMap); 326 } 327 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 328 add(*in.mipsAbiFlags); 329 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 330 add(*in.mipsOptions); 331 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 332 add(*in.mipsReginfo); 333 } 334 335 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 336 337 for (Partition &part : partitions) { 338 auto add = [&](SyntheticSection &sec) { 339 sec.partition = part.getNumber(); 340 inputSections.push_back(&sec); 341 }; 342 343 if (!part.name.empty()) { 344 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 345 part.elfHeader->name = part.name; 346 add(*part.elfHeader); 347 348 part.programHeaders = 349 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 350 add(*part.programHeaders); 351 } 352 353 if (config->buildId != BuildIdKind::None) { 354 part.buildId = std::make_unique<BuildIdSection>(); 355 add(*part.buildId); 356 } 357 358 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 359 part.dynSymTab = 360 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 361 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 362 if (config->androidPackDynRelocs) 363 part.relaDyn = 364 std::make_unique<AndroidPackedRelocationSection<ELFT>>(relaDynName); 365 else 366 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 367 relaDynName, config->zCombreloc); 368 369 if (config->hasDynSymTab) { 370 add(*part.dynSymTab); 371 372 part.verSym = std::make_unique<VersionTableSection>(); 373 add(*part.verSym); 374 375 if (!namedVersionDefs().empty()) { 376 part.verDef = std::make_unique<VersionDefinitionSection>(); 377 add(*part.verDef); 378 } 379 380 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 381 add(*part.verNeed); 382 383 if (config->gnuHash) { 384 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 385 add(*part.gnuHashTab); 386 } 387 388 if (config->sysvHash) { 389 part.hashTab = std::make_unique<HashTableSection>(); 390 add(*part.hashTab); 391 } 392 393 add(*part.dynamic); 394 add(*part.dynStrTab); 395 add(*part.relaDyn); 396 } 397 398 if (config->relrPackDynRelocs) { 399 part.relrDyn = std::make_unique<RelrSection<ELFT>>(); 400 add(*part.relrDyn); 401 } 402 403 if (!config->relocatable) { 404 if (config->ehFrameHdr) { 405 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 406 add(*part.ehFrameHdr); 407 } 408 part.ehFrame = std::make_unique<EhFrameSection>(); 409 add(*part.ehFrame); 410 } 411 412 if (config->emachine == EM_ARM && !config->relocatable) { 413 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 414 // InputSections. 415 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 416 add(*part.armExidx); 417 } 418 } 419 420 if (partitions.size() != 1) { 421 // Create the partition end marker. This needs to be in partition number 255 422 // so that it is sorted after all other partitions. It also has other 423 // special handling (see createPhdrs() and combineEhSections()). 424 in.partEnd = 425 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 426 in.partEnd->partition = 255; 427 add(*in.partEnd); 428 429 in.partIndex = std::make_unique<PartitionIndexSection>(); 430 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 431 addOptionalRegular("__part_index_end", in.partIndex.get(), 432 in.partIndex->getSize()); 433 add(*in.partIndex); 434 } 435 436 // Add .got. MIPS' .got is so different from the other archs, 437 // it has its own class. 438 if (config->emachine == EM_MIPS) { 439 in.mipsGot = std::make_unique<MipsGotSection>(); 440 add(*in.mipsGot); 441 } else { 442 in.got = std::make_unique<GotSection>(); 443 add(*in.got); 444 } 445 446 if (config->emachine == EM_PPC) { 447 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 448 add(*in.ppc32Got2); 449 } 450 451 if (config->emachine == EM_PPC64) { 452 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 453 add(*in.ppc64LongBranchTarget); 454 } 455 456 in.gotPlt = std::make_unique<GotPltSection>(); 457 add(*in.gotPlt); 458 in.igotPlt = std::make_unique<IgotPltSection>(); 459 add(*in.igotPlt); 460 461 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 462 // it as a relocation and ensure the referenced section is created. 463 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 464 if (target->gotBaseSymInGotPlt) 465 in.gotPlt->hasGotPltOffRel = true; 466 else 467 in.got->hasGotOffRel = true; 468 } 469 470 if (config->gdbIndex) 471 add(*GdbIndexSection::create<ELFT>()); 472 473 // We always need to add rel[a].plt to output if it has entries. 474 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 475 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 476 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 477 add(*in.relaPlt); 478 479 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 480 // relocations are processed last by the dynamic loader. We cannot place the 481 // iplt section in .rel.dyn when Android relocation packing is enabled because 482 // that would cause a section type mismatch. However, because the Android 483 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 484 // behaviour by placing the iplt section in .rel.plt. 485 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 486 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 487 /*sort=*/false); 488 add(*in.relaIplt); 489 490 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 491 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 492 in.ibtPlt = std::make_unique<IBTPltSection>(); 493 add(*in.ibtPlt); 494 } 495 496 if (config->emachine == EM_PPC) 497 in.plt = std::make_unique<PPC32GlinkSection>(); 498 else 499 in.plt = std::make_unique<PltSection>(); 500 add(*in.plt); 501 in.iplt = std::make_unique<IpltSection>(); 502 add(*in.iplt); 503 504 if (config->andFeatures) 505 add(*make<GnuPropertySection>()); 506 507 // .note.GNU-stack is always added when we are creating a re-linkable 508 // object file. Other linkers are using the presence of this marker 509 // section to control the executable-ness of the stack area, but that 510 // is irrelevant these days. Stack area should always be non-executable 511 // by default. So we emit this section unconditionally. 512 if (config->relocatable) 513 add(*make<GnuStackSection>()); 514 515 if (in.symTab) 516 add(*in.symTab); 517 if (in.symTabShndx) 518 add(*in.symTabShndx); 519 add(*in.shStrTab); 520 if (in.strTab) 521 add(*in.strTab); 522 } 523 524 // The main function of the writer. 525 template <class ELFT> void Writer<ELFT>::run() { 526 copyLocalSymbols(); 527 528 if (config->copyRelocs) 529 addSectionSymbols(); 530 531 // Now that we have a complete set of output sections. This function 532 // completes section contents. For example, we need to add strings 533 // to the string table, and add entries to .got and .plt. 534 // finalizeSections does that. 535 finalizeSections(); 536 checkExecuteOnly(); 537 538 // If --compressed-debug-sections is specified, compress .debug_* sections. 539 // Do it right now because it changes the size of output sections. 540 for (OutputSection *sec : outputSections) 541 sec->maybeCompress<ELFT>(); 542 543 if (script->hasSectionsCommand) 544 script->allocateHeaders(mainPart->phdrs); 545 546 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 547 // 0 sized region. This has to be done late since only after assignAddresses 548 // we know the size of the sections. 549 for (Partition &part : partitions) 550 removeEmptyPTLoad(part.phdrs); 551 552 if (!config->oFormatBinary) 553 assignFileOffsets(); 554 else 555 assignFileOffsetsBinary(); 556 557 for (Partition &part : partitions) 558 setPhdrs(part); 559 560 561 // Handle --print-map(-M)/--Map, --why-extract=, --cref and 562 // --print-archive-stats=. Dump them before checkSections() because the files 563 // may be useful in case checkSections() or openFile() fails, for example, due 564 // to an erroneous file size. 565 writeMapAndCref(); 566 writeWhyExtract(); 567 writeArchiveStats(); 568 569 if (config->checkSections) 570 checkSections(); 571 572 // It does not make sense try to open the file if we have error already. 573 if (errorCount()) 574 return; 575 576 { 577 llvm::TimeTraceScope timeScope("Write output file"); 578 // Write the result down to a file. 579 openFile(); 580 if (errorCount()) 581 return; 582 583 if (!config->oFormatBinary) { 584 if (config->zSeparate != SeparateSegmentKind::None) 585 writeTrapInstr(); 586 writeHeader(); 587 writeSections(); 588 } else { 589 writeSectionsBinary(); 590 } 591 592 // Backfill .note.gnu.build-id section content. This is done at last 593 // because the content is usually a hash value of the entire output file. 594 writeBuildId(); 595 if (errorCount()) 596 return; 597 598 if (auto e = buffer->commit()) 599 error("failed to write to the output file: " + toString(std::move(e))); 600 } 601 } 602 603 template <class ELFT, class RelTy> 604 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 605 llvm::ArrayRef<RelTy> rels) { 606 for (const RelTy &rel : rels) { 607 Symbol &sym = file->getRelocTargetSym(rel); 608 if (sym.isLocal()) 609 sym.used = true; 610 } 611 } 612 613 // The function ensures that the "used" field of local symbols reflects the fact 614 // that the symbol is used in a relocation from a live section. 615 template <class ELFT> static void markUsedLocalSymbols() { 616 // With --gc-sections, the field is already filled. 617 // See MarkLive<ELFT>::resolveReloc(). 618 if (config->gcSections) 619 return; 620 for (ELFFileBase *file : objectFiles) { 621 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 622 for (InputSectionBase *s : f->getSections()) { 623 InputSection *isec = dyn_cast_or_null<InputSection>(s); 624 if (!isec) 625 continue; 626 if (isec->type == SHT_REL) 627 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 628 else if (isec->type == SHT_RELA) 629 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 630 } 631 } 632 } 633 634 static bool shouldKeepInSymtab(const Defined &sym) { 635 if (sym.isSection()) 636 return false; 637 638 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 639 // from live sections. 640 if (sym.used) 641 return true; 642 643 // Exclude local symbols pointing to .ARM.exidx sections. 644 // They are probably mapping symbols "$d", which are optional for these 645 // sections. After merging the .ARM.exidx sections, some of these symbols 646 // may become dangling. The easiest way to avoid the issue is not to add 647 // them to the symbol table from the beginning. 648 if (config->emachine == EM_ARM && sym.section && 649 sym.section->type == SHT_ARM_EXIDX) 650 return false; 651 652 if (config->discard == DiscardPolicy::None) 653 return true; 654 if (config->discard == DiscardPolicy::All) 655 return false; 656 657 // In ELF assembly .L symbols are normally discarded by the assembler. 658 // If the assembler fails to do so, the linker discards them if 659 // * --discard-locals is used. 660 // * The symbol is in a SHF_MERGE section, which is normally the reason for 661 // the assembler keeping the .L symbol. 662 if (sym.getName().startswith(".L") && 663 (config->discard == DiscardPolicy::Locals || 664 (sym.section && (sym.section->flags & SHF_MERGE)))) 665 return false; 666 return true; 667 } 668 669 static bool includeInSymtab(const Symbol &b) { 670 if (auto *d = dyn_cast<Defined>(&b)) { 671 // Always include absolute symbols. 672 SectionBase *sec = d->section; 673 if (!sec) 674 return true; 675 676 if (auto *s = dyn_cast<MergeInputSection>(sec)) 677 return s->getSectionPiece(d->value)->live; 678 return sec->isLive(); 679 } 680 return b.used || !config->gcSections; 681 } 682 683 // Local symbols are not in the linker's symbol table. This function scans 684 // each object file's symbol table to copy local symbols to the output. 685 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 686 if (!in.symTab) 687 return; 688 llvm::TimeTraceScope timeScope("Add local symbols"); 689 if (config->copyRelocs && config->discard != DiscardPolicy::None) 690 markUsedLocalSymbols<ELFT>(); 691 for (ELFFileBase *file : objectFiles) { 692 for (Symbol *b : file->getLocalSymbols()) { 693 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 694 auto *dr = dyn_cast<Defined>(b); 695 696 // No reason to keep local undefined symbol in symtab. 697 if (!dr) 698 continue; 699 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 700 in.symTab->addSymbol(b); 701 } 702 } 703 } 704 705 // Create a section symbol for each output section so that we can represent 706 // relocations that point to the section. If we know that no relocation is 707 // referring to a section (that happens if the section is a synthetic one), we 708 // don't create a section symbol for that section. 709 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 710 for (SectionCommand *cmd : script->sectionCommands) { 711 auto *sec = dyn_cast<OutputSection>(cmd); 712 if (!sec) 713 continue; 714 auto i = llvm::find_if(sec->commands, [](SectionCommand *cmd) { 715 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 716 return !isd->sections.empty(); 717 return false; 718 }); 719 if (i == sec->commands.end()) 720 continue; 721 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 722 723 // Relocations are not using REL[A] section symbols. 724 if (isec->type == SHT_REL || isec->type == SHT_RELA) 725 continue; 726 727 // Unlike other synthetic sections, mergeable output sections contain data 728 // copied from input sections, and there may be a relocation pointing to its 729 // contents if -r or --emit-reloc is given. 730 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 731 continue; 732 733 // Set the symbol to be relative to the output section so that its st_value 734 // equals the output section address. Note, there may be a gap between the 735 // start of the output section and isec. 736 in.symTab->addSymbol( 737 makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 738 /*value=*/0, /*size=*/0, isec->getOutputSection())); 739 } 740 } 741 742 // Today's loaders have a feature to make segments read-only after 743 // processing dynamic relocations to enhance security. PT_GNU_RELRO 744 // is defined for that. 745 // 746 // This function returns true if a section needs to be put into a 747 // PT_GNU_RELRO segment. 748 static bool isRelroSection(const OutputSection *sec) { 749 if (!config->zRelro) 750 return false; 751 752 uint64_t flags = sec->flags; 753 754 // Non-allocatable or non-writable sections don't need RELRO because 755 // they are not writable or not even mapped to memory in the first place. 756 // RELRO is for sections that are essentially read-only but need to 757 // be writable only at process startup to allow dynamic linker to 758 // apply relocations. 759 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 760 return false; 761 762 // Once initialized, TLS data segments are used as data templates 763 // for a thread-local storage. For each new thread, runtime 764 // allocates memory for a TLS and copy templates there. No thread 765 // are supposed to use templates directly. Thus, it can be in RELRO. 766 if (flags & SHF_TLS) 767 return true; 768 769 // .init_array, .preinit_array and .fini_array contain pointers to 770 // functions that are executed on process startup or exit. These 771 // pointers are set by the static linker, and they are not expected 772 // to change at runtime. But if you are an attacker, you could do 773 // interesting things by manipulating pointers in .fini_array, for 774 // example. So they are put into RELRO. 775 uint32_t type = sec->type; 776 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 777 type == SHT_PREINIT_ARRAY) 778 return true; 779 780 // .got contains pointers to external symbols. They are resolved by 781 // the dynamic linker when a module is loaded into memory, and after 782 // that they are not expected to change. So, it can be in RELRO. 783 if (in.got && sec == in.got->getParent()) 784 return true; 785 786 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 787 // through r2 register, which is reserved for that purpose. Since r2 is used 788 // for accessing .got as well, .got and .toc need to be close enough in the 789 // virtual address space. Usually, .toc comes just after .got. Since we place 790 // .got into RELRO, .toc needs to be placed into RELRO too. 791 if (sec->name.equals(".toc")) 792 return true; 793 794 // .got.plt contains pointers to external function symbols. They are 795 // by default resolved lazily, so we usually cannot put it into RELRO. 796 // However, if "-z now" is given, the lazy symbol resolution is 797 // disabled, which enables us to put it into RELRO. 798 if (sec == in.gotPlt->getParent()) 799 return config->zNow; 800 801 // .dynamic section contains data for the dynamic linker, and 802 // there's no need to write to it at runtime, so it's better to put 803 // it into RELRO. 804 if (sec->name == ".dynamic") 805 return true; 806 807 // Sections with some special names are put into RELRO. This is a 808 // bit unfortunate because section names shouldn't be significant in 809 // ELF in spirit. But in reality many linker features depend on 810 // magic section names. 811 StringRef s = sec->name; 812 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 813 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 814 s == ".fini_array" || s == ".init_array" || 815 s == ".openbsd.randomdata" || s == ".preinit_array"; 816 } 817 818 // We compute a rank for each section. The rank indicates where the 819 // section should be placed in the file. Instead of using simple 820 // numbers (0,1,2...), we use a series of flags. One for each decision 821 // point when placing the section. 822 // Using flags has two key properties: 823 // * It is easy to check if a give branch was taken. 824 // * It is easy two see how similar two ranks are (see getRankProximity). 825 enum RankFlags { 826 RF_NOT_ADDR_SET = 1 << 27, 827 RF_NOT_ALLOC = 1 << 26, 828 RF_PARTITION = 1 << 18, // Partition number (8 bits) 829 RF_NOT_PART_EHDR = 1 << 17, 830 RF_NOT_PART_PHDR = 1 << 16, 831 RF_NOT_INTERP = 1 << 15, 832 RF_NOT_NOTE = 1 << 14, 833 RF_WRITE = 1 << 13, 834 RF_EXEC_WRITE = 1 << 12, 835 RF_EXEC = 1 << 11, 836 RF_RODATA = 1 << 10, 837 RF_NOT_RELRO = 1 << 9, 838 RF_NOT_TLS = 1 << 8, 839 RF_BSS = 1 << 7, 840 RF_PPC_NOT_TOCBSS = 1 << 6, 841 RF_PPC_TOCL = 1 << 5, 842 RF_PPC_TOC = 1 << 4, 843 RF_PPC_GOT = 1 << 3, 844 RF_PPC_BRANCH_LT = 1 << 2, 845 RF_MIPS_GPREL = 1 << 1, 846 RF_MIPS_NOT_GOT = 1 << 0 847 }; 848 849 static unsigned getSectionRank(const OutputSection *sec) { 850 unsigned rank = sec->partition * RF_PARTITION; 851 852 // We want to put section specified by -T option first, so we 853 // can start assigning VA starting from them later. 854 if (config->sectionStartMap.count(sec->name)) 855 return rank; 856 rank |= RF_NOT_ADDR_SET; 857 858 // Allocatable sections go first to reduce the total PT_LOAD size and 859 // so debug info doesn't change addresses in actual code. 860 if (!(sec->flags & SHF_ALLOC)) 861 return rank | RF_NOT_ALLOC; 862 863 if (sec->type == SHT_LLVM_PART_EHDR) 864 return rank; 865 rank |= RF_NOT_PART_EHDR; 866 867 if (sec->type == SHT_LLVM_PART_PHDR) 868 return rank; 869 rank |= RF_NOT_PART_PHDR; 870 871 // Put .interp first because some loaders want to see that section 872 // on the first page of the executable file when loaded into memory. 873 if (sec->name == ".interp") 874 return rank; 875 rank |= RF_NOT_INTERP; 876 877 // Put .note sections (which make up one PT_NOTE) at the beginning so that 878 // they are likely to be included in a core file even if core file size is 879 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 880 // included in a core to match core files with executables. 881 if (sec->type == SHT_NOTE) 882 return rank; 883 rank |= RF_NOT_NOTE; 884 885 // Sort sections based on their access permission in the following 886 // order: R, RX, RWX, RW. This order is based on the following 887 // considerations: 888 // * Read-only sections come first such that they go in the 889 // PT_LOAD covering the program headers at the start of the file. 890 // * Read-only, executable sections come next. 891 // * Writable, executable sections follow such that .plt on 892 // architectures where it needs to be writable will be placed 893 // between .text and .data. 894 // * Writable sections come last, such that .bss lands at the very 895 // end of the last PT_LOAD. 896 bool isExec = sec->flags & SHF_EXECINSTR; 897 bool isWrite = sec->flags & SHF_WRITE; 898 899 if (isExec) { 900 if (isWrite) 901 rank |= RF_EXEC_WRITE; 902 else 903 rank |= RF_EXEC; 904 } else if (isWrite) { 905 rank |= RF_WRITE; 906 } else if (sec->type == SHT_PROGBITS) { 907 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 908 // .eh_frame) closer to .text. They likely contain PC or GOT relative 909 // relocations and there could be relocation overflow if other huge sections 910 // (.dynstr .dynsym) were placed in between. 911 rank |= RF_RODATA; 912 } 913 914 // Place RelRo sections first. After considering SHT_NOBITS below, the 915 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 916 // where | marks where page alignment happens. An alternative ordering is 917 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 918 // waste more bytes due to 2 alignment places. 919 if (!isRelroSection(sec)) 920 rank |= RF_NOT_RELRO; 921 922 // If we got here we know that both A and B are in the same PT_LOAD. 923 924 // The TLS initialization block needs to be a single contiguous block in a R/W 925 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 926 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 927 // after PROGBITS. 928 if (!(sec->flags & SHF_TLS)) 929 rank |= RF_NOT_TLS; 930 931 // Within TLS sections, or within other RelRo sections, or within non-RelRo 932 // sections, place non-NOBITS sections first. 933 if (sec->type == SHT_NOBITS) 934 rank |= RF_BSS; 935 936 // Some architectures have additional ordering restrictions for sections 937 // within the same PT_LOAD. 938 if (config->emachine == EM_PPC64) { 939 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 940 // that we would like to make sure appear is a specific order to maximize 941 // their coverage by a single signed 16-bit offset from the TOC base 942 // pointer. Conversely, the special .tocbss section should be first among 943 // all SHT_NOBITS sections. This will put it next to the loaded special 944 // PPC64 sections (and, thus, within reach of the TOC base pointer). 945 StringRef name = sec->name; 946 if (name != ".tocbss") 947 rank |= RF_PPC_NOT_TOCBSS; 948 949 if (name == ".toc1") 950 rank |= RF_PPC_TOCL; 951 952 if (name == ".toc") 953 rank |= RF_PPC_TOC; 954 955 if (name == ".got") 956 rank |= RF_PPC_GOT; 957 958 if (name == ".branch_lt") 959 rank |= RF_PPC_BRANCH_LT; 960 } 961 962 if (config->emachine == EM_MIPS) { 963 // All sections with SHF_MIPS_GPREL flag should be grouped together 964 // because data in these sections is addressable with a gp relative address. 965 if (sec->flags & SHF_MIPS_GPREL) 966 rank |= RF_MIPS_GPREL; 967 968 if (sec->name != ".got") 969 rank |= RF_MIPS_NOT_GOT; 970 } 971 972 return rank; 973 } 974 975 static bool compareSections(const SectionCommand *aCmd, 976 const SectionCommand *bCmd) { 977 const OutputSection *a = cast<OutputSection>(aCmd); 978 const OutputSection *b = cast<OutputSection>(bCmd); 979 980 if (a->sortRank != b->sortRank) 981 return a->sortRank < b->sortRank; 982 983 if (!(a->sortRank & RF_NOT_ADDR_SET)) 984 return config->sectionStartMap.lookup(a->name) < 985 config->sectionStartMap.lookup(b->name); 986 return false; 987 } 988 989 void PhdrEntry::add(OutputSection *sec) { 990 lastSec = sec; 991 if (!firstSec) 992 firstSec = sec; 993 p_align = std::max(p_align, sec->alignment); 994 if (p_type == PT_LOAD) 995 sec->ptLoad = this; 996 } 997 998 // The beginning and the ending of .rel[a].plt section are marked 999 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1000 // executable. The runtime needs these symbols in order to resolve 1001 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1002 // need these symbols, since IRELATIVE relocs are resolved through GOT 1003 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1004 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1005 if (config->relocatable || config->isPic) 1006 return; 1007 1008 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1009 // because .rela.plt might be empty and thus removed from output. 1010 // We'll override Out::elfHeader with In.relaIplt later when we are 1011 // sure that .rela.plt exists in output. 1012 ElfSym::relaIpltStart = addOptionalRegular( 1013 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1014 Out::elfHeader, 0, STV_HIDDEN); 1015 1016 ElfSym::relaIpltEnd = addOptionalRegular( 1017 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1018 Out::elfHeader, 0, STV_HIDDEN); 1019 } 1020 1021 // This function generates assignments for predefined symbols (e.g. _end or 1022 // _etext) and inserts them into the commands sequence to be processed at the 1023 // appropriate time. This ensures that the value is going to be correct by the 1024 // time any references to these symbols are processed and is equivalent to 1025 // defining these symbols explicitly in the linker script. 1026 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1027 if (ElfSym::globalOffsetTable) { 1028 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1029 // to the start of the .got or .got.plt section. 1030 InputSection *sec = in.gotPlt.get(); 1031 if (!target->gotBaseSymInGotPlt) 1032 sec = in.mipsGot.get() ? cast<InputSection>(in.mipsGot.get()) 1033 : cast<InputSection>(in.got.get()); 1034 ElfSym::globalOffsetTable->section = sec; 1035 } 1036 1037 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1038 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1039 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1040 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1041 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1042 } 1043 1044 PhdrEntry *last = nullptr; 1045 PhdrEntry *lastRO = nullptr; 1046 1047 for (Partition &part : partitions) { 1048 for (PhdrEntry *p : part.phdrs) { 1049 if (p->p_type != PT_LOAD) 1050 continue; 1051 last = p; 1052 if (!(p->p_flags & PF_W)) 1053 lastRO = p; 1054 } 1055 } 1056 1057 if (lastRO) { 1058 // _etext is the first location after the last read-only loadable segment. 1059 if (ElfSym::etext1) 1060 ElfSym::etext1->section = lastRO->lastSec; 1061 if (ElfSym::etext2) 1062 ElfSym::etext2->section = lastRO->lastSec; 1063 } 1064 1065 if (last) { 1066 // _edata points to the end of the last mapped initialized section. 1067 OutputSection *edata = nullptr; 1068 for (OutputSection *os : outputSections) { 1069 if (os->type != SHT_NOBITS) 1070 edata = os; 1071 if (os == last->lastSec) 1072 break; 1073 } 1074 1075 if (ElfSym::edata1) 1076 ElfSym::edata1->section = edata; 1077 if (ElfSym::edata2) 1078 ElfSym::edata2->section = edata; 1079 1080 // _end is the first location after the uninitialized data region. 1081 if (ElfSym::end1) 1082 ElfSym::end1->section = last->lastSec; 1083 if (ElfSym::end2) 1084 ElfSym::end2->section = last->lastSec; 1085 } 1086 1087 if (ElfSym::bss) 1088 ElfSym::bss->section = findSection(".bss"); 1089 1090 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1091 // be equal to the _gp symbol's value. 1092 if (ElfSym::mipsGp) { 1093 // Find GP-relative section with the lowest address 1094 // and use this address to calculate default _gp value. 1095 for (OutputSection *os : outputSections) { 1096 if (os->flags & SHF_MIPS_GPREL) { 1097 ElfSym::mipsGp->section = os; 1098 ElfSym::mipsGp->value = 0x7ff0; 1099 break; 1100 } 1101 } 1102 } 1103 } 1104 1105 // We want to find how similar two ranks are. 1106 // The more branches in getSectionRank that match, the more similar they are. 1107 // Since each branch corresponds to a bit flag, we can just use 1108 // countLeadingZeros. 1109 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1110 return countLeadingZeros(a->sortRank ^ b->sortRank); 1111 } 1112 1113 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1114 auto *sec = dyn_cast<OutputSection>(b); 1115 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1116 } 1117 1118 // When placing orphan sections, we want to place them after symbol assignments 1119 // so that an orphan after 1120 // begin_foo = .; 1121 // foo : { *(foo) } 1122 // end_foo = .; 1123 // doesn't break the intended meaning of the begin/end symbols. 1124 // We don't want to go over sections since findOrphanPos is the 1125 // one in charge of deciding the order of the sections. 1126 // We don't want to go over changes to '.', since doing so in 1127 // rx_sec : { *(rx_sec) } 1128 // . = ALIGN(0x1000); 1129 // /* The RW PT_LOAD starts here*/ 1130 // rw_sec : { *(rw_sec) } 1131 // would mean that the RW PT_LOAD would become unaligned. 1132 static bool shouldSkip(SectionCommand *cmd) { 1133 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1134 return assign->name != "."; 1135 return false; 1136 } 1137 1138 // We want to place orphan sections so that they share as much 1139 // characteristics with their neighbors as possible. For example, if 1140 // both are rw, or both are tls. 1141 static SmallVectorImpl<SectionCommand *>::iterator 1142 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1143 SmallVectorImpl<SectionCommand *>::iterator e) { 1144 OutputSection *sec = cast<OutputSection>(*e); 1145 1146 // Find the first element that has as close a rank as possible. 1147 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1148 return getRankProximity(sec, a) < getRankProximity(sec, b); 1149 }); 1150 if (i == e) 1151 return e; 1152 auto foundSec = dyn_cast<OutputSection>(*i); 1153 if (!foundSec) 1154 return e; 1155 1156 // Consider all existing sections with the same proximity. 1157 int proximity = getRankProximity(sec, *i); 1158 unsigned sortRank = sec->sortRank; 1159 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1160 // Prevent the orphan section to be placed before the found section. If 1161 // custom program headers are defined, that helps to avoid adding it to a 1162 // previous segment and changing flags of that segment, for example, making 1163 // a read-only segment writable. If memory regions are defined, an orphan 1164 // section should continue the same region as the found section to better 1165 // resemble the behavior of GNU ld. 1166 sortRank = std::max(sortRank, foundSec->sortRank); 1167 for (; i != e; ++i) { 1168 auto *curSec = dyn_cast<OutputSection>(*i); 1169 if (!curSec || !curSec->hasInputSections) 1170 continue; 1171 if (getRankProximity(sec, curSec) != proximity || 1172 sortRank < curSec->sortRank) 1173 break; 1174 } 1175 1176 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1177 auto *os = dyn_cast<OutputSection>(cmd); 1178 return os && os->hasInputSections; 1179 }; 1180 auto j = 1181 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1182 isOutputSecWithInputSections); 1183 i = j.base(); 1184 1185 // As a special case, if the orphan section is the last section, put 1186 // it at the very end, past any other commands. 1187 // This matches bfd's behavior and is convenient when the linker script fully 1188 // specifies the start of the file, but doesn't care about the end (the non 1189 // alloc sections for example). 1190 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1191 if (nextSec == e) 1192 return e; 1193 1194 while (i != e && shouldSkip(*i)) 1195 ++i; 1196 return i; 1197 } 1198 1199 // Adds random priorities to sections not already in the map. 1200 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1201 if (config->shuffleSections.empty()) 1202 return; 1203 1204 SmallVector<InputSectionBase *, 0> matched, sections = inputSections; 1205 matched.reserve(sections.size()); 1206 for (const auto &patAndSeed : config->shuffleSections) { 1207 matched.clear(); 1208 for (InputSectionBase *sec : sections) 1209 if (patAndSeed.first.match(sec->name)) 1210 matched.push_back(sec); 1211 const uint32_t seed = patAndSeed.second; 1212 if (seed == UINT32_MAX) { 1213 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1214 // section order is stable even if the number of sections changes. This is 1215 // useful to catch issues like static initialization order fiasco 1216 // reliably. 1217 std::reverse(matched.begin(), matched.end()); 1218 } else { 1219 std::mt19937 g(seed ? seed : std::random_device()()); 1220 llvm::shuffle(matched.begin(), matched.end(), g); 1221 } 1222 size_t i = 0; 1223 for (InputSectionBase *&sec : sections) 1224 if (patAndSeed.first.match(sec->name)) 1225 sec = matched[i++]; 1226 } 1227 1228 // Existing priorities are < 0, so use priorities >= 0 for the missing 1229 // sections. 1230 int prio = 0; 1231 for (InputSectionBase *sec : sections) { 1232 if (order.try_emplace(sec, prio).second) 1233 ++prio; 1234 } 1235 } 1236 1237 // Builds section order for handling --symbol-ordering-file. 1238 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1239 DenseMap<const InputSectionBase *, int> sectionOrder; 1240 // Use the rarely used option --call-graph-ordering-file to sort sections. 1241 if (!config->callGraphProfile.empty()) 1242 return computeCallGraphProfileOrder(); 1243 1244 if (config->symbolOrderingFile.empty()) 1245 return sectionOrder; 1246 1247 struct SymbolOrderEntry { 1248 int priority; 1249 bool present; 1250 }; 1251 1252 // Build a map from symbols to their priorities. Symbols that didn't 1253 // appear in the symbol ordering file have the lowest priority 0. 1254 // All explicitly mentioned symbols have negative (higher) priorities. 1255 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1256 int priority = -config->symbolOrderingFile.size(); 1257 for (StringRef s : config->symbolOrderingFile) 1258 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1259 1260 // Build a map from sections to their priorities. 1261 auto addSym = [&](Symbol &sym) { 1262 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1263 if (it == symbolOrder.end()) 1264 return; 1265 SymbolOrderEntry &ent = it->second; 1266 ent.present = true; 1267 1268 maybeWarnUnorderableSymbol(&sym); 1269 1270 if (auto *d = dyn_cast<Defined>(&sym)) { 1271 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1272 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1273 priority = std::min(priority, ent.priority); 1274 } 1275 } 1276 }; 1277 1278 // We want both global and local symbols. We get the global ones from the 1279 // symbol table and iterate the object files for the local ones. 1280 for (Symbol *sym : symtab->symbols()) 1281 addSym(*sym); 1282 1283 for (ELFFileBase *file : objectFiles) 1284 for (Symbol *sym : file->getLocalSymbols()) 1285 addSym(*sym); 1286 1287 if (config->warnSymbolOrdering) 1288 for (auto orderEntry : symbolOrder) 1289 if (!orderEntry.second.present) 1290 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1291 1292 return sectionOrder; 1293 } 1294 1295 // Sorts the sections in ISD according to the provided section order. 1296 static void 1297 sortISDBySectionOrder(InputSectionDescription *isd, 1298 const DenseMap<const InputSectionBase *, int> &order) { 1299 SmallVector<InputSection *, 0> unorderedSections; 1300 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1301 uint64_t unorderedSize = 0; 1302 1303 for (InputSection *isec : isd->sections) { 1304 auto i = order.find(isec); 1305 if (i == order.end()) { 1306 unorderedSections.push_back(isec); 1307 unorderedSize += isec->getSize(); 1308 continue; 1309 } 1310 orderedSections.push_back({isec, i->second}); 1311 } 1312 llvm::sort(orderedSections, llvm::less_second()); 1313 1314 // Find an insertion point for the ordered section list in the unordered 1315 // section list. On targets with limited-range branches, this is the mid-point 1316 // of the unordered section list. This decreases the likelihood that a range 1317 // extension thunk will be needed to enter or exit the ordered region. If the 1318 // ordered section list is a list of hot functions, we can generally expect 1319 // the ordered functions to be called more often than the unordered functions, 1320 // making it more likely that any particular call will be within range, and 1321 // therefore reducing the number of thunks required. 1322 // 1323 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1324 // If the layout is: 1325 // 1326 // 8MB hot 1327 // 32MB cold 1328 // 1329 // only the first 8-16MB of the cold code (depending on which hot function it 1330 // is actually calling) can call the hot code without a range extension thunk. 1331 // However, if we use this layout: 1332 // 1333 // 16MB cold 1334 // 8MB hot 1335 // 16MB cold 1336 // 1337 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1338 // of the second block of cold code can call the hot code without a thunk. So 1339 // we effectively double the amount of code that could potentially call into 1340 // the hot code without a thunk. 1341 size_t insPt = 0; 1342 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1343 uint64_t unorderedPos = 0; 1344 for (; insPt != unorderedSections.size(); ++insPt) { 1345 unorderedPos += unorderedSections[insPt]->getSize(); 1346 if (unorderedPos > unorderedSize / 2) 1347 break; 1348 } 1349 } 1350 1351 isd->sections.clear(); 1352 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1353 isd->sections.push_back(isec); 1354 for (std::pair<InputSection *, int> p : orderedSections) 1355 isd->sections.push_back(p.first); 1356 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1357 isd->sections.push_back(isec); 1358 } 1359 1360 static void sortSection(OutputSection *sec, 1361 const DenseMap<const InputSectionBase *, int> &order) { 1362 StringRef name = sec->name; 1363 1364 // Never sort these. 1365 if (name == ".init" || name == ".fini") 1366 return; 1367 1368 // IRelative relocations that usually live in the .rel[a].dyn section should 1369 // be processed last by the dynamic loader. To achieve that we add synthetic 1370 // sections in the required order from the beginning so that the in.relaIplt 1371 // section is placed last in an output section. Here we just do not apply 1372 // sorting for an output section which holds the in.relaIplt section. 1373 if (in.relaIplt->getParent() == sec) 1374 return; 1375 1376 // Sort input sections by priority using the list provided by 1377 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1378 // digit radix sort. The sections may be sorted stably again by a more 1379 // significant key. 1380 if (!order.empty()) 1381 for (SectionCommand *b : sec->commands) 1382 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1383 sortISDBySectionOrder(isd, order); 1384 1385 if (script->hasSectionsCommand) 1386 return; 1387 1388 if (name == ".init_array" || name == ".fini_array") { 1389 sec->sortInitFini(); 1390 } else if (name == ".ctors" || name == ".dtors") { 1391 sec->sortCtorsDtors(); 1392 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1393 // .toc is allocated just after .got and is accessed using GOT-relative 1394 // relocations. Object files compiled with small code model have an 1395 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1396 // To reduce the risk of relocation overflow, .toc contents are sorted so 1397 // that sections having smaller relocation offsets are at beginning of .toc 1398 assert(sec->commands.size() == 1); 1399 auto *isd = cast<InputSectionDescription>(sec->commands[0]); 1400 llvm::stable_sort(isd->sections, 1401 [](const InputSection *a, const InputSection *b) -> bool { 1402 return a->file->ppc64SmallCodeModelTocRelocs && 1403 !b->file->ppc64SmallCodeModelTocRelocs; 1404 }); 1405 } 1406 } 1407 1408 // If no layout was provided by linker script, we want to apply default 1409 // sorting for special input sections. This also handles --symbol-ordering-file. 1410 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1411 // Build the order once since it is expensive. 1412 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1413 maybeShuffle(order); 1414 for (SectionCommand *cmd : script->sectionCommands) 1415 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1416 sortSection(sec, order); 1417 } 1418 1419 template <class ELFT> void Writer<ELFT>::sortSections() { 1420 llvm::TimeTraceScope timeScope("Sort sections"); 1421 1422 // Don't sort if using -r. It is not necessary and we want to preserve the 1423 // relative order for SHF_LINK_ORDER sections. 1424 if (config->relocatable) { 1425 script->adjustOutputSections(); 1426 return; 1427 } 1428 1429 sortInputSections(); 1430 1431 for (SectionCommand *cmd : script->sectionCommands) 1432 if (auto *osec = dyn_cast_or_null<OutputSection>(cmd)) 1433 osec->sortRank = getSectionRank(osec); 1434 if (!script->hasSectionsCommand) { 1435 // We know that all the OutputSections are contiguous in this case. 1436 auto isSection = [](SectionCommand *cmd) { 1437 return isa<OutputSection>(cmd); 1438 }; 1439 std::stable_sort( 1440 llvm::find_if(script->sectionCommands, isSection), 1441 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1442 compareSections); 1443 } 1444 1445 // Process INSERT commands and update output section attributes. From this 1446 // point onwards the order of script->sectionCommands is fixed. 1447 script->processInsertCommands(); 1448 script->adjustOutputSections(); 1449 1450 if (!script->hasSectionsCommand) 1451 return; 1452 1453 // Orphan sections are sections present in the input files which are 1454 // not explicitly placed into the output file by the linker script. 1455 // 1456 // The sections in the linker script are already in the correct 1457 // order. We have to figuere out where to insert the orphan 1458 // sections. 1459 // 1460 // The order of the sections in the script is arbitrary and may not agree with 1461 // compareSections. This means that we cannot easily define a strict weak 1462 // ordering. To see why, consider a comparison of a section in the script and 1463 // one not in the script. We have a two simple options: 1464 // * Make them equivalent (a is not less than b, and b is not less than a). 1465 // The problem is then that equivalence has to be transitive and we can 1466 // have sections a, b and c with only b in a script and a less than c 1467 // which breaks this property. 1468 // * Use compareSectionsNonScript. Given that the script order doesn't have 1469 // to match, we can end up with sections a, b, c, d where b and c are in the 1470 // script and c is compareSectionsNonScript less than b. In which case d 1471 // can be equivalent to c, a to b and d < a. As a concrete example: 1472 // .a (rx) # not in script 1473 // .b (rx) # in script 1474 // .c (ro) # in script 1475 // .d (ro) # not in script 1476 // 1477 // The way we define an order then is: 1478 // * Sort only the orphan sections. They are in the end right now. 1479 // * Move each orphan section to its preferred position. We try 1480 // to put each section in the last position where it can share 1481 // a PT_LOAD. 1482 // 1483 // There is some ambiguity as to where exactly a new entry should be 1484 // inserted, because Commands contains not only output section 1485 // commands but also other types of commands such as symbol assignment 1486 // expressions. There's no correct answer here due to the lack of the 1487 // formal specification of the linker script. We use heuristics to 1488 // determine whether a new output command should be added before or 1489 // after another commands. For the details, look at shouldSkip 1490 // function. 1491 1492 auto i = script->sectionCommands.begin(); 1493 auto e = script->sectionCommands.end(); 1494 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1495 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1496 return sec->sectionIndex == UINT32_MAX; 1497 return false; 1498 }); 1499 1500 // Sort the orphan sections. 1501 std::stable_sort(nonScriptI, e, compareSections); 1502 1503 // As a horrible special case, skip the first . assignment if it is before any 1504 // section. We do this because it is common to set a load address by starting 1505 // the script with ". = 0xabcd" and the expectation is that every section is 1506 // after that. 1507 auto firstSectionOrDotAssignment = 1508 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1509 if (firstSectionOrDotAssignment != e && 1510 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1511 ++firstSectionOrDotAssignment; 1512 i = firstSectionOrDotAssignment; 1513 1514 while (nonScriptI != e) { 1515 auto pos = findOrphanPos(i, nonScriptI); 1516 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1517 1518 // As an optimization, find all sections with the same sort rank 1519 // and insert them with one rotate. 1520 unsigned rank = orphan->sortRank; 1521 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1522 return cast<OutputSection>(cmd)->sortRank != rank; 1523 }); 1524 std::rotate(pos, nonScriptI, end); 1525 nonScriptI = end; 1526 } 1527 1528 script->adjustSectionsAfterSorting(); 1529 } 1530 1531 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1532 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1533 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1534 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1535 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1536 if (!la || !lb) 1537 return la && !lb; 1538 OutputSection *aOut = la->getParent(); 1539 OutputSection *bOut = lb->getParent(); 1540 1541 if (aOut != bOut) 1542 return aOut->addr < bOut->addr; 1543 return la->outSecOff < lb->outSecOff; 1544 } 1545 1546 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1547 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1548 for (OutputSection *sec : outputSections) { 1549 if (!(sec->flags & SHF_LINK_ORDER)) 1550 continue; 1551 1552 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1553 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1554 if (!config->relocatable && config->emachine == EM_ARM && 1555 sec->type == SHT_ARM_EXIDX) 1556 continue; 1557 1558 // Link order may be distributed across several InputSectionDescriptions. 1559 // Sorting is performed separately. 1560 SmallVector<InputSection **, 0> scriptSections; 1561 SmallVector<InputSection *, 0> sections; 1562 for (SectionCommand *cmd : sec->commands) { 1563 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1564 if (!isd) 1565 continue; 1566 bool hasLinkOrder = false; 1567 scriptSections.clear(); 1568 sections.clear(); 1569 for (InputSection *&isec : isd->sections) { 1570 if (isec->flags & SHF_LINK_ORDER) { 1571 InputSection *link = isec->getLinkOrderDep(); 1572 if (link && !link->getParent()) 1573 error(toString(isec) + ": sh_link points to discarded section " + 1574 toString(link)); 1575 hasLinkOrder = true; 1576 } 1577 scriptSections.push_back(&isec); 1578 sections.push_back(isec); 1579 } 1580 if (hasLinkOrder && errorCount() == 0) { 1581 llvm::stable_sort(sections, compareByFilePosition); 1582 for (int i = 0, n = sections.size(); i != n; ++i) 1583 *scriptSections[i] = sections[i]; 1584 } 1585 } 1586 } 1587 } 1588 1589 static void finalizeSynthetic(SyntheticSection *sec) { 1590 if (sec && sec->isNeeded() && sec->getParent()) { 1591 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1592 sec->finalizeContents(); 1593 } 1594 } 1595 1596 // We need to generate and finalize the content that depends on the address of 1597 // InputSections. As the generation of the content may also alter InputSection 1598 // addresses we must converge to a fixed point. We do that here. See the comment 1599 // in Writer<ELFT>::finalizeSections(). 1600 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1601 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1602 ThunkCreator tc; 1603 AArch64Err843419Patcher a64p; 1604 ARMErr657417Patcher a32p; 1605 script->assignAddresses(); 1606 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1607 // do require the relative addresses of OutputSections because linker scripts 1608 // can assign Virtual Addresses to OutputSections that are not monotonically 1609 // increasing. 1610 for (Partition &part : partitions) 1611 finalizeSynthetic(part.armExidx.get()); 1612 resolveShfLinkOrder(); 1613 1614 // Converts call x@GDPLT to call __tls_get_addr 1615 if (config->emachine == EM_HEXAGON) 1616 hexagonTLSSymbolUpdate(outputSections); 1617 1618 int assignPasses = 0; 1619 for (;;) { 1620 bool changed = target->needsThunks && tc.createThunks(outputSections); 1621 1622 // With Thunk Size much smaller than branch range we expect to 1623 // converge quickly; if we get to 15 something has gone wrong. 1624 if (changed && tc.pass >= 15) { 1625 error("thunk creation not converged"); 1626 break; 1627 } 1628 1629 if (config->fixCortexA53Errata843419) { 1630 if (changed) 1631 script->assignAddresses(); 1632 changed |= a64p.createFixes(); 1633 } 1634 if (config->fixCortexA8) { 1635 if (changed) 1636 script->assignAddresses(); 1637 changed |= a32p.createFixes(); 1638 } 1639 1640 if (in.mipsGot) 1641 in.mipsGot->updateAllocSize(); 1642 1643 for (Partition &part : partitions) { 1644 changed |= part.relaDyn->updateAllocSize(); 1645 if (part.relrDyn) 1646 changed |= part.relrDyn->updateAllocSize(); 1647 } 1648 1649 const Defined *changedSym = script->assignAddresses(); 1650 if (!changed) { 1651 // Some symbols may be dependent on section addresses. When we break the 1652 // loop, the symbol values are finalized because a previous 1653 // assignAddresses() finalized section addresses. 1654 if (!changedSym) 1655 break; 1656 if (++assignPasses == 5) { 1657 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1658 " does not converge"); 1659 break; 1660 } 1661 } 1662 } 1663 1664 if (config->relocatable) 1665 for (OutputSection *sec : outputSections) 1666 sec->addr = 0; 1667 1668 // If addrExpr is set, the address may not be a multiple of the alignment. 1669 // Warn because this is error-prone. 1670 for (SectionCommand *cmd : script->sectionCommands) 1671 if (auto *os = dyn_cast<OutputSection>(cmd)) 1672 if (os->addr % os->alignment != 0) 1673 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1674 os->name + " is not a multiple of alignment (" + 1675 Twine(os->alignment) + ")"); 1676 } 1677 1678 // If Input Sections have been shrunk (basic block sections) then 1679 // update symbol values and sizes associated with these sections. With basic 1680 // block sections, input sections can shrink when the jump instructions at 1681 // the end of the section are relaxed. 1682 static void fixSymbolsAfterShrinking() { 1683 for (InputFile *File : objectFiles) { 1684 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1685 auto *def = dyn_cast<Defined>(Sym); 1686 if (!def) 1687 return; 1688 1689 const SectionBase *sec = def->section; 1690 if (!sec) 1691 return; 1692 1693 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1694 if (!inputSec || !inputSec->bytesDropped) 1695 return; 1696 1697 const size_t OldSize = inputSec->data().size(); 1698 const size_t NewSize = OldSize - inputSec->bytesDropped; 1699 1700 if (def->value > NewSize && def->value <= OldSize) { 1701 LLVM_DEBUG(llvm::dbgs() 1702 << "Moving symbol " << Sym->getName() << " from " 1703 << def->value << " to " 1704 << def->value - inputSec->bytesDropped << " bytes\n"); 1705 def->value -= inputSec->bytesDropped; 1706 return; 1707 } 1708 1709 if (def->value + def->size > NewSize && def->value <= OldSize && 1710 def->value + def->size <= OldSize) { 1711 LLVM_DEBUG(llvm::dbgs() 1712 << "Shrinking symbol " << Sym->getName() << " from " 1713 << def->size << " to " << def->size - inputSec->bytesDropped 1714 << " bytes\n"); 1715 def->size -= inputSec->bytesDropped; 1716 } 1717 }); 1718 } 1719 } 1720 1721 // If basic block sections exist, there are opportunities to delete fall thru 1722 // jumps and shrink jump instructions after basic block reordering. This 1723 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1724 // option is used. 1725 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1726 assert(config->optimizeBBJumps); 1727 1728 script->assignAddresses(); 1729 // For every output section that has executable input sections, this 1730 // does the following: 1731 // 1. Deletes all direct jump instructions in input sections that 1732 // jump to the following section as it is not required. 1733 // 2. If there are two consecutive jump instructions, it checks 1734 // if they can be flipped and one can be deleted. 1735 for (OutputSection *osec : outputSections) { 1736 if (!(osec->flags & SHF_EXECINSTR)) 1737 continue; 1738 SmallVector<InputSection *, 0> sections = getInputSections(*osec); 1739 size_t numDeleted = 0; 1740 // Delete all fall through jump instructions. Also, check if two 1741 // consecutive jump instructions can be flipped so that a fall 1742 // through jmp instruction can be deleted. 1743 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1744 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1745 InputSection &sec = *sections[i]; 1746 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1747 } 1748 if (numDeleted > 0) { 1749 script->assignAddresses(); 1750 LLVM_DEBUG(llvm::dbgs() 1751 << "Removing " << numDeleted << " fall through jumps\n"); 1752 } 1753 } 1754 1755 fixSymbolsAfterShrinking(); 1756 1757 for (OutputSection *osec : outputSections) 1758 for (InputSection *is : getInputSections(*osec)) 1759 is->trim(); 1760 } 1761 1762 // In order to allow users to manipulate linker-synthesized sections, 1763 // we had to add synthetic sections to the input section list early, 1764 // even before we make decisions whether they are needed. This allows 1765 // users to write scripts like this: ".mygot : { .got }". 1766 // 1767 // Doing it has an unintended side effects. If it turns out that we 1768 // don't need a .got (for example) at all because there's no 1769 // relocation that needs a .got, we don't want to emit .got. 1770 // 1771 // To deal with the above problem, this function is called after 1772 // scanRelocations is called to remove synthetic sections that turn 1773 // out to be empty. 1774 static void removeUnusedSyntheticSections() { 1775 // All input synthetic sections that can be empty are placed after 1776 // all regular ones. Reverse iterate to find the first synthetic section 1777 // after a non-synthetic one which will be our starting point. 1778 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1779 [](InputSectionBase *s) { 1780 return !isa<SyntheticSection>(s); 1781 }) 1782 .base(); 1783 1784 // Remove unused synthetic sections from inputSections; 1785 DenseSet<InputSectionBase *> unused; 1786 auto end = 1787 std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) { 1788 auto *sec = cast<SyntheticSection>(s); 1789 if (sec->getParent() && sec->isNeeded()) 1790 return false; 1791 unused.insert(sec); 1792 return true; 1793 }); 1794 inputSections.erase(end, inputSections.end()); 1795 1796 // Remove unused synthetic sections from the corresponding input section 1797 // description and orphanSections. 1798 for (auto *sec : unused) 1799 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1800 for (SectionCommand *cmd : osec->commands) 1801 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1802 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1803 return unused.count(isec); 1804 }); 1805 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1806 return unused.count(sec); 1807 }); 1808 } 1809 1810 // Create output section objects and add them to OutputSections. 1811 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1812 Out::preinitArray = findSection(".preinit_array"); 1813 Out::initArray = findSection(".init_array"); 1814 Out::finiArray = findSection(".fini_array"); 1815 1816 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1817 // symbols for sections, so that the runtime can get the start and end 1818 // addresses of each section by section name. Add such symbols. 1819 if (!config->relocatable) { 1820 addStartEndSymbols(); 1821 for (SectionCommand *cmd : script->sectionCommands) 1822 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1823 addStartStopSymbols(sec); 1824 } 1825 1826 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1827 // It should be okay as no one seems to care about the type. 1828 // Even the author of gold doesn't remember why gold behaves that way. 1829 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1830 if (mainPart->dynamic->parent) 1831 symtab->addSymbol( 1832 Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1833 /*value=*/0, /*size=*/0, mainPart->dynamic.get()}); 1834 1835 // Define __rel[a]_iplt_{start,end} symbols if needed. 1836 addRelIpltSymbols(); 1837 1838 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1839 // should only be defined in an executable. If .sdata does not exist, its 1840 // value/section does not matter but it has to be relative, so set its 1841 // st_shndx arbitrarily to 1 (Out::elfHeader). 1842 if (config->emachine == EM_RISCV && !config->shared) { 1843 OutputSection *sec = findSection(".sdata"); 1844 ElfSym::riscvGlobalPointer = 1845 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1846 0x800, STV_DEFAULT); 1847 } 1848 1849 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1850 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1851 // way that: 1852 // 1853 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1854 // computes 0. 1855 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1856 // the TLS block). 1857 // 1858 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1859 // an absolute symbol of zero. This is different from GNU linkers which 1860 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1861 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1862 if (s && s->isUndefined()) { 1863 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 1864 STT_TLS, /*value=*/0, 0, 1865 /*section=*/nullptr}); 1866 ElfSym::tlsModuleBase = cast<Defined>(s); 1867 } 1868 } 1869 1870 { 1871 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1872 // This responsible for splitting up .eh_frame section into 1873 // pieces. The relocation scan uses those pieces, so this has to be 1874 // earlier. 1875 for (Partition &part : partitions) 1876 finalizeSynthetic(part.ehFrame.get()); 1877 } 1878 1879 if (config->hasDynSymTab) { 1880 parallelForEach(symtab->symbols(), [](Symbol *sym) { 1881 sym->isPreemptible = computeIsPreemptible(*sym); 1882 }); 1883 } 1884 1885 // Change values of linker-script-defined symbols from placeholders (assigned 1886 // by declareSymbols) to actual definitions. 1887 script->processSymbolAssignments(); 1888 1889 { 1890 llvm::TimeTraceScope timeScope("Scan relocations"); 1891 // Scan relocations. This must be done after every symbol is declared so 1892 // that we can correctly decide if a dynamic relocation is needed. This is 1893 // called after processSymbolAssignments() because it needs to know whether 1894 // a linker-script-defined symbol is absolute. 1895 ppc64noTocRelax.clear(); 1896 if (!config->relocatable) { 1897 // Scan all relocations. Each relocation goes through a series of tests to 1898 // determine if it needs special treatment, such as creating GOT, PLT, 1899 // copy relocations, etc. Note that relocations for non-alloc sections are 1900 // directly processed by InputSection::relocateNonAlloc. 1901 for (InputSectionBase *sec : inputSections) 1902 if (sec->isLive() && isa<InputSection>(sec) && (sec->flags & SHF_ALLOC)) 1903 scanRelocations<ELFT>(*sec); 1904 for (Partition &part : partitions) { 1905 for (EhInputSection *sec : part.ehFrame->sections) 1906 scanRelocations<ELFT>(*sec); 1907 if (part.armExidx && part.armExidx->isLive()) 1908 for (InputSection *sec : part.armExidx->exidxSections) 1909 scanRelocations<ELFT>(*sec); 1910 } 1911 1912 reportUndefinedSymbols(); 1913 postScanRelocations(); 1914 } 1915 } 1916 1917 if (in.plt && in.plt->isNeeded()) 1918 in.plt->addSymbols(); 1919 if (in.iplt && in.iplt->isNeeded()) 1920 in.iplt->addSymbols(); 1921 1922 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1923 auto diagnose = 1924 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 1925 ? errorOrWarn 1926 : warn; 1927 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1928 // entries are seen. These cases would otherwise lead to runtime errors 1929 // reported by the dynamic linker. 1930 // 1931 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1932 // catch more cases. That is too much for us. Our approach resembles the one 1933 // used in ld.gold, achieves a good balance to be useful but not too smart. 1934 for (SharedFile *file : sharedFiles) { 1935 bool allNeededIsKnown = 1936 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1937 return symtab->soNames.count(CachedHashStringRef(needed)); 1938 }); 1939 if (!allNeededIsKnown) 1940 continue; 1941 for (Symbol *sym : file->requiredSymbols) 1942 if (sym->isUndefined() && !sym->isWeak()) 1943 diagnose(toString(file) + ": undefined reference to " + 1944 toString(*sym) + " [--no-allow-shlib-undefined]"); 1945 } 1946 } 1947 1948 { 1949 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 1950 // Now that we have defined all possible global symbols including linker- 1951 // synthesized ones. Visit all symbols to give the finishing touches. 1952 for (Symbol *sym : symtab->symbols()) { 1953 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 1954 continue; 1955 if (!config->relocatable) 1956 sym->binding = sym->computeBinding(); 1957 if (in.symTab) 1958 in.symTab->addSymbol(sym); 1959 1960 if (sym->includeInDynsym()) { 1961 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1962 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1963 if (file->isNeeded && !sym->isUndefined()) 1964 addVerneed(sym); 1965 } 1966 } 1967 1968 // We also need to scan the dynamic relocation tables of the other 1969 // partitions and add any referenced symbols to the partition's dynsym. 1970 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1971 DenseSet<Symbol *> syms; 1972 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1973 syms.insert(e.sym); 1974 for (DynamicReloc &reloc : part.relaDyn->relocs) 1975 if (reloc.sym && reloc.needsDynSymIndex() && 1976 syms.insert(reloc.sym).second) 1977 part.dynSymTab->addSymbol(reloc.sym); 1978 } 1979 } 1980 1981 if (in.mipsGot) 1982 in.mipsGot->build(); 1983 1984 removeUnusedSyntheticSections(); 1985 script->diagnoseOrphanHandling(); 1986 1987 sortSections(); 1988 1989 // Create a list of OutputSections, assign sectionIndex, and populate 1990 // in.shStrTab. 1991 for (SectionCommand *cmd : script->sectionCommands) 1992 if (auto *osec = dyn_cast<OutputSection>(cmd)) { 1993 outputSections.push_back(osec); 1994 osec->sectionIndex = outputSections.size(); 1995 osec->shName = in.shStrTab->addString(osec->name); 1996 } 1997 1998 // Prefer command line supplied address over other constraints. 1999 for (OutputSection *sec : outputSections) { 2000 auto i = config->sectionStartMap.find(sec->name); 2001 if (i != config->sectionStartMap.end()) 2002 sec->addrExpr = [=] { return i->second; }; 2003 } 2004 2005 // With the outputSections available check for GDPLT relocations 2006 // and add __tls_get_addr symbol if needed. 2007 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2008 Symbol *sym = symtab->addSymbol(Undefined{ 2009 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2010 sym->isPreemptible = true; 2011 partitions[0].dynSymTab->addSymbol(sym); 2012 } 2013 2014 // This is a bit of a hack. A value of 0 means undef, so we set it 2015 // to 1 to make __ehdr_start defined. The section number is not 2016 // particularly relevant. 2017 Out::elfHeader->sectionIndex = 1; 2018 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2019 2020 // Binary and relocatable output does not have PHDRS. 2021 // The headers have to be created before finalize as that can influence the 2022 // image base and the dynamic section on mips includes the image base. 2023 if (!config->relocatable && !config->oFormatBinary) { 2024 for (Partition &part : partitions) { 2025 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2026 : createPhdrs(part); 2027 if (config->emachine == EM_ARM) { 2028 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2029 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2030 } 2031 if (config->emachine == EM_MIPS) { 2032 // Add separate segments for MIPS-specific sections. 2033 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2034 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2035 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2036 } 2037 } 2038 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2039 2040 // Find the TLS segment. This happens before the section layout loop so that 2041 // Android relocation packing can look up TLS symbol addresses. We only need 2042 // to care about the main partition here because all TLS symbols were moved 2043 // to the main partition (see MarkLive.cpp). 2044 for (PhdrEntry *p : mainPart->phdrs) 2045 if (p->p_type == PT_TLS) 2046 Out::tlsPhdr = p; 2047 } 2048 2049 // Some symbols are defined in term of program headers. Now that we 2050 // have the headers, we can find out which sections they point to. 2051 setReservedSymbolSections(); 2052 2053 { 2054 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2055 2056 finalizeSynthetic(in.bss.get()); 2057 finalizeSynthetic(in.bssRelRo.get()); 2058 finalizeSynthetic(in.symTabShndx.get()); 2059 finalizeSynthetic(in.shStrTab.get()); 2060 finalizeSynthetic(in.strTab.get()); 2061 finalizeSynthetic(in.got.get()); 2062 finalizeSynthetic(in.mipsGot.get()); 2063 finalizeSynthetic(in.igotPlt.get()); 2064 finalizeSynthetic(in.gotPlt.get()); 2065 finalizeSynthetic(in.relaIplt.get()); 2066 finalizeSynthetic(in.relaPlt.get()); 2067 finalizeSynthetic(in.plt.get()); 2068 finalizeSynthetic(in.iplt.get()); 2069 finalizeSynthetic(in.ppc32Got2.get()); 2070 finalizeSynthetic(in.partIndex.get()); 2071 2072 // Dynamic section must be the last one in this list and dynamic 2073 // symbol table section (dynSymTab) must be the first one. 2074 for (Partition &part : partitions) { 2075 if (part.relaDyn) { 2076 // Compute DT_RELACOUNT to be used by part.dynamic. 2077 part.relaDyn->partitionRels(); 2078 finalizeSynthetic(part.relaDyn.get()); 2079 } 2080 2081 finalizeSynthetic(part.dynSymTab.get()); 2082 finalizeSynthetic(part.gnuHashTab.get()); 2083 finalizeSynthetic(part.hashTab.get()); 2084 finalizeSynthetic(part.verDef.get()); 2085 finalizeSynthetic(part.relrDyn.get()); 2086 finalizeSynthetic(part.ehFrameHdr.get()); 2087 finalizeSynthetic(part.verSym.get()); 2088 finalizeSynthetic(part.verNeed.get()); 2089 finalizeSynthetic(part.dynamic.get()); 2090 } 2091 } 2092 2093 if (!script->hasSectionsCommand && !config->relocatable) 2094 fixSectionAlignments(); 2095 2096 // This is used to: 2097 // 1) Create "thunks": 2098 // Jump instructions in many ISAs have small displacements, and therefore 2099 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2100 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2101 // responsibility to create and insert small pieces of code between 2102 // sections to extend the ranges if jump targets are out of range. Such 2103 // code pieces are called "thunks". 2104 // 2105 // We add thunks at this stage. We couldn't do this before this point 2106 // because this is the earliest point where we know sizes of sections and 2107 // their layouts (that are needed to determine if jump targets are in 2108 // range). 2109 // 2110 // 2) Update the sections. We need to generate content that depends on the 2111 // address of InputSections. For example, MIPS GOT section content or 2112 // android packed relocations sections content. 2113 // 2114 // 3) Assign the final values for the linker script symbols. Linker scripts 2115 // sometimes using forward symbol declarations. We want to set the correct 2116 // values. They also might change after adding the thunks. 2117 finalizeAddressDependentContent(); 2118 2119 // All information needed for OutputSection part of Map file is available. 2120 if (errorCount()) 2121 return; 2122 2123 { 2124 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2125 // finalizeAddressDependentContent may have added local symbols to the 2126 // static symbol table. 2127 finalizeSynthetic(in.symTab.get()); 2128 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2129 } 2130 2131 // Relaxation to delete inter-basic block jumps created by basic block 2132 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2133 // can relax jump instructions based on symbol offset. 2134 if (config->optimizeBBJumps) 2135 optimizeBasicBlockJumps(); 2136 2137 // Fill other section headers. The dynamic table is finalized 2138 // at the end because some tags like RELSZ depend on result 2139 // of finalizing other sections. 2140 for (OutputSection *sec : outputSections) 2141 sec->finalize(); 2142 } 2143 2144 // Ensure data sections are not mixed with executable sections when 2145 // --execute-only is used. --execute-only make pages executable but not 2146 // readable. 2147 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2148 if (!config->executeOnly) 2149 return; 2150 2151 for (OutputSection *osec : outputSections) 2152 if (osec->flags & SHF_EXECINSTR) 2153 for (InputSection *isec : getInputSections(*osec)) 2154 if (!(isec->flags & SHF_EXECINSTR)) 2155 error("cannot place " + toString(isec) + " into " + 2156 toString(osec->name) + 2157 ": --execute-only does not support intermingling data and code"); 2158 } 2159 2160 // The linker is expected to define SECNAME_start and SECNAME_end 2161 // symbols for a few sections. This function defines them. 2162 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2163 // If a section does not exist, there's ambiguity as to how we 2164 // define _start and _end symbols for an init/fini section. Since 2165 // the loader assume that the symbols are always defined, we need to 2166 // always define them. But what value? The loader iterates over all 2167 // pointers between _start and _end to run global ctors/dtors, so if 2168 // the section is empty, their symbol values don't actually matter 2169 // as long as _start and _end point to the same location. 2170 // 2171 // That said, we don't want to set the symbols to 0 (which is 2172 // probably the simplest value) because that could cause some 2173 // program to fail to link due to relocation overflow, if their 2174 // program text is above 2 GiB. We use the address of the .text 2175 // section instead to prevent that failure. 2176 // 2177 // In rare situations, the .text section may not exist. If that's the 2178 // case, use the image base address as a last resort. 2179 OutputSection *Default = findSection(".text"); 2180 if (!Default) 2181 Default = Out::elfHeader; 2182 2183 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2184 if (os && !script->isDiscarded(os)) { 2185 addOptionalRegular(start, os, 0); 2186 addOptionalRegular(end, os, -1); 2187 } else { 2188 addOptionalRegular(start, Default, 0); 2189 addOptionalRegular(end, Default, 0); 2190 } 2191 }; 2192 2193 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2194 define("__init_array_start", "__init_array_end", Out::initArray); 2195 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2196 2197 if (OutputSection *sec = findSection(".ARM.exidx")) 2198 define("__exidx_start", "__exidx_end", sec); 2199 } 2200 2201 // If a section name is valid as a C identifier (which is rare because of 2202 // the leading '.'), linkers are expected to define __start_<secname> and 2203 // __stop_<secname> symbols. They are at beginning and end of the section, 2204 // respectively. This is not requested by the ELF standard, but GNU ld and 2205 // gold provide the feature, and used by many programs. 2206 template <class ELFT> 2207 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2208 StringRef s = sec->name; 2209 if (!isValidCIdentifier(s)) 2210 return; 2211 addOptionalRegular(saver().save("__start_" + s), sec, 0, 2212 config->zStartStopVisibility); 2213 addOptionalRegular(saver().save("__stop_" + s), sec, -1, 2214 config->zStartStopVisibility); 2215 } 2216 2217 static bool needsPtLoad(OutputSection *sec) { 2218 if (!(sec->flags & SHF_ALLOC)) 2219 return false; 2220 2221 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2222 // responsible for allocating space for them, not the PT_LOAD that 2223 // contains the TLS initialization image. 2224 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2225 return false; 2226 return true; 2227 } 2228 2229 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2230 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2231 // RW. This means that there is no alignment in the RO to RX transition and we 2232 // cannot create a PT_LOAD there. 2233 static uint64_t computeFlags(uint64_t flags) { 2234 if (config->omagic) 2235 return PF_R | PF_W | PF_X; 2236 if (config->executeOnly && (flags & PF_X)) 2237 return flags & ~PF_R; 2238 if (config->singleRoRx && !(flags & PF_W)) 2239 return flags | PF_X; 2240 return flags; 2241 } 2242 2243 // Decide which program headers to create and which sections to include in each 2244 // one. 2245 template <class ELFT> 2246 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2247 SmallVector<PhdrEntry *, 0> ret; 2248 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2249 ret.push_back(make<PhdrEntry>(type, flags)); 2250 return ret.back(); 2251 }; 2252 2253 unsigned partNo = part.getNumber(); 2254 bool isMain = partNo == 1; 2255 2256 // Add the first PT_LOAD segment for regular output sections. 2257 uint64_t flags = computeFlags(PF_R); 2258 PhdrEntry *load = nullptr; 2259 2260 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2261 // PT_LOAD. 2262 if (!config->nmagic && !config->omagic) { 2263 // The first phdr entry is PT_PHDR which describes the program header 2264 // itself. 2265 if (isMain) 2266 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2267 else 2268 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2269 2270 // PT_INTERP must be the second entry if exists. 2271 if (OutputSection *cmd = findSection(".interp", partNo)) 2272 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2273 2274 // Add the headers. We will remove them if they don't fit. 2275 // In the other partitions the headers are ordinary sections, so they don't 2276 // need to be added here. 2277 if (isMain) { 2278 load = addHdr(PT_LOAD, flags); 2279 load->add(Out::elfHeader); 2280 load->add(Out::programHeaders); 2281 } 2282 } 2283 2284 // PT_GNU_RELRO includes all sections that should be marked as 2285 // read-only by dynamic linker after processing relocations. 2286 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2287 // an error message if more than one PT_GNU_RELRO PHDR is required. 2288 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2289 bool inRelroPhdr = false; 2290 OutputSection *relroEnd = nullptr; 2291 for (OutputSection *sec : outputSections) { 2292 if (sec->partition != partNo || !needsPtLoad(sec)) 2293 continue; 2294 if (isRelroSection(sec)) { 2295 inRelroPhdr = true; 2296 if (!relroEnd) 2297 relRo->add(sec); 2298 else 2299 error("section: " + sec->name + " is not contiguous with other relro" + 2300 " sections"); 2301 } else if (inRelroPhdr) { 2302 inRelroPhdr = false; 2303 relroEnd = sec; 2304 } 2305 } 2306 2307 for (OutputSection *sec : outputSections) { 2308 if (!needsPtLoad(sec)) 2309 continue; 2310 2311 // Normally, sections in partitions other than the current partition are 2312 // ignored. But partition number 255 is a special case: it contains the 2313 // partition end marker (.part.end). It needs to be added to the main 2314 // partition so that a segment is created for it in the main partition, 2315 // which will cause the dynamic loader to reserve space for the other 2316 // partitions. 2317 if (sec->partition != partNo) { 2318 if (isMain && sec->partition == 255) 2319 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2320 continue; 2321 } 2322 2323 // Segments are contiguous memory regions that has the same attributes 2324 // (e.g. executable or writable). There is one phdr for each segment. 2325 // Therefore, we need to create a new phdr when the next section has 2326 // different flags or is loaded at a discontiguous address or memory 2327 // region using AT or AT> linker script command, respectively. At the same 2328 // time, we don't want to create a separate load segment for the headers, 2329 // even if the first output section has an AT or AT> attribute. 2330 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2331 bool sameLMARegion = 2332 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2333 if (!(load && newFlags == flags && sec != relroEnd && 2334 sec->memRegion == load->firstSec->memRegion && 2335 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2336 load = addHdr(PT_LOAD, newFlags); 2337 flags = newFlags; 2338 } 2339 2340 load->add(sec); 2341 } 2342 2343 // Add a TLS segment if any. 2344 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2345 for (OutputSection *sec : outputSections) 2346 if (sec->partition == partNo && sec->flags & SHF_TLS) 2347 tlsHdr->add(sec); 2348 if (tlsHdr->firstSec) 2349 ret.push_back(tlsHdr); 2350 2351 // Add an entry for .dynamic. 2352 if (OutputSection *sec = part.dynamic->getParent()) 2353 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2354 2355 if (relRo->firstSec) 2356 ret.push_back(relRo); 2357 2358 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2359 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2360 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2361 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2362 ->add(part.ehFrameHdr->getParent()); 2363 2364 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2365 // the dynamic linker fill the segment with random data. 2366 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2367 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2368 2369 if (config->zGnustack != GnuStackKind::None) { 2370 // PT_GNU_STACK is a special section to tell the loader to make the 2371 // pages for the stack non-executable. If you really want an executable 2372 // stack, you can pass -z execstack, but that's not recommended for 2373 // security reasons. 2374 unsigned perm = PF_R | PF_W; 2375 if (config->zGnustack == GnuStackKind::Exec) 2376 perm |= PF_X; 2377 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2378 } 2379 2380 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2381 // is expected to perform W^X violations, such as calling mprotect(2) or 2382 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2383 // OpenBSD. 2384 if (config->zWxneeded) 2385 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2386 2387 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2388 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2389 2390 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2391 // same alignment. 2392 PhdrEntry *note = nullptr; 2393 for (OutputSection *sec : outputSections) { 2394 if (sec->partition != partNo) 2395 continue; 2396 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2397 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2398 note = addHdr(PT_NOTE, PF_R); 2399 note->add(sec); 2400 } else { 2401 note = nullptr; 2402 } 2403 } 2404 return ret; 2405 } 2406 2407 template <class ELFT> 2408 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2409 unsigned pType, unsigned pFlags) { 2410 unsigned partNo = part.getNumber(); 2411 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2412 return cmd->partition == partNo && cmd->type == shType; 2413 }); 2414 if (i == outputSections.end()) 2415 return; 2416 2417 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2418 entry->add(*i); 2419 part.phdrs.push_back(entry); 2420 } 2421 2422 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2423 // This is achieved by assigning an alignment expression to addrExpr of each 2424 // such section. 2425 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2426 const PhdrEntry *prev; 2427 auto pageAlign = [&](const PhdrEntry *p) { 2428 OutputSection *cmd = p->firstSec; 2429 if (!cmd) 2430 return; 2431 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2432 if (!cmd->addrExpr) { 2433 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2434 // padding in the file contents. 2435 // 2436 // When -z separate-code is used we must not have any overlap in pages 2437 // between an executable segment and a non-executable segment. We align to 2438 // the next maximum page size boundary on transitions between executable 2439 // and non-executable segments. 2440 // 2441 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2442 // sections will be extracted to a separate file. Align to the next 2443 // maximum page size boundary so that we can find the ELF header at the 2444 // start. We cannot benefit from overlapping p_offset ranges with the 2445 // previous segment anyway. 2446 if (config->zSeparate == SeparateSegmentKind::Loadable || 2447 (config->zSeparate == SeparateSegmentKind::Code && prev && 2448 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2449 cmd->type == SHT_LLVM_PART_EHDR) 2450 cmd->addrExpr = [] { 2451 return alignTo(script->getDot(), config->maxPageSize); 2452 }; 2453 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2454 // it must be the RW. Align to p_align(PT_TLS) to make sure 2455 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2456 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2457 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2458 // be congruent to 0 modulo p_align(PT_TLS). 2459 // 2460 // Technically this is not required, but as of 2019, some dynamic loaders 2461 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2462 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2463 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2464 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2465 // blocks correctly. We need to keep the workaround for a while. 2466 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2467 cmd->addrExpr = [] { 2468 return alignTo(script->getDot(), config->maxPageSize) + 2469 alignTo(script->getDot() % config->maxPageSize, 2470 Out::tlsPhdr->p_align); 2471 }; 2472 else 2473 cmd->addrExpr = [] { 2474 return alignTo(script->getDot(), config->maxPageSize) + 2475 script->getDot() % config->maxPageSize; 2476 }; 2477 } 2478 }; 2479 2480 for (Partition &part : partitions) { 2481 prev = nullptr; 2482 for (const PhdrEntry *p : part.phdrs) 2483 if (p->p_type == PT_LOAD && p->firstSec) { 2484 pageAlign(p); 2485 prev = p; 2486 } 2487 } 2488 } 2489 2490 // Compute an in-file position for a given section. The file offset must be the 2491 // same with its virtual address modulo the page size, so that the loader can 2492 // load executables without any address adjustment. 2493 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2494 // The first section in a PT_LOAD has to have congruent offset and address 2495 // modulo the maximum page size. 2496 if (os->ptLoad && os->ptLoad->firstSec == os) 2497 return alignTo(off, os->ptLoad->p_align, os->addr); 2498 2499 // File offsets are not significant for .bss sections other than the first one 2500 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2501 // increasing rather than setting to zero. 2502 if (os->type == SHT_NOBITS && 2503 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2504 return off; 2505 2506 // If the section is not in a PT_LOAD, we just have to align it. 2507 if (!os->ptLoad) 2508 return alignTo(off, os->alignment); 2509 2510 // If two sections share the same PT_LOAD the file offset is calculated 2511 // using this formula: Off2 = Off1 + (VA2 - VA1). 2512 OutputSection *first = os->ptLoad->firstSec; 2513 return first->offset + os->addr - first->addr; 2514 } 2515 2516 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2517 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2518 auto needsOffset = [](OutputSection &sec) { 2519 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2520 }; 2521 uint64_t minAddr = UINT64_MAX; 2522 for (OutputSection *sec : outputSections) 2523 if (needsOffset(*sec)) { 2524 sec->offset = sec->getLMA(); 2525 minAddr = std::min(minAddr, sec->offset); 2526 } 2527 2528 // Sections are laid out at LMA minus minAddr. 2529 fileSize = 0; 2530 for (OutputSection *sec : outputSections) 2531 if (needsOffset(*sec)) { 2532 sec->offset -= minAddr; 2533 fileSize = std::max(fileSize, sec->offset + sec->size); 2534 } 2535 } 2536 2537 static std::string rangeToString(uint64_t addr, uint64_t len) { 2538 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2539 } 2540 2541 // Assign file offsets to output sections. 2542 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2543 Out::programHeaders->offset = Out::elfHeader->size; 2544 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2545 2546 PhdrEntry *lastRX = nullptr; 2547 for (Partition &part : partitions) 2548 for (PhdrEntry *p : part.phdrs) 2549 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2550 lastRX = p; 2551 2552 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2553 // will not occupy file offsets contained by a PT_LOAD. 2554 for (OutputSection *sec : outputSections) { 2555 if (!(sec->flags & SHF_ALLOC)) 2556 continue; 2557 off = computeFileOffset(sec, off); 2558 sec->offset = off; 2559 if (sec->type != SHT_NOBITS) 2560 off += sec->size; 2561 2562 // If this is a last section of the last executable segment and that 2563 // segment is the last loadable segment, align the offset of the 2564 // following section to avoid loading non-segments parts of the file. 2565 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2566 lastRX->lastSec == sec) 2567 off = alignTo(off, config->maxPageSize); 2568 } 2569 for (OutputSection *osec : outputSections) 2570 if (!(osec->flags & SHF_ALLOC)) { 2571 osec->offset = alignTo(off, osec->alignment); 2572 off = osec->offset + osec->size; 2573 } 2574 2575 sectionHeaderOff = alignTo(off, config->wordsize); 2576 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2577 2578 // Our logic assumes that sections have rising VA within the same segment. 2579 // With use of linker scripts it is possible to violate this rule and get file 2580 // offset overlaps or overflows. That should never happen with a valid script 2581 // which does not move the location counter backwards and usually scripts do 2582 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2583 // kernel, which control segment distribution explicitly and move the counter 2584 // backwards, so we have to allow doing that to support linking them. We 2585 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2586 // we want to prevent file size overflows because it would crash the linker. 2587 for (OutputSection *sec : outputSections) { 2588 if (sec->type == SHT_NOBITS) 2589 continue; 2590 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2591 error("unable to place section " + sec->name + " at file offset " + 2592 rangeToString(sec->offset, sec->size) + 2593 "; check your linker script for overflows"); 2594 } 2595 } 2596 2597 // Finalize the program headers. We call this function after we assign 2598 // file offsets and VAs to all sections. 2599 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2600 for (PhdrEntry *p : part.phdrs) { 2601 OutputSection *first = p->firstSec; 2602 OutputSection *last = p->lastSec; 2603 2604 if (first) { 2605 p->p_filesz = last->offset - first->offset; 2606 if (last->type != SHT_NOBITS) 2607 p->p_filesz += last->size; 2608 2609 p->p_memsz = last->addr + last->size - first->addr; 2610 p->p_offset = first->offset; 2611 p->p_vaddr = first->addr; 2612 2613 // File offsets in partitions other than the main partition are relative 2614 // to the offset of the ELF headers. Perform that adjustment now. 2615 if (part.elfHeader) 2616 p->p_offset -= part.elfHeader->getParent()->offset; 2617 2618 if (!p->hasLMA) 2619 p->p_paddr = first->getLMA(); 2620 } 2621 2622 if (p->p_type == PT_GNU_RELRO) { 2623 p->p_align = 1; 2624 // musl/glibc ld.so rounds the size down, so we need to round up 2625 // to protect the last page. This is a no-op on FreeBSD which always 2626 // rounds up. 2627 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2628 p->p_offset; 2629 } 2630 } 2631 } 2632 2633 // A helper struct for checkSectionOverlap. 2634 namespace { 2635 struct SectionOffset { 2636 OutputSection *sec; 2637 uint64_t offset; 2638 }; 2639 } // namespace 2640 2641 // Check whether sections overlap for a specific address range (file offsets, 2642 // load and virtual addresses). 2643 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2644 bool isVirtualAddr) { 2645 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2646 return a.offset < b.offset; 2647 }); 2648 2649 // Finding overlap is easy given a vector is sorted by start position. 2650 // If an element starts before the end of the previous element, they overlap. 2651 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2652 SectionOffset a = sections[i - 1]; 2653 SectionOffset b = sections[i]; 2654 if (b.offset >= a.offset + a.sec->size) 2655 continue; 2656 2657 // If both sections are in OVERLAY we allow the overlapping of virtual 2658 // addresses, because it is what OVERLAY was designed for. 2659 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2660 continue; 2661 2662 errorOrWarn("section " + a.sec->name + " " + name + 2663 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2664 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2665 b.sec->name + " range is " + 2666 rangeToString(b.offset, b.sec->size)); 2667 } 2668 } 2669 2670 // Check for overlapping sections and address overflows. 2671 // 2672 // In this function we check that none of the output sections have overlapping 2673 // file offsets. For SHF_ALLOC sections we also check that the load address 2674 // ranges and the virtual address ranges don't overlap 2675 template <class ELFT> void Writer<ELFT>::checkSections() { 2676 // First, check that section's VAs fit in available address space for target. 2677 for (OutputSection *os : outputSections) 2678 if ((os->addr + os->size < os->addr) || 2679 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2680 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2681 " of size 0x" + utohexstr(os->size) + 2682 " exceeds available address space"); 2683 2684 // Check for overlapping file offsets. In this case we need to skip any 2685 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2686 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2687 // binary is specified only add SHF_ALLOC sections are added to the output 2688 // file so we skip any non-allocated sections in that case. 2689 std::vector<SectionOffset> fileOffs; 2690 for (OutputSection *sec : outputSections) 2691 if (sec->size > 0 && sec->type != SHT_NOBITS && 2692 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2693 fileOffs.push_back({sec, sec->offset}); 2694 checkOverlap("file", fileOffs, false); 2695 2696 // When linking with -r there is no need to check for overlapping virtual/load 2697 // addresses since those addresses will only be assigned when the final 2698 // executable/shared object is created. 2699 if (config->relocatable) 2700 return; 2701 2702 // Checking for overlapping virtual and load addresses only needs to take 2703 // into account SHF_ALLOC sections since others will not be loaded. 2704 // Furthermore, we also need to skip SHF_TLS sections since these will be 2705 // mapped to other addresses at runtime and can therefore have overlapping 2706 // ranges in the file. 2707 std::vector<SectionOffset> vmas; 2708 for (OutputSection *sec : outputSections) 2709 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2710 vmas.push_back({sec, sec->addr}); 2711 checkOverlap("virtual address", vmas, true); 2712 2713 // Finally, check that the load addresses don't overlap. This will usually be 2714 // the same as the virtual addresses but can be different when using a linker 2715 // script with AT(). 2716 std::vector<SectionOffset> lmas; 2717 for (OutputSection *sec : outputSections) 2718 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2719 lmas.push_back({sec, sec->getLMA()}); 2720 checkOverlap("load address", lmas, false); 2721 } 2722 2723 // The entry point address is chosen in the following ways. 2724 // 2725 // 1. the '-e' entry command-line option; 2726 // 2. the ENTRY(symbol) command in a linker control script; 2727 // 3. the value of the symbol _start, if present; 2728 // 4. the number represented by the entry symbol, if it is a number; 2729 // 5. the address 0. 2730 static uint64_t getEntryAddr() { 2731 // Case 1, 2 or 3 2732 if (Symbol *b = symtab->find(config->entry)) 2733 return b->getVA(); 2734 2735 // Case 4 2736 uint64_t addr; 2737 if (to_integer(config->entry, addr)) 2738 return addr; 2739 2740 // Case 5 2741 if (config->warnMissingEntry) 2742 warn("cannot find entry symbol " + config->entry + 2743 "; not setting start address"); 2744 return 0; 2745 } 2746 2747 static uint16_t getELFType() { 2748 if (config->isPic) 2749 return ET_DYN; 2750 if (config->relocatable) 2751 return ET_REL; 2752 return ET_EXEC; 2753 } 2754 2755 template <class ELFT> void Writer<ELFT>::writeHeader() { 2756 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2757 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2758 2759 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2760 eHdr->e_type = getELFType(); 2761 eHdr->e_entry = getEntryAddr(); 2762 eHdr->e_shoff = sectionHeaderOff; 2763 2764 // Write the section header table. 2765 // 2766 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2767 // and e_shstrndx fields. When the value of one of these fields exceeds 2768 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2769 // use fields in the section header at index 0 to store 2770 // the value. The sentinel values and fields are: 2771 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2772 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2773 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2774 size_t num = outputSections.size() + 1; 2775 if (num >= SHN_LORESERVE) 2776 sHdrs->sh_size = num; 2777 else 2778 eHdr->e_shnum = num; 2779 2780 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2781 if (strTabIndex >= SHN_LORESERVE) { 2782 sHdrs->sh_link = strTabIndex; 2783 eHdr->e_shstrndx = SHN_XINDEX; 2784 } else { 2785 eHdr->e_shstrndx = strTabIndex; 2786 } 2787 2788 for (OutputSection *sec : outputSections) 2789 sec->writeHeaderTo<ELFT>(++sHdrs); 2790 } 2791 2792 // Open a result file. 2793 template <class ELFT> void Writer<ELFT>::openFile() { 2794 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2795 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2796 std::string msg; 2797 raw_string_ostream s(msg); 2798 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2799 << "section sizes:\n"; 2800 for (OutputSection *os : outputSections) 2801 s << os->name << ' ' << os->size << "\n"; 2802 error(s.str()); 2803 return; 2804 } 2805 2806 unlinkAsync(config->outputFile); 2807 unsigned flags = 0; 2808 if (!config->relocatable) 2809 flags |= FileOutputBuffer::F_executable; 2810 if (!config->mmapOutputFile) 2811 flags |= FileOutputBuffer::F_no_mmap; 2812 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2813 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2814 2815 if (!bufferOrErr) { 2816 error("failed to open " + config->outputFile + ": " + 2817 llvm::toString(bufferOrErr.takeError())); 2818 return; 2819 } 2820 buffer = std::move(*bufferOrErr); 2821 Out::bufferStart = buffer->getBufferStart(); 2822 } 2823 2824 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2825 for (OutputSection *sec : outputSections) 2826 if (sec->flags & SHF_ALLOC) 2827 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2828 } 2829 2830 static void fillTrap(uint8_t *i, uint8_t *end) { 2831 for (; i + 4 <= end; i += 4) 2832 memcpy(i, &target->trapInstr, 4); 2833 } 2834 2835 // Fill the last page of executable segments with trap instructions 2836 // instead of leaving them as zero. Even though it is not required by any 2837 // standard, it is in general a good thing to do for security reasons. 2838 // 2839 // We'll leave other pages in segments as-is because the rest will be 2840 // overwritten by output sections. 2841 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2842 for (Partition &part : partitions) { 2843 // Fill the last page. 2844 for (PhdrEntry *p : part.phdrs) 2845 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2846 fillTrap(Out::bufferStart + 2847 alignDown(p->firstSec->offset + p->p_filesz, 4), 2848 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2849 config->maxPageSize)); 2850 2851 // Round up the file size of the last segment to the page boundary iff it is 2852 // an executable segment to ensure that other tools don't accidentally 2853 // trim the instruction padding (e.g. when stripping the file). 2854 PhdrEntry *last = nullptr; 2855 for (PhdrEntry *p : part.phdrs) 2856 if (p->p_type == PT_LOAD) 2857 last = p; 2858 2859 if (last && (last->p_flags & PF_X)) 2860 last->p_memsz = last->p_filesz = 2861 alignTo(last->p_filesz, config->maxPageSize); 2862 } 2863 } 2864 2865 // Write section contents to a mmap'ed file. 2866 template <class ELFT> void Writer<ELFT>::writeSections() { 2867 llvm::TimeTraceScope timeScope("Write sections"); 2868 2869 // In -r or --emit-relocs mode, write the relocation sections first as in 2870 // ELf_Rel targets we might find out that we need to modify the relocated 2871 // section while doing it. 2872 for (OutputSection *sec : outputSections) 2873 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2874 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2875 2876 for (OutputSection *sec : outputSections) 2877 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2878 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2879 2880 // Finally, check that all dynamic relocation addends were written correctly. 2881 if (config->checkDynamicRelocs && config->writeAddends) { 2882 for (OutputSection *sec : outputSections) 2883 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2884 sec->checkDynRelAddends(Out::bufferStart); 2885 } 2886 } 2887 2888 // Computes a hash value of Data using a given hash function. 2889 // In order to utilize multiple cores, we first split data into 1MB 2890 // chunks, compute a hash for each chunk, and then compute a hash value 2891 // of the hash values. 2892 static void 2893 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2894 llvm::ArrayRef<uint8_t> data, 2895 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2896 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2897 const size_t hashesSize = chunks.size() * hashBuf.size(); 2898 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 2899 2900 // Compute hash values. 2901 parallelForEachN(0, chunks.size(), [&](size_t i) { 2902 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 2903 }); 2904 2905 // Write to the final output buffer. 2906 hashFn(hashBuf.data(), makeArrayRef(hashes.get(), hashesSize)); 2907 } 2908 2909 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2910 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2911 return; 2912 2913 if (config->buildId == BuildIdKind::Hexstring) { 2914 for (Partition &part : partitions) 2915 part.buildId->writeBuildId(config->buildIdVector); 2916 return; 2917 } 2918 2919 // Compute a hash of all sections of the output file. 2920 size_t hashSize = mainPart->buildId->hashSize; 2921 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 2922 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 2923 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 2924 2925 switch (config->buildId) { 2926 case BuildIdKind::Fast: 2927 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2928 write64le(dest, xxHash64(arr)); 2929 }); 2930 break; 2931 case BuildIdKind::Md5: 2932 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2933 memcpy(dest, MD5::hash(arr).data(), hashSize); 2934 }); 2935 break; 2936 case BuildIdKind::Sha1: 2937 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2938 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2939 }); 2940 break; 2941 case BuildIdKind::Uuid: 2942 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 2943 error("entropy source failure: " + ec.message()); 2944 break; 2945 default: 2946 llvm_unreachable("unknown BuildIdKind"); 2947 } 2948 for (Partition &part : partitions) 2949 part.buildId->writeBuildId(output); 2950 } 2951 2952 template void elf::createSyntheticSections<ELF32LE>(); 2953 template void elf::createSyntheticSections<ELF32BE>(); 2954 template void elf::createSyntheticSections<ELF64LE>(); 2955 template void elf::createSyntheticSections<ELF64BE>(); 2956 2957 template void elf::writeResult<ELF32LE>(); 2958 template void elf::writeResult<ELF32BE>(); 2959 template void elf::writeResult<ELF64LE>(); 2960 template void elf::writeResult<ELF64BE>(); 2961