1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "Config.h" 12 #include "OutputSections.h" 13 #include "SymbolTable.h" 14 #include "Target.h" 15 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/Support/FileOutputBuffer.h" 19 #include "llvm/Support/StringSaver.h" 20 21 using namespace llvm; 22 using namespace llvm::ELF; 23 using namespace llvm::object; 24 25 using namespace lld; 26 using namespace lld::elf2; 27 28 namespace { 29 30 static uint32_t toPhdrFlags(uint64_t Flags) { 31 uint32_t Ret = PF_R; 32 if (Flags & SHF_WRITE) 33 Ret |= PF_W; 34 if (Flags & SHF_EXECINSTR) 35 Ret |= PF_X; 36 return Ret; 37 } 38 39 // The writer writes a SymbolTable result to a file. 40 template <class ELFT> class Writer { 41 public: 42 typedef typename ELFFile<ELFT>::uintX_t uintX_t; 43 typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; 44 typedef typename ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr; 45 typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr; 46 typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; 47 typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range; 48 typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela; 49 Writer(SymbolTable<ELFT> &S) : Symtab(S) {} 50 void run(); 51 52 private: 53 void copyLocalSymbols(); 54 void createSections(); 55 template <bool isRela> 56 void scanRelocs(const InputSection<ELFT> &C, 57 iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels); 58 void scanRelocs(const InputSection<ELFT> &C); 59 void assignAddresses(); 60 void openFile(StringRef OutputPath); 61 void writeHeader(); 62 void writeSections(); 63 bool needsInterpSection() const { 64 return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); 65 } 66 bool isOutputDynamic() const { 67 return !Symtab.getSharedFiles().empty() || Config->Shared; 68 } 69 uintX_t getVAStart() const { return Config->Shared ? 0 : Target->getVAStart(); } 70 71 std::unique_ptr<llvm::FileOutputBuffer> Buffer; 72 73 SpecificBumpPtrAllocator<OutputSection<ELFT>> SecAlloc; 74 SpecificBumpPtrAllocator<MergeOutputSection<ELFT>> MSecAlloc; 75 BumpPtrAllocator Alloc; 76 std::vector<OutputSectionBase<ELFT> *> OutputSections; 77 unsigned getNumSections() const { return OutputSections.size() + 1; } 78 79 void addStartStopSymbols(OutputSectionBase<ELFT> *Sec); 80 void setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff, 81 uintX_t VA, uintX_t Align); 82 void copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From); 83 84 SymbolTable<ELFT> &Symtab; 85 std::vector<Elf_Phdr> Phdrs; 86 87 uintX_t FileSize; 88 uintX_t SectionHeaderOff; 89 }; 90 } // anonymous namespace 91 92 template <class ELFT> void lld::elf2::writeResult(SymbolTable<ELFT> *Symtab) { 93 // Initialize output sections that are handled by Writer specially. 94 // Don't reorder because the order of initialization matters. 95 InterpSection<ELFT> Interp; 96 Out<ELFT>::Interp = &Interp; 97 StringTableSection<ELFT> ShStrTab(".shstrtab", false); 98 Out<ELFT>::ShStrTab = &ShStrTab; 99 StringTableSection<ELFT> StrTab(".strtab", false); 100 Out<ELFT>::StrTab = &StrTab; 101 StringTableSection<ELFT> DynStrTab(".dynstr", true); 102 Out<ELFT>::DynStrTab = &DynStrTab; 103 OutputSection<ELFT> Bss(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); 104 Out<ELFT>::Bss = &Bss; 105 GotSection<ELFT> Got; 106 Out<ELFT>::Got = &Got; 107 GotPltSection<ELFT> GotPlt; 108 if (Target->supportsLazyRelocations()) 109 Out<ELFT>::GotPlt = &GotPlt; 110 PltSection<ELFT> Plt; 111 Out<ELFT>::Plt = &Plt; 112 SymbolTableSection<ELFT> SymTab(*Symtab, *Out<ELFT>::StrTab); 113 Out<ELFT>::SymTab = &SymTab; 114 SymbolTableSection<ELFT> DynSymTab(*Symtab, *Out<ELFT>::DynStrTab); 115 Out<ELFT>::DynSymTab = &DynSymTab; 116 HashTableSection<ELFT> HashTab; 117 if (Config->SysvHash) 118 Out<ELFT>::HashTab = &HashTab; 119 GnuHashTableSection<ELFT> GnuHashTab; 120 if (Config->GnuHash) 121 Out<ELFT>::GnuHashTab = &GnuHashTab; 122 bool IsRela = Symtab->shouldUseRela(); 123 RelocationSection<ELFT> RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela); 124 Out<ELFT>::RelaDyn = &RelaDyn; 125 RelocationSection<ELFT> RelaPlt(IsRela ? ".rela.plt" : ".rel.plt", IsRela); 126 if (Target->supportsLazyRelocations()) 127 Out<ELFT>::RelaPlt = &RelaPlt; 128 DynamicSection<ELFT> Dynamic(*Symtab); 129 Out<ELFT>::Dynamic = &Dynamic; 130 131 Writer<ELFT>(*Symtab).run(); 132 } 133 134 // The main function of the writer. 135 template <class ELFT> void Writer<ELFT>::run() { 136 if (!Config->DiscardAll) 137 copyLocalSymbols(); 138 createSections(); 139 assignAddresses(); 140 openFile(Config->OutputFile); 141 writeHeader(); 142 writeSections(); 143 error(Buffer->commit()); 144 } 145 146 namespace { 147 template <bool Is64Bits> struct SectionKey { 148 typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t; 149 StringRef Name; 150 uint32_t Type; 151 uintX_t Flags; 152 uintX_t EntSize; 153 }; 154 } 155 namespace llvm { 156 template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> { 157 static SectionKey<Is64Bits> getEmptyKey() { 158 return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 159 0}; 160 } 161 static SectionKey<Is64Bits> getTombstoneKey() { 162 return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 163 0, 0}; 164 } 165 static unsigned getHashValue(const SectionKey<Is64Bits> &Val) { 166 return hash_combine(Val.Name, Val.Type, Val.Flags, Val.EntSize); 167 } 168 static bool isEqual(const SectionKey<Is64Bits> &LHS, 169 const SectionKey<Is64Bits> &RHS) { 170 return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && 171 LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && 172 LHS.EntSize == RHS.EntSize; 173 } 174 }; 175 } 176 177 // The reason we have to do this early scan is as follows 178 // * To mmap the output file, we need to know the size 179 // * For that, we need to know how many dynamic relocs we will have. 180 // It might be possible to avoid this by outputting the file with write: 181 // * Write the allocated output sections, computing addresses. 182 // * Apply relocations, recording which ones require a dynamic reloc. 183 // * Write the dynamic relocations. 184 // * Write the rest of the file. 185 template <class ELFT> 186 template <bool isRela> 187 void Writer<ELFT>::scanRelocs( 188 const InputSection<ELFT> &C, 189 iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels) { 190 typedef Elf_Rel_Impl<ELFT, isRela> RelType; 191 const ObjectFile<ELFT> &File = *C.getFile(); 192 for (const RelType &RI : Rels) { 193 uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); 194 SymbolBody *Body = File.getSymbolBody(SymIndex); 195 uint32_t Type = RI.getType(Config->Mips64EL); 196 197 // Set "used" bit for --as-needed. 198 if (Body && Body->isUndefined() && !Body->isWeak()) 199 if (auto *S = dyn_cast<SharedSymbol<ELFT>>(Body->repl())) 200 S->File->IsUsed = true; 201 202 if (Body) 203 Body = Body->repl(); 204 bool NeedsGot = false; 205 bool NeedsPlt = false; 206 if (Body) { 207 NeedsPlt = Target->relocNeedsPlt(Type, *Body); 208 if (NeedsPlt) { 209 if (Body->isInPlt()) 210 continue; 211 Out<ELFT>::Plt->addEntry(Body); 212 } 213 NeedsGot = Target->relocNeedsGot(Type, *Body); 214 if (NeedsGot) { 215 if (NeedsPlt && Target->supportsLazyRelocations()) { 216 Out<ELFT>::GotPlt->addEntry(Body); 217 } else { 218 if (Body->isInGot()) 219 continue; 220 Out<ELFT>::Got->addEntry(Body); 221 } 222 } 223 } 224 225 bool CBP = canBePreempted(Body, NeedsGot); 226 if (!CBP && (!Config->Shared || Target->isRelRelative(Type))) 227 continue; 228 if (CBP) 229 Body->setUsedInDynamicReloc(); 230 if (NeedsPlt && Target->supportsLazyRelocations()) 231 Out<ELFT>::RelaPlt->addReloc({C, RI}); 232 else 233 Out<ELFT>::RelaDyn->addReloc({C, RI}); 234 } 235 } 236 237 template <class ELFT> 238 void Writer<ELFT>::scanRelocs(const InputSection<ELFT> &C) { 239 ObjectFile<ELFT> *File = C.getFile(); 240 ELFFile<ELFT> &EObj = File->getObj(); 241 242 if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC)) 243 return; 244 245 for (const Elf_Shdr *RelSec : C.RelocSections) { 246 if (RelSec->sh_type == SHT_RELA) 247 scanRelocs(C, EObj.relas(RelSec)); 248 else 249 scanRelocs(C, EObj.rels(RelSec)); 250 } 251 } 252 253 template <class ELFT> 254 static void reportUndefined(const SymbolTable<ELFT> &S, const SymbolBody &Sym) { 255 typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; 256 typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range; 257 258 if (Config->Shared && !Config->NoUndefined) 259 return; 260 261 const Elf_Sym &SymE = cast<ELFSymbolBody<ELFT>>(Sym).Sym; 262 ELFFileBase<ELFT> *SymFile = nullptr; 263 264 for (const std::unique_ptr<ObjectFile<ELFT>> &File : S.getObjectFiles()) { 265 Elf_Sym_Range Syms = File->getObj().symbols(File->getSymbolTable()); 266 if (&SymE > Syms.begin() && &SymE < Syms.end()) 267 SymFile = File.get(); 268 } 269 270 std::string Message = "undefined symbol: " + Sym.getName().str(); 271 if (SymFile) 272 Message += " in " + SymFile->getName().str(); 273 if (Config->NoInhibitExec) 274 warning(Message); 275 else 276 error(Message); 277 } 278 279 // Local symbols are not in the linker's symbol table. This function scans 280 // each object file's symbol table to copy local symbols to the output. 281 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 282 for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { 283 for (const Elf_Sym &Sym : F->getLocalSymbols()) { 284 ErrorOr<StringRef> SymNameOrErr = Sym.getName(F->getStringTable()); 285 error(SymNameOrErr); 286 StringRef SymName = *SymNameOrErr; 287 if (!shouldKeepInSymtab<ELFT>(*F, SymName, Sym)) 288 continue; 289 Out<ELFT>::SymTab->addLocalSymbol(SymName); 290 } 291 } 292 } 293 294 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that 295 // we would like to make sure appear is a specific order to maximize their 296 // coverage by a single signed 16-bit offset from the TOC base pointer. 297 // Conversely, the special .tocbss section should be first among all SHT_NOBITS 298 // sections. This will put it next to the loaded special PPC64 sections (and, 299 // thus, within reach of the TOC base pointer). 300 static int getPPC64SectionRank(StringRef SectionName) { 301 return StringSwitch<int>(SectionName) 302 .Case(".tocbss", 0) 303 .Case(".branch_lt", 2) 304 .Case(".toc", 3) 305 .Case(".toc1", 4) 306 .Case(".opd", 5) 307 .Default(1); 308 } 309 310 // Output section ordering is determined by this function. 311 template <class ELFT> 312 static bool compareOutputSections(OutputSectionBase<ELFT> *A, 313 OutputSectionBase<ELFT> *B) { 314 typedef typename ELFFile<ELFT>::uintX_t uintX_t; 315 316 uintX_t AFlags = A->getFlags(); 317 uintX_t BFlags = B->getFlags(); 318 319 // Allocatable sections go first to reduce the total PT_LOAD size and 320 // so debug info doesn't change addresses in actual code. 321 bool AIsAlloc = AFlags & SHF_ALLOC; 322 bool BIsAlloc = BFlags & SHF_ALLOC; 323 if (AIsAlloc != BIsAlloc) 324 return AIsAlloc; 325 326 // We don't have any special requirements for the relative order of 327 // two non allocatable sections. 328 if (!AIsAlloc) 329 return false; 330 331 // We want the read only sections first so that they go in the PT_LOAD 332 // covering the program headers at the start of the file. 333 bool AIsWritable = AFlags & SHF_WRITE; 334 bool BIsWritable = BFlags & SHF_WRITE; 335 if (AIsWritable != BIsWritable) 336 return BIsWritable; 337 338 // For a corresponding reason, put non exec sections first (the program 339 // header PT_LOAD is not executable). 340 bool AIsExec = AFlags & SHF_EXECINSTR; 341 bool BIsExec = BFlags & SHF_EXECINSTR; 342 if (AIsExec != BIsExec) 343 return BIsExec; 344 345 // If we got here we know that both A and B are in the same PT_LOAD. 346 347 // The TLS initialization block needs to be a single contiguous block in a R/W 348 // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS 349 // sections are placed here as they don't take up virtual address space in the 350 // PT_LOAD. 351 bool AIsTLS = AFlags & SHF_TLS; 352 bool BIsTLS = BFlags & SHF_TLS; 353 if (AIsTLS != BIsTLS) 354 return AIsTLS; 355 356 // The next requirement we have is to put nobits sections last. The 357 // reason is that the only thing the dynamic linker will see about 358 // them is a p_memsz that is larger than p_filesz. Seeing that it 359 // zeros the end of the PT_LOAD, so that has to correspond to the 360 // nobits sections. 361 bool AIsNoBits = A->getType() == SHT_NOBITS; 362 bool BIsNoBits = B->getType() == SHT_NOBITS; 363 if (AIsNoBits != BIsNoBits) 364 return BIsNoBits; 365 366 // Some architectures have additional ordering restrictions for sections 367 // within the same PT_LOAD. 368 if (Config->EMachine == EM_PPC64) 369 return getPPC64SectionRank(A->getName()) < 370 getPPC64SectionRank(B->getName()); 371 372 return false; 373 } 374 375 // Until this function is called, common symbols do not belong to any section. 376 // This function adds them to end of BSS section. 377 template <class ELFT> 378 static void addCommonSymbols(std::vector<DefinedCommon<ELFT> *> &Syms) { 379 typedef typename ELFFile<ELFT>::uintX_t uintX_t; 380 typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; 381 382 // Sort the common symbols by alignment as an heuristic to pack them better. 383 std::stable_sort( 384 Syms.begin(), Syms.end(), 385 [](const DefinedCommon<ELFT> *A, const DefinedCommon<ELFT> *B) { 386 return A->MaxAlignment > B->MaxAlignment; 387 }); 388 389 uintX_t Off = Out<ELFT>::Bss->getSize(); 390 for (DefinedCommon<ELFT> *C : Syms) { 391 const Elf_Sym &Sym = C->Sym; 392 uintX_t Align = C->MaxAlignment; 393 Off = RoundUpToAlignment(Off, Align); 394 C->OffsetInBSS = Off; 395 Off += Sym.st_size; 396 } 397 398 Out<ELFT>::Bss->setSize(Off); 399 } 400 401 static StringRef getOutputName(StringRef S) { 402 if (S.startswith(".text.")) 403 return ".text"; 404 if (S.startswith(".rodata.")) 405 return ".rodata"; 406 if (S.startswith(".data.")) 407 return ".data"; 408 if (S.startswith(".bss.")) 409 return ".bss"; 410 return S; 411 } 412 413 // Create output section objects and add them to OutputSections. 414 template <class ELFT> void Writer<ELFT>::createSections() { 415 // .interp needs to be on the first page in the output file. 416 if (needsInterpSection()) 417 OutputSections.push_back(Out<ELFT>::Interp); 418 419 SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map; 420 421 OutputSections.push_back(Out<ELFT>::Bss); 422 Map[{Out<ELFT>::Bss->getName(), Out<ELFT>::Bss->getType(), 423 Out<ELFT>::Bss->getFlags(), 0}] = Out<ELFT>::Bss; 424 425 std::vector<OutputSectionBase<ELFT> *> RegularSections; 426 427 for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { 428 for (InputSectionBase<ELFT> *C : F->getSections()) { 429 if (!C || !C->isLive() || C == &InputSection<ELFT>::Discarded) 430 continue; 431 const Elf_Shdr *H = C->getSectionHdr(); 432 uintX_t OutFlags = H->sh_flags & ~SHF_GROUP; 433 // For SHF_MERGE we create different output sections for each sh_entsize. 434 // This makes each output section simple and keeps a single level 435 // mapping from input to output. 436 auto *IS = dyn_cast<InputSection<ELFT>>(C); 437 uintX_t EntSize = IS ? 0 : H->sh_entsize; 438 SectionKey<ELFT::Is64Bits> Key{getOutputName(C->getSectionName()), 439 H->sh_type, OutFlags, EntSize}; 440 OutputSectionBase<ELFT> *&Sec = Map[Key]; 441 if (!Sec) { 442 if (IS) 443 Sec = new (SecAlloc.Allocate()) 444 OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); 445 else 446 Sec = new (MSecAlloc.Allocate()) 447 MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); 448 OutputSections.push_back(Sec); 449 RegularSections.push_back(Sec); 450 } 451 if (IS) 452 static_cast<OutputSection<ELFT> *>(Sec)->addSection(IS); 453 else 454 static_cast<MergeOutputSection<ELFT> *>(Sec) 455 ->addSection(cast<MergeInputSection<ELFT>>(C)); 456 } 457 } 458 459 Out<ELFT>::Dynamic->PreInitArraySec = Map.lookup( 460 {".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); 461 Out<ELFT>::Dynamic->InitArraySec = 462 Map.lookup({".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); 463 Out<ELFT>::Dynamic->FiniArraySec = 464 Map.lookup({".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); 465 466 auto AddStartEnd = [&](StringRef Start, StringRef End, 467 OutputSectionBase<ELFT> *OS) { 468 if (OS) { 469 Symtab.addSyntheticSym(Start, *OS, 0); 470 Symtab.addSyntheticSym(End, *OS, OS->getSize()); 471 } else { 472 Symtab.addIgnoredSym(Start); 473 Symtab.addIgnoredSym(End); 474 } 475 }; 476 477 AddStartEnd("__preinit_array_start", "__preinit_array_end", 478 Out<ELFT>::Dynamic->PreInitArraySec); 479 AddStartEnd("__init_array_start", "__init_array_end", 480 Out<ELFT>::Dynamic->InitArraySec); 481 AddStartEnd("__fini_array_start", "__fini_array_end", 482 Out<ELFT>::Dynamic->FiniArraySec); 483 484 for (OutputSectionBase<ELFT> *Sec : RegularSections) 485 addStartStopSymbols(Sec); 486 487 // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For 488 // static linking the linker is required to optimize away any references to 489 // __tls_get_addr, so it's not defined anywhere. Create a hidden definition 490 // to avoid the undefined symbol error. 491 if (!isOutputDynamic()) 492 Symtab.addIgnoredSym("__tls_get_addr"); 493 494 // Scan relocations. This must be done after every symbol is declared so that 495 // we can correctly decide if a dynamic relocation is needed. 496 for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) 497 for (InputSectionBase<ELFT> *B : F->getSections()) 498 if (auto *S = dyn_cast_or_null<InputSection<ELFT>>(B)) 499 if (S != &InputSection<ELFT>::Discarded) 500 if (S->isLive()) 501 scanRelocs(*S); 502 503 // FIXME: Try to avoid the extra walk over all global symbols. 504 std::vector<DefinedCommon<ELFT> *> CommonSymbols; 505 for (auto &P : Symtab.getSymbols()) { 506 SymbolBody *Body = P.second->Body; 507 if (auto *U = dyn_cast<Undefined<ELFT>>(Body)) 508 if (!U->isWeak() && !U->canKeepUndefined()) 509 reportUndefined<ELFT>(Symtab, *Body); 510 511 if (auto *C = dyn_cast<DefinedCommon<ELFT>>(Body)) 512 CommonSymbols.push_back(C); 513 if (!includeInSymtab<ELFT>(*Body)) 514 continue; 515 Out<ELFT>::SymTab->addSymbol(Body); 516 517 if (isOutputDynamic() && includeInDynamicSymtab(*Body)) 518 Out<ELFT>::DynSymTab->addSymbol(Body); 519 } 520 addCommonSymbols(CommonSymbols); 521 522 // This order is not the same as the final output order 523 // because we sort the sections using their attributes below. 524 OutputSections.push_back(Out<ELFT>::SymTab); 525 OutputSections.push_back(Out<ELFT>::ShStrTab); 526 OutputSections.push_back(Out<ELFT>::StrTab); 527 if (isOutputDynamic()) { 528 OutputSections.push_back(Out<ELFT>::DynSymTab); 529 if (Out<ELFT>::GnuHashTab) 530 OutputSections.push_back(Out<ELFT>::GnuHashTab); 531 if (Out<ELFT>::HashTab) 532 OutputSections.push_back(Out<ELFT>::HashTab); 533 OutputSections.push_back(Out<ELFT>::Dynamic); 534 OutputSections.push_back(Out<ELFT>::DynStrTab); 535 if (Out<ELFT>::RelaDyn->hasRelocs()) 536 OutputSections.push_back(Out<ELFT>::RelaDyn); 537 if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) 538 OutputSections.push_back(Out<ELFT>::RelaPlt); 539 } 540 if (!Out<ELFT>::Got->empty()) 541 OutputSections.push_back(Out<ELFT>::Got); 542 if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty()) 543 OutputSections.push_back(Out<ELFT>::GotPlt); 544 if (!Out<ELFT>::Plt->empty()) 545 OutputSections.push_back(Out<ELFT>::Plt); 546 547 std::stable_sort(OutputSections.begin(), OutputSections.end(), 548 compareOutputSections<ELFT>); 549 550 for (unsigned I = 0, N = OutputSections.size(); I < N; ++I) 551 OutputSections[I]->SectionIndex = I + 1; 552 553 for (OutputSectionBase<ELFT> *Sec : OutputSections) 554 Out<ELFT>::ShStrTab->add(Sec->getName()); 555 556 // Fill the DynStrTab early because Dynamic adds strings to 557 // DynStrTab but .dynstr may appear before .dynamic. 558 Out<ELFT>::Dynamic->finalize(); 559 560 // Fill other section headers. 561 for (OutputSectionBase<ELFT> *Sec : OutputSections) 562 Sec->finalize(); 563 564 // If we have a .opd section (used under PPC64 for function descriptors), 565 // store a pointer to it here so that we can use it later when processing 566 // relocations. 567 Out<ELFT>::Opd = Map.lookup({".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC, 0}); 568 } 569 570 static bool isAlpha(char C) { 571 return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; 572 } 573 574 static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } 575 576 // Returns true if S is valid as a C language identifier. 577 static bool isValidCIdentifier(StringRef S) { 578 if (S.empty() || !isAlpha(S[0])) 579 return false; 580 return std::all_of(S.begin() + 1, S.end(), isAlnum); 581 } 582 583 // If a section name is valid as a C identifier (which is rare because of 584 // the leading '.'), linkers are expected to define __start_<secname> and 585 // __stop_<secname> symbols. They are at beginning and end of the section, 586 // respectively. This is not requested by the ELF standard, but GNU ld and 587 // gold provide the feature, and used by many programs. 588 template <class ELFT> 589 void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) { 590 StringRef S = Sec->getName(); 591 if (!isValidCIdentifier(S)) 592 return; 593 StringSaver Saver(Alloc); 594 StringRef Start = Saver.save("__start_" + S); 595 StringRef Stop = Saver.save("__stop_" + S); 596 if (Symtab.isUndefined(Start)) 597 Symtab.addSyntheticSym(Start, *Sec, 0); 598 if (Symtab.isUndefined(Stop)) 599 Symtab.addSyntheticSym(Stop, *Sec, Sec->getSize()); 600 } 601 602 template <class ELFT> static bool needsPhdr(OutputSectionBase<ELFT> *Sec) { 603 return Sec->getFlags() & SHF_ALLOC; 604 } 605 606 // Visits all sections to assign incremental, non-overlapping RVAs and 607 // file offsets. 608 template <class ELFT> void Writer<ELFT>::assignAddresses() { 609 assert(!OutputSections.empty() && "No output sections to layout!"); 610 uintX_t VA = getVAStart() + sizeof(Elf_Ehdr); 611 uintX_t FileOff = sizeof(Elf_Ehdr); 612 613 // Reserve space for Phdrs. 614 int NumPhdrs = 2; // 2 for PhdrPhdr and FileHeaderPhdr 615 if (needsInterpSection()) 616 ++NumPhdrs; 617 if (isOutputDynamic()) 618 ++NumPhdrs; 619 uintX_t Last = PF_R; 620 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 621 if (!Sec->getSize() || !needsPhdr<ELFT>(Sec)) 622 continue; 623 uintX_t Flags = toPhdrFlags(Sec->getFlags()); 624 if (Last != Flags) { 625 Last = Flags; 626 ++NumPhdrs; 627 } 628 } 629 630 // Reserve space needed for the program header so that the array 631 // will never be resized. 632 Phdrs.reserve(NumPhdrs); 633 634 // The first Phdr entry is PT_PHDR which describes the program header itself. 635 Phdrs.emplace_back(); 636 Elf_Phdr *PhdrPhdr = &Phdrs.back(); 637 setPhdr(PhdrPhdr, PT_PHDR, PF_R, FileOff, VA, /*Align=*/8); 638 639 FileOff += sizeof(Elf_Phdr) * NumPhdrs; 640 VA += sizeof(Elf_Phdr) * NumPhdrs; 641 642 Elf_Phdr *Interp = nullptr; 643 if (needsInterpSection()) { 644 Phdrs.emplace_back(); 645 Interp = &Phdrs.back(); 646 } 647 648 // Create a Phdr for the file header. 649 Phdrs.emplace_back(); 650 Elf_Phdr *FileHeader = &Phdrs.back(); 651 setPhdr(FileHeader, PT_LOAD, PF_R, 0, getVAStart(), Target->getPageSize()); 652 653 SmallPtrSet<Elf_Phdr *, 8> Closed; 654 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 655 if (Sec->getSize()) { 656 uintX_t Flags = toPhdrFlags(Sec->getFlags()); 657 Elf_Phdr *Last = &Phdrs.back(); 658 if (Last->p_flags != Flags || !needsPhdr<ELFT>(Sec)) { 659 // Flags changed. End current Phdr and potentially create a new one. 660 if (Closed.insert(Last).second) { 661 Last->p_filesz = FileOff - Last->p_offset; 662 Last->p_memsz = VA - Last->p_vaddr; 663 } 664 665 if (needsPhdr<ELFT>(Sec)) { 666 VA = RoundUpToAlignment(VA, Target->getPageSize()); 667 FileOff = RoundUpToAlignment(FileOff, Target->getPageSize()); 668 Phdrs.emplace_back(); 669 Elf_Phdr *PH = &Phdrs.back(); 670 setPhdr(PH, PT_LOAD, Flags, FileOff, VA, Target->getPageSize()); 671 } 672 } 673 } 674 675 uintX_t Align = Sec->getAlign(); 676 uintX_t Size = Sec->getSize(); 677 if (Sec->getFlags() & SHF_ALLOC) { 678 VA = RoundUpToAlignment(VA, Align); 679 Sec->setVA(VA); 680 VA += Size; 681 } 682 FileOff = RoundUpToAlignment(FileOff, Align); 683 Sec->setFileOffset(FileOff); 684 if (Sec->getType() != SHT_NOBITS) 685 FileOff += Size; 686 } 687 688 if (Interp) { 689 Interp->p_type = PT_INTERP; 690 copyPhdr(Interp, Out<ELFT>::Interp); 691 } 692 if (isOutputDynamic()) { 693 Phdrs.emplace_back(); 694 Elf_Phdr *PH = &Phdrs.back(); 695 PH->p_type = PT_DYNAMIC; 696 copyPhdr(PH, Out<ELFT>::Dynamic); 697 } 698 699 // Fix up the first entry's size. 700 PhdrPhdr->p_filesz = sizeof(Elf_Phdr) * Phdrs.size(); 701 PhdrPhdr->p_memsz = sizeof(Elf_Phdr) * Phdrs.size(); 702 703 // If nothing was merged into the file header PT_LOAD, set the size correctly. 704 if (FileHeader->p_filesz == Target->getPageSize()) { 705 uint64_t Size = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Phdrs.size(); 706 FileHeader->p_filesz = Size; 707 FileHeader->p_memsz = Size; 708 } 709 710 // Add space for section headers. 711 FileOff = RoundUpToAlignment(FileOff, ELFT::Is64Bits ? 8 : 4); 712 SectionHeaderOff = FileOff; 713 FileOff += getNumSections() * sizeof(Elf_Shdr); 714 FileSize = FileOff; 715 } 716 717 template <class ELFT> void Writer<ELFT>::writeHeader() { 718 uint8_t *Buf = Buffer->getBufferStart(); 719 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 720 EHdr->e_ident[EI_MAG0] = 0x7F; 721 EHdr->e_ident[EI_MAG1] = 0x45; 722 EHdr->e_ident[EI_MAG2] = 0x4C; 723 EHdr->e_ident[EI_MAG3] = 0x46; 724 EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 725 EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little 726 ? ELFDATA2LSB 727 : ELFDATA2MSB; 728 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 729 730 auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); 731 EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); 732 733 // FIXME: Generalize the segment construction similar to how we create 734 // output sections. 735 736 EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC; 737 EHdr->e_machine = FirstObj.getEMachine(); 738 EHdr->e_version = EV_CURRENT; 739 if (Config->EntrySym) { 740 if (auto *E = dyn_cast<ELFSymbolBody<ELFT>>(Config->EntrySym->repl())) 741 EHdr->e_entry = getSymVA<ELFT>(*E); 742 } else if (Config->EntryAddr != uint64_t(-1)) { 743 EHdr->e_entry = Config->EntryAddr; 744 } 745 EHdr->e_phoff = sizeof(Elf_Ehdr); 746 EHdr->e_shoff = SectionHeaderOff; 747 EHdr->e_ehsize = sizeof(Elf_Ehdr); 748 EHdr->e_phentsize = sizeof(Elf_Phdr); 749 EHdr->e_phnum = Phdrs.size(); 750 EHdr->e_shentsize = sizeof(Elf_Shdr); 751 EHdr->e_shnum = getNumSections(); 752 EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex; 753 memcpy(Buf + EHdr->e_phoff, &Phdrs[0], Phdrs.size() * sizeof(Phdrs[0])); 754 755 auto SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 756 // First entry is null. 757 ++SHdrs; 758 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 759 Sec->setNameOffset(Out<ELFT>::ShStrTab->getFileOff(Sec->getName())); 760 Sec->writeHeaderTo(SHdrs++); 761 } 762 } 763 764 template <class ELFT> void Writer<ELFT>::openFile(StringRef Path) { 765 ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 766 FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable); 767 error(BufferOrErr, Twine("failed to open ") + Path); 768 Buffer = std::move(*BufferOrErr); 769 } 770 771 // Write section contents to a mmap'ed file. 772 template <class ELFT> void Writer<ELFT>::writeSections() { 773 uint8_t *Buf = Buffer->getBufferStart(); 774 775 // PPC64 needs to process relocations in the .opd section before processing 776 // relocations in code-containing sections. 777 if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) { 778 Out<ELFT>::OpdBuf = Buf + Sec->getFileOff(); 779 Sec->writeTo(Buf + Sec->getFileOff()); 780 } 781 782 for (OutputSectionBase<ELFT> *Sec : OutputSections) 783 if (Sec != Out<ELFT>::Opd) 784 Sec->writeTo(Buf + Sec->getFileOff()); 785 } 786 787 template <class ELFT> 788 void Writer<ELFT>::setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, 789 uintX_t FileOff, uintX_t VA, uintX_t Align) { 790 PH->p_type = Type; 791 PH->p_flags = Flags; 792 PH->p_offset = FileOff; 793 PH->p_vaddr = VA; 794 PH->p_paddr = VA; 795 PH->p_align = Align; 796 } 797 798 template <class ELFT> 799 void Writer<ELFT>::copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From) { 800 PH->p_flags = toPhdrFlags(From->getFlags()); 801 PH->p_offset = From->getFileOff(); 802 PH->p_vaddr = From->getVA(); 803 PH->p_paddr = From->getVA(); 804 PH->p_filesz = From->getSize(); 805 PH->p_memsz = From->getSize(); 806 PH->p_align = From->getAlign(); 807 } 808 809 template void lld::elf2::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab); 810 template void lld::elf2::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab); 811 template void lld::elf2::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab); 812 template void lld::elf2::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab); 813