xref: /llvm-project-15.0.7/lld/ELF/Writer.cpp (revision 746bb5e4)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "Writer.h"
11 #include "Config.h"
12 #include "OutputSections.h"
13 #include "SymbolTable.h"
14 #include "Target.h"
15 
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/Support/FileOutputBuffer.h"
19 #include "llvm/Support/StringSaver.h"
20 
21 using namespace llvm;
22 using namespace llvm::ELF;
23 using namespace llvm::object;
24 
25 using namespace lld;
26 using namespace lld::elf2;
27 
28 namespace {
29 
30 static uint32_t toPhdrFlags(uint64_t Flags) {
31   uint32_t Ret = PF_R;
32   if (Flags & SHF_WRITE)
33     Ret |= PF_W;
34   if (Flags & SHF_EXECINSTR)
35     Ret |= PF_X;
36   return Ret;
37 }
38 
39 // The writer writes a SymbolTable result to a file.
40 template <class ELFT> class Writer {
41 public:
42   typedef typename ELFFile<ELFT>::uintX_t uintX_t;
43   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
44   typedef typename ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr;
45   typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr;
46   typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
47   typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range;
48   typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela;
49   Writer(SymbolTable<ELFT> &S) : Symtab(S) {}
50   void run();
51 
52 private:
53   void copyLocalSymbols();
54   void createSections();
55   template <bool isRela>
56   void scanRelocs(const InputSection<ELFT> &C,
57                   iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels);
58   void scanRelocs(const InputSection<ELFT> &C);
59   void assignAddresses();
60   void openFile(StringRef OutputPath);
61   void writeHeader();
62   void writeSections();
63   bool needsInterpSection() const {
64     return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty();
65   }
66   bool isOutputDynamic() const {
67     return !Symtab.getSharedFiles().empty() || Config->Shared;
68   }
69   uintX_t getVAStart() const { return Config->Shared ? 0 : Target->getVAStart(); }
70 
71   std::unique_ptr<llvm::FileOutputBuffer> Buffer;
72 
73   SpecificBumpPtrAllocator<OutputSection<ELFT>> SecAlloc;
74   SpecificBumpPtrAllocator<MergeOutputSection<ELFT>> MSecAlloc;
75   BumpPtrAllocator Alloc;
76   std::vector<OutputSectionBase<ELFT> *> OutputSections;
77   unsigned getNumSections() const { return OutputSections.size() + 1; }
78 
79   void addStartStopSymbols(OutputSectionBase<ELFT> *Sec);
80   void setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff,
81                uintX_t VA, uintX_t Align);
82   void copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From);
83 
84   SymbolTable<ELFT> &Symtab;
85   std::vector<Elf_Phdr> Phdrs;
86 
87   uintX_t FileSize;
88   uintX_t SectionHeaderOff;
89 };
90 } // anonymous namespace
91 
92 template <class ELFT> void lld::elf2::writeResult(SymbolTable<ELFT> *Symtab) {
93   // Initialize output sections that are handled by Writer specially.
94   // Don't reorder because the order of initialization matters.
95   InterpSection<ELFT> Interp;
96   Out<ELFT>::Interp = &Interp;
97   StringTableSection<ELFT> ShStrTab(".shstrtab", false);
98   Out<ELFT>::ShStrTab = &ShStrTab;
99   StringTableSection<ELFT> StrTab(".strtab", false);
100   Out<ELFT>::StrTab = &StrTab;
101   StringTableSection<ELFT> DynStrTab(".dynstr", true);
102   Out<ELFT>::DynStrTab = &DynStrTab;
103   OutputSection<ELFT> Bss(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE);
104   Out<ELFT>::Bss = &Bss;
105   GotSection<ELFT> Got;
106   Out<ELFT>::Got = &Got;
107   GotPltSection<ELFT> GotPlt;
108   if (Target->supportsLazyRelocations())
109     Out<ELFT>::GotPlt = &GotPlt;
110   PltSection<ELFT> Plt;
111   Out<ELFT>::Plt = &Plt;
112   SymbolTableSection<ELFT> SymTab(*Symtab, *Out<ELFT>::StrTab);
113   Out<ELFT>::SymTab = &SymTab;
114   SymbolTableSection<ELFT> DynSymTab(*Symtab, *Out<ELFT>::DynStrTab);
115   Out<ELFT>::DynSymTab = &DynSymTab;
116   HashTableSection<ELFT> HashTab;
117   if (Config->SysvHash)
118     Out<ELFT>::HashTab = &HashTab;
119   GnuHashTableSection<ELFT> GnuHashTab;
120   if (Config->GnuHash)
121     Out<ELFT>::GnuHashTab = &GnuHashTab;
122   bool IsRela = Symtab->shouldUseRela();
123   RelocationSection<ELFT> RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela);
124   Out<ELFT>::RelaDyn = &RelaDyn;
125   RelocationSection<ELFT> RelaPlt(IsRela ? ".rela.plt" : ".rel.plt", IsRela);
126   if (Target->supportsLazyRelocations())
127     Out<ELFT>::RelaPlt = &RelaPlt;
128   DynamicSection<ELFT> Dynamic(*Symtab);
129   Out<ELFT>::Dynamic = &Dynamic;
130 
131   Writer<ELFT>(*Symtab).run();
132 }
133 
134 // The main function of the writer.
135 template <class ELFT> void Writer<ELFT>::run() {
136   if (!Config->DiscardAll)
137     copyLocalSymbols();
138   createSections();
139   assignAddresses();
140   openFile(Config->OutputFile);
141   writeHeader();
142   writeSections();
143   error(Buffer->commit());
144 }
145 
146 namespace {
147 template <bool Is64Bits> struct SectionKey {
148   typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t;
149   StringRef Name;
150   uint32_t Type;
151   uintX_t Flags;
152   uintX_t EntSize;
153 };
154 }
155 namespace llvm {
156 template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> {
157   static SectionKey<Is64Bits> getEmptyKey() {
158     return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0,
159                                 0};
160   }
161   static SectionKey<Is64Bits> getTombstoneKey() {
162     return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0,
163                                 0, 0};
164   }
165   static unsigned getHashValue(const SectionKey<Is64Bits> &Val) {
166     return hash_combine(Val.Name, Val.Type, Val.Flags, Val.EntSize);
167   }
168   static bool isEqual(const SectionKey<Is64Bits> &LHS,
169                       const SectionKey<Is64Bits> &RHS) {
170     return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
171            LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
172            LHS.EntSize == RHS.EntSize;
173   }
174 };
175 }
176 
177 // The reason we have to do this early scan is as follows
178 // * To mmap the output file, we need to know the size
179 // * For that, we need to know how many dynamic relocs we will have.
180 // It might be possible to avoid this by outputting the file with write:
181 // * Write the allocated output sections, computing addresses.
182 // * Apply relocations, recording which ones require a dynamic reloc.
183 // * Write the dynamic relocations.
184 // * Write the rest of the file.
185 template <class ELFT>
186 template <bool isRela>
187 void Writer<ELFT>::scanRelocs(
188     const InputSection<ELFT> &C,
189     iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels) {
190   typedef Elf_Rel_Impl<ELFT, isRela> RelType;
191   const ObjectFile<ELFT> &File = *C.getFile();
192   for (const RelType &RI : Rels) {
193     uint32_t SymIndex = RI.getSymbol(Config->Mips64EL);
194     SymbolBody *Body = File.getSymbolBody(SymIndex);
195     uint32_t Type = RI.getType(Config->Mips64EL);
196 
197     // Set "used" bit for --as-needed.
198     if (Body && Body->isUndefined() && !Body->isWeak())
199       if (auto *S = dyn_cast<SharedSymbol<ELFT>>(Body->repl()))
200         S->File->IsUsed = true;
201 
202     if (Body)
203       Body = Body->repl();
204     bool NeedsGot = false;
205     bool NeedsPlt = false;
206     if (Body) {
207       NeedsPlt = Target->relocNeedsPlt(Type, *Body);
208       if (NeedsPlt) {
209         if (Body->isInPlt())
210           continue;
211         Out<ELFT>::Plt->addEntry(Body);
212       }
213       NeedsGot = Target->relocNeedsGot(Type, *Body);
214       if (NeedsGot) {
215         if (NeedsPlt && Target->supportsLazyRelocations()) {
216           Out<ELFT>::GotPlt->addEntry(Body);
217         } else {
218           if (Body->isInGot())
219             continue;
220           Out<ELFT>::Got->addEntry(Body);
221         }
222       }
223     }
224 
225     bool CBP = canBePreempted(Body, NeedsGot);
226     if (!CBP && (!Config->Shared || Target->isRelRelative(Type)))
227       continue;
228     if (CBP)
229       Body->setUsedInDynamicReloc();
230     if (NeedsPlt && Target->supportsLazyRelocations())
231       Out<ELFT>::RelaPlt->addReloc({C, RI});
232     else
233       Out<ELFT>::RelaDyn->addReloc({C, RI});
234   }
235 }
236 
237 template <class ELFT>
238 void Writer<ELFT>::scanRelocs(const InputSection<ELFT> &C) {
239   ObjectFile<ELFT> *File = C.getFile();
240   ELFFile<ELFT> &EObj = File->getObj();
241 
242   if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC))
243     return;
244 
245   for (const Elf_Shdr *RelSec : C.RelocSections) {
246     if (RelSec->sh_type == SHT_RELA)
247       scanRelocs(C, EObj.relas(RelSec));
248     else
249       scanRelocs(C, EObj.rels(RelSec));
250   }
251 }
252 
253 template <class ELFT>
254 static void reportUndefined(const SymbolTable<ELFT> &S, const SymbolBody &Sym) {
255   typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
256   typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range;
257 
258   if (Config->Shared && !Config->NoUndefined)
259     return;
260 
261   const Elf_Sym &SymE = cast<ELFSymbolBody<ELFT>>(Sym).Sym;
262   ELFFileBase<ELFT> *SymFile = nullptr;
263 
264   for (const std::unique_ptr<ObjectFile<ELFT>> &File : S.getObjectFiles()) {
265     Elf_Sym_Range Syms = File->getObj().symbols(File->getSymbolTable());
266     if (&SymE > Syms.begin() && &SymE < Syms.end())
267       SymFile = File.get();
268   }
269 
270   std::string Message = "undefined symbol: " + Sym.getName().str();
271   if (SymFile)
272     Message += " in " + SymFile->getName().str();
273   if (Config->NoInhibitExec)
274     warning(Message);
275   else
276     error(Message);
277 }
278 
279 // Local symbols are not in the linker's symbol table. This function scans
280 // each object file's symbol table to copy local symbols to the output.
281 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
282   for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) {
283     for (const Elf_Sym &Sym : F->getLocalSymbols()) {
284       ErrorOr<StringRef> SymNameOrErr = Sym.getName(F->getStringTable());
285       error(SymNameOrErr);
286       StringRef SymName = *SymNameOrErr;
287       if (!shouldKeepInSymtab<ELFT>(*F, SymName, Sym))
288         continue;
289       Out<ELFT>::SymTab->addLocalSymbol(SymName);
290     }
291   }
292 }
293 
294 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that
295 // we would like to make sure appear is a specific order to maximize their
296 // coverage by a single signed 16-bit offset from the TOC base pointer.
297 // Conversely, the special .tocbss section should be first among all SHT_NOBITS
298 // sections. This will put it next to the loaded special PPC64 sections (and,
299 // thus, within reach of the TOC base pointer).
300 static int getPPC64SectionRank(StringRef SectionName) {
301   return StringSwitch<int>(SectionName)
302            .Case(".tocbss", 0)
303            .Case(".branch_lt", 2)
304            .Case(".toc", 3)
305            .Case(".toc1", 4)
306            .Case(".opd", 5)
307            .Default(1);
308 }
309 
310 // Output section ordering is determined by this function.
311 template <class ELFT>
312 static bool compareOutputSections(OutputSectionBase<ELFT> *A,
313                                   OutputSectionBase<ELFT> *B) {
314   typedef typename ELFFile<ELFT>::uintX_t uintX_t;
315 
316   uintX_t AFlags = A->getFlags();
317   uintX_t BFlags = B->getFlags();
318 
319   // Allocatable sections go first to reduce the total PT_LOAD size and
320   // so debug info doesn't change addresses in actual code.
321   bool AIsAlloc = AFlags & SHF_ALLOC;
322   bool BIsAlloc = BFlags & SHF_ALLOC;
323   if (AIsAlloc != BIsAlloc)
324     return AIsAlloc;
325 
326   // We don't have any special requirements for the relative order of
327   // two non allocatable sections.
328   if (!AIsAlloc)
329     return false;
330 
331   // We want the read only sections first so that they go in the PT_LOAD
332   // covering the program headers at the start of the file.
333   bool AIsWritable = AFlags & SHF_WRITE;
334   bool BIsWritable = BFlags & SHF_WRITE;
335   if (AIsWritable != BIsWritable)
336     return BIsWritable;
337 
338   // For a corresponding reason, put non exec sections first (the program
339   // header PT_LOAD is not executable).
340   bool AIsExec = AFlags & SHF_EXECINSTR;
341   bool BIsExec = BFlags & SHF_EXECINSTR;
342   if (AIsExec != BIsExec)
343     return BIsExec;
344 
345   // If we got here we know that both A and B are in the same PT_LOAD.
346 
347   // The TLS initialization block needs to be a single contiguous block in a R/W
348   // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS
349   // sections are placed here as they don't take up virtual address space in the
350   // PT_LOAD.
351   bool AIsTLS = AFlags & SHF_TLS;
352   bool BIsTLS = BFlags & SHF_TLS;
353   if (AIsTLS != BIsTLS)
354     return AIsTLS;
355 
356   // The next requirement we have is to put nobits sections last. The
357   // reason is that the only thing the dynamic linker will see about
358   // them is a p_memsz that is larger than p_filesz. Seeing that it
359   // zeros the end of the PT_LOAD, so that has to correspond to the
360   // nobits sections.
361   bool AIsNoBits = A->getType() == SHT_NOBITS;
362   bool BIsNoBits = B->getType() == SHT_NOBITS;
363   if (AIsNoBits != BIsNoBits)
364     return BIsNoBits;
365 
366   // Some architectures have additional ordering restrictions for sections
367   // within the same PT_LOAD.
368   if (Config->EMachine == EM_PPC64)
369     return getPPC64SectionRank(A->getName()) <
370            getPPC64SectionRank(B->getName());
371 
372   return false;
373 }
374 
375 // Until this function is called, common symbols do not belong to any section.
376 // This function adds them to end of BSS section.
377 template <class ELFT>
378 static void addCommonSymbols(std::vector<DefinedCommon<ELFT> *> &Syms) {
379   typedef typename ELFFile<ELFT>::uintX_t uintX_t;
380   typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
381 
382   // Sort the common symbols by alignment as an heuristic to pack them better.
383   std::stable_sort(
384     Syms.begin(), Syms.end(),
385     [](const DefinedCommon<ELFT> *A, const DefinedCommon<ELFT> *B) {
386       return A->MaxAlignment > B->MaxAlignment;
387     });
388 
389   uintX_t Off = Out<ELFT>::Bss->getSize();
390   for (DefinedCommon<ELFT> *C : Syms) {
391     const Elf_Sym &Sym = C->Sym;
392     uintX_t Align = C->MaxAlignment;
393     Off = RoundUpToAlignment(Off, Align);
394     C->OffsetInBSS = Off;
395     Off += Sym.st_size;
396   }
397 
398   Out<ELFT>::Bss->setSize(Off);
399 }
400 
401 static StringRef getOutputName(StringRef S) {
402   if (S.startswith(".text."))
403     return ".text";
404   if (S.startswith(".rodata."))
405     return ".rodata";
406   if (S.startswith(".data."))
407     return ".data";
408   if (S.startswith(".bss."))
409     return ".bss";
410   return S;
411 }
412 
413 // Create output section objects and add them to OutputSections.
414 template <class ELFT> void Writer<ELFT>::createSections() {
415   // .interp needs to be on the first page in the output file.
416   if (needsInterpSection())
417     OutputSections.push_back(Out<ELFT>::Interp);
418 
419   SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map;
420 
421   OutputSections.push_back(Out<ELFT>::Bss);
422   Map[{Out<ELFT>::Bss->getName(), Out<ELFT>::Bss->getType(),
423        Out<ELFT>::Bss->getFlags(), 0}] = Out<ELFT>::Bss;
424 
425   std::vector<OutputSectionBase<ELFT> *> RegularSections;
426 
427   for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) {
428     for (InputSectionBase<ELFT> *C : F->getSections()) {
429       if (!C || !C->isLive() || C == &InputSection<ELFT>::Discarded)
430         continue;
431       const Elf_Shdr *H = C->getSectionHdr();
432       uintX_t OutFlags = H->sh_flags & ~SHF_GROUP;
433       // For SHF_MERGE we create different output sections for each sh_entsize.
434       // This makes each output section simple and keeps a single level
435       // mapping from input to output.
436       auto *IS = dyn_cast<InputSection<ELFT>>(C);
437       uintX_t EntSize = IS ? 0 : H->sh_entsize;
438       SectionKey<ELFT::Is64Bits> Key{getOutputName(C->getSectionName()),
439                                      H->sh_type, OutFlags, EntSize};
440       OutputSectionBase<ELFT> *&Sec = Map[Key];
441       if (!Sec) {
442         if (IS)
443           Sec = new (SecAlloc.Allocate())
444               OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
445         else
446           Sec = new (MSecAlloc.Allocate())
447               MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
448         OutputSections.push_back(Sec);
449         RegularSections.push_back(Sec);
450       }
451       if (IS)
452         static_cast<OutputSection<ELFT> *>(Sec)->addSection(IS);
453       else
454         static_cast<MergeOutputSection<ELFT> *>(Sec)
455             ->addSection(cast<MergeInputSection<ELFT>>(C));
456     }
457   }
458 
459   Out<ELFT>::Dynamic->PreInitArraySec = Map.lookup(
460       {".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0});
461   Out<ELFT>::Dynamic->InitArraySec =
462       Map.lookup({".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0});
463   Out<ELFT>::Dynamic->FiniArraySec =
464       Map.lookup({".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC, 0});
465 
466   auto AddStartEnd = [&](StringRef Start, StringRef End,
467                          OutputSectionBase<ELFT> *OS) {
468     if (OS) {
469       Symtab.addSyntheticSym(Start, *OS, 0);
470       Symtab.addSyntheticSym(End, *OS, OS->getSize());
471     } else {
472       Symtab.addIgnoredSym(Start);
473       Symtab.addIgnoredSym(End);
474     }
475   };
476 
477   AddStartEnd("__preinit_array_start", "__preinit_array_end",
478               Out<ELFT>::Dynamic->PreInitArraySec);
479   AddStartEnd("__init_array_start", "__init_array_end",
480               Out<ELFT>::Dynamic->InitArraySec);
481   AddStartEnd("__fini_array_start", "__fini_array_end",
482               Out<ELFT>::Dynamic->FiniArraySec);
483 
484   for (OutputSectionBase<ELFT> *Sec : RegularSections)
485     addStartStopSymbols(Sec);
486 
487   // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For
488   // static linking the linker is required to optimize away any references to
489   // __tls_get_addr, so it's not defined anywhere. Create a hidden definition
490   // to avoid the undefined symbol error.
491   if (!isOutputDynamic())
492     Symtab.addIgnoredSym("__tls_get_addr");
493 
494   // Scan relocations. This must be done after every symbol is declared so that
495   // we can correctly decide if a dynamic relocation is needed.
496   for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles())
497     for (InputSectionBase<ELFT> *B : F->getSections())
498       if (auto *S = dyn_cast_or_null<InputSection<ELFT>>(B))
499         if (S != &InputSection<ELFT>::Discarded)
500           if (S->isLive())
501             scanRelocs(*S);
502 
503   // FIXME: Try to avoid the extra walk over all global symbols.
504   std::vector<DefinedCommon<ELFT> *> CommonSymbols;
505   for (auto &P : Symtab.getSymbols()) {
506     SymbolBody *Body = P.second->Body;
507     if (auto *U = dyn_cast<Undefined<ELFT>>(Body))
508       if (!U->isWeak() && !U->canKeepUndefined())
509         reportUndefined<ELFT>(Symtab, *Body);
510 
511     if (auto *C = dyn_cast<DefinedCommon<ELFT>>(Body))
512       CommonSymbols.push_back(C);
513     if (!includeInSymtab<ELFT>(*Body))
514       continue;
515     Out<ELFT>::SymTab->addSymbol(Body);
516 
517     if (isOutputDynamic() && includeInDynamicSymtab(*Body))
518       Out<ELFT>::DynSymTab->addSymbol(Body);
519   }
520   addCommonSymbols(CommonSymbols);
521 
522   // This order is not the same as the final output order
523   // because we sort the sections using their attributes below.
524   OutputSections.push_back(Out<ELFT>::SymTab);
525   OutputSections.push_back(Out<ELFT>::ShStrTab);
526   OutputSections.push_back(Out<ELFT>::StrTab);
527   if (isOutputDynamic()) {
528     OutputSections.push_back(Out<ELFT>::DynSymTab);
529     if (Out<ELFT>::GnuHashTab)
530       OutputSections.push_back(Out<ELFT>::GnuHashTab);
531     if (Out<ELFT>::HashTab)
532       OutputSections.push_back(Out<ELFT>::HashTab);
533     OutputSections.push_back(Out<ELFT>::Dynamic);
534     OutputSections.push_back(Out<ELFT>::DynStrTab);
535     if (Out<ELFT>::RelaDyn->hasRelocs())
536       OutputSections.push_back(Out<ELFT>::RelaDyn);
537     if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs())
538       OutputSections.push_back(Out<ELFT>::RelaPlt);
539   }
540   if (!Out<ELFT>::Got->empty())
541     OutputSections.push_back(Out<ELFT>::Got);
542   if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty())
543     OutputSections.push_back(Out<ELFT>::GotPlt);
544   if (!Out<ELFT>::Plt->empty())
545     OutputSections.push_back(Out<ELFT>::Plt);
546 
547   std::stable_sort(OutputSections.begin(), OutputSections.end(),
548                    compareOutputSections<ELFT>);
549 
550   for (unsigned I = 0, N = OutputSections.size(); I < N; ++I)
551     OutputSections[I]->SectionIndex = I + 1;
552 
553   for (OutputSectionBase<ELFT> *Sec : OutputSections)
554     Out<ELFT>::ShStrTab->add(Sec->getName());
555 
556   // Fill the DynStrTab early because Dynamic adds strings to
557   // DynStrTab but .dynstr may appear before .dynamic.
558   Out<ELFT>::Dynamic->finalize();
559 
560   // Fill other section headers.
561   for (OutputSectionBase<ELFT> *Sec : OutputSections)
562     Sec->finalize();
563 
564   // If we have a .opd section (used under PPC64 for function descriptors),
565   // store a pointer to it here so that we can use it later when processing
566   // relocations.
567   Out<ELFT>::Opd = Map.lookup({".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC, 0});
568 }
569 
570 static bool isAlpha(char C) {
571   return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_';
572 }
573 
574 static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); }
575 
576 // Returns true if S is valid as a C language identifier.
577 static bool isValidCIdentifier(StringRef S) {
578   if (S.empty() || !isAlpha(S[0]))
579     return false;
580   return std::all_of(S.begin() + 1, S.end(), isAlnum);
581 }
582 
583 // If a section name is valid as a C identifier (which is rare because of
584 // the leading '.'), linkers are expected to define __start_<secname> and
585 // __stop_<secname> symbols. They are at beginning and end of the section,
586 // respectively. This is not requested by the ELF standard, but GNU ld and
587 // gold provide the feature, and used by many programs.
588 template <class ELFT>
589 void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) {
590   StringRef S = Sec->getName();
591   if (!isValidCIdentifier(S))
592     return;
593   StringSaver Saver(Alloc);
594   StringRef Start = Saver.save("__start_" + S);
595   StringRef Stop = Saver.save("__stop_" + S);
596   if (Symtab.isUndefined(Start))
597     Symtab.addSyntheticSym(Start, *Sec, 0);
598   if (Symtab.isUndefined(Stop))
599     Symtab.addSyntheticSym(Stop, *Sec, Sec->getSize());
600 }
601 
602 template <class ELFT> static bool needsPhdr(OutputSectionBase<ELFT> *Sec) {
603   return Sec->getFlags() & SHF_ALLOC;
604 }
605 
606 // Visits all sections to assign incremental, non-overlapping RVAs and
607 // file offsets.
608 template <class ELFT> void Writer<ELFT>::assignAddresses() {
609   assert(!OutputSections.empty() && "No output sections to layout!");
610   uintX_t VA = getVAStart() + sizeof(Elf_Ehdr);
611   uintX_t FileOff = sizeof(Elf_Ehdr);
612 
613   // Reserve space for Phdrs.
614   int NumPhdrs = 2;   // 2 for PhdrPhdr and FileHeaderPhdr
615   if (needsInterpSection())
616     ++NumPhdrs;
617   if (isOutputDynamic())
618     ++NumPhdrs;
619   uintX_t Last = PF_R;
620   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
621     if (!Sec->getSize() || !needsPhdr<ELFT>(Sec))
622       continue;
623     uintX_t Flags = toPhdrFlags(Sec->getFlags());
624     if (Last != Flags) {
625       Last = Flags;
626       ++NumPhdrs;
627     }
628   }
629 
630   // Reserve space needed for the program header so that the array
631   // will never be resized.
632   Phdrs.reserve(NumPhdrs);
633 
634   // The first Phdr entry is PT_PHDR which describes the program header itself.
635   Phdrs.emplace_back();
636   Elf_Phdr *PhdrPhdr = &Phdrs.back();
637   setPhdr(PhdrPhdr, PT_PHDR, PF_R, FileOff, VA, /*Align=*/8);
638 
639   FileOff += sizeof(Elf_Phdr) * NumPhdrs;
640   VA += sizeof(Elf_Phdr) * NumPhdrs;
641 
642   Elf_Phdr *Interp = nullptr;
643   if (needsInterpSection()) {
644     Phdrs.emplace_back();
645     Interp = &Phdrs.back();
646   }
647 
648   // Create a Phdr for the file header.
649   Phdrs.emplace_back();
650   Elf_Phdr *FileHeader = &Phdrs.back();
651   setPhdr(FileHeader, PT_LOAD, PF_R, 0, getVAStart(), Target->getPageSize());
652 
653   SmallPtrSet<Elf_Phdr *, 8> Closed;
654   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
655     if (Sec->getSize()) {
656       uintX_t Flags = toPhdrFlags(Sec->getFlags());
657       Elf_Phdr *Last = &Phdrs.back();
658       if (Last->p_flags != Flags || !needsPhdr<ELFT>(Sec)) {
659         // Flags changed. End current Phdr and potentially create a new one.
660         if (Closed.insert(Last).second) {
661           Last->p_filesz = FileOff - Last->p_offset;
662           Last->p_memsz = VA - Last->p_vaddr;
663         }
664 
665         if (needsPhdr<ELFT>(Sec)) {
666           VA = RoundUpToAlignment(VA, Target->getPageSize());
667           FileOff = RoundUpToAlignment(FileOff, Target->getPageSize());
668           Phdrs.emplace_back();
669           Elf_Phdr *PH = &Phdrs.back();
670           setPhdr(PH, PT_LOAD, Flags, FileOff, VA, Target->getPageSize());
671         }
672       }
673     }
674 
675     uintX_t Align = Sec->getAlign();
676     uintX_t Size = Sec->getSize();
677     if (Sec->getFlags() & SHF_ALLOC) {
678       VA = RoundUpToAlignment(VA, Align);
679       Sec->setVA(VA);
680       VA += Size;
681     }
682     FileOff = RoundUpToAlignment(FileOff, Align);
683     Sec->setFileOffset(FileOff);
684     if (Sec->getType() != SHT_NOBITS)
685       FileOff += Size;
686   }
687 
688   if (Interp) {
689     Interp->p_type = PT_INTERP;
690     copyPhdr(Interp, Out<ELFT>::Interp);
691   }
692   if (isOutputDynamic()) {
693     Phdrs.emplace_back();
694     Elf_Phdr *PH = &Phdrs.back();
695     PH->p_type = PT_DYNAMIC;
696     copyPhdr(PH, Out<ELFT>::Dynamic);
697   }
698 
699   // Fix up the first entry's size.
700   PhdrPhdr->p_filesz = sizeof(Elf_Phdr) * Phdrs.size();
701   PhdrPhdr->p_memsz = sizeof(Elf_Phdr) * Phdrs.size();
702 
703   // If nothing was merged into the file header PT_LOAD, set the size correctly.
704   if (FileHeader->p_filesz == Target->getPageSize()) {
705     uint64_t Size = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Phdrs.size();
706     FileHeader->p_filesz = Size;
707     FileHeader->p_memsz = Size;
708   }
709 
710   // Add space for section headers.
711   FileOff = RoundUpToAlignment(FileOff, ELFT::Is64Bits ? 8 : 4);
712   SectionHeaderOff = FileOff;
713   FileOff += getNumSections() * sizeof(Elf_Shdr);
714   FileSize = FileOff;
715 }
716 
717 template <class ELFT> void Writer<ELFT>::writeHeader() {
718   uint8_t *Buf = Buffer->getBufferStart();
719   auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
720   EHdr->e_ident[EI_MAG0] = 0x7F;
721   EHdr->e_ident[EI_MAG1] = 0x45;
722   EHdr->e_ident[EI_MAG2] = 0x4C;
723   EHdr->e_ident[EI_MAG3] = 0x46;
724   EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
725   EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little
726                                ? ELFDATA2LSB
727                                : ELFDATA2MSB;
728   EHdr->e_ident[EI_VERSION] = EV_CURRENT;
729 
730   auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
731   EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI();
732 
733   // FIXME: Generalize the segment construction similar to how we create
734   // output sections.
735 
736   EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC;
737   EHdr->e_machine = FirstObj.getEMachine();
738   EHdr->e_version = EV_CURRENT;
739   if (Config->EntrySym) {
740     if (auto *E = dyn_cast<ELFSymbolBody<ELFT>>(Config->EntrySym->repl()))
741       EHdr->e_entry = getSymVA<ELFT>(*E);
742   } else if (Config->EntryAddr != uint64_t(-1)) {
743     EHdr->e_entry = Config->EntryAddr;
744   }
745   EHdr->e_phoff = sizeof(Elf_Ehdr);
746   EHdr->e_shoff = SectionHeaderOff;
747   EHdr->e_ehsize = sizeof(Elf_Ehdr);
748   EHdr->e_phentsize = sizeof(Elf_Phdr);
749   EHdr->e_phnum = Phdrs.size();
750   EHdr->e_shentsize = sizeof(Elf_Shdr);
751   EHdr->e_shnum = getNumSections();
752   EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex;
753   memcpy(Buf + EHdr->e_phoff, &Phdrs[0], Phdrs.size() * sizeof(Phdrs[0]));
754 
755   auto SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
756   // First entry is null.
757   ++SHdrs;
758   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
759     Sec->setNameOffset(Out<ELFT>::ShStrTab->getFileOff(Sec->getName()));
760     Sec->writeHeaderTo(SHdrs++);
761   }
762 }
763 
764 template <class ELFT> void Writer<ELFT>::openFile(StringRef Path) {
765   ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
766       FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable);
767   error(BufferOrErr, Twine("failed to open ") + Path);
768   Buffer = std::move(*BufferOrErr);
769 }
770 
771 // Write section contents to a mmap'ed file.
772 template <class ELFT> void Writer<ELFT>::writeSections() {
773   uint8_t *Buf = Buffer->getBufferStart();
774 
775   // PPC64 needs to process relocations in the .opd section before processing
776   // relocations in code-containing sections.
777   if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) {
778     Out<ELFT>::OpdBuf = Buf + Sec->getFileOff();
779     Sec->writeTo(Buf + Sec->getFileOff());
780   }
781 
782   for (OutputSectionBase<ELFT> *Sec : OutputSections)
783     if (Sec != Out<ELFT>::Opd)
784       Sec->writeTo(Buf + Sec->getFileOff());
785 }
786 
787 template <class ELFT>
788 void Writer<ELFT>::setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags,
789                            uintX_t FileOff, uintX_t VA, uintX_t Align) {
790   PH->p_type = Type;
791   PH->p_flags = Flags;
792   PH->p_offset = FileOff;
793   PH->p_vaddr = VA;
794   PH->p_paddr = VA;
795   PH->p_align = Align;
796 }
797 
798 template <class ELFT>
799 void Writer<ELFT>::copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From) {
800   PH->p_flags = toPhdrFlags(From->getFlags());
801   PH->p_offset = From->getFileOff();
802   PH->p_vaddr = From->getVA();
803   PH->p_paddr = From->getVA();
804   PH->p_filesz = From->getSize();
805   PH->p_memsz = From->getSize();
806   PH->p_align = From->getAlign();
807 }
808 
809 template void lld::elf2::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab);
810 template void lld::elf2::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab);
811 template void lld::elf2::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab);
812 template void lld::elf2::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab);
813