1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 namespace elf { 42 namespace { 43 // The writer writes a SymbolTable result to a file. 44 template <class ELFT> class Writer { 45 public: 46 Writer() : buffer(errorHandler().outputBuffer) {} 47 using Elf_Shdr = typename ELFT::Shdr; 48 using Elf_Ehdr = typename ELFT::Ehdr; 49 using Elf_Phdr = typename ELFT::Phdr; 50 51 void run(); 52 53 private: 54 void copyLocalSymbols(); 55 void addSectionSymbols(); 56 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 57 void sortSections(); 58 void resolveShfLinkOrder(); 59 void finalizeAddressDependentContent(); 60 void sortInputSections(); 61 void finalizeSections(); 62 void checkExecuteOnly(); 63 void setReservedSymbolSections(); 64 65 std::vector<PhdrEntry *> createPhdrs(Partition &part); 66 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 67 unsigned pFlags); 68 void assignFileOffsets(); 69 void assignFileOffsetsBinary(); 70 void setPhdrs(Partition &part); 71 void checkSections(); 72 void fixSectionAlignments(); 73 void openFile(); 74 void writeTrapInstr(); 75 void writeHeader(); 76 void writeSections(); 77 void writeSectionsBinary(); 78 void writeBuildId(); 79 80 std::unique_ptr<FileOutputBuffer> &buffer; 81 82 void addRelIpltSymbols(); 83 void addStartEndSymbols(); 84 void addStartStopSymbols(OutputSection *sec); 85 86 uint64_t fileSize; 87 uint64_t sectionHeaderOff; 88 }; 89 } // anonymous namespace 90 91 static bool isSectionPrefix(StringRef prefix, StringRef name) { 92 return name.startswith(prefix) || name == prefix.drop_back(); 93 } 94 95 StringRef getOutputSectionName(const InputSectionBase *s) { 96 if (config->relocatable) 97 return s->name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if (auto *isec = dyn_cast<InputSection>(s)) { 103 if (InputSectionBase *rel = isec->getRelocatedSection()) { 104 OutputSection *out = rel->getOutputSection(); 105 if (s->type == SHT_RELA) 106 return saver.save(".rela" + out->name); 107 return saver.save(".rel" + out->name); 108 } 109 } 110 111 // This check is for -z keep-text-section-prefix. This option separates text 112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 113 // ".text.exit". 114 // When enabled, this allows identifying the hot code region (.text.hot) in 115 // the final binary which can be selectively mapped to huge pages or mlocked, 116 // for instance. 117 if (config->zKeepTextSectionPrefix) 118 for (StringRef v : 119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 120 if (isSectionPrefix(v, s->name)) 121 return v.drop_back(); 122 123 for (StringRef v : 124 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 125 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 126 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 127 if (isSectionPrefix(v, s->name)) 128 return v.drop_back(); 129 130 // CommonSection is identified as "COMMON" in linker scripts. 131 // By default, it should go to .bss section. 132 if (s->name == "COMMON") 133 return ".bss"; 134 135 return s->name; 136 } 137 138 static bool needsInterpSection() { 139 return !config->relocatable && !config->shared && 140 !config->dynamicLinker.empty() && script->needsInterpSection(); 141 } 142 143 template <class ELFT> void writeResult() { 144 llvm::TimeTraceScope timeScope("Write output file"); 145 Writer<ELFT>().run(); 146 } 147 148 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 149 llvm::erase_if(phdrs, [&](const PhdrEntry *p) { 150 if (p->p_type != PT_LOAD) 151 return false; 152 if (!p->firstSec) 153 return true; 154 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 155 return size == 0; 156 }); 157 } 158 159 void copySectionsIntoPartitions() { 160 std::vector<InputSectionBase *> newSections; 161 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 162 for (InputSectionBase *s : inputSections) { 163 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 164 continue; 165 InputSectionBase *copy; 166 if (s->type == SHT_NOTE) 167 copy = make<InputSection>(cast<InputSection>(*s)); 168 else if (auto *es = dyn_cast<EhInputSection>(s)) 169 copy = make<EhInputSection>(*es); 170 else 171 continue; 172 copy->partition = part; 173 newSections.push_back(copy); 174 } 175 } 176 177 inputSections.insert(inputSections.end(), newSections.begin(), 178 newSections.end()); 179 } 180 181 void combineEhSections() { 182 for (InputSectionBase *&s : inputSections) { 183 // Ignore dead sections and the partition end marker (.part.end), 184 // whose partition number is out of bounds. 185 if (!s->isLive() || s->partition == 255) 186 continue; 187 188 Partition &part = s->getPartition(); 189 if (auto *es = dyn_cast<EhInputSection>(s)) { 190 part.ehFrame->addSection(es); 191 s = nullptr; 192 } else if (s->kind() == SectionBase::Regular && part.armExidx && 193 part.armExidx->addSection(cast<InputSection>(s))) { 194 s = nullptr; 195 } 196 } 197 198 std::vector<InputSectionBase *> &v = inputSections; 199 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 200 } 201 202 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 203 uint64_t val, uint8_t stOther = STV_HIDDEN, 204 uint8_t binding = STB_GLOBAL) { 205 Symbol *s = symtab->find(name); 206 if (!s || s->isDefined()) 207 return nullptr; 208 209 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 210 /*size=*/0, sec}); 211 return cast<Defined>(s); 212 } 213 214 static Defined *addAbsolute(StringRef name) { 215 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 216 STT_NOTYPE, 0, 0, nullptr}); 217 return cast<Defined>(sym); 218 } 219 220 // The linker is expected to define some symbols depending on 221 // the linking result. This function defines such symbols. 222 void addReservedSymbols() { 223 if (config->emachine == EM_MIPS) { 224 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 225 // so that it points to an absolute address which by default is relative 226 // to GOT. Default offset is 0x7ff0. 227 // See "Global Data Symbols" in Chapter 6 in the following document: 228 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 229 ElfSym::mipsGp = addAbsolute("_gp"); 230 231 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 232 // start of function and 'gp' pointer into GOT. 233 if (symtab->find("_gp_disp")) 234 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 235 236 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 237 // pointer. This symbol is used in the code generated by .cpload pseudo-op 238 // in case of using -mno-shared option. 239 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 240 if (symtab->find("__gnu_local_gp")) 241 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 242 } else if (config->emachine == EM_PPC) { 243 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 244 // support Small Data Area, define it arbitrarily as 0. 245 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 246 } 247 248 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 249 // combines the typical ELF GOT with the small data sections. It commonly 250 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 251 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 252 // represent the TOC base which is offset by 0x8000 bytes from the start of 253 // the .got section. 254 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 255 // correctness of some relocations depends on its value. 256 StringRef gotSymName = 257 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 258 259 if (Symbol *s = symtab->find(gotSymName)) { 260 if (s->isDefined()) { 261 error(toString(s->file) + " cannot redefine linker defined symbol '" + 262 gotSymName + "'"); 263 return; 264 } 265 266 uint64_t gotOff = 0; 267 if (config->emachine == EM_PPC64) 268 gotOff = 0x8000; 269 270 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 271 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 272 ElfSym::globalOffsetTable = cast<Defined>(s); 273 } 274 275 // __ehdr_start is the location of ELF file headers. Note that we define 276 // this symbol unconditionally even when using a linker script, which 277 // differs from the behavior implemented by GNU linker which only define 278 // this symbol if ELF headers are in the memory mapped segment. 279 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 280 281 // __executable_start is not documented, but the expectation of at 282 // least the Android libc is that it points to the ELF header. 283 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 284 285 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 286 // each DSO. The address of the symbol doesn't matter as long as they are 287 // different in different DSOs, so we chose the start address of the DSO. 288 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 289 290 // If linker script do layout we do not need to create any standard symbols. 291 if (script->hasSectionsCommand) 292 return; 293 294 auto add = [](StringRef s, int64_t pos) { 295 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 296 }; 297 298 ElfSym::bss = add("__bss_start", 0); 299 ElfSym::end1 = add("end", -1); 300 ElfSym::end2 = add("_end", -1); 301 ElfSym::etext1 = add("etext", -1); 302 ElfSym::etext2 = add("_etext", -1); 303 ElfSym::edata1 = add("edata", -1); 304 ElfSym::edata2 = add("_edata", -1); 305 } 306 307 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 308 for (BaseCommand *base : script->sectionCommands) 309 if (auto *sec = dyn_cast<OutputSection>(base)) 310 if (sec->name == name && sec->partition == partition) 311 return sec; 312 return nullptr; 313 } 314 315 template <class ELFT> void createSyntheticSections() { 316 // Initialize all pointers with NULL. This is needed because 317 // you can call lld::elf::main more than once as a library. 318 memset(&Out::first, 0, sizeof(Out)); 319 320 // Add the .interp section first because it is not a SyntheticSection. 321 // The removeUnusedSyntheticSections() function relies on the 322 // SyntheticSections coming last. 323 if (needsInterpSection()) { 324 for (size_t i = 1; i <= partitions.size(); ++i) { 325 InputSection *sec = createInterpSection(); 326 sec->partition = i; 327 inputSections.push_back(sec); 328 } 329 } 330 331 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 332 333 in.shStrTab = make<StringTableSection>(".shstrtab", false); 334 335 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 336 Out::programHeaders->alignment = config->wordsize; 337 338 if (config->strip != StripPolicy::All) { 339 in.strTab = make<StringTableSection>(".strtab", false); 340 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 341 in.symTabShndx = make<SymtabShndxSection>(); 342 } 343 344 in.bss = make<BssSection>(".bss", 0, 1); 345 add(in.bss); 346 347 // If there is a SECTIONS command and a .data.rel.ro section name use name 348 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 349 // This makes sure our relro is contiguous. 350 bool hasDataRelRo = 351 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 352 in.bssRelRo = 353 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 354 add(in.bssRelRo); 355 356 // Add MIPS-specific sections. 357 if (config->emachine == EM_MIPS) { 358 if (!config->shared && config->hasDynSymTab) { 359 in.mipsRldMap = make<MipsRldMapSection>(); 360 add(in.mipsRldMap); 361 } 362 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 363 add(sec); 364 if (auto *sec = MipsOptionsSection<ELFT>::create()) 365 add(sec); 366 if (auto *sec = MipsReginfoSection<ELFT>::create()) 367 add(sec); 368 } 369 370 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 371 372 for (Partition &part : partitions) { 373 auto add = [&](SyntheticSection *sec) { 374 sec->partition = part.getNumber(); 375 inputSections.push_back(sec); 376 }; 377 378 if (!part.name.empty()) { 379 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 380 part.elfHeader->name = part.name; 381 add(part.elfHeader); 382 383 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 384 add(part.programHeaders); 385 } 386 387 if (config->buildId != BuildIdKind::None) { 388 part.buildId = make<BuildIdSection>(); 389 add(part.buildId); 390 } 391 392 part.dynStrTab = make<StringTableSection>(".dynstr", true); 393 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 394 part.dynamic = make<DynamicSection<ELFT>>(); 395 if (config->androidPackDynRelocs) 396 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 397 else 398 part.relaDyn = 399 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 400 401 if (config->hasDynSymTab) { 402 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 403 add(part.dynSymTab); 404 405 part.verSym = make<VersionTableSection>(); 406 add(part.verSym); 407 408 if (!namedVersionDefs().empty()) { 409 part.verDef = make<VersionDefinitionSection>(); 410 add(part.verDef); 411 } 412 413 part.verNeed = make<VersionNeedSection<ELFT>>(); 414 add(part.verNeed); 415 416 if (config->gnuHash) { 417 part.gnuHashTab = make<GnuHashTableSection>(); 418 add(part.gnuHashTab); 419 } 420 421 if (config->sysvHash) { 422 part.hashTab = make<HashTableSection>(); 423 add(part.hashTab); 424 } 425 426 add(part.dynamic); 427 add(part.dynStrTab); 428 add(part.relaDyn); 429 } 430 431 if (config->relrPackDynRelocs) { 432 part.relrDyn = make<RelrSection<ELFT>>(); 433 add(part.relrDyn); 434 } 435 436 if (!config->relocatable) { 437 if (config->ehFrameHdr) { 438 part.ehFrameHdr = make<EhFrameHeader>(); 439 add(part.ehFrameHdr); 440 } 441 part.ehFrame = make<EhFrameSection>(); 442 add(part.ehFrame); 443 } 444 445 if (config->emachine == EM_ARM && !config->relocatable) { 446 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 447 // InputSections. 448 part.armExidx = make<ARMExidxSyntheticSection>(); 449 add(part.armExidx); 450 } 451 } 452 453 if (partitions.size() != 1) { 454 // Create the partition end marker. This needs to be in partition number 255 455 // so that it is sorted after all other partitions. It also has other 456 // special handling (see createPhdrs() and combineEhSections()). 457 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 458 in.partEnd->partition = 255; 459 add(in.partEnd); 460 461 in.partIndex = make<PartitionIndexSection>(); 462 addOptionalRegular("__part_index_begin", in.partIndex, 0); 463 addOptionalRegular("__part_index_end", in.partIndex, 464 in.partIndex->getSize()); 465 add(in.partIndex); 466 } 467 468 // Add .got. MIPS' .got is so different from the other archs, 469 // it has its own class. 470 if (config->emachine == EM_MIPS) { 471 in.mipsGot = make<MipsGotSection>(); 472 add(in.mipsGot); 473 } else { 474 in.got = make<GotSection>(); 475 add(in.got); 476 } 477 478 if (config->emachine == EM_PPC) { 479 in.ppc32Got2 = make<PPC32Got2Section>(); 480 add(in.ppc32Got2); 481 } 482 483 if (config->emachine == EM_PPC64) { 484 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 485 add(in.ppc64LongBranchTarget); 486 } 487 488 in.gotPlt = make<GotPltSection>(); 489 add(in.gotPlt); 490 in.igotPlt = make<IgotPltSection>(); 491 add(in.igotPlt); 492 493 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 494 // it as a relocation and ensure the referenced section is created. 495 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 496 if (target->gotBaseSymInGotPlt) 497 in.gotPlt->hasGotPltOffRel = true; 498 else 499 in.got->hasGotOffRel = true; 500 } 501 502 if (config->gdbIndex) 503 add(GdbIndexSection::create<ELFT>()); 504 505 // We always need to add rel[a].plt to output if it has entries. 506 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 507 in.relaPlt = make<RelocationSection<ELFT>>( 508 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 509 add(in.relaPlt); 510 511 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 512 // relocations are processed last by the dynamic loader. We cannot place the 513 // iplt section in .rel.dyn when Android relocation packing is enabled because 514 // that would cause a section type mismatch. However, because the Android 515 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 516 // behaviour by placing the iplt section in .rel.plt. 517 in.relaIplt = make<RelocationSection<ELFT>>( 518 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 519 /*sort=*/false); 520 add(in.relaIplt); 521 522 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 523 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 524 in.ibtPlt = make<IBTPltSection>(); 525 add(in.ibtPlt); 526 } 527 528 in.plt = make<PltSection>(); 529 add(in.plt); 530 in.iplt = make<IpltSection>(); 531 add(in.iplt); 532 533 if (config->andFeatures) 534 add(make<GnuPropertySection>()); 535 536 // .note.GNU-stack is always added when we are creating a re-linkable 537 // object file. Other linkers are using the presence of this marker 538 // section to control the executable-ness of the stack area, but that 539 // is irrelevant these days. Stack area should always be non-executable 540 // by default. So we emit this section unconditionally. 541 if (config->relocatable) 542 add(make<GnuStackSection>()); 543 544 if (in.symTab) 545 add(in.symTab); 546 if (in.symTabShndx) 547 add(in.symTabShndx); 548 add(in.shStrTab); 549 if (in.strTab) 550 add(in.strTab); 551 } 552 553 // The main function of the writer. 554 template <class ELFT> void Writer<ELFT>::run() { 555 if (config->discard != DiscardPolicy::All) 556 copyLocalSymbols(); 557 558 if (config->copyRelocs) 559 addSectionSymbols(); 560 561 // Now that we have a complete set of output sections. This function 562 // completes section contents. For example, we need to add strings 563 // to the string table, and add entries to .got and .plt. 564 // finalizeSections does that. 565 finalizeSections(); 566 checkExecuteOnly(); 567 if (errorCount()) 568 return; 569 570 // If -compressed-debug-sections is specified, we need to compress 571 // .debug_* sections. Do it right now because it changes the size of 572 // output sections. 573 for (OutputSection *sec : outputSections) 574 sec->maybeCompress<ELFT>(); 575 576 if (script->hasSectionsCommand) 577 script->allocateHeaders(mainPart->phdrs); 578 579 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 580 // 0 sized region. This has to be done late since only after assignAddresses 581 // we know the size of the sections. 582 for (Partition &part : partitions) 583 removeEmptyPTLoad(part.phdrs); 584 585 if (!config->oFormatBinary) 586 assignFileOffsets(); 587 else 588 assignFileOffsetsBinary(); 589 590 for (Partition &part : partitions) 591 setPhdrs(part); 592 593 if (config->relocatable) 594 for (OutputSection *sec : outputSections) 595 sec->addr = 0; 596 597 if (config->checkSections) 598 checkSections(); 599 600 // It does not make sense try to open the file if we have error already. 601 if (errorCount()) 602 return; 603 // Write the result down to a file. 604 openFile(); 605 if (errorCount()) 606 return; 607 608 if (!config->oFormatBinary) { 609 if (config->zSeparate != SeparateSegmentKind::None) 610 writeTrapInstr(); 611 writeHeader(); 612 writeSections(); 613 } else { 614 writeSectionsBinary(); 615 } 616 617 // Backfill .note.gnu.build-id section content. This is done at last 618 // because the content is usually a hash value of the entire output file. 619 writeBuildId(); 620 if (errorCount()) 621 return; 622 623 // Handle -Map and -cref options. 624 writeMapFile(); 625 writeCrossReferenceTable(); 626 if (errorCount()) 627 return; 628 629 if (auto e = buffer->commit()) 630 error("failed to write to the output file: " + toString(std::move(e))); 631 } 632 633 static bool shouldKeepInSymtab(const Defined &sym) { 634 if (sym.isSection()) 635 return false; 636 637 if (config->discard == DiscardPolicy::None) 638 return true; 639 640 // If -emit-reloc is given, all symbols including local ones need to be 641 // copied because they may be referenced by relocations. 642 if (config->emitRelocs) 643 return true; 644 645 // In ELF assembly .L symbols are normally discarded by the assembler. 646 // If the assembler fails to do so, the linker discards them if 647 // * --discard-locals is used. 648 // * The symbol is in a SHF_MERGE section, which is normally the reason for 649 // the assembler keeping the .L symbol. 650 StringRef name = sym.getName(); 651 bool isLocal = name.startswith(".L") || name.empty(); 652 if (!isLocal) 653 return true; 654 655 if (config->discard == DiscardPolicy::Locals) 656 return false; 657 658 SectionBase *sec = sym.section; 659 return !sec || !(sec->flags & SHF_MERGE); 660 } 661 662 static bool includeInSymtab(const Symbol &b) { 663 if (!b.isLocal() && !b.isUsedInRegularObj) 664 return false; 665 666 if (auto *d = dyn_cast<Defined>(&b)) { 667 // Always include absolute symbols. 668 SectionBase *sec = d->section; 669 if (!sec) 670 return true; 671 sec = sec->repl; 672 673 // Exclude symbols pointing to garbage-collected sections. 674 if (isa<InputSectionBase>(sec) && !sec->isLive()) 675 return false; 676 677 if (auto *s = dyn_cast<MergeInputSection>(sec)) 678 if (!s->getSectionPiece(d->value)->live) 679 return false; 680 return true; 681 } 682 return b.used; 683 } 684 685 // Local symbols are not in the linker's symbol table. This function scans 686 // each object file's symbol table to copy local symbols to the output. 687 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 688 if (!in.symTab) 689 return; 690 for (InputFile *file : objectFiles) { 691 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 692 for (Symbol *b : f->getLocalSymbols()) { 693 if (!b->isLocal()) 694 fatal(toString(f) + 695 ": broken object: getLocalSymbols returns a non-local symbol"); 696 auto *dr = dyn_cast<Defined>(b); 697 698 // No reason to keep local undefined symbol in symtab. 699 if (!dr) 700 continue; 701 if (!includeInSymtab(*b)) 702 continue; 703 if (!shouldKeepInSymtab(*dr)) 704 continue; 705 in.symTab->addSymbol(b); 706 } 707 } 708 } 709 710 // Create a section symbol for each output section so that we can represent 711 // relocations that point to the section. If we know that no relocation is 712 // referring to a section (that happens if the section is a synthetic one), we 713 // don't create a section symbol for that section. 714 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 715 for (BaseCommand *base : script->sectionCommands) { 716 auto *sec = dyn_cast<OutputSection>(base); 717 if (!sec) 718 continue; 719 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 720 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 721 return !isd->sections.empty(); 722 return false; 723 }); 724 if (i == sec->sectionCommands.end()) 725 continue; 726 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 727 728 // Relocations are not using REL[A] section symbols. 729 if (isec->type == SHT_REL || isec->type == SHT_RELA) 730 continue; 731 732 // Unlike other synthetic sections, mergeable output sections contain data 733 // copied from input sections, and there may be a relocation pointing to its 734 // contents if -r or -emit-reloc are given. 735 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 736 continue; 737 738 auto *sym = 739 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 740 /*value=*/0, /*size=*/0, isec); 741 in.symTab->addSymbol(sym); 742 } 743 } 744 745 // Today's loaders have a feature to make segments read-only after 746 // processing dynamic relocations to enhance security. PT_GNU_RELRO 747 // is defined for that. 748 // 749 // This function returns true if a section needs to be put into a 750 // PT_GNU_RELRO segment. 751 static bool isRelroSection(const OutputSection *sec) { 752 if (!config->zRelro) 753 return false; 754 755 uint64_t flags = sec->flags; 756 757 // Non-allocatable or non-writable sections don't need RELRO because 758 // they are not writable or not even mapped to memory in the first place. 759 // RELRO is for sections that are essentially read-only but need to 760 // be writable only at process startup to allow dynamic linker to 761 // apply relocations. 762 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 763 return false; 764 765 // Once initialized, TLS data segments are used as data templates 766 // for a thread-local storage. For each new thread, runtime 767 // allocates memory for a TLS and copy templates there. No thread 768 // are supposed to use templates directly. Thus, it can be in RELRO. 769 if (flags & SHF_TLS) 770 return true; 771 772 // .init_array, .preinit_array and .fini_array contain pointers to 773 // functions that are executed on process startup or exit. These 774 // pointers are set by the static linker, and they are not expected 775 // to change at runtime. But if you are an attacker, you could do 776 // interesting things by manipulating pointers in .fini_array, for 777 // example. So they are put into RELRO. 778 uint32_t type = sec->type; 779 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 780 type == SHT_PREINIT_ARRAY) 781 return true; 782 783 // .got contains pointers to external symbols. They are resolved by 784 // the dynamic linker when a module is loaded into memory, and after 785 // that they are not expected to change. So, it can be in RELRO. 786 if (in.got && sec == in.got->getParent()) 787 return true; 788 789 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 790 // through r2 register, which is reserved for that purpose. Since r2 is used 791 // for accessing .got as well, .got and .toc need to be close enough in the 792 // virtual address space. Usually, .toc comes just after .got. Since we place 793 // .got into RELRO, .toc needs to be placed into RELRO too. 794 if (sec->name.equals(".toc")) 795 return true; 796 797 // .got.plt contains pointers to external function symbols. They are 798 // by default resolved lazily, so we usually cannot put it into RELRO. 799 // However, if "-z now" is given, the lazy symbol resolution is 800 // disabled, which enables us to put it into RELRO. 801 if (sec == in.gotPlt->getParent()) 802 return config->zNow; 803 804 // .dynamic section contains data for the dynamic linker, and 805 // there's no need to write to it at runtime, so it's better to put 806 // it into RELRO. 807 if (sec->name == ".dynamic") 808 return true; 809 810 // Sections with some special names are put into RELRO. This is a 811 // bit unfortunate because section names shouldn't be significant in 812 // ELF in spirit. But in reality many linker features depend on 813 // magic section names. 814 StringRef s = sec->name; 815 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 816 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 817 s == ".openbsd.randomdata"; 818 } 819 820 // We compute a rank for each section. The rank indicates where the 821 // section should be placed in the file. Instead of using simple 822 // numbers (0,1,2...), we use a series of flags. One for each decision 823 // point when placing the section. 824 // Using flags has two key properties: 825 // * It is easy to check if a give branch was taken. 826 // * It is easy two see how similar two ranks are (see getRankProximity). 827 enum RankFlags { 828 RF_NOT_ADDR_SET = 1 << 27, 829 RF_NOT_ALLOC = 1 << 26, 830 RF_PARTITION = 1 << 18, // Partition number (8 bits) 831 RF_NOT_PART_EHDR = 1 << 17, 832 RF_NOT_PART_PHDR = 1 << 16, 833 RF_NOT_INTERP = 1 << 15, 834 RF_NOT_NOTE = 1 << 14, 835 RF_WRITE = 1 << 13, 836 RF_EXEC_WRITE = 1 << 12, 837 RF_EXEC = 1 << 11, 838 RF_RODATA = 1 << 10, 839 RF_NOT_RELRO = 1 << 9, 840 RF_NOT_TLS = 1 << 8, 841 RF_BSS = 1 << 7, 842 RF_PPC_NOT_TOCBSS = 1 << 6, 843 RF_PPC_TOCL = 1 << 5, 844 RF_PPC_TOC = 1 << 4, 845 RF_PPC_GOT = 1 << 3, 846 RF_PPC_BRANCH_LT = 1 << 2, 847 RF_MIPS_GPREL = 1 << 1, 848 RF_MIPS_NOT_GOT = 1 << 0 849 }; 850 851 static unsigned getSectionRank(const OutputSection *sec) { 852 unsigned rank = sec->partition * RF_PARTITION; 853 854 // We want to put section specified by -T option first, so we 855 // can start assigning VA starting from them later. 856 if (config->sectionStartMap.count(sec->name)) 857 return rank; 858 rank |= RF_NOT_ADDR_SET; 859 860 // Allocatable sections go first to reduce the total PT_LOAD size and 861 // so debug info doesn't change addresses in actual code. 862 if (!(sec->flags & SHF_ALLOC)) 863 return rank | RF_NOT_ALLOC; 864 865 if (sec->type == SHT_LLVM_PART_EHDR) 866 return rank; 867 rank |= RF_NOT_PART_EHDR; 868 869 if (sec->type == SHT_LLVM_PART_PHDR) 870 return rank; 871 rank |= RF_NOT_PART_PHDR; 872 873 // Put .interp first because some loaders want to see that section 874 // on the first page of the executable file when loaded into memory. 875 if (sec->name == ".interp") 876 return rank; 877 rank |= RF_NOT_INTERP; 878 879 // Put .note sections (which make up one PT_NOTE) at the beginning so that 880 // they are likely to be included in a core file even if core file size is 881 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 882 // included in a core to match core files with executables. 883 if (sec->type == SHT_NOTE) 884 return rank; 885 rank |= RF_NOT_NOTE; 886 887 // Sort sections based on their access permission in the following 888 // order: R, RX, RWX, RW. This order is based on the following 889 // considerations: 890 // * Read-only sections come first such that they go in the 891 // PT_LOAD covering the program headers at the start of the file. 892 // * Read-only, executable sections come next. 893 // * Writable, executable sections follow such that .plt on 894 // architectures where it needs to be writable will be placed 895 // between .text and .data. 896 // * Writable sections come last, such that .bss lands at the very 897 // end of the last PT_LOAD. 898 bool isExec = sec->flags & SHF_EXECINSTR; 899 bool isWrite = sec->flags & SHF_WRITE; 900 901 if (isExec) { 902 if (isWrite) 903 rank |= RF_EXEC_WRITE; 904 else 905 rank |= RF_EXEC; 906 } else if (isWrite) { 907 rank |= RF_WRITE; 908 } else if (sec->type == SHT_PROGBITS) { 909 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 910 // .eh_frame) closer to .text. They likely contain PC or GOT relative 911 // relocations and there could be relocation overflow if other huge sections 912 // (.dynstr .dynsym) were placed in between. 913 rank |= RF_RODATA; 914 } 915 916 // Place RelRo sections first. After considering SHT_NOBITS below, the 917 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 918 // where | marks where page alignment happens. An alternative ordering is 919 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 920 // waste more bytes due to 2 alignment places. 921 if (!isRelroSection(sec)) 922 rank |= RF_NOT_RELRO; 923 924 // If we got here we know that both A and B are in the same PT_LOAD. 925 926 // The TLS initialization block needs to be a single contiguous block in a R/W 927 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 928 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 929 // after PROGBITS. 930 if (!(sec->flags & SHF_TLS)) 931 rank |= RF_NOT_TLS; 932 933 // Within TLS sections, or within other RelRo sections, or within non-RelRo 934 // sections, place non-NOBITS sections first. 935 if (sec->type == SHT_NOBITS) 936 rank |= RF_BSS; 937 938 // Some architectures have additional ordering restrictions for sections 939 // within the same PT_LOAD. 940 if (config->emachine == EM_PPC64) { 941 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 942 // that we would like to make sure appear is a specific order to maximize 943 // their coverage by a single signed 16-bit offset from the TOC base 944 // pointer. Conversely, the special .tocbss section should be first among 945 // all SHT_NOBITS sections. This will put it next to the loaded special 946 // PPC64 sections (and, thus, within reach of the TOC base pointer). 947 StringRef name = sec->name; 948 if (name != ".tocbss") 949 rank |= RF_PPC_NOT_TOCBSS; 950 951 if (name == ".toc1") 952 rank |= RF_PPC_TOCL; 953 954 if (name == ".toc") 955 rank |= RF_PPC_TOC; 956 957 if (name == ".got") 958 rank |= RF_PPC_GOT; 959 960 if (name == ".branch_lt") 961 rank |= RF_PPC_BRANCH_LT; 962 } 963 964 if (config->emachine == EM_MIPS) { 965 // All sections with SHF_MIPS_GPREL flag should be grouped together 966 // because data in these sections is addressable with a gp relative address. 967 if (sec->flags & SHF_MIPS_GPREL) 968 rank |= RF_MIPS_GPREL; 969 970 if (sec->name != ".got") 971 rank |= RF_MIPS_NOT_GOT; 972 } 973 974 return rank; 975 } 976 977 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 978 const OutputSection *a = cast<OutputSection>(aCmd); 979 const OutputSection *b = cast<OutputSection>(bCmd); 980 981 if (a->sortRank != b->sortRank) 982 return a->sortRank < b->sortRank; 983 984 if (!(a->sortRank & RF_NOT_ADDR_SET)) 985 return config->sectionStartMap.lookup(a->name) < 986 config->sectionStartMap.lookup(b->name); 987 return false; 988 } 989 990 void PhdrEntry::add(OutputSection *sec) { 991 lastSec = sec; 992 if (!firstSec) 993 firstSec = sec; 994 p_align = std::max(p_align, sec->alignment); 995 if (p_type == PT_LOAD) 996 sec->ptLoad = this; 997 } 998 999 // The beginning and the ending of .rel[a].plt section are marked 1000 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1001 // executable. The runtime needs these symbols in order to resolve 1002 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1003 // need these symbols, since IRELATIVE relocs are resolved through GOT 1004 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1005 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1006 if (config->relocatable || needsInterpSection()) 1007 return; 1008 1009 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1010 // because .rela.plt might be empty and thus removed from output. 1011 // We'll override Out::elfHeader with In.relaIplt later when we are 1012 // sure that .rela.plt exists in output. 1013 ElfSym::relaIpltStart = addOptionalRegular( 1014 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1015 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1016 1017 ElfSym::relaIpltEnd = addOptionalRegular( 1018 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1019 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1020 } 1021 1022 template <class ELFT> 1023 void Writer<ELFT>::forEachRelSec( 1024 llvm::function_ref<void(InputSectionBase &)> fn) { 1025 // Scan all relocations. Each relocation goes through a series 1026 // of tests to determine if it needs special treatment, such as 1027 // creating GOT, PLT, copy relocations, etc. 1028 // Note that relocations for non-alloc sections are directly 1029 // processed by InputSection::relocateNonAlloc. 1030 for (InputSectionBase *isec : inputSections) 1031 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1032 fn(*isec); 1033 for (Partition &part : partitions) { 1034 for (EhInputSection *es : part.ehFrame->sections) 1035 fn(*es); 1036 if (part.armExidx && part.armExidx->isLive()) 1037 for (InputSection *ex : part.armExidx->exidxSections) 1038 fn(*ex); 1039 } 1040 } 1041 1042 // This function generates assignments for predefined symbols (e.g. _end or 1043 // _etext) and inserts them into the commands sequence to be processed at the 1044 // appropriate time. This ensures that the value is going to be correct by the 1045 // time any references to these symbols are processed and is equivalent to 1046 // defining these symbols explicitly in the linker script. 1047 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1048 if (ElfSym::globalOffsetTable) { 1049 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1050 // to the start of the .got or .got.plt section. 1051 InputSection *gotSection = in.gotPlt; 1052 if (!target->gotBaseSymInGotPlt) 1053 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1054 : cast<InputSection>(in.got); 1055 ElfSym::globalOffsetTable->section = gotSection; 1056 } 1057 1058 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1059 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1060 ElfSym::relaIpltStart->section = in.relaIplt; 1061 ElfSym::relaIpltEnd->section = in.relaIplt; 1062 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1063 } 1064 1065 PhdrEntry *last = nullptr; 1066 PhdrEntry *lastRO = nullptr; 1067 1068 for (Partition &part : partitions) { 1069 for (PhdrEntry *p : part.phdrs) { 1070 if (p->p_type != PT_LOAD) 1071 continue; 1072 last = p; 1073 if (!(p->p_flags & PF_W)) 1074 lastRO = p; 1075 } 1076 } 1077 1078 if (lastRO) { 1079 // _etext is the first location after the last read-only loadable segment. 1080 if (ElfSym::etext1) 1081 ElfSym::etext1->section = lastRO->lastSec; 1082 if (ElfSym::etext2) 1083 ElfSym::etext2->section = lastRO->lastSec; 1084 } 1085 1086 if (last) { 1087 // _edata points to the end of the last mapped initialized section. 1088 OutputSection *edata = nullptr; 1089 for (OutputSection *os : outputSections) { 1090 if (os->type != SHT_NOBITS) 1091 edata = os; 1092 if (os == last->lastSec) 1093 break; 1094 } 1095 1096 if (ElfSym::edata1) 1097 ElfSym::edata1->section = edata; 1098 if (ElfSym::edata2) 1099 ElfSym::edata2->section = edata; 1100 1101 // _end is the first location after the uninitialized data region. 1102 if (ElfSym::end1) 1103 ElfSym::end1->section = last->lastSec; 1104 if (ElfSym::end2) 1105 ElfSym::end2->section = last->lastSec; 1106 } 1107 1108 if (ElfSym::bss) 1109 ElfSym::bss->section = findSection(".bss"); 1110 1111 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1112 // be equal to the _gp symbol's value. 1113 if (ElfSym::mipsGp) { 1114 // Find GP-relative section with the lowest address 1115 // and use this address to calculate default _gp value. 1116 for (OutputSection *os : outputSections) { 1117 if (os->flags & SHF_MIPS_GPREL) { 1118 ElfSym::mipsGp->section = os; 1119 ElfSym::mipsGp->value = 0x7ff0; 1120 break; 1121 } 1122 } 1123 } 1124 } 1125 1126 // We want to find how similar two ranks are. 1127 // The more branches in getSectionRank that match, the more similar they are. 1128 // Since each branch corresponds to a bit flag, we can just use 1129 // countLeadingZeros. 1130 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1131 return countLeadingZeros(a->sortRank ^ b->sortRank); 1132 } 1133 1134 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1135 auto *sec = dyn_cast<OutputSection>(b); 1136 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1137 } 1138 1139 // When placing orphan sections, we want to place them after symbol assignments 1140 // so that an orphan after 1141 // begin_foo = .; 1142 // foo : { *(foo) } 1143 // end_foo = .; 1144 // doesn't break the intended meaning of the begin/end symbols. 1145 // We don't want to go over sections since findOrphanPos is the 1146 // one in charge of deciding the order of the sections. 1147 // We don't want to go over changes to '.', since doing so in 1148 // rx_sec : { *(rx_sec) } 1149 // . = ALIGN(0x1000); 1150 // /* The RW PT_LOAD starts here*/ 1151 // rw_sec : { *(rw_sec) } 1152 // would mean that the RW PT_LOAD would become unaligned. 1153 static bool shouldSkip(BaseCommand *cmd) { 1154 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1155 return assign->name != "."; 1156 return false; 1157 } 1158 1159 // We want to place orphan sections so that they share as much 1160 // characteristics with their neighbors as possible. For example, if 1161 // both are rw, or both are tls. 1162 static std::vector<BaseCommand *>::iterator 1163 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1164 std::vector<BaseCommand *>::iterator e) { 1165 OutputSection *sec = cast<OutputSection>(*e); 1166 1167 // Find the first element that has as close a rank as possible. 1168 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1169 return getRankProximity(sec, a) < getRankProximity(sec, b); 1170 }); 1171 if (i == e) 1172 return e; 1173 1174 // Consider all existing sections with the same proximity. 1175 int proximity = getRankProximity(sec, *i); 1176 for (; i != e; ++i) { 1177 auto *curSec = dyn_cast<OutputSection>(*i); 1178 if (!curSec || !curSec->hasInputSections) 1179 continue; 1180 if (getRankProximity(sec, curSec) != proximity || 1181 sec->sortRank < curSec->sortRank) 1182 break; 1183 } 1184 1185 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1186 auto *os = dyn_cast<OutputSection>(cmd); 1187 return os && os->hasInputSections; 1188 }; 1189 auto j = std::find_if(llvm::make_reverse_iterator(i), 1190 llvm::make_reverse_iterator(b), 1191 isOutputSecWithInputSections); 1192 i = j.base(); 1193 1194 // As a special case, if the orphan section is the last section, put 1195 // it at the very end, past any other commands. 1196 // This matches bfd's behavior and is convenient when the linker script fully 1197 // specifies the start of the file, but doesn't care about the end (the non 1198 // alloc sections for example). 1199 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1200 if (nextSec == e) 1201 return e; 1202 1203 while (i != e && shouldSkip(*i)) 1204 ++i; 1205 return i; 1206 } 1207 1208 // Adds random priorities to sections not already in the map. 1209 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1210 if (!config->shuffleSectionSeed) 1211 return; 1212 1213 std::vector<int> priorities(inputSections.size() - order.size()); 1214 // Existing priorities are < 0, so use priorities >= 0 for the missing 1215 // sections. 1216 int curPrio = 0; 1217 for (int &prio : priorities) 1218 prio = curPrio++; 1219 uint32_t seed = *config->shuffleSectionSeed; 1220 std::mt19937 g(seed ? seed : std::random_device()()); 1221 llvm::shuffle(priorities.begin(), priorities.end(), g); 1222 int prioIndex = 0; 1223 for (InputSectionBase *sec : inputSections) { 1224 if (order.try_emplace(sec, priorities[prioIndex]).second) 1225 ++prioIndex; 1226 } 1227 } 1228 1229 // Builds section order for handling --symbol-ordering-file. 1230 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1231 DenseMap<const InputSectionBase *, int> sectionOrder; 1232 // Use the rarely used option -call-graph-ordering-file to sort sections. 1233 if (!config->callGraphProfile.empty()) 1234 return computeCallGraphProfileOrder(); 1235 1236 if (config->symbolOrderingFile.empty()) 1237 return sectionOrder; 1238 1239 struct SymbolOrderEntry { 1240 int priority; 1241 bool present; 1242 }; 1243 1244 // Build a map from symbols to their priorities. Symbols that didn't 1245 // appear in the symbol ordering file have the lowest priority 0. 1246 // All explicitly mentioned symbols have negative (higher) priorities. 1247 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1248 int priority = -config->symbolOrderingFile.size(); 1249 for (StringRef s : config->symbolOrderingFile) 1250 symbolOrder.insert({s, {priority++, false}}); 1251 1252 // Build a map from sections to their priorities. 1253 auto addSym = [&](Symbol &sym) { 1254 auto it = symbolOrder.find(sym.getName()); 1255 if (it == symbolOrder.end()) 1256 return; 1257 SymbolOrderEntry &ent = it->second; 1258 ent.present = true; 1259 1260 maybeWarnUnorderableSymbol(&sym); 1261 1262 if (auto *d = dyn_cast<Defined>(&sym)) { 1263 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1264 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1265 priority = std::min(priority, ent.priority); 1266 } 1267 } 1268 }; 1269 1270 // We want both global and local symbols. We get the global ones from the 1271 // symbol table and iterate the object files for the local ones. 1272 for (Symbol *sym : symtab->symbols()) 1273 if (!sym->isLazy()) 1274 addSym(*sym); 1275 1276 for (InputFile *file : objectFiles) 1277 for (Symbol *sym : file->getSymbols()) 1278 if (sym->isLocal()) 1279 addSym(*sym); 1280 1281 if (config->warnSymbolOrdering) 1282 for (auto orderEntry : symbolOrder) 1283 if (!orderEntry.second.present) 1284 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1285 1286 return sectionOrder; 1287 } 1288 1289 // Sorts the sections in ISD according to the provided section order. 1290 static void 1291 sortISDBySectionOrder(InputSectionDescription *isd, 1292 const DenseMap<const InputSectionBase *, int> &order) { 1293 std::vector<InputSection *> unorderedSections; 1294 std::vector<std::pair<InputSection *, int>> orderedSections; 1295 uint64_t unorderedSize = 0; 1296 1297 for (InputSection *isec : isd->sections) { 1298 auto i = order.find(isec); 1299 if (i == order.end()) { 1300 unorderedSections.push_back(isec); 1301 unorderedSize += isec->getSize(); 1302 continue; 1303 } 1304 orderedSections.push_back({isec, i->second}); 1305 } 1306 llvm::sort(orderedSections, llvm::less_second()); 1307 1308 // Find an insertion point for the ordered section list in the unordered 1309 // section list. On targets with limited-range branches, this is the mid-point 1310 // of the unordered section list. This decreases the likelihood that a range 1311 // extension thunk will be needed to enter or exit the ordered region. If the 1312 // ordered section list is a list of hot functions, we can generally expect 1313 // the ordered functions to be called more often than the unordered functions, 1314 // making it more likely that any particular call will be within range, and 1315 // therefore reducing the number of thunks required. 1316 // 1317 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1318 // If the layout is: 1319 // 1320 // 8MB hot 1321 // 32MB cold 1322 // 1323 // only the first 8-16MB of the cold code (depending on which hot function it 1324 // is actually calling) can call the hot code without a range extension thunk. 1325 // However, if we use this layout: 1326 // 1327 // 16MB cold 1328 // 8MB hot 1329 // 16MB cold 1330 // 1331 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1332 // of the second block of cold code can call the hot code without a thunk. So 1333 // we effectively double the amount of code that could potentially call into 1334 // the hot code without a thunk. 1335 size_t insPt = 0; 1336 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1337 uint64_t unorderedPos = 0; 1338 for (; insPt != unorderedSections.size(); ++insPt) { 1339 unorderedPos += unorderedSections[insPt]->getSize(); 1340 if (unorderedPos > unorderedSize / 2) 1341 break; 1342 } 1343 } 1344 1345 isd->sections.clear(); 1346 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1347 isd->sections.push_back(isec); 1348 for (std::pair<InputSection *, int> p : orderedSections) 1349 isd->sections.push_back(p.first); 1350 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1351 isd->sections.push_back(isec); 1352 } 1353 1354 static void sortSection(OutputSection *sec, 1355 const DenseMap<const InputSectionBase *, int> &order) { 1356 StringRef name = sec->name; 1357 1358 // Never sort these. 1359 if (name == ".init" || name == ".fini") 1360 return; 1361 1362 // Sort input sections by priority using the list provided by 1363 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1364 // digit radix sort. The sections may be sorted stably again by a more 1365 // significant key. 1366 if (!order.empty()) 1367 for (BaseCommand *b : sec->sectionCommands) 1368 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1369 sortISDBySectionOrder(isd, order); 1370 1371 // Sort input sections by section name suffixes for 1372 // __attribute__((init_priority(N))). 1373 if (name == ".init_array" || name == ".fini_array") { 1374 if (!script->hasSectionsCommand) 1375 sec->sortInitFini(); 1376 return; 1377 } 1378 1379 // Sort input sections by the special rule for .ctors and .dtors. 1380 if (name == ".ctors" || name == ".dtors") { 1381 if (!script->hasSectionsCommand) 1382 sec->sortCtorsDtors(); 1383 return; 1384 } 1385 1386 // .toc is allocated just after .got and is accessed using GOT-relative 1387 // relocations. Object files compiled with small code model have an 1388 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1389 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1390 // sections having smaller relocation offsets are at beginning of .toc 1391 if (config->emachine == EM_PPC64 && name == ".toc") { 1392 if (script->hasSectionsCommand) 1393 return; 1394 assert(sec->sectionCommands.size() == 1); 1395 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1396 llvm::stable_sort(isd->sections, 1397 [](const InputSection *a, const InputSection *b) -> bool { 1398 return a->file->ppc64SmallCodeModelTocRelocs && 1399 !b->file->ppc64SmallCodeModelTocRelocs; 1400 }); 1401 return; 1402 } 1403 } 1404 1405 // If no layout was provided by linker script, we want to apply default 1406 // sorting for special input sections. This also handles --symbol-ordering-file. 1407 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1408 // Build the order once since it is expensive. 1409 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1410 maybeShuffle(order); 1411 for (BaseCommand *base : script->sectionCommands) 1412 if (auto *sec = dyn_cast<OutputSection>(base)) 1413 sortSection(sec, order); 1414 } 1415 1416 template <class ELFT> void Writer<ELFT>::sortSections() { 1417 script->adjustSectionsBeforeSorting(); 1418 1419 // Don't sort if using -r. It is not necessary and we want to preserve the 1420 // relative order for SHF_LINK_ORDER sections. 1421 if (config->relocatable) 1422 return; 1423 1424 sortInputSections(); 1425 1426 for (BaseCommand *base : script->sectionCommands) { 1427 auto *os = dyn_cast<OutputSection>(base); 1428 if (!os) 1429 continue; 1430 os->sortRank = getSectionRank(os); 1431 1432 // We want to assign rude approximation values to outSecOff fields 1433 // to know the relative order of the input sections. We use it for 1434 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1435 uint64_t i = 0; 1436 for (InputSection *sec : getInputSections(os)) 1437 sec->outSecOff = i++; 1438 } 1439 1440 if (!script->hasSectionsCommand) { 1441 // We know that all the OutputSections are contiguous in this case. 1442 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1443 std::stable_sort( 1444 llvm::find_if(script->sectionCommands, isSection), 1445 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1446 compareSections); 1447 1448 // Process INSERT commands. From this point onwards the order of 1449 // script->sectionCommands is fixed. 1450 script->processInsertCommands(); 1451 return; 1452 } 1453 1454 script->processInsertCommands(); 1455 1456 // Orphan sections are sections present in the input files which are 1457 // not explicitly placed into the output file by the linker script. 1458 // 1459 // The sections in the linker script are already in the correct 1460 // order. We have to figuere out where to insert the orphan 1461 // sections. 1462 // 1463 // The order of the sections in the script is arbitrary and may not agree with 1464 // compareSections. This means that we cannot easily define a strict weak 1465 // ordering. To see why, consider a comparison of a section in the script and 1466 // one not in the script. We have a two simple options: 1467 // * Make them equivalent (a is not less than b, and b is not less than a). 1468 // The problem is then that equivalence has to be transitive and we can 1469 // have sections a, b and c with only b in a script and a less than c 1470 // which breaks this property. 1471 // * Use compareSectionsNonScript. Given that the script order doesn't have 1472 // to match, we can end up with sections a, b, c, d where b and c are in the 1473 // script and c is compareSectionsNonScript less than b. In which case d 1474 // can be equivalent to c, a to b and d < a. As a concrete example: 1475 // .a (rx) # not in script 1476 // .b (rx) # in script 1477 // .c (ro) # in script 1478 // .d (ro) # not in script 1479 // 1480 // The way we define an order then is: 1481 // * Sort only the orphan sections. They are in the end right now. 1482 // * Move each orphan section to its preferred position. We try 1483 // to put each section in the last position where it can share 1484 // a PT_LOAD. 1485 // 1486 // There is some ambiguity as to where exactly a new entry should be 1487 // inserted, because Commands contains not only output section 1488 // commands but also other types of commands such as symbol assignment 1489 // expressions. There's no correct answer here due to the lack of the 1490 // formal specification of the linker script. We use heuristics to 1491 // determine whether a new output command should be added before or 1492 // after another commands. For the details, look at shouldSkip 1493 // function. 1494 1495 auto i = script->sectionCommands.begin(); 1496 auto e = script->sectionCommands.end(); 1497 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1498 if (auto *sec = dyn_cast<OutputSection>(base)) 1499 return sec->sectionIndex == UINT32_MAX; 1500 return false; 1501 }); 1502 1503 // Sort the orphan sections. 1504 std::stable_sort(nonScriptI, e, compareSections); 1505 1506 // As a horrible special case, skip the first . assignment if it is before any 1507 // section. We do this because it is common to set a load address by starting 1508 // the script with ". = 0xabcd" and the expectation is that every section is 1509 // after that. 1510 auto firstSectionOrDotAssignment = 1511 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1512 if (firstSectionOrDotAssignment != e && 1513 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1514 ++firstSectionOrDotAssignment; 1515 i = firstSectionOrDotAssignment; 1516 1517 while (nonScriptI != e) { 1518 auto pos = findOrphanPos(i, nonScriptI); 1519 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1520 1521 // As an optimization, find all sections with the same sort rank 1522 // and insert them with one rotate. 1523 unsigned rank = orphan->sortRank; 1524 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1525 return cast<OutputSection>(cmd)->sortRank != rank; 1526 }); 1527 std::rotate(pos, nonScriptI, end); 1528 nonScriptI = end; 1529 } 1530 1531 script->adjustSectionsAfterSorting(); 1532 } 1533 1534 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1535 InputSection *la = a->getLinkOrderDep(); 1536 InputSection *lb = b->getLinkOrderDep(); 1537 OutputSection *aOut = la->getParent(); 1538 OutputSection *bOut = lb->getParent(); 1539 1540 if (aOut != bOut) 1541 return aOut->sectionIndex < bOut->sectionIndex; 1542 return la->outSecOff < lb->outSecOff; 1543 } 1544 1545 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1546 for (OutputSection *sec : outputSections) { 1547 if (!(sec->flags & SHF_LINK_ORDER)) 1548 continue; 1549 1550 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1551 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1552 if (!config->relocatable && config->emachine == EM_ARM && 1553 sec->type == SHT_ARM_EXIDX) 1554 continue; 1555 1556 // Link order may be distributed across several InputSectionDescriptions 1557 // but sort must consider them all at once. 1558 std::vector<InputSection **> scriptSections; 1559 std::vector<InputSection *> sections; 1560 for (BaseCommand *base : sec->sectionCommands) { 1561 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1562 for (InputSection *&isec : isd->sections) { 1563 scriptSections.push_back(&isec); 1564 sections.push_back(isec); 1565 1566 InputSection *link = isec->getLinkOrderDep(); 1567 if (!link->getParent()) 1568 error(toString(isec) + ": sh_link points to discarded section " + 1569 toString(link)); 1570 } 1571 } 1572 } 1573 1574 if (errorCount()) 1575 continue; 1576 1577 llvm::stable_sort(sections, compareByFilePosition); 1578 1579 for (int i = 0, n = sections.size(); i < n; ++i) 1580 *scriptSections[i] = sections[i]; 1581 } 1582 } 1583 1584 // We need to generate and finalize the content that depends on the address of 1585 // InputSections. As the generation of the content may also alter InputSection 1586 // addresses we must converge to a fixed point. We do that here. See the comment 1587 // in Writer<ELFT>::finalizeSections(). 1588 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1589 ThunkCreator tc; 1590 AArch64Err843419Patcher a64p; 1591 ARMErr657417Patcher a32p; 1592 script->assignAddresses(); 1593 1594 int assignPasses = 0; 1595 for (;;) { 1596 bool changed = target->needsThunks && tc.createThunks(outputSections); 1597 1598 // With Thunk Size much smaller than branch range we expect to 1599 // converge quickly; if we get to 10 something has gone wrong. 1600 if (changed && tc.pass >= 10) { 1601 error("thunk creation not converged"); 1602 break; 1603 } 1604 1605 if (config->fixCortexA53Errata843419) { 1606 if (changed) 1607 script->assignAddresses(); 1608 changed |= a64p.createFixes(); 1609 } 1610 if (config->fixCortexA8) { 1611 if (changed) 1612 script->assignAddresses(); 1613 changed |= a32p.createFixes(); 1614 } 1615 1616 if (in.mipsGot) 1617 in.mipsGot->updateAllocSize(); 1618 1619 for (Partition &part : partitions) { 1620 changed |= part.relaDyn->updateAllocSize(); 1621 if (part.relrDyn) 1622 changed |= part.relrDyn->updateAllocSize(); 1623 } 1624 1625 const Defined *changedSym = script->assignAddresses(); 1626 if (!changed) { 1627 // Some symbols may be dependent on section addresses. When we break the 1628 // loop, the symbol values are finalized because a previous 1629 // assignAddresses() finalized section addresses. 1630 if (!changedSym) 1631 break; 1632 if (++assignPasses == 5) { 1633 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1634 " does not converge"); 1635 break; 1636 } 1637 } 1638 } 1639 1640 // If a SECTIONS command is given, addrExpr, if set, is the specified output 1641 // section address. Warn if the computed value is different from the actual 1642 // address. 1643 if (!script->hasSectionsCommand) 1644 return; 1645 for (auto changed : script->changedSectionAddresses) { 1646 const OutputSection *os = changed.first; 1647 warn("start of section " + os->name + " changes from 0x" + 1648 utohexstr(changed.second) + " to 0x" + utohexstr(os->addr)); 1649 } 1650 } 1651 1652 static void finalizeSynthetic(SyntheticSection *sec) { 1653 if (sec && sec->isNeeded() && sec->getParent()) 1654 sec->finalizeContents(); 1655 } 1656 1657 // In order to allow users to manipulate linker-synthesized sections, 1658 // we had to add synthetic sections to the input section list early, 1659 // even before we make decisions whether they are needed. This allows 1660 // users to write scripts like this: ".mygot : { .got }". 1661 // 1662 // Doing it has an unintended side effects. If it turns out that we 1663 // don't need a .got (for example) at all because there's no 1664 // relocation that needs a .got, we don't want to emit .got. 1665 // 1666 // To deal with the above problem, this function is called after 1667 // scanRelocations is called to remove synthetic sections that turn 1668 // out to be empty. 1669 static void removeUnusedSyntheticSections() { 1670 // All input synthetic sections that can be empty are placed after 1671 // all regular ones. We iterate over them all and exit at first 1672 // non-synthetic. 1673 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1674 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1675 if (!ss) 1676 return; 1677 OutputSection *os = ss->getParent(); 1678 if (!os || ss->isNeeded()) 1679 continue; 1680 1681 // If we reach here, then SS is an unused synthetic section and we want to 1682 // remove it from corresponding input section description of output section. 1683 for (BaseCommand *b : os->sectionCommands) 1684 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1685 llvm::erase_if(isd->sections, 1686 [=](InputSection *isec) { return isec == ss; }); 1687 } 1688 } 1689 1690 // Create output section objects and add them to OutputSections. 1691 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1692 Out::preinitArray = findSection(".preinit_array"); 1693 Out::initArray = findSection(".init_array"); 1694 Out::finiArray = findSection(".fini_array"); 1695 1696 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1697 // symbols for sections, so that the runtime can get the start and end 1698 // addresses of each section by section name. Add such symbols. 1699 if (!config->relocatable) { 1700 addStartEndSymbols(); 1701 for (BaseCommand *base : script->sectionCommands) 1702 if (auto *sec = dyn_cast<OutputSection>(base)) 1703 addStartStopSymbols(sec); 1704 } 1705 1706 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1707 // It should be okay as no one seems to care about the type. 1708 // Even the author of gold doesn't remember why gold behaves that way. 1709 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1710 if (mainPart->dynamic->parent) 1711 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1712 STV_HIDDEN, STT_NOTYPE, 1713 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1714 1715 // Define __rel[a]_iplt_{start,end} symbols if needed. 1716 addRelIpltSymbols(); 1717 1718 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1719 // should only be defined in an executable. If .sdata does not exist, its 1720 // value/section does not matter but it has to be relative, so set its 1721 // st_shndx arbitrarily to 1 (Out::elfHeader). 1722 if (config->emachine == EM_RISCV && !config->shared) { 1723 OutputSection *sec = findSection(".sdata"); 1724 ElfSym::riscvGlobalPointer = 1725 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1726 0x800, STV_DEFAULT, STB_GLOBAL); 1727 } 1728 1729 if (config->emachine == EM_X86_64) { 1730 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1731 // way that: 1732 // 1733 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1734 // computes 0. 1735 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1736 // the TLS block). 1737 // 1738 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1739 // an absolute symbol of zero. This is different from GNU linkers which 1740 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1741 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1742 if (s && s->isUndefined()) { 1743 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1744 STT_TLS, /*value=*/0, 0, 1745 /*section=*/nullptr}); 1746 ElfSym::tlsModuleBase = cast<Defined>(s); 1747 } 1748 } 1749 1750 // This responsible for splitting up .eh_frame section into 1751 // pieces. The relocation scan uses those pieces, so this has to be 1752 // earlier. 1753 for (Partition &part : partitions) 1754 finalizeSynthetic(part.ehFrame); 1755 1756 for (Symbol *sym : symtab->symbols()) 1757 sym->isPreemptible = computeIsPreemptible(*sym); 1758 1759 // Change values of linker-script-defined symbols from placeholders (assigned 1760 // by declareSymbols) to actual definitions. 1761 script->processSymbolAssignments(); 1762 1763 // Scan relocations. This must be done after every symbol is declared so that 1764 // we can correctly decide if a dynamic relocation is needed. This is called 1765 // after processSymbolAssignments() because it needs to know whether a 1766 // linker-script-defined symbol is absolute. 1767 if (!config->relocatable) { 1768 forEachRelSec(scanRelocations<ELFT>); 1769 reportUndefinedSymbols<ELFT>(); 1770 } 1771 1772 if (in.plt && in.plt->isNeeded()) 1773 in.plt->addSymbols(); 1774 if (in.iplt && in.iplt->isNeeded()) 1775 in.iplt->addSymbols(); 1776 1777 if (!config->allowShlibUndefined) { 1778 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1779 // entries are seen. These cases would otherwise lead to runtime errors 1780 // reported by the dynamic linker. 1781 // 1782 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1783 // catch more cases. That is too much for us. Our approach resembles the one 1784 // used in ld.gold, achieves a good balance to be useful but not too smart. 1785 for (SharedFile *file : sharedFiles) 1786 file->allNeededIsKnown = 1787 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1788 return symtab->soNames.count(needed); 1789 }); 1790 1791 for (Symbol *sym : symtab->symbols()) 1792 if (sym->isUndefined() && !sym->isWeak()) 1793 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1794 if (f->allNeededIsKnown) 1795 error(toString(f) + ": undefined reference to " + toString(*sym)); 1796 } 1797 1798 // Now that we have defined all possible global symbols including linker- 1799 // synthesized ones. Visit all symbols to give the finishing touches. 1800 for (Symbol *sym : symtab->symbols()) { 1801 if (!includeInSymtab(*sym)) 1802 continue; 1803 if (in.symTab) 1804 in.symTab->addSymbol(sym); 1805 1806 if (sym->includeInDynsym()) { 1807 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1808 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1809 if (file->isNeeded && !sym->isUndefined()) 1810 addVerneed(sym); 1811 } 1812 } 1813 1814 // We also need to scan the dynamic relocation tables of the other partitions 1815 // and add any referenced symbols to the partition's dynsym. 1816 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1817 DenseSet<Symbol *> syms; 1818 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1819 syms.insert(e.sym); 1820 for (DynamicReloc &reloc : part.relaDyn->relocs) 1821 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 1822 part.dynSymTab->addSymbol(reloc.sym); 1823 } 1824 1825 // Do not proceed if there was an undefined symbol. 1826 if (errorCount()) 1827 return; 1828 1829 if (in.mipsGot) 1830 in.mipsGot->build(); 1831 1832 removeUnusedSyntheticSections(); 1833 1834 sortSections(); 1835 1836 // Now that we have the final list, create a list of all the 1837 // OutputSections for convenience. 1838 for (BaseCommand *base : script->sectionCommands) 1839 if (auto *sec = dyn_cast<OutputSection>(base)) 1840 outputSections.push_back(sec); 1841 1842 // Prefer command line supplied address over other constraints. 1843 for (OutputSection *sec : outputSections) { 1844 auto i = config->sectionStartMap.find(sec->name); 1845 if (i != config->sectionStartMap.end()) 1846 sec->addrExpr = [=] { return i->second; }; 1847 } 1848 1849 // This is a bit of a hack. A value of 0 means undef, so we set it 1850 // to 1 to make __ehdr_start defined. The section number is not 1851 // particularly relevant. 1852 Out::elfHeader->sectionIndex = 1; 1853 1854 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 1855 OutputSection *sec = outputSections[i]; 1856 sec->sectionIndex = i + 1; 1857 sec->shName = in.shStrTab->addString(sec->name); 1858 } 1859 1860 // Binary and relocatable output does not have PHDRS. 1861 // The headers have to be created before finalize as that can influence the 1862 // image base and the dynamic section on mips includes the image base. 1863 if (!config->relocatable && !config->oFormatBinary) { 1864 for (Partition &part : partitions) { 1865 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 1866 : createPhdrs(part); 1867 if (config->emachine == EM_ARM) { 1868 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1869 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1870 } 1871 if (config->emachine == EM_MIPS) { 1872 // Add separate segments for MIPS-specific sections. 1873 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1874 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1875 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1876 } 1877 } 1878 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 1879 1880 // Find the TLS segment. This happens before the section layout loop so that 1881 // Android relocation packing can look up TLS symbol addresses. We only need 1882 // to care about the main partition here because all TLS symbols were moved 1883 // to the main partition (see MarkLive.cpp). 1884 for (PhdrEntry *p : mainPart->phdrs) 1885 if (p->p_type == PT_TLS) 1886 Out::tlsPhdr = p; 1887 } 1888 1889 // Some symbols are defined in term of program headers. Now that we 1890 // have the headers, we can find out which sections they point to. 1891 setReservedSymbolSections(); 1892 1893 finalizeSynthetic(in.bss); 1894 finalizeSynthetic(in.bssRelRo); 1895 finalizeSynthetic(in.symTabShndx); 1896 finalizeSynthetic(in.shStrTab); 1897 finalizeSynthetic(in.strTab); 1898 finalizeSynthetic(in.got); 1899 finalizeSynthetic(in.mipsGot); 1900 finalizeSynthetic(in.igotPlt); 1901 finalizeSynthetic(in.gotPlt); 1902 finalizeSynthetic(in.relaIplt); 1903 finalizeSynthetic(in.relaPlt); 1904 finalizeSynthetic(in.plt); 1905 finalizeSynthetic(in.iplt); 1906 finalizeSynthetic(in.ppc32Got2); 1907 finalizeSynthetic(in.partIndex); 1908 1909 // Dynamic section must be the last one in this list and dynamic 1910 // symbol table section (dynSymTab) must be the first one. 1911 for (Partition &part : partitions) { 1912 finalizeSynthetic(part.armExidx); 1913 finalizeSynthetic(part.dynSymTab); 1914 finalizeSynthetic(part.gnuHashTab); 1915 finalizeSynthetic(part.hashTab); 1916 finalizeSynthetic(part.verDef); 1917 finalizeSynthetic(part.relaDyn); 1918 finalizeSynthetic(part.relrDyn); 1919 finalizeSynthetic(part.ehFrameHdr); 1920 finalizeSynthetic(part.verSym); 1921 finalizeSynthetic(part.verNeed); 1922 finalizeSynthetic(part.dynamic); 1923 } 1924 1925 if (!script->hasSectionsCommand && !config->relocatable) 1926 fixSectionAlignments(); 1927 1928 // SHFLinkOrder processing must be processed after relative section placements are 1929 // known but before addresses are allocated. 1930 resolveShfLinkOrder(); 1931 if (errorCount()) 1932 return; 1933 1934 // This is used to: 1935 // 1) Create "thunks": 1936 // Jump instructions in many ISAs have small displacements, and therefore 1937 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1938 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1939 // responsibility to create and insert small pieces of code between 1940 // sections to extend the ranges if jump targets are out of range. Such 1941 // code pieces are called "thunks". 1942 // 1943 // We add thunks at this stage. We couldn't do this before this point 1944 // because this is the earliest point where we know sizes of sections and 1945 // their layouts (that are needed to determine if jump targets are in 1946 // range). 1947 // 1948 // 2) Update the sections. We need to generate content that depends on the 1949 // address of InputSections. For example, MIPS GOT section content or 1950 // android packed relocations sections content. 1951 // 1952 // 3) Assign the final values for the linker script symbols. Linker scripts 1953 // sometimes using forward symbol declarations. We want to set the correct 1954 // values. They also might change after adding the thunks. 1955 finalizeAddressDependentContent(); 1956 1957 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1958 finalizeSynthetic(in.symTab); 1959 finalizeSynthetic(in.ppc64LongBranchTarget); 1960 1961 // Fill other section headers. The dynamic table is finalized 1962 // at the end because some tags like RELSZ depend on result 1963 // of finalizing other sections. 1964 for (OutputSection *sec : outputSections) 1965 sec->finalize(); 1966 } 1967 1968 // Ensure data sections are not mixed with executable sections when 1969 // -execute-only is used. -execute-only is a feature to make pages executable 1970 // but not readable, and the feature is currently supported only on AArch64. 1971 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1972 if (!config->executeOnly) 1973 return; 1974 1975 for (OutputSection *os : outputSections) 1976 if (os->flags & SHF_EXECINSTR) 1977 for (InputSection *isec : getInputSections(os)) 1978 if (!(isec->flags & SHF_EXECINSTR)) 1979 error("cannot place " + toString(isec) + " into " + toString(os->name) + 1980 ": -execute-only does not support intermingling data and code"); 1981 } 1982 1983 // The linker is expected to define SECNAME_start and SECNAME_end 1984 // symbols for a few sections. This function defines them. 1985 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1986 // If a section does not exist, there's ambiguity as to how we 1987 // define _start and _end symbols for an init/fini section. Since 1988 // the loader assume that the symbols are always defined, we need to 1989 // always define them. But what value? The loader iterates over all 1990 // pointers between _start and _end to run global ctors/dtors, so if 1991 // the section is empty, their symbol values don't actually matter 1992 // as long as _start and _end point to the same location. 1993 // 1994 // That said, we don't want to set the symbols to 0 (which is 1995 // probably the simplest value) because that could cause some 1996 // program to fail to link due to relocation overflow, if their 1997 // program text is above 2 GiB. We use the address of the .text 1998 // section instead to prevent that failure. 1999 // 2000 // In rare situations, the .text section may not exist. If that's the 2001 // case, use the image base address as a last resort. 2002 OutputSection *Default = findSection(".text"); 2003 if (!Default) 2004 Default = Out::elfHeader; 2005 2006 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2007 if (os) { 2008 addOptionalRegular(start, os, 0); 2009 addOptionalRegular(end, os, -1); 2010 } else { 2011 addOptionalRegular(start, Default, 0); 2012 addOptionalRegular(end, Default, 0); 2013 } 2014 }; 2015 2016 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2017 define("__init_array_start", "__init_array_end", Out::initArray); 2018 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2019 2020 if (OutputSection *sec = findSection(".ARM.exidx")) 2021 define("__exidx_start", "__exidx_end", sec); 2022 } 2023 2024 // If a section name is valid as a C identifier (which is rare because of 2025 // the leading '.'), linkers are expected to define __start_<secname> and 2026 // __stop_<secname> symbols. They are at beginning and end of the section, 2027 // respectively. This is not requested by the ELF standard, but GNU ld and 2028 // gold provide the feature, and used by many programs. 2029 template <class ELFT> 2030 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2031 StringRef s = sec->name; 2032 if (!isValidCIdentifier(s)) 2033 return; 2034 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 2035 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 2036 } 2037 2038 static bool needsPtLoad(OutputSection *sec) { 2039 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2040 return false; 2041 2042 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2043 // responsible for allocating space for them, not the PT_LOAD that 2044 // contains the TLS initialization image. 2045 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2046 return false; 2047 return true; 2048 } 2049 2050 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2051 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2052 // RW. This means that there is no alignment in the RO to RX transition and we 2053 // cannot create a PT_LOAD there. 2054 static uint64_t computeFlags(uint64_t flags) { 2055 if (config->omagic) 2056 return PF_R | PF_W | PF_X; 2057 if (config->executeOnly && (flags & PF_X)) 2058 return flags & ~PF_R; 2059 if (config->singleRoRx && !(flags & PF_W)) 2060 return flags | PF_X; 2061 return flags; 2062 } 2063 2064 // Decide which program headers to create and which sections to include in each 2065 // one. 2066 template <class ELFT> 2067 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2068 std::vector<PhdrEntry *> ret; 2069 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2070 ret.push_back(make<PhdrEntry>(type, flags)); 2071 return ret.back(); 2072 }; 2073 2074 unsigned partNo = part.getNumber(); 2075 bool isMain = partNo == 1; 2076 2077 // Add the first PT_LOAD segment for regular output sections. 2078 uint64_t flags = computeFlags(PF_R); 2079 PhdrEntry *load = nullptr; 2080 2081 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2082 // PT_LOAD. 2083 if (!config->nmagic && !config->omagic) { 2084 // The first phdr entry is PT_PHDR which describes the program header 2085 // itself. 2086 if (isMain) 2087 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2088 else 2089 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2090 2091 // PT_INTERP must be the second entry if exists. 2092 if (OutputSection *cmd = findSection(".interp", partNo)) 2093 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2094 2095 // Add the headers. We will remove them if they don't fit. 2096 // In the other partitions the headers are ordinary sections, so they don't 2097 // need to be added here. 2098 if (isMain) { 2099 load = addHdr(PT_LOAD, flags); 2100 load->add(Out::elfHeader); 2101 load->add(Out::programHeaders); 2102 } 2103 } 2104 2105 // PT_GNU_RELRO includes all sections that should be marked as 2106 // read-only by dynamic linker after processing relocations. 2107 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2108 // an error message if more than one PT_GNU_RELRO PHDR is required. 2109 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2110 bool inRelroPhdr = false; 2111 OutputSection *relroEnd = nullptr; 2112 for (OutputSection *sec : outputSections) { 2113 if (sec->partition != partNo || !needsPtLoad(sec)) 2114 continue; 2115 if (isRelroSection(sec)) { 2116 inRelroPhdr = true; 2117 if (!relroEnd) 2118 relRo->add(sec); 2119 else 2120 error("section: " + sec->name + " is not contiguous with other relro" + 2121 " sections"); 2122 } else if (inRelroPhdr) { 2123 inRelroPhdr = false; 2124 relroEnd = sec; 2125 } 2126 } 2127 2128 for (OutputSection *sec : outputSections) { 2129 if (!(sec->flags & SHF_ALLOC)) 2130 break; 2131 if (!needsPtLoad(sec)) 2132 continue; 2133 2134 // Normally, sections in partitions other than the current partition are 2135 // ignored. But partition number 255 is a special case: it contains the 2136 // partition end marker (.part.end). It needs to be added to the main 2137 // partition so that a segment is created for it in the main partition, 2138 // which will cause the dynamic loader to reserve space for the other 2139 // partitions. 2140 if (sec->partition != partNo) { 2141 if (isMain && sec->partition == 255) 2142 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2143 continue; 2144 } 2145 2146 // Segments are contiguous memory regions that has the same attributes 2147 // (e.g. executable or writable). There is one phdr for each segment. 2148 // Therefore, we need to create a new phdr when the next section has 2149 // different flags or is loaded at a discontiguous address or memory 2150 // region using AT or AT> linker script command, respectively. At the same 2151 // time, we don't want to create a separate load segment for the headers, 2152 // even if the first output section has an AT or AT> attribute. 2153 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2154 bool sameLMARegion = 2155 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2156 if (!(load && newFlags == flags && sec != relroEnd && 2157 sec->memRegion == load->firstSec->memRegion && 2158 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2159 load = addHdr(PT_LOAD, newFlags); 2160 flags = newFlags; 2161 } 2162 2163 load->add(sec); 2164 } 2165 2166 // Add a TLS segment if any. 2167 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2168 for (OutputSection *sec : outputSections) 2169 if (sec->partition == partNo && sec->flags & SHF_TLS) 2170 tlsHdr->add(sec); 2171 if (tlsHdr->firstSec) 2172 ret.push_back(tlsHdr); 2173 2174 // Add an entry for .dynamic. 2175 if (OutputSection *sec = part.dynamic->getParent()) 2176 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2177 2178 if (relRo->firstSec) 2179 ret.push_back(relRo); 2180 2181 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2182 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2183 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2184 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2185 ->add(part.ehFrameHdr->getParent()); 2186 2187 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2188 // the dynamic linker fill the segment with random data. 2189 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2190 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2191 2192 if (config->zGnustack != GnuStackKind::None) { 2193 // PT_GNU_STACK is a special section to tell the loader to make the 2194 // pages for the stack non-executable. If you really want an executable 2195 // stack, you can pass -z execstack, but that's not recommended for 2196 // security reasons. 2197 unsigned perm = PF_R | PF_W; 2198 if (config->zGnustack == GnuStackKind::Exec) 2199 perm |= PF_X; 2200 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2201 } 2202 2203 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2204 // is expected to perform W^X violations, such as calling mprotect(2) or 2205 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2206 // OpenBSD. 2207 if (config->zWxneeded) 2208 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2209 2210 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2211 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2212 2213 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2214 // same alignment. 2215 PhdrEntry *note = nullptr; 2216 for (OutputSection *sec : outputSections) { 2217 if (sec->partition != partNo) 2218 continue; 2219 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2220 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2221 note = addHdr(PT_NOTE, PF_R); 2222 note->add(sec); 2223 } else { 2224 note = nullptr; 2225 } 2226 } 2227 return ret; 2228 } 2229 2230 template <class ELFT> 2231 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2232 unsigned pType, unsigned pFlags) { 2233 unsigned partNo = part.getNumber(); 2234 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2235 return cmd->partition == partNo && cmd->type == shType; 2236 }); 2237 if (i == outputSections.end()) 2238 return; 2239 2240 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2241 entry->add(*i); 2242 part.phdrs.push_back(entry); 2243 } 2244 2245 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2246 // This is achieved by assigning an alignment expression to addrExpr of each 2247 // such section. 2248 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2249 const PhdrEntry *prev; 2250 auto pageAlign = [&](const PhdrEntry *p) { 2251 OutputSection *cmd = p->firstSec; 2252 if (!cmd) 2253 return; 2254 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2255 if (!cmd->addrExpr) { 2256 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2257 // padding in the file contents. 2258 // 2259 // When -z separate-code is used we must not have any overlap in pages 2260 // between an executable segment and a non-executable segment. We align to 2261 // the next maximum page size boundary on transitions between executable 2262 // and non-executable segments. 2263 // 2264 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2265 // sections will be extracted to a separate file. Align to the next 2266 // maximum page size boundary so that we can find the ELF header at the 2267 // start. We cannot benefit from overlapping p_offset ranges with the 2268 // previous segment anyway. 2269 if (config->zSeparate == SeparateSegmentKind::Loadable || 2270 (config->zSeparate == SeparateSegmentKind::Code && prev && 2271 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2272 cmd->type == SHT_LLVM_PART_EHDR) 2273 cmd->addrExpr = [] { 2274 return alignTo(script->getDot(), config->maxPageSize); 2275 }; 2276 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2277 // it must be the RW. Align to p_align(PT_TLS) to make sure 2278 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2279 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2280 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2281 // be congruent to 0 modulo p_align(PT_TLS). 2282 // 2283 // Technically this is not required, but as of 2019, some dynamic loaders 2284 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2285 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2286 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2287 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2288 // blocks correctly. We need to keep the workaround for a while. 2289 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2290 cmd->addrExpr = [] { 2291 return alignTo(script->getDot(), config->maxPageSize) + 2292 alignTo(script->getDot() % config->maxPageSize, 2293 Out::tlsPhdr->p_align); 2294 }; 2295 else 2296 cmd->addrExpr = [] { 2297 return alignTo(script->getDot(), config->maxPageSize) + 2298 script->getDot() % config->maxPageSize; 2299 }; 2300 } 2301 }; 2302 2303 for (Partition &part : partitions) { 2304 prev = nullptr; 2305 for (const PhdrEntry *p : part.phdrs) 2306 if (p->p_type == PT_LOAD && p->firstSec) { 2307 pageAlign(p); 2308 prev = p; 2309 } 2310 } 2311 } 2312 2313 // Compute an in-file position for a given section. The file offset must be the 2314 // same with its virtual address modulo the page size, so that the loader can 2315 // load executables without any address adjustment. 2316 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2317 // The first section in a PT_LOAD has to have congruent offset and address 2318 // modulo the maximum page size. 2319 if (os->ptLoad && os->ptLoad->firstSec == os) 2320 return alignTo(off, os->ptLoad->p_align, os->addr); 2321 2322 // File offsets are not significant for .bss sections other than the first one 2323 // in a PT_LOAD. By convention, we keep section offsets monotonically 2324 // increasing rather than setting to zero. 2325 if (os->type == SHT_NOBITS) 2326 return off; 2327 2328 // If the section is not in a PT_LOAD, we just have to align it. 2329 if (!os->ptLoad) 2330 return alignTo(off, os->alignment); 2331 2332 // If two sections share the same PT_LOAD the file offset is calculated 2333 // using this formula: Off2 = Off1 + (VA2 - VA1). 2334 OutputSection *first = os->ptLoad->firstSec; 2335 return first->offset + os->addr - first->addr; 2336 } 2337 2338 // Set an in-file position to a given section and returns the end position of 2339 // the section. 2340 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2341 off = computeFileOffset(os, off); 2342 os->offset = off; 2343 2344 if (os->type == SHT_NOBITS) 2345 return off; 2346 return off + os->size; 2347 } 2348 2349 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2350 uint64_t off = 0; 2351 for (OutputSection *sec : outputSections) 2352 if (sec->flags & SHF_ALLOC) 2353 off = setFileOffset(sec, off); 2354 fileSize = alignTo(off, config->wordsize); 2355 } 2356 2357 static std::string rangeToString(uint64_t addr, uint64_t len) { 2358 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2359 } 2360 2361 // Assign file offsets to output sections. 2362 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2363 uint64_t off = 0; 2364 off = setFileOffset(Out::elfHeader, off); 2365 off = setFileOffset(Out::programHeaders, off); 2366 2367 PhdrEntry *lastRX = nullptr; 2368 for (Partition &part : partitions) 2369 for (PhdrEntry *p : part.phdrs) 2370 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2371 lastRX = p; 2372 2373 for (OutputSection *sec : outputSections) { 2374 off = setFileOffset(sec, off); 2375 2376 // If this is a last section of the last executable segment and that 2377 // segment is the last loadable segment, align the offset of the 2378 // following section to avoid loading non-segments parts of the file. 2379 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2380 lastRX->lastSec == sec) 2381 off = alignTo(off, config->commonPageSize); 2382 } 2383 2384 sectionHeaderOff = alignTo(off, config->wordsize); 2385 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2386 2387 // Our logic assumes that sections have rising VA within the same segment. 2388 // With use of linker scripts it is possible to violate this rule and get file 2389 // offset overlaps or overflows. That should never happen with a valid script 2390 // which does not move the location counter backwards and usually scripts do 2391 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2392 // kernel, which control segment distribution explicitly and move the counter 2393 // backwards, so we have to allow doing that to support linking them. We 2394 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2395 // we want to prevent file size overflows because it would crash the linker. 2396 for (OutputSection *sec : outputSections) { 2397 if (sec->type == SHT_NOBITS) 2398 continue; 2399 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2400 error("unable to place section " + sec->name + " at file offset " + 2401 rangeToString(sec->offset, sec->size) + 2402 "; check your linker script for overflows"); 2403 } 2404 } 2405 2406 // Finalize the program headers. We call this function after we assign 2407 // file offsets and VAs to all sections. 2408 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2409 for (PhdrEntry *p : part.phdrs) { 2410 OutputSection *first = p->firstSec; 2411 OutputSection *last = p->lastSec; 2412 2413 if (first) { 2414 p->p_filesz = last->offset - first->offset; 2415 if (last->type != SHT_NOBITS) 2416 p->p_filesz += last->size; 2417 2418 p->p_memsz = last->addr + last->size - first->addr; 2419 p->p_offset = first->offset; 2420 p->p_vaddr = first->addr; 2421 2422 // File offsets in partitions other than the main partition are relative 2423 // to the offset of the ELF headers. Perform that adjustment now. 2424 if (part.elfHeader) 2425 p->p_offset -= part.elfHeader->getParent()->offset; 2426 2427 if (!p->hasLMA) 2428 p->p_paddr = first->getLMA(); 2429 } 2430 2431 if (p->p_type == PT_GNU_RELRO) { 2432 p->p_align = 1; 2433 // musl/glibc ld.so rounds the size down, so we need to round up 2434 // to protect the last page. This is a no-op on FreeBSD which always 2435 // rounds up. 2436 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2437 p->p_offset; 2438 } 2439 } 2440 } 2441 2442 // A helper struct for checkSectionOverlap. 2443 namespace { 2444 struct SectionOffset { 2445 OutputSection *sec; 2446 uint64_t offset; 2447 }; 2448 } // namespace 2449 2450 // Check whether sections overlap for a specific address range (file offsets, 2451 // load and virtual addresses). 2452 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2453 bool isVirtualAddr) { 2454 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2455 return a.offset < b.offset; 2456 }); 2457 2458 // Finding overlap is easy given a vector is sorted by start position. 2459 // If an element starts before the end of the previous element, they overlap. 2460 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2461 SectionOffset a = sections[i - 1]; 2462 SectionOffset b = sections[i]; 2463 if (b.offset >= a.offset + a.sec->size) 2464 continue; 2465 2466 // If both sections are in OVERLAY we allow the overlapping of virtual 2467 // addresses, because it is what OVERLAY was designed for. 2468 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2469 continue; 2470 2471 errorOrWarn("section " + a.sec->name + " " + name + 2472 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2473 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2474 b.sec->name + " range is " + 2475 rangeToString(b.offset, b.sec->size)); 2476 } 2477 } 2478 2479 // Check for overlapping sections and address overflows. 2480 // 2481 // In this function we check that none of the output sections have overlapping 2482 // file offsets. For SHF_ALLOC sections we also check that the load address 2483 // ranges and the virtual address ranges don't overlap 2484 template <class ELFT> void Writer<ELFT>::checkSections() { 2485 // First, check that section's VAs fit in available address space for target. 2486 for (OutputSection *os : outputSections) 2487 if ((os->addr + os->size < os->addr) || 2488 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2489 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2490 " of size 0x" + utohexstr(os->size) + 2491 " exceeds available address space"); 2492 2493 // Check for overlapping file offsets. In this case we need to skip any 2494 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2495 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2496 // binary is specified only add SHF_ALLOC sections are added to the output 2497 // file so we skip any non-allocated sections in that case. 2498 std::vector<SectionOffset> fileOffs; 2499 for (OutputSection *sec : outputSections) 2500 if (sec->size > 0 && sec->type != SHT_NOBITS && 2501 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2502 fileOffs.push_back({sec, sec->offset}); 2503 checkOverlap("file", fileOffs, false); 2504 2505 // When linking with -r there is no need to check for overlapping virtual/load 2506 // addresses since those addresses will only be assigned when the final 2507 // executable/shared object is created. 2508 if (config->relocatable) 2509 return; 2510 2511 // Checking for overlapping virtual and load addresses only needs to take 2512 // into account SHF_ALLOC sections since others will not be loaded. 2513 // Furthermore, we also need to skip SHF_TLS sections since these will be 2514 // mapped to other addresses at runtime and can therefore have overlapping 2515 // ranges in the file. 2516 std::vector<SectionOffset> vmas; 2517 for (OutputSection *sec : outputSections) 2518 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2519 vmas.push_back({sec, sec->addr}); 2520 checkOverlap("virtual address", vmas, true); 2521 2522 // Finally, check that the load addresses don't overlap. This will usually be 2523 // the same as the virtual addresses but can be different when using a linker 2524 // script with AT(). 2525 std::vector<SectionOffset> lmas; 2526 for (OutputSection *sec : outputSections) 2527 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2528 lmas.push_back({sec, sec->getLMA()}); 2529 checkOverlap("load address", lmas, false); 2530 } 2531 2532 // The entry point address is chosen in the following ways. 2533 // 2534 // 1. the '-e' entry command-line option; 2535 // 2. the ENTRY(symbol) command in a linker control script; 2536 // 3. the value of the symbol _start, if present; 2537 // 4. the number represented by the entry symbol, if it is a number; 2538 // 5. the address of the first byte of the .text section, if present; 2539 // 6. the address 0. 2540 static uint64_t getEntryAddr() { 2541 // Case 1, 2 or 3 2542 if (Symbol *b = symtab->find(config->entry)) 2543 return b->getVA(); 2544 2545 // Case 4 2546 uint64_t addr; 2547 if (to_integer(config->entry, addr)) 2548 return addr; 2549 2550 // Case 5 2551 if (OutputSection *sec = findSection(".text")) { 2552 if (config->warnMissingEntry) 2553 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2554 utohexstr(sec->addr)); 2555 return sec->addr; 2556 } 2557 2558 // Case 6 2559 if (config->warnMissingEntry) 2560 warn("cannot find entry symbol " + config->entry + 2561 "; not setting start address"); 2562 return 0; 2563 } 2564 2565 static uint16_t getELFType() { 2566 if (config->isPic) 2567 return ET_DYN; 2568 if (config->relocatable) 2569 return ET_REL; 2570 return ET_EXEC; 2571 } 2572 2573 template <class ELFT> void Writer<ELFT>::writeHeader() { 2574 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2575 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2576 2577 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2578 eHdr->e_type = getELFType(); 2579 eHdr->e_entry = getEntryAddr(); 2580 eHdr->e_shoff = sectionHeaderOff; 2581 2582 // Write the section header table. 2583 // 2584 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2585 // and e_shstrndx fields. When the value of one of these fields exceeds 2586 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2587 // use fields in the section header at index 0 to store 2588 // the value. The sentinel values and fields are: 2589 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2590 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2591 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2592 size_t num = outputSections.size() + 1; 2593 if (num >= SHN_LORESERVE) 2594 sHdrs->sh_size = num; 2595 else 2596 eHdr->e_shnum = num; 2597 2598 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2599 if (strTabIndex >= SHN_LORESERVE) { 2600 sHdrs->sh_link = strTabIndex; 2601 eHdr->e_shstrndx = SHN_XINDEX; 2602 } else { 2603 eHdr->e_shstrndx = strTabIndex; 2604 } 2605 2606 for (OutputSection *sec : outputSections) 2607 sec->writeHeaderTo<ELFT>(++sHdrs); 2608 } 2609 2610 // Open a result file. 2611 template <class ELFT> void Writer<ELFT>::openFile() { 2612 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2613 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2614 error("output file too large: " + Twine(fileSize) + " bytes"); 2615 return; 2616 } 2617 2618 unlinkAsync(config->outputFile); 2619 unsigned flags = 0; 2620 if (!config->relocatable) 2621 flags |= FileOutputBuffer::F_executable; 2622 if (!config->mmapOutputFile) 2623 flags |= FileOutputBuffer::F_no_mmap; 2624 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2625 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2626 2627 if (!bufferOrErr) { 2628 error("failed to open " + config->outputFile + ": " + 2629 llvm::toString(bufferOrErr.takeError())); 2630 return; 2631 } 2632 buffer = std::move(*bufferOrErr); 2633 Out::bufferStart = buffer->getBufferStart(); 2634 } 2635 2636 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2637 for (OutputSection *sec : outputSections) 2638 if (sec->flags & SHF_ALLOC) 2639 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2640 } 2641 2642 static void fillTrap(uint8_t *i, uint8_t *end) { 2643 for (; i + 4 <= end; i += 4) 2644 memcpy(i, &target->trapInstr, 4); 2645 } 2646 2647 // Fill the last page of executable segments with trap instructions 2648 // instead of leaving them as zero. Even though it is not required by any 2649 // standard, it is in general a good thing to do for security reasons. 2650 // 2651 // We'll leave other pages in segments as-is because the rest will be 2652 // overwritten by output sections. 2653 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2654 for (Partition &part : partitions) { 2655 // Fill the last page. 2656 for (PhdrEntry *p : part.phdrs) 2657 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2658 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2659 config->commonPageSize), 2660 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2661 config->commonPageSize)); 2662 2663 // Round up the file size of the last segment to the page boundary iff it is 2664 // an executable segment to ensure that other tools don't accidentally 2665 // trim the instruction padding (e.g. when stripping the file). 2666 PhdrEntry *last = nullptr; 2667 for (PhdrEntry *p : part.phdrs) 2668 if (p->p_type == PT_LOAD) 2669 last = p; 2670 2671 if (last && (last->p_flags & PF_X)) 2672 last->p_memsz = last->p_filesz = 2673 alignTo(last->p_filesz, config->commonPageSize); 2674 } 2675 } 2676 2677 // Write section contents to a mmap'ed file. 2678 template <class ELFT> void Writer<ELFT>::writeSections() { 2679 // In -r or -emit-relocs mode, write the relocation sections first as in 2680 // ELf_Rel targets we might find out that we need to modify the relocated 2681 // section while doing it. 2682 for (OutputSection *sec : outputSections) 2683 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2684 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2685 2686 for (OutputSection *sec : outputSections) 2687 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2688 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2689 } 2690 2691 // Split one uint8 array into small pieces of uint8 arrays. 2692 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2693 size_t chunkSize) { 2694 std::vector<ArrayRef<uint8_t>> ret; 2695 while (arr.size() > chunkSize) { 2696 ret.push_back(arr.take_front(chunkSize)); 2697 arr = arr.drop_front(chunkSize); 2698 } 2699 if (!arr.empty()) 2700 ret.push_back(arr); 2701 return ret; 2702 } 2703 2704 // Computes a hash value of Data using a given hash function. 2705 // In order to utilize multiple cores, we first split data into 1MB 2706 // chunks, compute a hash for each chunk, and then compute a hash value 2707 // of the hash values. 2708 static void 2709 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2710 llvm::ArrayRef<uint8_t> data, 2711 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2712 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2713 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2714 2715 // Compute hash values. 2716 parallelForEachN(0, chunks.size(), [&](size_t i) { 2717 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2718 }); 2719 2720 // Write to the final output buffer. 2721 hashFn(hashBuf.data(), hashes); 2722 } 2723 2724 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2725 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2726 return; 2727 2728 if (config->buildId == BuildIdKind::Hexstring) { 2729 for (Partition &part : partitions) 2730 part.buildId->writeBuildId(config->buildIdVector); 2731 return; 2732 } 2733 2734 // Compute a hash of all sections of the output file. 2735 size_t hashSize = mainPart->buildId->hashSize; 2736 std::vector<uint8_t> buildId(hashSize); 2737 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2738 2739 switch (config->buildId) { 2740 case BuildIdKind::Fast: 2741 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2742 write64le(dest, xxHash64(arr)); 2743 }); 2744 break; 2745 case BuildIdKind::Md5: 2746 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2747 memcpy(dest, MD5::hash(arr).data(), hashSize); 2748 }); 2749 break; 2750 case BuildIdKind::Sha1: 2751 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2752 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2753 }); 2754 break; 2755 case BuildIdKind::Uuid: 2756 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2757 error("entropy source failure: " + ec.message()); 2758 break; 2759 default: 2760 llvm_unreachable("unknown BuildIdKind"); 2761 } 2762 for (Partition &part : partitions) 2763 part.buildId->writeBuildId(buildId); 2764 } 2765 2766 template void createSyntheticSections<ELF32LE>(); 2767 template void createSyntheticSections<ELF32BE>(); 2768 template void createSyntheticSections<ELF64LE>(); 2769 template void createSyntheticSections<ELF64BE>(); 2770 2771 template void writeResult<ELF32LE>(); 2772 template void writeResult<ELF32BE>(); 2773 template void writeResult<ELF64LE>(); 2774 template void writeResult<ELF64BE>(); 2775 2776 } // namespace elf 2777 } // namespace lld 2778