1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "Config.h" 12 #include "LinkerScript.h" 13 #include "OutputSections.h" 14 #include "Relocations.h" 15 #include "Strings.h" 16 #include "SymbolTable.h" 17 #include "Target.h" 18 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/Support/FileOutputBuffer.h" 22 #include "llvm/Support/StringSaver.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <climits> 25 26 using namespace llvm; 27 using namespace llvm::ELF; 28 using namespace llvm::object; 29 using namespace llvm::support; 30 using namespace llvm::support::endian; 31 32 using namespace lld; 33 using namespace lld::elf; 34 35 namespace { 36 // The writer writes a SymbolTable result to a file. 37 template <class ELFT> class Writer { 38 public: 39 typedef typename ELFT::uint uintX_t; 40 typedef typename ELFT::Shdr Elf_Shdr; 41 typedef typename ELFT::Ehdr Elf_Ehdr; 42 typedef typename ELFT::Phdr Elf_Phdr; 43 typedef typename ELFT::Sym Elf_Sym; 44 typedef typename ELFT::SymRange Elf_Sym_Range; 45 typedef typename ELFT::Rela Elf_Rela; 46 void run(); 47 48 private: 49 typedef PhdrEntry<ELFT> Phdr; 50 51 void copyLocalSymbols(); 52 void addReservedSymbols(); 53 void createSections(); 54 void forEachRelSec( 55 std::function<void(InputSectionBase<ELFT> &, const typename ELFT::Shdr &)> 56 Fn); 57 void sortSections(); 58 void finalizeSections(); 59 void addPredefinedSections(); 60 bool needsGot(); 61 62 std::vector<Phdr> createPhdrs(); 63 void assignAddresses(); 64 void assignFileOffsets(); 65 void assignFileOffsetsBinary(); 66 void setPhdrs(); 67 void fixHeaders(); 68 void fixSectionAlignments(); 69 void fixAbsoluteSymbols(); 70 void openFile(); 71 void writeHeader(); 72 void writeSections(); 73 void writeSectionsBinary(); 74 void writeBuildId(); 75 76 std::unique_ptr<FileOutputBuffer> Buffer; 77 78 BumpPtrAllocator Alloc; 79 std::vector<OutputSectionBase<ELFT> *> OutputSections; 80 OutputSectionFactory<ELFT> Factory; 81 82 void addRelIpltSymbols(); 83 void addStartEndSymbols(); 84 void addStartStopSymbols(OutputSectionBase<ELFT> *Sec); 85 OutputSectionBase<ELFT> *findSection(StringRef Name); 86 87 std::vector<Phdr> Phdrs; 88 89 uintX_t FileSize; 90 uintX_t SectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 StringRef elf::getOutputSectionName(StringRef Name, BumpPtrAllocator &Alloc) { 95 if (Config->Relocatable) 96 return Name; 97 98 for (StringRef V : 99 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", 100 ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 101 ".gcc_except_table.", ".tdata.", ".ARM.exidx."}) { 102 StringRef Prefix = V.drop_back(); 103 if (Name.startswith(V) || Name == Prefix) 104 return Prefix; 105 } 106 107 // ".zdebug_" is a prefix for ZLIB-compressed sections. 108 // Because we decompressed input sections, we want to remove 'z'. 109 if (Name.startswith(".zdebug_")) 110 return StringSaver(Alloc).save(Twine(".") + Name.substr(2)); 111 return Name; 112 } 113 114 template <class ELFT> void elf::reportDiscarded(InputSectionBase<ELFT> *IS) { 115 if (!Config->PrintGcSections || !IS || IS == &InputSection<ELFT>::Discarded || 116 IS->Live) 117 return; 118 errs() << "removing unused section from '" << IS->Name << "' in file '" 119 << IS->getFile()->getName() << "'\n"; 120 } 121 122 template <class ELFT> static bool needsInterpSection() { 123 return !Symtab<ELFT>::X->getSharedFiles().empty() && 124 !Config->DynamicLinker.empty() && 125 !Script<ELFT>::X->ignoreInterpSection(); 126 } 127 128 template <class ELFT> void elf::writeResult() { 129 typedef typename ELFT::uint uintX_t; 130 typedef typename ELFT::Ehdr Elf_Ehdr; 131 132 // Create singleton output sections. 133 OutputSection<ELFT> Bss(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); 134 DynamicSection<ELFT> Dynamic; 135 EhOutputSection<ELFT> EhFrame; 136 GotSection<ELFT> Got; 137 PltSection<ELFT> Plt; 138 RelocationSection<ELFT> RelaDyn(Config->Rela ? ".rela.dyn" : ".rel.dyn", 139 Config->ZCombreloc); 140 StringTableSection<ELFT> ShStrTab(".shstrtab", false); 141 VersionTableSection<ELFT> VerSym; 142 VersionNeedSection<ELFT> VerNeed; 143 144 OutputSectionBase<ELFT> ElfHeader("", 0, SHF_ALLOC); 145 ElfHeader.setSize(sizeof(Elf_Ehdr)); 146 OutputSectionBase<ELFT> ProgramHeaders("", 0, SHF_ALLOC); 147 ProgramHeaders.updateAlignment(sizeof(uintX_t)); 148 149 // Instantiate optional output sections if they are needed. 150 std::unique_ptr<InterpSection<ELFT>> Interp; 151 std::unique_ptr<BuildIdSection<ELFT>> BuildId; 152 std::unique_ptr<StringTableSection<ELFT>> DynStrTab; 153 std::unique_ptr<SymbolTableSection<ELFT>> DynSymTab; 154 std::unique_ptr<EhFrameHeader<ELFT>> EhFrameHdr; 155 std::unique_ptr<GnuHashTableSection<ELFT>> GnuHashTab; 156 std::unique_ptr<GotPltSection<ELFT>> GotPlt; 157 std::unique_ptr<HashTableSection<ELFT>> HashTab; 158 std::unique_ptr<RelocationSection<ELFT>> RelaPlt; 159 std::unique_ptr<StringTableSection<ELFT>> StrTab; 160 std::unique_ptr<SymbolTableSection<ELFT>> SymTabSec; 161 std::unique_ptr<OutputSection<ELFT>> MipsRldMap; 162 std::unique_ptr<VersionDefinitionSection<ELFT>> VerDef; 163 164 if (needsInterpSection<ELFT>()) 165 Interp.reset(new InterpSection<ELFT>); 166 167 if (Config->BuildId == BuildIdKind::Fast) 168 BuildId.reset(new BuildIdFastHash<ELFT>); 169 else if (Config->BuildId == BuildIdKind::Md5) 170 BuildId.reset(new BuildIdMd5<ELFT>); 171 else if (Config->BuildId == BuildIdKind::Sha1) 172 BuildId.reset(new BuildIdSha1<ELFT>); 173 else if (Config->BuildId == BuildIdKind::Uuid) 174 BuildId.reset(new BuildIdUuid<ELFT>); 175 else if (Config->BuildId == BuildIdKind::Hexstring) 176 BuildId.reset(new BuildIdHexstring<ELFT>); 177 178 if (!Symtab<ELFT>::X->getSharedFiles().empty() || Config->Pic) { 179 DynStrTab.reset(new StringTableSection<ELFT>(".dynstr", true)); 180 DynSymTab.reset(new SymbolTableSection<ELFT>(*DynStrTab)); 181 } 182 183 if (Config->EhFrameHdr) 184 EhFrameHdr.reset(new EhFrameHeader<ELFT>); 185 186 if (Config->GnuHash) 187 GnuHashTab.reset(new GnuHashTableSection<ELFT>); 188 if (Config->SysvHash) 189 HashTab.reset(new HashTableSection<ELFT>); 190 StringRef S = Config->Rela ? ".rela.plt" : ".rel.plt"; 191 GotPlt.reset(new GotPltSection<ELFT>); 192 RelaPlt.reset(new RelocationSection<ELFT>(S, false /*Sort*/)); 193 if (Config->Strip != StripPolicy::All) { 194 StrTab.reset(new StringTableSection<ELFT>(".strtab", false)); 195 SymTabSec.reset(new SymbolTableSection<ELFT>(*StrTab)); 196 } 197 if (Config->EMachine == EM_MIPS && !Config->Shared) { 198 // This is a MIPS specific section to hold a space within the data segment 199 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. 200 // See "Dynamic section" in Chapter 5 in the following document: 201 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 202 MipsRldMap.reset(new OutputSection<ELFT>(".rld_map", SHT_PROGBITS, 203 SHF_ALLOC | SHF_WRITE)); 204 MipsRldMap->setSize(sizeof(uintX_t)); 205 MipsRldMap->updateAlignment(sizeof(uintX_t)); 206 } 207 if (!Config->VersionDefinitions.empty()) 208 VerDef.reset(new VersionDefinitionSection<ELFT>()); 209 210 Out<ELFT>::Bss = &Bss; 211 Out<ELFT>::BuildId = BuildId.get(); 212 Out<ELFT>::DynStrTab = DynStrTab.get(); 213 Out<ELFT>::DynSymTab = DynSymTab.get(); 214 Out<ELFT>::Dynamic = &Dynamic; 215 Out<ELFT>::EhFrame = &EhFrame; 216 Out<ELFT>::EhFrameHdr = EhFrameHdr.get(); 217 Out<ELFT>::GnuHashTab = GnuHashTab.get(); 218 Out<ELFT>::Got = &Got; 219 Out<ELFT>::GotPlt = GotPlt.get(); 220 Out<ELFT>::HashTab = HashTab.get(); 221 Out<ELFT>::Interp = Interp.get(); 222 Out<ELFT>::Plt = &Plt; 223 Out<ELFT>::RelaDyn = &RelaDyn; 224 Out<ELFT>::RelaPlt = RelaPlt.get(); 225 Out<ELFT>::ShStrTab = &ShStrTab; 226 Out<ELFT>::StrTab = StrTab.get(); 227 Out<ELFT>::SymTab = SymTabSec.get(); 228 Out<ELFT>::VerDef = VerDef.get(); 229 Out<ELFT>::VerSym = &VerSym; 230 Out<ELFT>::VerNeed = &VerNeed; 231 Out<ELFT>::MipsRldMap = MipsRldMap.get(); 232 Out<ELFT>::Opd = nullptr; 233 Out<ELFT>::OpdBuf = nullptr; 234 Out<ELFT>::TlsPhdr = nullptr; 235 Out<ELFT>::ElfHeader = &ElfHeader; 236 Out<ELFT>::ProgramHeaders = &ProgramHeaders; 237 238 Out<ELFT>::PreinitArray = nullptr; 239 Out<ELFT>::InitArray = nullptr; 240 Out<ELFT>::FiniArray = nullptr; 241 242 Writer<ELFT>().run(); 243 Out<ELFT>::Pool.clear(); 244 } 245 246 template <class ELFT> static std::vector<DefinedCommon *> getCommonSymbols() { 247 std::vector<DefinedCommon *> V; 248 for (Symbol *S : Symtab<ELFT>::X->getSymbols()) 249 if (auto *B = dyn_cast<DefinedCommon>(S->body())) 250 V.push_back(B); 251 return V; 252 } 253 254 // The main function of the writer. 255 template <class ELFT> void Writer<ELFT>::run() { 256 addReservedSymbols(); 257 258 if (Target->NeedsThunks) 259 forEachRelSec(createThunks<ELFT>); 260 261 CommonInputSection<ELFT> Common(getCommonSymbols<ELFT>()); 262 CommonInputSection<ELFT>::X = &Common; 263 264 Script<ELFT>::X->OutputSections = &OutputSections; 265 if (ScriptConfig->HasSections) { 266 Script<ELFT>::X->createSections(Factory); 267 } else { 268 createSections(); 269 Script<ELFT>::X->processCommands(Factory); 270 } 271 272 if (Config->Discard != DiscardPolicy::All) 273 copyLocalSymbols(); 274 275 finalizeSections(); 276 if (HasError) 277 return; 278 279 if (Config->Relocatable) { 280 assignFileOffsets(); 281 } else { 282 Phdrs = Script<ELFT>::X->hasPhdrsCommands() ? Script<ELFT>::X->createPhdrs() 283 : createPhdrs(); 284 fixHeaders(); 285 if (ScriptConfig->HasSections) { 286 Script<ELFT>::X->assignAddresses(Phdrs); 287 } else { 288 fixSectionAlignments(); 289 assignAddresses(); 290 } 291 292 if (!Config->OFormatBinary) 293 assignFileOffsets(); 294 else 295 assignFileOffsetsBinary(); 296 297 setPhdrs(); 298 fixAbsoluteSymbols(); 299 } 300 301 openFile(); 302 if (HasError) 303 return; 304 if (!Config->OFormatBinary) { 305 writeHeader(); 306 writeSections(); 307 } else { 308 writeSectionsBinary(); 309 } 310 writeBuildId(); 311 if (HasError) 312 return; 313 if (auto EC = Buffer->commit()) 314 error(EC, "failed to write to the output file"); 315 } 316 317 template <class ELFT> 318 static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName, 319 const SymbolBody &B) { 320 if (B.isFile()) 321 return false; 322 323 // We keep sections in symtab for relocatable output. 324 if (B.isSection()) 325 return Config->Relocatable; 326 327 // If sym references a section in a discarded group, don't keep it. 328 if (Sec == &InputSection<ELFT>::Discarded) 329 return false; 330 331 if (Config->Discard == DiscardPolicy::None) 332 return true; 333 334 // In ELF assembly .L symbols are normally discarded by the assembler. 335 // If the assembler fails to do so, the linker discards them if 336 // * --discard-locals is used. 337 // * The symbol is in a SHF_MERGE section, which is normally the reason for 338 // the assembler keeping the .L symbol. 339 if (!SymName.startswith(".L") && !SymName.empty()) 340 return true; 341 342 if (Config->Discard == DiscardPolicy::Locals) 343 return false; 344 345 return !Sec || !(Sec->getSectionHdr()->sh_flags & SHF_MERGE); 346 } 347 348 template <class ELFT> static bool includeInSymtab(const SymbolBody &B) { 349 if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) 350 return false; 351 352 if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) { 353 // Always include absolute symbols. 354 if (!D->Section) 355 return true; 356 // Exclude symbols pointing to garbage-collected sections. 357 if (!D->Section->Live) 358 return false; 359 if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section)) 360 if (!S->getSectionPiece(D->Value)->Live) 361 return false; 362 } 363 return true; 364 } 365 366 // Local symbols are not in the linker's symbol table. This function scans 367 // each object file's symbol table to copy local symbols to the output. 368 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 369 if (!Out<ELFT>::SymTab) 370 return; 371 for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { 372 StringRef StrTab = F->getStringTable(); 373 for (SymbolBody *B : F->getLocalSymbols()) { 374 if (!B->IsLocal) 375 fatal(getFilename(F) + 376 ": broken object: getLocalSymbols returns a non-local symbol"); 377 auto *DR = dyn_cast<DefinedRegular<ELFT>>(B); 378 // No reason to keep local undefined symbol in symtab. 379 if (!DR) 380 continue; 381 if (!includeInSymtab<ELFT>(*B)) 382 continue; 383 if (B->getNameOffset() >= StrTab.size()) 384 fatal(getFilename(F) + ": invalid symbol name offset"); 385 StringRef SymName(StrTab.data() + B->getNameOffset()); 386 InputSectionBase<ELFT> *Sec = DR->Section; 387 if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B)) 388 continue; 389 ++Out<ELFT>::SymTab->NumLocals; 390 if (Config->Relocatable) 391 B->DynsymIndex = Out<ELFT>::SymTab->NumLocals; 392 F->KeptLocalSyms.push_back( 393 std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName))); 394 } 395 } 396 } 397 398 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that 399 // we would like to make sure appear is a specific order to maximize their 400 // coverage by a single signed 16-bit offset from the TOC base pointer. 401 // Conversely, the special .tocbss section should be first among all SHT_NOBITS 402 // sections. This will put it next to the loaded special PPC64 sections (and, 403 // thus, within reach of the TOC base pointer). 404 static int getPPC64SectionRank(StringRef SectionName) { 405 return StringSwitch<int>(SectionName) 406 .Case(".tocbss", 0) 407 .Case(".branch_lt", 2) 408 .Case(".toc", 3) 409 .Case(".toc1", 4) 410 .Case(".opd", 5) 411 .Default(1); 412 } 413 414 template <class ELFT> bool elf::isRelroSection(OutputSectionBase<ELFT> *Sec) { 415 if (!Config->ZRelro) 416 return false; 417 typename ELFT::uint Flags = Sec->getFlags(); 418 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 419 return false; 420 if (Flags & SHF_TLS) 421 return true; 422 uint32_t Type = Sec->getType(); 423 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 424 Type == SHT_PREINIT_ARRAY) 425 return true; 426 if (Sec == Out<ELFT>::GotPlt) 427 return Config->ZNow; 428 if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got) 429 return true; 430 StringRef S = Sec->getName(); 431 return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || 432 S == ".eh_frame"; 433 } 434 435 template <class ELFT> 436 static bool compareSectionsNonScript(OutputSectionBase<ELFT> *A, 437 OutputSectionBase<ELFT> *B) { 438 typedef typename ELFT::uint uintX_t; 439 uintX_t AFlags = A->getFlags(); 440 uintX_t BFlags = B->getFlags(); 441 442 // Allocatable sections go first to reduce the total PT_LOAD size and 443 // so debug info doesn't change addresses in actual code. 444 bool AIsAlloc = AFlags & SHF_ALLOC; 445 bool BIsAlloc = BFlags & SHF_ALLOC; 446 if (AIsAlloc != BIsAlloc) 447 return AIsAlloc; 448 449 // We don't have any special requirements for the relative order of two non 450 // allocatable sections. 451 if (!AIsAlloc) 452 return false; 453 454 // We want the read only sections first so that they go in the PT_LOAD 455 // covering the program headers at the start of the file. 456 bool AIsWritable = AFlags & SHF_WRITE; 457 bool BIsWritable = BFlags & SHF_WRITE; 458 if (AIsWritable != BIsWritable) 459 return BIsWritable; 460 461 if (!ScriptConfig->HasSections) { 462 // For a corresponding reason, put non exec sections first (the program 463 // header PT_LOAD is not executable). 464 // We only do that if we are not using linker scripts, since with linker 465 // scripts ro and rx sections are in the same PT_LOAD, so their relative 466 // order is not important. 467 bool AIsExec = AFlags & SHF_EXECINSTR; 468 bool BIsExec = BFlags & SHF_EXECINSTR; 469 if (AIsExec != BIsExec) 470 return BIsExec; 471 } 472 473 // If we got here we know that both A and B are in the same PT_LOAD. 474 475 // The TLS initialization block needs to be a single contiguous block in a R/W 476 // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS 477 // sections are placed here as they don't take up virtual address space in the 478 // PT_LOAD. 479 bool AIsTls = AFlags & SHF_TLS; 480 bool BIsTls = BFlags & SHF_TLS; 481 if (AIsTls != BIsTls) 482 return AIsTls; 483 484 // The next requirement we have is to put nobits sections last. The 485 // reason is that the only thing the dynamic linker will see about 486 // them is a p_memsz that is larger than p_filesz. Seeing that it 487 // zeros the end of the PT_LOAD, so that has to correspond to the 488 // nobits sections. 489 bool AIsNoBits = A->getType() == SHT_NOBITS; 490 bool BIsNoBits = B->getType() == SHT_NOBITS; 491 if (AIsNoBits != BIsNoBits) 492 return BIsNoBits; 493 494 // We place RelRo section before plain r/w ones. 495 bool AIsRelRo = isRelroSection(A); 496 bool BIsRelRo = isRelroSection(B); 497 if (AIsRelRo != BIsRelRo) 498 return AIsRelRo; 499 500 // Some architectures have additional ordering restrictions for sections 501 // within the same PT_LOAD. 502 if (Config->EMachine == EM_PPC64) 503 return getPPC64SectionRank(A->getName()) < 504 getPPC64SectionRank(B->getName()); 505 506 return false; 507 } 508 509 // Output section ordering is determined by this function. 510 template <class ELFT> 511 static bool compareSections(OutputSectionBase<ELFT> *A, 512 OutputSectionBase<ELFT> *B) { 513 // For now, put sections mentioned in a linker script first. 514 int AIndex = Script<ELFT>::X->getSectionIndex(A->getName()); 515 int BIndex = Script<ELFT>::X->getSectionIndex(B->getName()); 516 bool AInScript = AIndex != INT_MAX; 517 bool BInScript = BIndex != INT_MAX; 518 if (AInScript != BInScript) 519 return AInScript; 520 // If both are in the script, use that order. 521 if (AInScript) 522 return AIndex < BIndex; 523 524 return compareSectionsNonScript(A, B); 525 } 526 527 template <class ELFT> static bool isDiscarded(InputSectionBase<ELFT> *S) { 528 return !S || S == &InputSection<ELFT>::Discarded || !S->Live; 529 } 530 531 // Program header entry 532 template<class ELFT> 533 PhdrEntry<ELFT>::PhdrEntry(unsigned Type, unsigned Flags) { 534 H.p_type = Type; 535 H.p_flags = Flags; 536 } 537 538 template<class ELFT> 539 void PhdrEntry<ELFT>::add(OutputSectionBase<ELFT> *Sec) { 540 Last = Sec; 541 if (!First) 542 First = Sec; 543 H.p_align = std::max<typename ELFT::uint>(H.p_align, Sec->getAlignment()); 544 if (H.p_type == PT_LOAD) 545 Sec->FirstInPtLoad = First; 546 } 547 548 template <class ELFT> 549 static Symbol * 550 addOptionalSynthetic(StringRef Name, OutputSectionBase<ELFT> *Sec, 551 typename ELFT::uint Val, uint8_t StOther = STV_HIDDEN) { 552 SymbolBody *S = Symtab<ELFT>::X->find(Name); 553 if (!S) 554 return nullptr; 555 if (!S->isUndefined() && !S->isShared()) 556 return S->symbol(); 557 return Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, StOther); 558 } 559 560 template <class ELFT> 561 static void addSynthetic(StringRef Name, OutputSectionBase<ELFT> *Sec, 562 typename ELFT::uint Val) { 563 SymbolBody *S = Symtab<ELFT>::X->find(Name); 564 if (!S || S->isUndefined() || S->isShared()) 565 Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, STV_HIDDEN); 566 } 567 568 // The beginning and the ending of .rel[a].plt section are marked 569 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 570 // executable. The runtime needs these symbols in order to resolve 571 // all IRELATIVE relocs on startup. For dynamic executables, we don't 572 // need these symbols, since IRELATIVE relocs are resolved through GOT 573 // and PLT. For details, see http://www.airs.com/blog/archives/403. 574 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 575 if (Out<ELFT>::DynSymTab || !Out<ELFT>::RelaPlt) 576 return; 577 StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start"; 578 addOptionalSynthetic(S, Out<ELFT>::RelaPlt, 0); 579 580 S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end"; 581 addOptionalSynthetic(S, Out<ELFT>::RelaPlt, 582 DefinedSynthetic<ELFT>::SectionEnd); 583 } 584 585 // The linker is expected to define some symbols depending on 586 // the linking result. This function defines such symbols. 587 template <class ELFT> void Writer<ELFT>::addReservedSymbols() { 588 if (Config->EMachine == EM_MIPS && !Config->Relocatable) { 589 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 590 // so that it points to an absolute address which is relative to GOT. 591 // See "Global Data Symbols" in Chapter 6 in the following document: 592 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 593 Symtab<ELFT>::X->addSynthetic("_gp", Out<ELFT>::Got, MipsGPOffset, 594 STV_HIDDEN); 595 596 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 597 // start of function and 'gp' pointer into GOT. 598 Symbol *Sym = 599 addOptionalSynthetic("_gp_disp", Out<ELFT>::Got, MipsGPOffset); 600 if (Sym) 601 ElfSym<ELFT>::MipsGpDisp = Sym->body(); 602 603 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 604 // pointer. This symbol is used in the code generated by .cpload pseudo-op 605 // in case of using -mno-shared option. 606 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 607 addOptionalSynthetic("__gnu_local_gp", Out<ELFT>::Got, MipsGPOffset); 608 } 609 610 // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol 611 // is magical and is used to produce a R_386_GOTPC relocation. 612 // The R_386_GOTPC relocation value doesn't actually depend on the 613 // symbol value, so it could use an index of STN_UNDEF which, according 614 // to the spec, means the symbol value is 0. 615 // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in 616 // the object file. 617 // The situation is even stranger on x86_64 where the assembly doesn't 618 // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as 619 // an undefined symbol in the .o files. 620 // Given that the symbol is effectively unused, we just create a dummy 621 // hidden one to avoid the undefined symbol error. 622 if (!Config->Relocatable) 623 Symtab<ELFT>::X->addIgnored("_GLOBAL_OFFSET_TABLE_"); 624 625 // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For 626 // static linking the linker is required to optimize away any references to 627 // __tls_get_addr, so it's not defined anywhere. Create a hidden definition 628 // to avoid the undefined symbol error. As usual as special case is MIPS - 629 // MIPS libc defines __tls_get_addr itself because there are no TLS 630 // optimizations for this target. 631 if (!Out<ELFT>::DynSymTab && Config->EMachine != EM_MIPS) 632 Symtab<ELFT>::X->addIgnored("__tls_get_addr"); 633 634 // If linker script do layout we do not need to create any standart symbols. 635 if (ScriptConfig->HasSections) 636 return; 637 638 ElfSym<ELFT>::EhdrStart = Symtab<ELFT>::X->addIgnored("__ehdr_start"); 639 640 auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1, 641 DefinedRegular<ELFT> *&Sym2) { 642 Sym1 = Symtab<ELFT>::X->addIgnored(S, STV_DEFAULT); 643 644 // The name without the underscore is not a reserved name, 645 // so it is defined only when there is a reference against it. 646 assert(S.startswith("_")); 647 S = S.substr(1); 648 if (SymbolBody *B = Symtab<ELFT>::X->find(S)) 649 if (B->isUndefined()) 650 Sym2 = Symtab<ELFT>::X->addAbsolute(S, STV_DEFAULT); 651 }; 652 653 Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2); 654 Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2); 655 Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2); 656 } 657 658 // Sort input sections by section name suffixes for 659 // __attribute__((init_priority(N))). 660 template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) { 661 if (S) 662 reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini(); 663 } 664 665 // Sort input sections by the special rule for .ctors and .dtors. 666 template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) { 667 if (S) 668 reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors(); 669 } 670 671 template <class ELFT> 672 void Writer<ELFT>::forEachRelSec( 673 std::function<void(InputSectionBase<ELFT> &, const typename ELFT::Shdr &)> 674 Fn) { 675 for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { 676 for (InputSectionBase<ELFT> *IS : F->getSections()) { 677 if (isDiscarded(IS)) 678 continue; 679 // Scan all relocations. Each relocation goes through a series 680 // of tests to determine if it needs special treatment, such as 681 // creating GOT, PLT, copy relocations, etc. 682 // Note that relocations for non-alloc sections are directly 683 // processed by InputSection::relocateNonAlloc. 684 if (!(IS->getSectionHdr()->sh_flags & SHF_ALLOC)) 685 continue; 686 if (auto *S = dyn_cast<InputSection<ELFT>>(IS)) { 687 for (const Elf_Shdr *RelSec : S->RelocSections) 688 Fn(*S, *RelSec); 689 continue; 690 } 691 if (auto *S = dyn_cast<EhInputSection<ELFT>>(IS)) 692 if (S->RelocSection) 693 Fn(*S, *S->RelocSection); 694 } 695 } 696 } 697 698 template <class ELFT> void Writer<ELFT>::createSections() { 699 for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { 700 for (InputSectionBase<ELFT> *IS : F->getSections()) { 701 if (isDiscarded(IS)) { 702 reportDiscarded(IS); 703 continue; 704 } 705 OutputSectionBase<ELFT> *Sec; 706 bool IsNew; 707 StringRef OutsecName = getOutputSectionName(IS->Name, Alloc); 708 std::tie(Sec, IsNew) = Factory.create(IS, OutsecName); 709 if (IsNew) 710 OutputSections.push_back(Sec); 711 Sec->addSection(IS); 712 } 713 } 714 715 sortInitFini(findSection(".init_array")); 716 sortInitFini(findSection(".fini_array")); 717 sortCtorsDtors(findSection(".ctors")); 718 sortCtorsDtors(findSection(".dtors")); 719 720 for (OutputSectionBase<ELFT> *Sec : OutputSections) 721 Sec->assignOffsets(); 722 } 723 724 template <class ELFT> void Writer<ELFT>::sortSections() { 725 if (!ScriptConfig->HasSections) { 726 std::stable_sort(OutputSections.begin(), OutputSections.end(), 727 compareSectionsNonScript<ELFT>); 728 return; 729 } 730 Script<ELFT>::X->adjustSectionsBeforeSorting(); 731 732 // The order of the sections in the script is arbitrary and may not agree with 733 // compareSectionsNonScript. This means that we cannot easily define a 734 // strict weak ordering. To see why, consider a comparison of a section in the 735 // script and one not in the script. We have a two simple options: 736 // * Make them equivalent (a is not less than b, and b is not less than a). 737 // The problem is then that equivalence has to be transitive and we can 738 // have sections a, b and c with only b in a script and a less than c 739 // which breaks this property. 740 // * Use compareSectionsNonScript. Given that the script order doesn't have 741 // to match, we can end up with sections a, b, c, d where b and c are in the 742 // script and c is compareSectionsNonScript less than b. In which case d 743 // can be equivalent to c, a to b and d < a. As a concrete example: 744 // .a (rx) # not in script 745 // .b (rx) # in script 746 // .c (ro) # in script 747 // .d (ro) # not in script 748 // 749 // The way we define an order then is: 750 // * First put script sections at the start and sort the script and 751 // non-script sections independently. 752 // * Move each non-script section to the first position where it 753 // compareSectionsNonScript less than the successor. 754 755 std::stable_sort(OutputSections.begin(), OutputSections.end(), 756 compareSections<ELFT>); 757 758 auto I = OutputSections.begin(); 759 auto E = OutputSections.end(); 760 auto NonScriptI = std::find_if(I, E, [](OutputSectionBase<ELFT> *S) { 761 return Script<ELFT>::X->getSectionIndex(S->getName()) == INT_MAX; 762 }); 763 while (NonScriptI != E) { 764 auto FirstGreater = 765 std::find_if(I, NonScriptI, [&](OutputSectionBase<ELFT> *S) { 766 return compareSectionsNonScript<ELFT>(*NonScriptI, S); 767 }); 768 std::rotate(FirstGreater, NonScriptI, NonScriptI + 1); 769 ++NonScriptI; 770 ++I; 771 } 772 } 773 774 // Create output section objects and add them to OutputSections. 775 template <class ELFT> void Writer<ELFT>::finalizeSections() { 776 Out<ELFT>::PreinitArray = findSection(".preinit_array"); 777 Out<ELFT>::InitArray = findSection(".init_array"); 778 Out<ELFT>::FiniArray = findSection(".fini_array"); 779 780 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 781 // symbols for sections, so that the runtime can get the start and end 782 // addresses of each section by section name. Add such symbols. 783 if (!Config->Relocatable) { 784 addStartEndSymbols(); 785 for (OutputSectionBase<ELFT> *Sec : OutputSections) 786 addStartStopSymbols(Sec); 787 } 788 789 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 790 // It should be okay as no one seems to care about the type. 791 // Even the author of gold doesn't remember why gold behaves that way. 792 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 793 if (Out<ELFT>::DynSymTab) 794 Symtab<ELFT>::X->addSynthetic("_DYNAMIC", Out<ELFT>::Dynamic, 0, 795 STV_HIDDEN); 796 797 // Define __rel[a]_iplt_{start,end} symbols if needed. 798 addRelIpltSymbols(); 799 800 if (!Out<ELFT>::EhFrame->empty()) { 801 OutputSections.push_back(Out<ELFT>::EhFrame); 802 Out<ELFT>::EhFrame->finalize(); 803 } 804 805 // Scan relocations. This must be done after every symbol is declared so that 806 // we can correctly decide if a dynamic relocation is needed. 807 forEachRelSec(scanRelocations<ELFT>); 808 809 // Now that we have defined all possible symbols including linker- 810 // synthesized ones. Visit all symbols to give the finishing touches. 811 for (Symbol *S : Symtab<ELFT>::X->getSymbols()) { 812 SymbolBody *Body = S->body(); 813 814 if (!includeInSymtab<ELFT>(*Body)) 815 continue; 816 if (Out<ELFT>::SymTab) 817 Out<ELFT>::SymTab->addSymbol(Body); 818 819 if (Out<ELFT>::DynSymTab && S->includeInDynsym()) { 820 Out<ELFT>::DynSymTab->addSymbol(Body); 821 if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body)) 822 if (SS->file()->isNeeded()) 823 Out<ELFT>::VerNeed->addSymbol(SS); 824 } 825 } 826 827 // Do not proceed if there was an undefined symbol. 828 if (HasError) 829 return; 830 831 // If linker script processor hasn't added common symbol section yet, 832 // then add it to .bss now. 833 if (!CommonInputSection<ELFT>::X->OutSec) { 834 Out<ELFT>::Bss->addSection(CommonInputSection<ELFT>::X); 835 Out<ELFT>::Bss->assignOffsets(); 836 } 837 838 // So far we have added sections from input object files. 839 // This function adds linker-created Out<ELFT>::* sections. 840 addPredefinedSections(); 841 842 sortSections(); 843 844 unsigned I = 1; 845 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 846 Sec->SectionIndex = I++; 847 Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName())); 848 } 849 850 // Finalizers fix each section's size. 851 // .dynsym is finalized early since that may fill up .gnu.hash. 852 if (Out<ELFT>::DynSymTab) 853 Out<ELFT>::DynSymTab->finalize(); 854 855 // Fill other section headers. The dynamic table is finalized 856 // at the end because some tags like RELSZ depend on result 857 // of finalizing other sections. The dynamic string table is 858 // finalized once the .dynamic finalizer has added a few last 859 // strings. See DynamicSection::finalize() 860 for (OutputSectionBase<ELFT> *Sec : OutputSections) 861 if (Sec != Out<ELFT>::DynStrTab && Sec != Out<ELFT>::Dynamic) 862 Sec->finalize(); 863 864 if (Out<ELFT>::DynSymTab) 865 Out<ELFT>::Dynamic->finalize(); 866 867 // Now that all output offsets are fixed. Finalize mergeable sections 868 // to fix their maps from input offsets to output offsets. 869 for (OutputSectionBase<ELFT> *Sec : OutputSections) 870 Sec->finalizePieces(); 871 } 872 873 template <class ELFT> bool Writer<ELFT>::needsGot() { 874 if (!Out<ELFT>::Got->empty()) 875 return true; 876 877 // We add the .got section to the result for dynamic MIPS target because 878 // its address and properties are mentioned in the .dynamic section. 879 if (Config->EMachine == EM_MIPS && !Config->Relocatable) 880 return true; 881 882 // If we have a relocation that is relative to GOT (such as GOTOFFREL), 883 // we need to emit a GOT even if it's empty. 884 return Out<ELFT>::Got->HasGotOffRel; 885 } 886 887 // This function add Out<ELFT>::* sections to OutputSections. 888 template <class ELFT> void Writer<ELFT>::addPredefinedSections() { 889 auto Add = [&](OutputSectionBase<ELFT> *OS) { 890 if (OS) 891 OutputSections.push_back(OS); 892 }; 893 894 // A core file does not usually contain unmodified segments except 895 // the first page of the executable. Add the build ID section to beginning of 896 // the file so that the section is included in the first page. 897 if (Out<ELFT>::BuildId) 898 OutputSections.insert(OutputSections.begin(), Out<ELFT>::BuildId); 899 900 // Add .interp at first because some loaders want to see that section 901 // on the first page of the executable file when loaded into memory. 902 if (Out<ELFT>::Interp) 903 OutputSections.insert(OutputSections.begin(), Out<ELFT>::Interp); 904 905 // This order is not the same as the final output order 906 // because we sort the sections using their attributes below. 907 Add(Out<ELFT>::SymTab); 908 Add(Out<ELFT>::ShStrTab); 909 Add(Out<ELFT>::StrTab); 910 if (Out<ELFT>::DynSymTab) { 911 Add(Out<ELFT>::DynSymTab); 912 913 bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0; 914 if (Out<ELFT>::VerDef || HasVerNeed) 915 Add(Out<ELFT>::VerSym); 916 Add(Out<ELFT>::VerDef); 917 if (HasVerNeed) 918 Add(Out<ELFT>::VerNeed); 919 920 Add(Out<ELFT>::GnuHashTab); 921 Add(Out<ELFT>::HashTab); 922 Add(Out<ELFT>::Dynamic); 923 Add(Out<ELFT>::DynStrTab); 924 if (Out<ELFT>::RelaDyn->hasRelocs()) 925 Add(Out<ELFT>::RelaDyn); 926 Add(Out<ELFT>::MipsRldMap); 927 } 928 929 // We always need to add rel[a].plt to output if it has entries. 930 // Even during static linking it can contain R_[*]_IRELATIVE relocations. 931 if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) 932 Add(Out<ELFT>::RelaPlt); 933 934 if (needsGot()) 935 Add(Out<ELFT>::Got); 936 if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty()) 937 Add(Out<ELFT>::GotPlt); 938 if (!Out<ELFT>::Plt->empty()) 939 Add(Out<ELFT>::Plt); 940 if (!Out<ELFT>::EhFrame->empty()) 941 Add(Out<ELFT>::EhFrameHdr); 942 if (Out<ELFT>::Bss->getSize() > 0) 943 Add(Out<ELFT>::Bss); 944 } 945 946 // The linker is expected to define SECNAME_start and SECNAME_end 947 // symbols for a few sections. This function defines them. 948 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 949 auto Define = [&](StringRef Start, StringRef End, 950 OutputSectionBase<ELFT> *OS) { 951 if (OS) { 952 addSynthetic(Start, OS, 0); 953 addSynthetic(End, OS, DefinedSynthetic<ELFT>::SectionEnd); 954 } else { 955 addOptionalSynthetic(Start, (OutputSectionBase<ELFT> *)nullptr, 0); 956 addOptionalSynthetic(End, (OutputSectionBase<ELFT> *)nullptr, 0); 957 } 958 }; 959 960 Define("__preinit_array_start", "__preinit_array_end", 961 Out<ELFT>::PreinitArray); 962 Define("__init_array_start", "__init_array_end", Out<ELFT>::InitArray); 963 Define("__fini_array_start", "__fini_array_end", Out<ELFT>::FiniArray); 964 } 965 966 // If a section name is valid as a C identifier (which is rare because of 967 // the leading '.'), linkers are expected to define __start_<secname> and 968 // __stop_<secname> symbols. They are at beginning and end of the section, 969 // respectively. This is not requested by the ELF standard, but GNU ld and 970 // gold provide the feature, and used by many programs. 971 template <class ELFT> 972 void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) { 973 StringRef S = Sec->getName(); 974 if (!isValidCIdentifier(S)) 975 return; 976 StringSaver Saver(Alloc); 977 addOptionalSynthetic(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); 978 addOptionalSynthetic(Saver.save("__stop_" + S), Sec, 979 DefinedSynthetic<ELFT>::SectionEnd, STV_DEFAULT); 980 } 981 982 template <class ELFT> 983 OutputSectionBase<ELFT> *Writer<ELFT>::findSection(StringRef Name) { 984 for (OutputSectionBase<ELFT> *Sec : OutputSections) 985 if (Sec->getName() == Name) 986 return Sec; 987 return nullptr; 988 } 989 990 template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) { 991 if (!(Sec->getFlags() & SHF_ALLOC)) 992 return false; 993 994 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 995 // responsible for allocating space for them, not the PT_LOAD that 996 // contains the TLS initialization image. 997 if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) 998 return false; 999 return true; 1000 } 1001 1002 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1003 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1004 // RW. This means that there is no alignment in the RO to RX transition and we 1005 // cannot create a PT_LOAD there. 1006 template <class ELFT> 1007 static typename ELFT::uint computeFlags(typename ELFT::uint F) { 1008 if (ScriptConfig->HasSections && !(F & PF_W)) 1009 return F | PF_X; 1010 return F; 1011 } 1012 1013 // Decide which program headers to create and which sections to include in each 1014 // one. 1015 template <class ELFT> 1016 std::vector<PhdrEntry<ELFT>> Writer<ELFT>::createPhdrs() { 1017 std::vector<Phdr> Ret; 1018 auto AddHdr = [&](unsigned Type, unsigned Flags) -> Phdr * { 1019 Ret.emplace_back(Type, Flags); 1020 return &Ret.back(); 1021 }; 1022 1023 // The first phdr entry is PT_PHDR which describes the program header itself. 1024 Phdr &Hdr = *AddHdr(PT_PHDR, PF_R); 1025 Hdr.add(Out<ELFT>::ProgramHeaders); 1026 1027 // PT_INTERP must be the second entry if exists. 1028 if (Out<ELFT>::Interp) { 1029 Phdr &Hdr = *AddHdr(PT_INTERP, Out<ELFT>::Interp->getPhdrFlags()); 1030 Hdr.add(Out<ELFT>::Interp); 1031 } 1032 1033 // Add the first PT_LOAD segment for regular output sections. 1034 uintX_t Flags = computeFlags<ELFT>(PF_R); 1035 Phdr *Load = AddHdr(PT_LOAD, Flags); 1036 if (!ScriptConfig->HasSections) { 1037 Load->add(Out<ELFT>::ElfHeader); 1038 Load->add(Out<ELFT>::ProgramHeaders); 1039 } 1040 1041 Phdr TlsHdr(PT_TLS, PF_R); 1042 Phdr RelRo(PT_GNU_RELRO, PF_R); 1043 Phdr Note(PT_NOTE, PF_R); 1044 Phdr ARMExidx(PT_ARM_EXIDX, PF_R); 1045 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 1046 if (!(Sec->getFlags() & SHF_ALLOC)) 1047 break; 1048 1049 // If we meet TLS section then we create TLS header 1050 // and put all TLS sections inside for further use when 1051 // assign addresses. 1052 if (Sec->getFlags() & SHF_TLS) 1053 TlsHdr.add(Sec); 1054 1055 if (!needsPtLoad(Sec)) 1056 continue; 1057 1058 // Segments are contiguous memory regions that has the same attributes 1059 // (e.g. executable or writable). There is one phdr for each segment. 1060 // Therefore, we need to create a new phdr when the next section has 1061 // different flags or is loaded at a discontiguous address using AT linker 1062 // script command. 1063 uintX_t NewFlags = computeFlags<ELFT>(Sec->getPhdrFlags()); 1064 if (Script<ELFT>::X->hasLMA(Sec->getName()) || Flags != NewFlags) { 1065 Load = AddHdr(PT_LOAD, NewFlags); 1066 Flags = NewFlags; 1067 } 1068 1069 Load->add(Sec); 1070 1071 if (isRelroSection(Sec)) 1072 RelRo.add(Sec); 1073 if (Sec->getType() == SHT_NOTE) 1074 Note.add(Sec); 1075 if (Config->EMachine == EM_ARM && Sec->getType() == SHT_ARM_EXIDX) 1076 ARMExidx.add(Sec); 1077 } 1078 1079 // Add the TLS segment unless it's empty. 1080 if (TlsHdr.First) 1081 Ret.push_back(std::move(TlsHdr)); 1082 1083 // Add an entry for .dynamic. 1084 if (Out<ELFT>::DynSymTab) { 1085 Phdr &H = *AddHdr(PT_DYNAMIC, Out<ELFT>::Dynamic->getPhdrFlags()); 1086 H.add(Out<ELFT>::Dynamic); 1087 } 1088 1089 // PT_GNU_RELRO includes all sections that should be marked as 1090 // read-only by dynamic linker after proccessing relocations. 1091 if (RelRo.First) 1092 Ret.push_back(std::move(RelRo)); 1093 1094 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 1095 if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) { 1096 Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, Out<ELFT>::EhFrameHdr->getPhdrFlags()); 1097 Hdr.add(Out<ELFT>::EhFrameHdr); 1098 } 1099 1100 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1101 if (ARMExidx.First) 1102 Ret.push_back(std::move(ARMExidx)); 1103 1104 // PT_GNU_STACK is a special section to tell the loader to make the 1105 // pages for the stack non-executable. 1106 if (!Config->ZExecstack) { 1107 Phdr &Hdr = *AddHdr(PT_GNU_STACK, PF_R | PF_W); 1108 if (Config->ZStackSize != uint64_t(-1)) 1109 Hdr.H.p_memsz = Config->ZStackSize; 1110 } 1111 1112 if (Note.First) 1113 Ret.push_back(std::move(Note)); 1114 return Ret; 1115 } 1116 1117 // The first section of each PT_LOAD and the first section after PT_GNU_RELRO 1118 // have to be page aligned so that the dynamic linker can set the permissions. 1119 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 1120 for (const Phdr &P : Phdrs) 1121 if (P.H.p_type == PT_LOAD) 1122 P.First->PageAlign = true; 1123 1124 for (const Phdr &P : Phdrs) { 1125 if (P.H.p_type != PT_GNU_RELRO) 1126 continue; 1127 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 1128 // have to align it to a page. 1129 auto End = OutputSections.end(); 1130 auto I = std::find(OutputSections.begin(), End, P.Last); 1131 if (I == End || (I + 1) == End) 1132 continue; 1133 OutputSectionBase<ELFT> *Sec = *(I + 1); 1134 if (needsPtLoad(Sec)) 1135 Sec->PageAlign = true; 1136 } 1137 } 1138 1139 // We should set file offsets and VAs for elf header and program headers 1140 // sections. These are special, we do not include them into output sections 1141 // list, but have them to simplify the code. 1142 template <class ELFT> void Writer<ELFT>::fixHeaders() { 1143 uintX_t BaseVA = ScriptConfig->HasSections ? 0 : Config->ImageBase; 1144 Out<ELFT>::ElfHeader->setVA(BaseVA); 1145 uintX_t Off = Out<ELFT>::ElfHeader->getSize(); 1146 Out<ELFT>::ProgramHeaders->setVA(Off + BaseVA); 1147 Out<ELFT>::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size()); 1148 } 1149 1150 // Assign VAs (addresses at run-time) to output sections. 1151 template <class ELFT> void Writer<ELFT>::assignAddresses() { 1152 uintX_t VA = Config->ImageBase + getHeaderSize<ELFT>(); 1153 uintX_t ThreadBssOffset = 0; 1154 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 1155 uintX_t Alignment = Sec->getAlignment(); 1156 if (Sec->PageAlign) 1157 Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize); 1158 1159 auto I = Config->SectionStartMap.find(Sec->getName()); 1160 if (I != Config->SectionStartMap.end()) 1161 VA = I->second; 1162 1163 // We only assign VAs to allocated sections. 1164 if (needsPtLoad(Sec)) { 1165 VA = alignTo(VA, Alignment); 1166 Sec->setVA(VA); 1167 VA += Sec->getSize(); 1168 } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) { 1169 uintX_t TVA = VA + ThreadBssOffset; 1170 TVA = alignTo(TVA, Alignment); 1171 Sec->setVA(TVA); 1172 ThreadBssOffset = TVA - VA + Sec->getSize(); 1173 } 1174 } 1175 } 1176 1177 // Adjusts the file alignment for a given output section and returns 1178 // its new file offset. The file offset must be the same with its 1179 // virtual address (modulo the page size) so that the loader can load 1180 // executables without any address adjustment. 1181 template <class ELFT, class uintX_t> 1182 static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase<ELFT> *Sec) { 1183 uintX_t Alignment = Sec->getAlignment(); 1184 if (Sec->PageAlign) 1185 Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize); 1186 Off = alignTo(Off, Alignment); 1187 1188 OutputSectionBase<ELFT> *First = Sec->FirstInPtLoad; 1189 // If the section is not in a PT_LOAD, we have no other constraint. 1190 if (!First) 1191 return Off; 1192 1193 // If two sections share the same PT_LOAD the file offset is calculated using 1194 // this formula: Off2 = Off1 + (VA2 - VA1). 1195 if (Sec == First) 1196 return alignTo(Off, Target->MaxPageSize, Sec->getVA()); 1197 return First->getFileOffset() + Sec->getVA() - First->getVA(); 1198 } 1199 1200 template <class ELFT, class uintX_t> 1201 void setOffset(OutputSectionBase<ELFT> *Sec, uintX_t &Off) { 1202 if (Sec->getType() == SHT_NOBITS) { 1203 Sec->setFileOffset(Off); 1204 return; 1205 } 1206 1207 Off = getFileAlignment<ELFT>(Off, Sec); 1208 Sec->setFileOffset(Off); 1209 Off += Sec->getSize(); 1210 } 1211 1212 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 1213 uintX_t Off = 0; 1214 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1215 if (Sec->getFlags() & SHF_ALLOC) 1216 setOffset(Sec, Off); 1217 FileSize = alignTo(Off, sizeof(uintX_t)); 1218 } 1219 1220 // Assign file offsets to output sections. 1221 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 1222 uintX_t Off = 0; 1223 setOffset(Out<ELFT>::ElfHeader, Off); 1224 setOffset(Out<ELFT>::ProgramHeaders, Off); 1225 1226 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1227 setOffset(Sec, Off); 1228 1229 SectionHeaderOff = alignTo(Off, sizeof(uintX_t)); 1230 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 1231 } 1232 1233 // Finalize the program headers. We call this function after we assign 1234 // file offsets and VAs to all sections. 1235 template <class ELFT> void Writer<ELFT>::setPhdrs() { 1236 for (Phdr &P : Phdrs) { 1237 Elf_Phdr &H = P.H; 1238 OutputSectionBase<ELFT> *First = P.First; 1239 OutputSectionBase<ELFT> *Last = P.Last; 1240 if (First) { 1241 H.p_filesz = Last->getFileOff() - First->getFileOff(); 1242 if (Last->getType() != SHT_NOBITS) 1243 H.p_filesz += Last->getSize(); 1244 H.p_memsz = Last->getVA() + Last->getSize() - First->getVA(); 1245 H.p_offset = First->getFileOff(); 1246 H.p_vaddr = First->getVA(); 1247 if (!P.HasLMA) 1248 H.p_paddr = First->getLMA(); 1249 } 1250 if (H.p_type == PT_LOAD) 1251 H.p_align = Config->MaxPageSize; 1252 else if (H.p_type == PT_GNU_RELRO) 1253 H.p_align = 1; 1254 1255 // The TLS pointer goes after PT_TLS. At least glibc will align it, 1256 // so round up the size to make sure the offsets are correct. 1257 if (H.p_type == PT_TLS) { 1258 Out<ELFT>::TlsPhdr = &H; 1259 if (H.p_memsz) 1260 H.p_memsz = alignTo(H.p_memsz, H.p_align); 1261 } 1262 } 1263 } 1264 1265 template <class ELFT> static typename ELFT::uint getEntryAddr() { 1266 if (Symbol *S = Config->EntrySym) 1267 return S->body()->getVA<ELFT>(); 1268 return Config->EntryAddr; 1269 } 1270 1271 template <class ELFT> static uint8_t getELFEncoding() { 1272 if (ELFT::TargetEndianness == llvm::support::little) 1273 return ELFDATA2LSB; 1274 return ELFDATA2MSB; 1275 } 1276 1277 static uint16_t getELFType() { 1278 if (Config->Pic) 1279 return ET_DYN; 1280 if (Config->Relocatable) 1281 return ET_REL; 1282 return ET_EXEC; 1283 } 1284 1285 // This function is called after we have assigned address and size 1286 // to each section. This function fixes some predefined absolute 1287 // symbol values that depend on section address and size. 1288 template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() { 1289 // __ehdr_start is the location of program headers. 1290 if (ElfSym<ELFT>::EhdrStart) 1291 ElfSym<ELFT>::EhdrStart->Value = Out<ELFT>::ProgramHeaders->getVA(); 1292 1293 auto Set = [](DefinedRegular<ELFT> *S1, DefinedRegular<ELFT> *S2, uintX_t V) { 1294 if (S1) 1295 S1->Value = V; 1296 if (S2) 1297 S2->Value = V; 1298 }; 1299 1300 // _etext is the first location after the last read-only loadable segment. 1301 // _edata is the first location after the last read-write loadable segment. 1302 // _end is the first location after the uninitialized data region. 1303 for (Phdr &P : Phdrs) { 1304 Elf_Phdr &H = P.H; 1305 if (H.p_type != PT_LOAD) 1306 continue; 1307 Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz); 1308 1309 uintX_t Val = H.p_vaddr + H.p_filesz; 1310 if (H.p_flags & PF_W) 1311 Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val); 1312 else 1313 Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val); 1314 } 1315 } 1316 1317 template <class ELFT> void Writer<ELFT>::writeHeader() { 1318 uint8_t *Buf = Buffer->getBufferStart(); 1319 memcpy(Buf, "\177ELF", 4); 1320 1321 auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); 1322 1323 // Write the ELF header. 1324 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 1325 EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 1326 EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>(); 1327 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 1328 EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); 1329 EHdr->e_type = getELFType(); 1330 EHdr->e_machine = FirstObj.EMachine; 1331 EHdr->e_version = EV_CURRENT; 1332 EHdr->e_entry = getEntryAddr<ELFT>(); 1333 EHdr->e_shoff = SectionHeaderOff; 1334 EHdr->e_ehsize = sizeof(Elf_Ehdr); 1335 EHdr->e_phnum = Phdrs.size(); 1336 EHdr->e_shentsize = sizeof(Elf_Shdr); 1337 EHdr->e_shnum = OutputSections.size() + 1; 1338 EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex; 1339 1340 if (Config->EMachine == EM_ARM) 1341 // We don't currently use any features incompatible with EF_ARM_EABI_VER5, 1342 // but we don't have any firm guarantees of conformance. Linux AArch64 1343 // kernels (as of 2016) require an EABI version to be set. 1344 EHdr->e_flags = EF_ARM_EABI_VER5; 1345 else if (Config->EMachine == EM_MIPS) 1346 EHdr->e_flags = getMipsEFlags<ELFT>(); 1347 1348 if (!Config->Relocatable) { 1349 EHdr->e_phoff = sizeof(Elf_Ehdr); 1350 EHdr->e_phentsize = sizeof(Elf_Phdr); 1351 } 1352 1353 // Write the program header table. 1354 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); 1355 for (Phdr &P : Phdrs) 1356 *HBuf++ = P.H; 1357 1358 // Write the section header table. Note that the first table entry is null. 1359 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 1360 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1361 Sec->writeHeaderTo(++SHdrs); 1362 } 1363 1364 template <class ELFT> void Writer<ELFT>::openFile() { 1365 ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 1366 FileOutputBuffer::create(Config->OutputFile, FileSize, 1367 FileOutputBuffer::F_executable); 1368 if (auto EC = BufferOrErr.getError()) 1369 error(EC, "failed to open " + Config->OutputFile); 1370 else 1371 Buffer = std::move(*BufferOrErr); 1372 } 1373 1374 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 1375 uint8_t *Buf = Buffer->getBufferStart(); 1376 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1377 if (Sec->getFlags() & SHF_ALLOC) 1378 Sec->writeTo(Buf + Sec->getFileOff()); 1379 } 1380 1381 // Convert the .ARM.exidx table entries that use relative PREL31 offsets to 1382 // Absolute addresses. This form is internal to LLD and is only used to 1383 // make reordering the table simpler. 1384 static void ARMExidxEntryPrelToAbs(uint8_t *Loc, uint64_t EntryVA) { 1385 uint64_t Addr = Target->getImplicitAddend(Loc, R_ARM_PREL31) + EntryVA; 1386 bool InlineEntry = 1387 (read32le(Loc + 4) == 1 || (read32le(Loc + 4) & 0x80000000)); 1388 if (InlineEntry) 1389 // Set flag in unused bit of code address so that when we convert back we 1390 // know which table entries to leave alone. 1391 Addr |= 0x1; 1392 else 1393 write32le(Loc + 4, 1394 Target->getImplicitAddend(Loc + 4, R_ARM_PREL31) + EntryVA + 4); 1395 write32le(Loc, Addr); 1396 } 1397 1398 // Convert the .ARM.exidx table entries from the internal to LLD form using 1399 // absolute addresses back to relative PREL31 offsets. 1400 static void ARMExidxEntryAbsToPrel(uint8_t *Loc, uint64_t EntryVA) { 1401 uint64_t Off = read32le(Loc) - EntryVA; 1402 // ARMExidxEntryPreltoAbs sets bit 0 if the table entry has inline data 1403 // that is not an address 1404 bool InlineEntry = Off & 0x1; 1405 Target->relocateOne(Loc, R_ARM_PREL31, Off & ~0x1); 1406 if (!InlineEntry) 1407 Target->relocateOne(Loc + 4, R_ARM_PREL31, 1408 read32le(Loc + 4) - (EntryVA + 4)); 1409 } 1410 1411 // The table formed by the .ARM.exidx OutputSection has entries with two 1412 // 4-byte fields: 1413 // | PREL31 offset to function | Action to take for function | 1414 // The table must be ordered in ascending virtual address of the functions 1415 // identified by the first field of the table. Instead of using the 1416 // SHF_LINK_ORDER dependency to reorder the sections prior to relocation we 1417 // sort the table post-relocation. 1418 // Ref: Exception handling ABI for the ARM architecture 1419 static void sortARMExidx(uint8_t *Buf, uint64_t OutSecVA, uint64_t Size) { 1420 struct ARMExidxEntry { 1421 ulittle32_t Target; 1422 ulittle32_t Action; 1423 }; 1424 ARMExidxEntry *Start = (ARMExidxEntry *)Buf; 1425 size_t NumEnt = Size / sizeof(ARMExidxEntry); 1426 for (uint64_t Off = 0; Off < Size; Off += 8) 1427 ARMExidxEntryPrelToAbs(Buf + Off, OutSecVA + Off); 1428 std::stable_sort(Start, Start + NumEnt, 1429 [](const ARMExidxEntry &A, const ARMExidxEntry &B) { 1430 return A.Target < B.Target; 1431 }); 1432 for (uint64_t Off = 0; Off < Size; Off += 8) 1433 ARMExidxEntryAbsToPrel(Buf + Off, OutSecVA + Off); 1434 } 1435 1436 // Write section contents to a mmap'ed file. 1437 template <class ELFT> void Writer<ELFT>::writeSections() { 1438 uint8_t *Buf = Buffer->getBufferStart(); 1439 1440 // PPC64 needs to process relocations in the .opd section 1441 // before processing relocations in code-containing sections. 1442 Out<ELFT>::Opd = findSection(".opd"); 1443 if (Out<ELFT>::Opd) { 1444 Out<ELFT>::OpdBuf = Buf + Out<ELFT>::Opd->getFileOff(); 1445 Out<ELFT>::Opd->writeTo(Buf + Out<ELFT>::Opd->getFileOff()); 1446 } 1447 1448 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1449 if (Sec != Out<ELFT>::Opd && Sec != Out<ELFT>::EhFrameHdr) 1450 Sec->writeTo(Buf + Sec->getFileOff()); 1451 1452 OutputSectionBase<ELFT> *ARMExidx = findSection(".ARM.exidx"); 1453 if (!Config->Relocatable) 1454 if (auto *OS = dyn_cast_or_null<OutputSection<ELFT>>(ARMExidx)) 1455 sortARMExidx(Buf + OS->getFileOff(), OS->getVA(), OS->getSize()); 1456 1457 // The .eh_frame_hdr depends on .eh_frame section contents, therefore 1458 // it should be written after .eh_frame is written. 1459 if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) 1460 Out<ELFT>::EhFrameHdr->writeTo(Buf + Out<ELFT>::EhFrameHdr->getFileOff()); 1461 } 1462 1463 template <class ELFT> void Writer<ELFT>::writeBuildId() { 1464 if (!Out<ELFT>::BuildId) 1465 return; 1466 1467 // Compute a hash of all sections of the output file. 1468 uint8_t *Start = Buffer->getBufferStart(); 1469 uint8_t *End = Start + FileSize; 1470 Out<ELFT>::BuildId->writeBuildId({Start, End}); 1471 } 1472 1473 template void elf::writeResult<ELF32LE>(); 1474 template void elf::writeResult<ELF32BE>(); 1475 template void elf::writeResult<ELF64LE>(); 1476 template void elf::writeResult<ELF64BE>(); 1477 1478 template struct elf::PhdrEntry<ELF32LE>; 1479 template struct elf::PhdrEntry<ELF32BE>; 1480 template struct elf::PhdrEntry<ELF64LE>; 1481 template struct elf::PhdrEntry<ELF64BE>; 1482 1483 template bool elf::isRelroSection<ELF32LE>(OutputSectionBase<ELF32LE> *); 1484 template bool elf::isRelroSection<ELF32BE>(OutputSectionBase<ELF32BE> *); 1485 template bool elf::isRelroSection<ELF64LE>(OutputSectionBase<ELF64LE> *); 1486 template bool elf::isRelroSection<ELF64BE>(OutputSectionBase<ELF64BE> *); 1487 1488 template void elf::reportDiscarded<ELF32LE>(InputSectionBase<ELF32LE> *); 1489 template void elf::reportDiscarded<ELF32BE>(InputSectionBase<ELF32BE> *); 1490 template void elf::reportDiscarded<ELF64LE>(InputSectionBase<ELF64LE> *); 1491 template void elf::reportDiscarded<ELF64BE>(InputSectionBase<ELF64BE> *); 1492