1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "CallGraphSort.h" 12 #include "Config.h" 13 #include "LinkerScript.h" 14 #include "MapFile.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "lld/Common/Filesystem.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/RandomNumberGenerator.h" 28 #include "llvm/Support/SHA1.h" 29 #include "llvm/Support/xxhash.h" 30 #include <climits> 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::support; 36 using namespace llvm::support::endian; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 namespace { 42 // The writer writes a SymbolTable result to a file. 43 template <class ELFT> class Writer { 44 public: 45 Writer() : Buffer(errorHandler().OutputBuffer) {} 46 using Elf_Shdr = typename ELFT::Shdr; 47 using Elf_Ehdr = typename ELFT::Ehdr; 48 using Elf_Phdr = typename ELFT::Phdr; 49 50 void run(); 51 52 private: 53 void copyLocalSymbols(); 54 void addSectionSymbols(); 55 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn); 56 void sortSections(); 57 void resolveShfLinkOrder(); 58 void finalizeAddressDependentContent(); 59 void sortInputSections(); 60 void finalizeSections(); 61 void checkExecuteOnly(); 62 void setReservedSymbolSections(); 63 64 std::vector<PhdrEntry *> createPhdrs(Partition &Part); 65 void removeEmptyPTLoad(std::vector<PhdrEntry *> &PhdrEntry); 66 void addPhdrForSection(Partition &Part, unsigned ShType, unsigned PType, 67 unsigned PFlags); 68 void assignFileOffsets(); 69 void assignFileOffsetsBinary(); 70 void setPhdrs(Partition &Part); 71 void checkSections(); 72 void fixSectionAlignments(); 73 void openFile(); 74 void writeTrapInstr(); 75 void writeHeader(); 76 void writeSections(); 77 void writeSectionsBinary(); 78 void writeBuildId(); 79 80 std::unique_ptr<FileOutputBuffer> &Buffer; 81 82 void addRelIpltSymbols(); 83 void addStartEndSymbols(); 84 void addStartStopSymbols(OutputSection *Sec); 85 86 uint64_t FileSize; 87 uint64_t SectionHeaderOff; 88 }; 89 } // anonymous namespace 90 91 static bool isSectionPrefix(StringRef Prefix, StringRef Name) { 92 return Name.startswith(Prefix) || Name == Prefix.drop_back(); 93 } 94 95 StringRef elf::getOutputSectionName(const InputSectionBase *S) { 96 if (Config->Relocatable) 97 return S->Name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if (auto *IS = dyn_cast<InputSection>(S)) { 103 if (InputSectionBase *Rel = IS->getRelocatedSection()) { 104 OutputSection *Out = Rel->getOutputSection(); 105 if (S->Type == SHT_RELA) 106 return Saver.save(".rela" + Out->Name); 107 return Saver.save(".rel" + Out->Name); 108 } 109 } 110 111 // This check is for -z keep-text-section-prefix. This option separates text 112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 113 // ".text.exit". 114 // When enabled, this allows identifying the hot code region (.text.hot) in 115 // the final binary which can be selectively mapped to huge pages or mlocked, 116 // for instance. 117 if (Config->ZKeepTextSectionPrefix) 118 for (StringRef V : 119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 120 if (isSectionPrefix(V, S->Name)) 121 return V.drop_back(); 122 123 for (StringRef V : 124 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 125 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 126 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 127 if (isSectionPrefix(V, S->Name)) 128 return V.drop_back(); 129 130 // CommonSection is identified as "COMMON" in linker scripts. 131 // By default, it should go to .bss section. 132 if (S->Name == "COMMON") 133 return ".bss"; 134 135 return S->Name; 136 } 137 138 static bool needsInterpSection() { 139 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 140 Script->needsInterpSection(); 141 } 142 143 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 144 145 template <class ELFT> 146 void Writer<ELFT>::removeEmptyPTLoad(std::vector<PhdrEntry *> &Phdrs) { 147 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 148 if (P->p_type != PT_LOAD) 149 return false; 150 if (!P->FirstSec) 151 return true; 152 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 153 return Size == 0; 154 }); 155 } 156 157 template <class ELFT> static void copySectionsIntoPartitions() { 158 std::vector<InputSectionBase *> NewSections; 159 for (unsigned Part = 2; Part != Partitions.size() + 1; ++Part) { 160 for (InputSectionBase *S : InputSections) { 161 if (!(S->Flags & SHF_ALLOC) || !S->isLive()) 162 continue; 163 InputSectionBase *Copy; 164 if (S->Type == SHT_NOTE) 165 Copy = make<InputSection>(cast<InputSection>(*S)); 166 else if (auto *ES = dyn_cast<EhInputSection>(S)) 167 Copy = make<EhInputSection>(*ES); 168 else 169 continue; 170 Copy->Partition = Part; 171 NewSections.push_back(Copy); 172 } 173 } 174 175 InputSections.insert(InputSections.end(), NewSections.begin(), 176 NewSections.end()); 177 } 178 179 template <class ELFT> static void combineEhSections() { 180 for (InputSectionBase *&S : InputSections) { 181 // Ignore dead sections and the partition end marker (.part.end), 182 // whose partition number is out of bounds. 183 if (!S->isLive() || S->Partition == 255) 184 continue; 185 186 Partition &Part = S->getPartition(); 187 if (auto *ES = dyn_cast<EhInputSection>(S)) { 188 Part.EhFrame->addSection<ELFT>(ES); 189 S = nullptr; 190 } else if (S->kind() == SectionBase::Regular && Part.ARMExidx && 191 Part.ARMExidx->addSection(cast<InputSection>(S))) { 192 S = nullptr; 193 } 194 } 195 196 std::vector<InputSectionBase *> &V = InputSections; 197 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 198 } 199 200 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 201 uint64_t Val, uint8_t StOther = STV_HIDDEN, 202 uint8_t Binding = STB_GLOBAL) { 203 Symbol *S = Symtab->find(Name); 204 if (!S || S->isDefined()) 205 return nullptr; 206 207 S->resolve(Defined{/*File=*/nullptr, Name, Binding, StOther, STT_NOTYPE, Val, 208 /*Size=*/0, Sec}); 209 return cast<Defined>(S); 210 } 211 212 static Defined *addAbsolute(StringRef Name) { 213 Symbol *Sym = Symtab->addSymbol(Defined{nullptr, Name, STB_GLOBAL, STV_HIDDEN, 214 STT_NOTYPE, 0, 0, nullptr}); 215 return cast<Defined>(Sym); 216 } 217 218 // The linker is expected to define some symbols depending on 219 // the linking result. This function defines such symbols. 220 void elf::addReservedSymbols() { 221 if (Config->EMachine == EM_MIPS) { 222 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 223 // so that it points to an absolute address which by default is relative 224 // to GOT. Default offset is 0x7ff0. 225 // See "Global Data Symbols" in Chapter 6 in the following document: 226 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 227 ElfSym::MipsGp = addAbsolute("_gp"); 228 229 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 230 // start of function and 'gp' pointer into GOT. 231 if (Symtab->find("_gp_disp")) 232 ElfSym::MipsGpDisp = addAbsolute("_gp_disp"); 233 234 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 235 // pointer. This symbol is used in the code generated by .cpload pseudo-op 236 // in case of using -mno-shared option. 237 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 238 if (Symtab->find("__gnu_local_gp")) 239 ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp"); 240 } else if (Config->EMachine == EM_PPC) { 241 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 242 // support Small Data Area, define it arbitrarily as 0. 243 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 244 } 245 246 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 247 // combines the typical ELF GOT with the small data sections. It commonly 248 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 249 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 250 // represent the TOC base which is offset by 0x8000 bytes from the start of 251 // the .got section. 252 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 253 // correctness of some relocations depends on its value. 254 StringRef GotSymName = 255 (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 256 257 if (Symbol *S = Symtab->find(GotSymName)) { 258 if (S->isDefined()) { 259 error(toString(S->File) + " cannot redefine linker defined symbol '" + 260 GotSymName + "'"); 261 return; 262 } 263 264 uint64_t GotOff = 0; 265 if (Config->EMachine == EM_PPC64) 266 GotOff = 0x8000; 267 268 S->resolve(Defined{/*File=*/nullptr, GotSymName, STB_GLOBAL, STV_HIDDEN, 269 STT_NOTYPE, GotOff, /*Size=*/0, Out::ElfHeader}); 270 ElfSym::GlobalOffsetTable = cast<Defined>(S); 271 } 272 273 // __ehdr_start is the location of ELF file headers. Note that we define 274 // this symbol unconditionally even when using a linker script, which 275 // differs from the behavior implemented by GNU linker which only define 276 // this symbol if ELF headers are in the memory mapped segment. 277 addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); 278 279 // __executable_start is not documented, but the expectation of at 280 // least the Android libc is that it points to the ELF header. 281 addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); 282 283 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 284 // each DSO. The address of the symbol doesn't matter as long as they are 285 // different in different DSOs, so we chose the start address of the DSO. 286 addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); 287 288 // If linker script do layout we do not need to create any standart symbols. 289 if (Script->HasSectionsCommand) 290 return; 291 292 auto Add = [](StringRef S, int64_t Pos) { 293 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 294 }; 295 296 ElfSym::Bss = Add("__bss_start", 0); 297 ElfSym::End1 = Add("end", -1); 298 ElfSym::End2 = Add("_end", -1); 299 ElfSym::Etext1 = Add("etext", -1); 300 ElfSym::Etext2 = Add("_etext", -1); 301 ElfSym::Edata1 = Add("edata", -1); 302 ElfSym::Edata2 = Add("_edata", -1); 303 } 304 305 static OutputSection *findSection(StringRef Name, unsigned Partition = 1) { 306 for (BaseCommand *Base : Script->SectionCommands) 307 if (auto *Sec = dyn_cast<OutputSection>(Base)) 308 if (Sec->Name == Name && Sec->Partition == Partition) 309 return Sec; 310 return nullptr; 311 } 312 313 // Initialize Out members. 314 template <class ELFT> static void createSyntheticSections() { 315 // Initialize all pointers with NULL. This is needed because 316 // you can call lld::elf::main more than once as a library. 317 memset(&Out::First, 0, sizeof(Out)); 318 319 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 320 321 In.ShStrTab = make<StringTableSection>(".shstrtab", false); 322 323 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 324 Out::ProgramHeaders->Alignment = Config->Wordsize; 325 326 if (Config->Strip != StripPolicy::All) { 327 In.StrTab = make<StringTableSection>(".strtab", false); 328 In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab); 329 In.SymTabShndx = make<SymtabShndxSection>(); 330 } 331 332 In.Bss = make<BssSection>(".bss", 0, 1); 333 Add(In.Bss); 334 335 // If there is a SECTIONS command and a .data.rel.ro section name use name 336 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 337 // This makes sure our relro is contiguous. 338 bool HasDataRelRo = 339 Script->HasSectionsCommand && findSection(".data.rel.ro", 0); 340 In.BssRelRo = 341 make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 342 Add(In.BssRelRo); 343 344 // Add MIPS-specific sections. 345 if (Config->EMachine == EM_MIPS) { 346 if (!Config->Shared && Config->HasDynSymTab) { 347 In.MipsRldMap = make<MipsRldMapSection>(); 348 Add(In.MipsRldMap); 349 } 350 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 351 Add(Sec); 352 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 353 Add(Sec); 354 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 355 Add(Sec); 356 } 357 358 for (Partition &Part : Partitions) { 359 auto Add = [&](InputSectionBase *Sec) { 360 Sec->Partition = Part.getNumber(); 361 InputSections.push_back(Sec); 362 }; 363 364 if (!Part.Name.empty()) { 365 Part.ElfHeader = make<PartitionElfHeaderSection<ELFT>>(); 366 Part.ElfHeader->Name = Part.Name; 367 Add(Part.ElfHeader); 368 369 Part.ProgramHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 370 Add(Part.ProgramHeaders); 371 } 372 373 if (Config->BuildId != BuildIdKind::None) { 374 Part.BuildId = make<BuildIdSection>(); 375 Add(Part.BuildId); 376 } 377 378 Part.DynStrTab = make<StringTableSection>(".dynstr", true); 379 Part.DynSymTab = make<SymbolTableSection<ELFT>>(*Part.DynStrTab); 380 Part.Dynamic = make<DynamicSection<ELFT>>(); 381 if (Config->AndroidPackDynRelocs) { 382 Part.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 383 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 384 } else { 385 Part.RelaDyn = make<RelocationSection<ELFT>>( 386 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 387 } 388 389 if (needsInterpSection()) 390 Add(createInterpSection()); 391 392 if (Config->HasDynSymTab) { 393 Part.DynSymTab = make<SymbolTableSection<ELFT>>(*Part.DynStrTab); 394 Add(Part.DynSymTab); 395 396 Part.VerSym = make<VersionTableSection>(); 397 Add(Part.VerSym); 398 399 if (!Config->VersionDefinitions.empty()) { 400 Part.VerDef = make<VersionDefinitionSection>(); 401 Add(Part.VerDef); 402 } 403 404 Part.VerNeed = make<VersionNeedSection<ELFT>>(); 405 Add(Part.VerNeed); 406 407 if (Config->GnuHash) { 408 Part.GnuHashTab = make<GnuHashTableSection>(); 409 Add(Part.GnuHashTab); 410 } 411 412 if (Config->SysvHash) { 413 Part.HashTab = make<HashTableSection>(); 414 Add(Part.HashTab); 415 } 416 417 Add(Part.Dynamic); 418 Add(Part.DynStrTab); 419 Add(Part.RelaDyn); 420 } 421 422 if (Config->RelrPackDynRelocs) { 423 Part.RelrDyn = make<RelrSection<ELFT>>(); 424 Add(Part.RelrDyn); 425 } 426 427 if (!Config->Relocatable) { 428 if (Config->EhFrameHdr) { 429 Part.EhFrameHdr = make<EhFrameHeader>(); 430 Add(Part.EhFrameHdr); 431 } 432 Part.EhFrame = make<EhFrameSection>(); 433 Add(Part.EhFrame); 434 } 435 436 if (Config->EMachine == EM_ARM && !Config->Relocatable) { 437 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 438 // InputSections. 439 Part.ARMExidx = make<ARMExidxSyntheticSection>(); 440 Add(Part.ARMExidx); 441 } 442 } 443 444 if (Partitions.size() != 1) { 445 // Create the partition end marker. This needs to be in partition number 255 446 // so that it is sorted after all other partitions. It also has other 447 // special handling (see createPhdrs() and combineEhSections()). 448 In.PartEnd = make<BssSection>(".part.end", Config->MaxPageSize, 1); 449 In.PartEnd->Partition = 255; 450 Add(In.PartEnd); 451 452 In.PartIndex = make<PartitionIndexSection>(); 453 addOptionalRegular("__part_index_begin", In.PartIndex, 0); 454 addOptionalRegular("__part_index_end", In.PartIndex, 455 In.PartIndex->getSize()); 456 Add(In.PartIndex); 457 } 458 459 // Add .got. MIPS' .got is so different from the other archs, 460 // it has its own class. 461 if (Config->EMachine == EM_MIPS) { 462 In.MipsGot = make<MipsGotSection>(); 463 Add(In.MipsGot); 464 } else { 465 In.Got = make<GotSection>(); 466 Add(In.Got); 467 } 468 469 if (Config->EMachine == EM_PPC) { 470 In.PPC32Got2 = make<PPC32Got2Section>(); 471 Add(In.PPC32Got2); 472 } 473 474 if (Config->EMachine == EM_PPC64) { 475 In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 476 Add(In.PPC64LongBranchTarget); 477 } 478 479 In.GotPlt = make<GotPltSection>(); 480 Add(In.GotPlt); 481 In.IgotPlt = make<IgotPltSection>(); 482 Add(In.IgotPlt); 483 484 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 485 // it as a relocation and ensure the referenced section is created. 486 if (ElfSym::GlobalOffsetTable && Config->EMachine != EM_MIPS) { 487 if (Target->GotBaseSymInGotPlt) 488 In.GotPlt->HasGotPltOffRel = true; 489 else 490 In.Got->HasGotOffRel = true; 491 } 492 493 if (Config->GdbIndex) 494 Add(GdbIndexSection::create<ELFT>()); 495 496 // We always need to add rel[a].plt to output if it has entries. 497 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 498 In.RelaPlt = make<RelocationSection<ELFT>>( 499 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 500 Add(In.RelaPlt); 501 502 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 503 // that the IRelative relocations are processed last by the dynamic loader. 504 // We cannot place the iplt section in .rel.dyn when Android relocation 505 // packing is enabled because that would cause a section type mismatch. 506 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 507 // we can get the desired behaviour by placing the iplt section in .rel.plt. 508 In.RelaIplt = make<RelocationSection<ELFT>>( 509 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 510 ? ".rel.dyn" 511 : In.RelaPlt->Name, 512 false /*Sort*/); 513 Add(In.RelaIplt); 514 515 In.Plt = make<PltSection>(false); 516 Add(In.Plt); 517 In.Iplt = make<PltSection>(true); 518 Add(In.Iplt); 519 520 if (Config->AndFeatures) 521 Add(make<GnuPropertySection>()); 522 523 // .note.GNU-stack is always added when we are creating a re-linkable 524 // object file. Other linkers are using the presence of this marker 525 // section to control the executable-ness of the stack area, but that 526 // is irrelevant these days. Stack area should always be non-executable 527 // by default. So we emit this section unconditionally. 528 if (Config->Relocatable) 529 Add(make<GnuStackSection>()); 530 531 if (In.SymTab) 532 Add(In.SymTab); 533 if (In.SymTabShndx) 534 Add(In.SymTabShndx); 535 Add(In.ShStrTab); 536 if (In.StrTab) 537 Add(In.StrTab); 538 } 539 540 // The main function of the writer. 541 template <class ELFT> void Writer<ELFT>::run() { 542 // Make copies of any input sections that need to be copied into each 543 // partition. 544 copySectionsIntoPartitions<ELFT>(); 545 546 // Create linker-synthesized sections such as .got or .plt. 547 // Such sections are of type input section. 548 createSyntheticSections<ELFT>(); 549 550 // Some input sections that are used for exception handling need to be moved 551 // into synthetic sections. Do that now so that they aren't assigned to 552 // output sections in the usual way. 553 if (!Config->Relocatable) 554 combineEhSections<ELFT>(); 555 556 // We want to process linker script commands. When SECTIONS command 557 // is given we let it create sections. 558 Script->processSectionCommands(); 559 560 // Linker scripts controls how input sections are assigned to output sections. 561 // Input sections that were not handled by scripts are called "orphans", and 562 // they are assigned to output sections by the default rule. Process that. 563 Script->addOrphanSections(); 564 565 if (Config->Discard != DiscardPolicy::All) 566 copyLocalSymbols(); 567 568 if (Config->CopyRelocs) 569 addSectionSymbols(); 570 571 // Now that we have a complete set of output sections. This function 572 // completes section contents. For example, we need to add strings 573 // to the string table, and add entries to .got and .plt. 574 // finalizeSections does that. 575 finalizeSections(); 576 checkExecuteOnly(); 577 if (errorCount()) 578 return; 579 580 Script->assignAddresses(); 581 582 // If -compressed-debug-sections is specified, we need to compress 583 // .debug_* sections. Do it right now because it changes the size of 584 // output sections. 585 for (OutputSection *Sec : OutputSections) 586 Sec->maybeCompress<ELFT>(); 587 588 Script->allocateHeaders(Main->Phdrs); 589 590 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 591 // 0 sized region. This has to be done late since only after assignAddresses 592 // we know the size of the sections. 593 for (Partition &Part : Partitions) 594 removeEmptyPTLoad(Part.Phdrs); 595 596 if (!Config->OFormatBinary) 597 assignFileOffsets(); 598 else 599 assignFileOffsetsBinary(); 600 601 for (Partition &Part : Partitions) 602 setPhdrs(Part); 603 604 if (Config->Relocatable) 605 for (OutputSection *Sec : OutputSections) 606 Sec->Addr = 0; 607 608 if (Config->CheckSections) 609 checkSections(); 610 611 // It does not make sense try to open the file if we have error already. 612 if (errorCount()) 613 return; 614 // Write the result down to a file. 615 openFile(); 616 if (errorCount()) 617 return; 618 619 if (!Config->OFormatBinary) { 620 writeTrapInstr(); 621 writeHeader(); 622 writeSections(); 623 } else { 624 writeSectionsBinary(); 625 } 626 627 // Backfill .note.gnu.build-id section content. This is done at last 628 // because the content is usually a hash value of the entire output file. 629 writeBuildId(); 630 if (errorCount()) 631 return; 632 633 // Handle -Map and -cref options. 634 writeMapFile(); 635 writeCrossReferenceTable(); 636 if (errorCount()) 637 return; 638 639 if (auto E = Buffer->commit()) 640 error("failed to write to the output file: " + toString(std::move(E))); 641 } 642 643 static bool shouldKeepInSymtab(const Defined &Sym) { 644 if (Sym.isSection()) 645 return false; 646 647 if (Config->Discard == DiscardPolicy::None) 648 return true; 649 650 // If -emit-reloc is given, all symbols including local ones need to be 651 // copied because they may be referenced by relocations. 652 if (Config->EmitRelocs) 653 return true; 654 655 // In ELF assembly .L symbols are normally discarded by the assembler. 656 // If the assembler fails to do so, the linker discards them if 657 // * --discard-locals is used. 658 // * The symbol is in a SHF_MERGE section, which is normally the reason for 659 // the assembler keeping the .L symbol. 660 StringRef Name = Sym.getName(); 661 bool IsLocal = Name.startswith(".L") || Name.empty(); 662 if (!IsLocal) 663 return true; 664 665 if (Config->Discard == DiscardPolicy::Locals) 666 return false; 667 668 SectionBase *Sec = Sym.Section; 669 return !Sec || !(Sec->Flags & SHF_MERGE); 670 } 671 672 static bool includeInSymtab(const Symbol &B) { 673 if (!B.isLocal() && !B.IsUsedInRegularObj) 674 return false; 675 676 if (auto *D = dyn_cast<Defined>(&B)) { 677 // Always include absolute symbols. 678 SectionBase *Sec = D->Section; 679 if (!Sec) 680 return true; 681 Sec = Sec->Repl; 682 683 // Exclude symbols pointing to garbage-collected sections. 684 if (isa<InputSectionBase>(Sec) && !Sec->isLive()) 685 return false; 686 687 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 688 if (!S->getSectionPiece(D->Value)->Live) 689 return false; 690 return true; 691 } 692 return B.Used; 693 } 694 695 // Local symbols are not in the linker's symbol table. This function scans 696 // each object file's symbol table to copy local symbols to the output. 697 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 698 if (!In.SymTab) 699 return; 700 for (InputFile *File : ObjectFiles) { 701 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 702 for (Symbol *B : F->getLocalSymbols()) { 703 if (!B->isLocal()) 704 fatal(toString(F) + 705 ": broken object: getLocalSymbols returns a non-local symbol"); 706 auto *DR = dyn_cast<Defined>(B); 707 708 // No reason to keep local undefined symbol in symtab. 709 if (!DR) 710 continue; 711 if (!includeInSymtab(*B)) 712 continue; 713 if (!shouldKeepInSymtab(*DR)) 714 continue; 715 In.SymTab->addSymbol(B); 716 } 717 } 718 } 719 720 // Create a section symbol for each output section so that we can represent 721 // relocations that point to the section. If we know that no relocation is 722 // referring to a section (that happens if the section is a synthetic one), we 723 // don't create a section symbol for that section. 724 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 725 for (BaseCommand *Base : Script->SectionCommands) { 726 auto *Sec = dyn_cast<OutputSection>(Base); 727 if (!Sec) 728 continue; 729 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 730 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 731 return !ISD->Sections.empty(); 732 return false; 733 }); 734 if (I == Sec->SectionCommands.end()) 735 continue; 736 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 737 738 // Relocations are not using REL[A] section symbols. 739 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 740 continue; 741 742 // Unlike other synthetic sections, mergeable output sections contain data 743 // copied from input sections, and there may be a relocation pointing to its 744 // contents if -r or -emit-reloc are given. 745 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 746 continue; 747 748 auto *Sym = 749 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 750 /*Value=*/0, /*Size=*/0, IS); 751 In.SymTab->addSymbol(Sym); 752 } 753 } 754 755 // Today's loaders have a feature to make segments read-only after 756 // processing dynamic relocations to enhance security. PT_GNU_RELRO 757 // is defined for that. 758 // 759 // This function returns true if a section needs to be put into a 760 // PT_GNU_RELRO segment. 761 static bool isRelroSection(const OutputSection *Sec) { 762 if (!Config->ZRelro) 763 return false; 764 765 uint64_t Flags = Sec->Flags; 766 767 // Non-allocatable or non-writable sections don't need RELRO because 768 // they are not writable or not even mapped to memory in the first place. 769 // RELRO is for sections that are essentially read-only but need to 770 // be writable only at process startup to allow dynamic linker to 771 // apply relocations. 772 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 773 return false; 774 775 // Once initialized, TLS data segments are used as data templates 776 // for a thread-local storage. For each new thread, runtime 777 // allocates memory for a TLS and copy templates there. No thread 778 // are supposed to use templates directly. Thus, it can be in RELRO. 779 if (Flags & SHF_TLS) 780 return true; 781 782 // .init_array, .preinit_array and .fini_array contain pointers to 783 // functions that are executed on process startup or exit. These 784 // pointers are set by the static linker, and they are not expected 785 // to change at runtime. But if you are an attacker, you could do 786 // interesting things by manipulating pointers in .fini_array, for 787 // example. So they are put into RELRO. 788 uint32_t Type = Sec->Type; 789 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 790 Type == SHT_PREINIT_ARRAY) 791 return true; 792 793 // .got contains pointers to external symbols. They are resolved by 794 // the dynamic linker when a module is loaded into memory, and after 795 // that they are not expected to change. So, it can be in RELRO. 796 if (In.Got && Sec == In.Got->getParent()) 797 return true; 798 799 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 800 // through r2 register, which is reserved for that purpose. Since r2 is used 801 // for accessing .got as well, .got and .toc need to be close enough in the 802 // virtual address space. Usually, .toc comes just after .got. Since we place 803 // .got into RELRO, .toc needs to be placed into RELRO too. 804 if (Sec->Name.equals(".toc")) 805 return true; 806 807 // .got.plt contains pointers to external function symbols. They are 808 // by default resolved lazily, so we usually cannot put it into RELRO. 809 // However, if "-z now" is given, the lazy symbol resolution is 810 // disabled, which enables us to put it into RELRO. 811 if (Sec == In.GotPlt->getParent()) 812 return Config->ZNow; 813 814 // .dynamic section contains data for the dynamic linker, and 815 // there's no need to write to it at runtime, so it's better to put 816 // it into RELRO. 817 if (Sec->Name == ".dynamic") 818 return true; 819 820 // Sections with some special names are put into RELRO. This is a 821 // bit unfortunate because section names shouldn't be significant in 822 // ELF in spirit. But in reality many linker features depend on 823 // magic section names. 824 StringRef S = Sec->Name; 825 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 826 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 827 S == ".openbsd.randomdata"; 828 } 829 830 // We compute a rank for each section. The rank indicates where the 831 // section should be placed in the file. Instead of using simple 832 // numbers (0,1,2...), we use a series of flags. One for each decision 833 // point when placing the section. 834 // Using flags has two key properties: 835 // * It is easy to check if a give branch was taken. 836 // * It is easy two see how similar two ranks are (see getRankProximity). 837 enum RankFlags { 838 RF_NOT_ADDR_SET = 1 << 27, 839 RF_NOT_ALLOC = 1 << 26, 840 RF_PARTITION = 1 << 18, // Partition number (8 bits) 841 RF_NOT_PART_EHDR = 1 << 17, 842 RF_NOT_PART_PHDR = 1 << 16, 843 RF_NOT_INTERP = 1 << 15, 844 RF_NOT_NOTE = 1 << 14, 845 RF_WRITE = 1 << 13, 846 RF_EXEC_WRITE = 1 << 12, 847 RF_EXEC = 1 << 11, 848 RF_RODATA = 1 << 10, 849 RF_NOT_RELRO = 1 << 9, 850 RF_NOT_TLS = 1 << 8, 851 RF_BSS = 1 << 7, 852 RF_PPC_NOT_TOCBSS = 1 << 6, 853 RF_PPC_TOCL = 1 << 5, 854 RF_PPC_TOC = 1 << 4, 855 RF_PPC_GOT = 1 << 3, 856 RF_PPC_BRANCH_LT = 1 << 2, 857 RF_MIPS_GPREL = 1 << 1, 858 RF_MIPS_NOT_GOT = 1 << 0 859 }; 860 861 static unsigned getSectionRank(const OutputSection *Sec) { 862 unsigned Rank = Sec->Partition * RF_PARTITION; 863 864 // We want to put section specified by -T option first, so we 865 // can start assigning VA starting from them later. 866 if (Config->SectionStartMap.count(Sec->Name)) 867 return Rank; 868 Rank |= RF_NOT_ADDR_SET; 869 870 // Allocatable sections go first to reduce the total PT_LOAD size and 871 // so debug info doesn't change addresses in actual code. 872 if (!(Sec->Flags & SHF_ALLOC)) 873 return Rank | RF_NOT_ALLOC; 874 875 if (Sec->Type == SHT_LLVM_PART_EHDR) 876 return Rank; 877 Rank |= RF_NOT_PART_EHDR; 878 879 if (Sec->Type == SHT_LLVM_PART_PHDR) 880 return Rank; 881 Rank |= RF_NOT_PART_PHDR; 882 883 // Put .interp first because some loaders want to see that section 884 // on the first page of the executable file when loaded into memory. 885 if (Sec->Name == ".interp") 886 return Rank; 887 Rank |= RF_NOT_INTERP; 888 889 // Put .note sections (which make up one PT_NOTE) at the beginning so that 890 // they are likely to be included in a core file even if core file size is 891 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 892 // included in a core to match core files with executables. 893 if (Sec->Type == SHT_NOTE) 894 return Rank; 895 Rank |= RF_NOT_NOTE; 896 897 // Sort sections based on their access permission in the following 898 // order: R, RX, RWX, RW. This order is based on the following 899 // considerations: 900 // * Read-only sections come first such that they go in the 901 // PT_LOAD covering the program headers at the start of the file. 902 // * Read-only, executable sections come next. 903 // * Writable, executable sections follow such that .plt on 904 // architectures where it needs to be writable will be placed 905 // between .text and .data. 906 // * Writable sections come last, such that .bss lands at the very 907 // end of the last PT_LOAD. 908 bool IsExec = Sec->Flags & SHF_EXECINSTR; 909 bool IsWrite = Sec->Flags & SHF_WRITE; 910 911 if (IsExec) { 912 if (IsWrite) 913 Rank |= RF_EXEC_WRITE; 914 else 915 Rank |= RF_EXEC; 916 } else if (IsWrite) { 917 Rank |= RF_WRITE; 918 } else if (Sec->Type == SHT_PROGBITS) { 919 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 920 // .eh_frame) closer to .text. They likely contain PC or GOT relative 921 // relocations and there could be relocation overflow if other huge sections 922 // (.dynstr .dynsym) were placed in between. 923 Rank |= RF_RODATA; 924 } 925 926 // Place RelRo sections first. After considering SHT_NOBITS below, the 927 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 928 // where | marks where page alignment happens. An alternative ordering is 929 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 930 // waste more bytes due to 2 alignment places. 931 if (!isRelroSection(Sec)) 932 Rank |= RF_NOT_RELRO; 933 934 // If we got here we know that both A and B are in the same PT_LOAD. 935 936 // The TLS initialization block needs to be a single contiguous block in a R/W 937 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 938 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 939 // after PROGBITS. 940 if (!(Sec->Flags & SHF_TLS)) 941 Rank |= RF_NOT_TLS; 942 943 // Within TLS sections, or within other RelRo sections, or within non-RelRo 944 // sections, place non-NOBITS sections first. 945 if (Sec->Type == SHT_NOBITS) 946 Rank |= RF_BSS; 947 948 // Some architectures have additional ordering restrictions for sections 949 // within the same PT_LOAD. 950 if (Config->EMachine == EM_PPC64) { 951 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 952 // that we would like to make sure appear is a specific order to maximize 953 // their coverage by a single signed 16-bit offset from the TOC base 954 // pointer. Conversely, the special .tocbss section should be first among 955 // all SHT_NOBITS sections. This will put it next to the loaded special 956 // PPC64 sections (and, thus, within reach of the TOC base pointer). 957 StringRef Name = Sec->Name; 958 if (Name != ".tocbss") 959 Rank |= RF_PPC_NOT_TOCBSS; 960 961 if (Name == ".toc1") 962 Rank |= RF_PPC_TOCL; 963 964 if (Name == ".toc") 965 Rank |= RF_PPC_TOC; 966 967 if (Name == ".got") 968 Rank |= RF_PPC_GOT; 969 970 if (Name == ".branch_lt") 971 Rank |= RF_PPC_BRANCH_LT; 972 } 973 974 if (Config->EMachine == EM_MIPS) { 975 // All sections with SHF_MIPS_GPREL flag should be grouped together 976 // because data in these sections is addressable with a gp relative address. 977 if (Sec->Flags & SHF_MIPS_GPREL) 978 Rank |= RF_MIPS_GPREL; 979 980 if (Sec->Name != ".got") 981 Rank |= RF_MIPS_NOT_GOT; 982 } 983 984 return Rank; 985 } 986 987 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 988 const OutputSection *A = cast<OutputSection>(ACmd); 989 const OutputSection *B = cast<OutputSection>(BCmd); 990 991 if (A->SortRank != B->SortRank) 992 return A->SortRank < B->SortRank; 993 994 if (!(A->SortRank & RF_NOT_ADDR_SET)) 995 return Config->SectionStartMap.lookup(A->Name) < 996 Config->SectionStartMap.lookup(B->Name); 997 return false; 998 } 999 1000 void PhdrEntry::add(OutputSection *Sec) { 1001 LastSec = Sec; 1002 if (!FirstSec) 1003 FirstSec = Sec; 1004 p_align = std::max(p_align, Sec->Alignment); 1005 if (p_type == PT_LOAD) 1006 Sec->PtLoad = this; 1007 } 1008 1009 // The beginning and the ending of .rel[a].plt section are marked 1010 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1011 // executable. The runtime needs these symbols in order to resolve 1012 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1013 // need these symbols, since IRELATIVE relocs are resolved through GOT 1014 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1015 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1016 if (Config->Relocatable || needsInterpSection()) 1017 return; 1018 1019 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1020 // because .rela.plt might be empty and thus removed from output. 1021 // We'll override Out::ElfHeader with In.RelaIplt later when we are 1022 // sure that .rela.plt exists in output. 1023 ElfSym::RelaIpltStart = addOptionalRegular( 1024 Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start", 1025 Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); 1026 1027 ElfSym::RelaIpltEnd = addOptionalRegular( 1028 Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end", 1029 Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); 1030 } 1031 1032 template <class ELFT> 1033 void Writer<ELFT>::forEachRelSec( 1034 llvm::function_ref<void(InputSectionBase &)> Fn) { 1035 // Scan all relocations. Each relocation goes through a series 1036 // of tests to determine if it needs special treatment, such as 1037 // creating GOT, PLT, copy relocations, etc. 1038 // Note that relocations for non-alloc sections are directly 1039 // processed by InputSection::relocateNonAlloc. 1040 for (InputSectionBase *IS : InputSections) 1041 if (IS->isLive() && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 1042 Fn(*IS); 1043 for (Partition &Part : Partitions) { 1044 for (EhInputSection *ES : Part.EhFrame->Sections) 1045 Fn(*ES); 1046 if (Part.ARMExidx && Part.ARMExidx->isLive()) 1047 for (InputSection *Ex : Part.ARMExidx->ExidxSections) 1048 Fn(*Ex); 1049 } 1050 } 1051 1052 // This function generates assignments for predefined symbols (e.g. _end or 1053 // _etext) and inserts them into the commands sequence to be processed at the 1054 // appropriate time. This ensures that the value is going to be correct by the 1055 // time any references to these symbols are processed and is equivalent to 1056 // defining these symbols explicitly in the linker script. 1057 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1058 if (ElfSym::GlobalOffsetTable) { 1059 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1060 // to the start of the .got or .got.plt section. 1061 InputSection *GotSection = In.GotPlt; 1062 if (!Target->GotBaseSymInGotPlt) 1063 GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot) 1064 : cast<InputSection>(In.Got); 1065 ElfSym::GlobalOffsetTable->Section = GotSection; 1066 } 1067 1068 // .rela_iplt_{start,end} mark the start and the end of .rela.plt section. 1069 if (ElfSym::RelaIpltStart && In.RelaIplt->isNeeded()) { 1070 ElfSym::RelaIpltStart->Section = In.RelaIplt; 1071 ElfSym::RelaIpltEnd->Section = In.RelaIplt; 1072 ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize(); 1073 } 1074 1075 PhdrEntry *Last = nullptr; 1076 PhdrEntry *LastRO = nullptr; 1077 1078 for (Partition &Part : Partitions) { 1079 for (PhdrEntry *P : Part.Phdrs) { 1080 if (P->p_type != PT_LOAD) 1081 continue; 1082 Last = P; 1083 if (!(P->p_flags & PF_W)) 1084 LastRO = P; 1085 } 1086 } 1087 1088 if (LastRO) { 1089 // _etext is the first location after the last read-only loadable segment. 1090 if (ElfSym::Etext1) 1091 ElfSym::Etext1->Section = LastRO->LastSec; 1092 if (ElfSym::Etext2) 1093 ElfSym::Etext2->Section = LastRO->LastSec; 1094 } 1095 1096 if (Last) { 1097 // _edata points to the end of the last mapped initialized section. 1098 OutputSection *Edata = nullptr; 1099 for (OutputSection *OS : OutputSections) { 1100 if (OS->Type != SHT_NOBITS) 1101 Edata = OS; 1102 if (OS == Last->LastSec) 1103 break; 1104 } 1105 1106 if (ElfSym::Edata1) 1107 ElfSym::Edata1->Section = Edata; 1108 if (ElfSym::Edata2) 1109 ElfSym::Edata2->Section = Edata; 1110 1111 // _end is the first location after the uninitialized data region. 1112 if (ElfSym::End1) 1113 ElfSym::End1->Section = Last->LastSec; 1114 if (ElfSym::End2) 1115 ElfSym::End2->Section = Last->LastSec; 1116 } 1117 1118 if (ElfSym::Bss) 1119 ElfSym::Bss->Section = findSection(".bss"); 1120 1121 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1122 // be equal to the _gp symbol's value. 1123 if (ElfSym::MipsGp) { 1124 // Find GP-relative section with the lowest address 1125 // and use this address to calculate default _gp value. 1126 for (OutputSection *OS : OutputSections) { 1127 if (OS->Flags & SHF_MIPS_GPREL) { 1128 ElfSym::MipsGp->Section = OS; 1129 ElfSym::MipsGp->Value = 0x7ff0; 1130 break; 1131 } 1132 } 1133 } 1134 } 1135 1136 // We want to find how similar two ranks are. 1137 // The more branches in getSectionRank that match, the more similar they are. 1138 // Since each branch corresponds to a bit flag, we can just use 1139 // countLeadingZeros. 1140 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 1141 return countLeadingZeros(A->SortRank ^ B->SortRank); 1142 } 1143 1144 static int getRankProximity(OutputSection *A, BaseCommand *B) { 1145 auto *Sec = dyn_cast<OutputSection>(B); 1146 return (Sec && Sec->HasInputSections) ? getRankProximityAux(A, Sec) : -1; 1147 } 1148 1149 // When placing orphan sections, we want to place them after symbol assignments 1150 // so that an orphan after 1151 // begin_foo = .; 1152 // foo : { *(foo) } 1153 // end_foo = .; 1154 // doesn't break the intended meaning of the begin/end symbols. 1155 // We don't want to go over sections since findOrphanPos is the 1156 // one in charge of deciding the order of the sections. 1157 // We don't want to go over changes to '.', since doing so in 1158 // rx_sec : { *(rx_sec) } 1159 // . = ALIGN(0x1000); 1160 // /* The RW PT_LOAD starts here*/ 1161 // rw_sec : { *(rw_sec) } 1162 // would mean that the RW PT_LOAD would become unaligned. 1163 static bool shouldSkip(BaseCommand *Cmd) { 1164 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 1165 return Assign->Name != "."; 1166 return false; 1167 } 1168 1169 // We want to place orphan sections so that they share as much 1170 // characteristics with their neighbors as possible. For example, if 1171 // both are rw, or both are tls. 1172 static std::vector<BaseCommand *>::iterator 1173 findOrphanPos(std::vector<BaseCommand *>::iterator B, 1174 std::vector<BaseCommand *>::iterator E) { 1175 OutputSection *Sec = cast<OutputSection>(*E); 1176 1177 // Find the first element that has as close a rank as possible. 1178 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 1179 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 1180 }); 1181 if (I == E) 1182 return E; 1183 1184 // Consider all existing sections with the same proximity. 1185 int Proximity = getRankProximity(Sec, *I); 1186 for (; I != E; ++I) { 1187 auto *CurSec = dyn_cast<OutputSection>(*I); 1188 if (!CurSec || !CurSec->HasInputSections) 1189 continue; 1190 if (getRankProximity(Sec, CurSec) != Proximity || 1191 Sec->SortRank < CurSec->SortRank) 1192 break; 1193 } 1194 1195 auto IsOutputSecWithInputSections = [](BaseCommand *Cmd) { 1196 auto *OS = dyn_cast<OutputSection>(Cmd); 1197 return OS && OS->HasInputSections; 1198 }; 1199 auto J = std::find_if(llvm::make_reverse_iterator(I), 1200 llvm::make_reverse_iterator(B), 1201 IsOutputSecWithInputSections); 1202 I = J.base(); 1203 1204 // As a special case, if the orphan section is the last section, put 1205 // it at the very end, past any other commands. 1206 // This matches bfd's behavior and is convenient when the linker script fully 1207 // specifies the start of the file, but doesn't care about the end (the non 1208 // alloc sections for example). 1209 auto NextSec = std::find_if(I, E, IsOutputSecWithInputSections); 1210 if (NextSec == E) 1211 return E; 1212 1213 while (I != E && shouldSkip(*I)) 1214 ++I; 1215 return I; 1216 } 1217 1218 // Builds section order for handling --symbol-ordering-file. 1219 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1220 DenseMap<const InputSectionBase *, int> SectionOrder; 1221 // Use the rarely used option -call-graph-ordering-file to sort sections. 1222 if (!Config->CallGraphProfile.empty()) 1223 return computeCallGraphProfileOrder(); 1224 1225 if (Config->SymbolOrderingFile.empty()) 1226 return SectionOrder; 1227 1228 struct SymbolOrderEntry { 1229 int Priority; 1230 bool Present; 1231 }; 1232 1233 // Build a map from symbols to their priorities. Symbols that didn't 1234 // appear in the symbol ordering file have the lowest priority 0. 1235 // All explicitly mentioned symbols have negative (higher) priorities. 1236 DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; 1237 int Priority = -Config->SymbolOrderingFile.size(); 1238 for (StringRef S : Config->SymbolOrderingFile) 1239 SymbolOrder.insert({S, {Priority++, false}}); 1240 1241 // Build a map from sections to their priorities. 1242 auto AddSym = [&](Symbol &Sym) { 1243 auto It = SymbolOrder.find(Sym.getName()); 1244 if (It == SymbolOrder.end()) 1245 return; 1246 SymbolOrderEntry &Ent = It->second; 1247 Ent.Present = true; 1248 1249 maybeWarnUnorderableSymbol(&Sym); 1250 1251 if (auto *D = dyn_cast<Defined>(&Sym)) { 1252 if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { 1253 int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; 1254 Priority = std::min(Priority, Ent.Priority); 1255 } 1256 } 1257 }; 1258 1259 // We want both global and local symbols. We get the global ones from the 1260 // symbol table and iterate the object files for the local ones. 1261 Symtab->forEachSymbol([&](Symbol *Sym) { 1262 if (!Sym->isLazy()) 1263 AddSym(*Sym); 1264 }); 1265 1266 for (InputFile *File : ObjectFiles) 1267 for (Symbol *Sym : File->getSymbols()) 1268 if (Sym->isLocal()) 1269 AddSym(*Sym); 1270 1271 if (Config->WarnSymbolOrdering) 1272 for (auto OrderEntry : SymbolOrder) 1273 if (!OrderEntry.second.Present) 1274 warn("symbol ordering file: no such symbol: " + OrderEntry.first); 1275 1276 return SectionOrder; 1277 } 1278 1279 // Sorts the sections in ISD according to the provided section order. 1280 static void 1281 sortISDBySectionOrder(InputSectionDescription *ISD, 1282 const DenseMap<const InputSectionBase *, int> &Order) { 1283 std::vector<InputSection *> UnorderedSections; 1284 std::vector<std::pair<InputSection *, int>> OrderedSections; 1285 uint64_t UnorderedSize = 0; 1286 1287 for (InputSection *IS : ISD->Sections) { 1288 auto I = Order.find(IS); 1289 if (I == Order.end()) { 1290 UnorderedSections.push_back(IS); 1291 UnorderedSize += IS->getSize(); 1292 continue; 1293 } 1294 OrderedSections.push_back({IS, I->second}); 1295 } 1296 llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A, 1297 std::pair<InputSection *, int> B) { 1298 return A.second < B.second; 1299 }); 1300 1301 // Find an insertion point for the ordered section list in the unordered 1302 // section list. On targets with limited-range branches, this is the mid-point 1303 // of the unordered section list. This decreases the likelihood that a range 1304 // extension thunk will be needed to enter or exit the ordered region. If the 1305 // ordered section list is a list of hot functions, we can generally expect 1306 // the ordered functions to be called more often than the unordered functions, 1307 // making it more likely that any particular call will be within range, and 1308 // therefore reducing the number of thunks required. 1309 // 1310 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1311 // If the layout is: 1312 // 1313 // 8MB hot 1314 // 32MB cold 1315 // 1316 // only the first 8-16MB of the cold code (depending on which hot function it 1317 // is actually calling) can call the hot code without a range extension thunk. 1318 // However, if we use this layout: 1319 // 1320 // 16MB cold 1321 // 8MB hot 1322 // 16MB cold 1323 // 1324 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1325 // of the second block of cold code can call the hot code without a thunk. So 1326 // we effectively double the amount of code that could potentially call into 1327 // the hot code without a thunk. 1328 size_t InsPt = 0; 1329 if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) { 1330 uint64_t UnorderedPos = 0; 1331 for (; InsPt != UnorderedSections.size(); ++InsPt) { 1332 UnorderedPos += UnorderedSections[InsPt]->getSize(); 1333 if (UnorderedPos > UnorderedSize / 2) 1334 break; 1335 } 1336 } 1337 1338 ISD->Sections.clear(); 1339 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) 1340 ISD->Sections.push_back(IS); 1341 for (std::pair<InputSection *, int> P : OrderedSections) 1342 ISD->Sections.push_back(P.first); 1343 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) 1344 ISD->Sections.push_back(IS); 1345 } 1346 1347 static void sortSection(OutputSection *Sec, 1348 const DenseMap<const InputSectionBase *, int> &Order) { 1349 StringRef Name = Sec->Name; 1350 1351 // Sort input sections by section name suffixes for 1352 // __attribute__((init_priority(N))). 1353 if (Name == ".init_array" || Name == ".fini_array") { 1354 if (!Script->HasSectionsCommand) 1355 Sec->sortInitFini(); 1356 return; 1357 } 1358 1359 // Sort input sections by the special rule for .ctors and .dtors. 1360 if (Name == ".ctors" || Name == ".dtors") { 1361 if (!Script->HasSectionsCommand) 1362 Sec->sortCtorsDtors(); 1363 return; 1364 } 1365 1366 // Never sort these. 1367 if (Name == ".init" || Name == ".fini") 1368 return; 1369 1370 // .toc is allocated just after .got and is accessed using GOT-relative 1371 // relocations. Object files compiled with small code model have an 1372 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1373 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1374 // sections having smaller relocation offsets are at beginning of .toc 1375 if (Config->EMachine == EM_PPC64 && Name == ".toc") { 1376 if (Script->HasSectionsCommand) 1377 return; 1378 assert(Sec->SectionCommands.size() == 1); 1379 auto *ISD = cast<InputSectionDescription>(Sec->SectionCommands[0]); 1380 llvm::stable_sort(ISD->Sections, 1381 [](const InputSection *A, const InputSection *B) -> bool { 1382 return A->File->PPC64SmallCodeModelTocRelocs && 1383 !B->File->PPC64SmallCodeModelTocRelocs; 1384 }); 1385 return; 1386 } 1387 1388 // Sort input sections by priority using the list provided 1389 // by --symbol-ordering-file. 1390 if (!Order.empty()) 1391 for (BaseCommand *B : Sec->SectionCommands) 1392 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1393 sortISDBySectionOrder(ISD, Order); 1394 } 1395 1396 // If no layout was provided by linker script, we want to apply default 1397 // sorting for special input sections. This also handles --symbol-ordering-file. 1398 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1399 // Build the order once since it is expensive. 1400 DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); 1401 for (BaseCommand *Base : Script->SectionCommands) 1402 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1403 sortSection(Sec, Order); 1404 } 1405 1406 template <class ELFT> void Writer<ELFT>::sortSections() { 1407 Script->adjustSectionsBeforeSorting(); 1408 1409 // Don't sort if using -r. It is not necessary and we want to preserve the 1410 // relative order for SHF_LINK_ORDER sections. 1411 if (Config->Relocatable) 1412 return; 1413 1414 sortInputSections(); 1415 1416 for (BaseCommand *Base : Script->SectionCommands) { 1417 auto *OS = dyn_cast<OutputSection>(Base); 1418 if (!OS) 1419 continue; 1420 OS->SortRank = getSectionRank(OS); 1421 1422 // We want to assign rude approximation values to OutSecOff fields 1423 // to know the relative order of the input sections. We use it for 1424 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1425 uint64_t I = 0; 1426 for (InputSection *Sec : getInputSections(OS)) 1427 Sec->OutSecOff = I++; 1428 } 1429 1430 if (!Script->HasSectionsCommand) { 1431 // We know that all the OutputSections are contiguous in this case. 1432 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1433 std::stable_sort( 1434 llvm::find_if(Script->SectionCommands, IsSection), 1435 llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), 1436 compareSections); 1437 return; 1438 } 1439 1440 // Orphan sections are sections present in the input files which are 1441 // not explicitly placed into the output file by the linker script. 1442 // 1443 // The sections in the linker script are already in the correct 1444 // order. We have to figuere out where to insert the orphan 1445 // sections. 1446 // 1447 // The order of the sections in the script is arbitrary and may not agree with 1448 // compareSections. This means that we cannot easily define a strict weak 1449 // ordering. To see why, consider a comparison of a section in the script and 1450 // one not in the script. We have a two simple options: 1451 // * Make them equivalent (a is not less than b, and b is not less than a). 1452 // The problem is then that equivalence has to be transitive and we can 1453 // have sections a, b and c with only b in a script and a less than c 1454 // which breaks this property. 1455 // * Use compareSectionsNonScript. Given that the script order doesn't have 1456 // to match, we can end up with sections a, b, c, d where b and c are in the 1457 // script and c is compareSectionsNonScript less than b. In which case d 1458 // can be equivalent to c, a to b and d < a. As a concrete example: 1459 // .a (rx) # not in script 1460 // .b (rx) # in script 1461 // .c (ro) # in script 1462 // .d (ro) # not in script 1463 // 1464 // The way we define an order then is: 1465 // * Sort only the orphan sections. They are in the end right now. 1466 // * Move each orphan section to its preferred position. We try 1467 // to put each section in the last position where it can share 1468 // a PT_LOAD. 1469 // 1470 // There is some ambiguity as to where exactly a new entry should be 1471 // inserted, because Commands contains not only output section 1472 // commands but also other types of commands such as symbol assignment 1473 // expressions. There's no correct answer here due to the lack of the 1474 // formal specification of the linker script. We use heuristics to 1475 // determine whether a new output command should be added before or 1476 // after another commands. For the details, look at shouldSkip 1477 // function. 1478 1479 auto I = Script->SectionCommands.begin(); 1480 auto E = Script->SectionCommands.end(); 1481 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1482 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1483 return Sec->SectionIndex == UINT32_MAX; 1484 return false; 1485 }); 1486 1487 // Sort the orphan sections. 1488 std::stable_sort(NonScriptI, E, compareSections); 1489 1490 // As a horrible special case, skip the first . assignment if it is before any 1491 // section. We do this because it is common to set a load address by starting 1492 // the script with ". = 0xabcd" and the expectation is that every section is 1493 // after that. 1494 auto FirstSectionOrDotAssignment = 1495 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1496 if (FirstSectionOrDotAssignment != E && 1497 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1498 ++FirstSectionOrDotAssignment; 1499 I = FirstSectionOrDotAssignment; 1500 1501 while (NonScriptI != E) { 1502 auto Pos = findOrphanPos(I, NonScriptI); 1503 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1504 1505 // As an optimization, find all sections with the same sort rank 1506 // and insert them with one rotate. 1507 unsigned Rank = Orphan->SortRank; 1508 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1509 return cast<OutputSection>(Cmd)->SortRank != Rank; 1510 }); 1511 std::rotate(Pos, NonScriptI, End); 1512 NonScriptI = End; 1513 } 1514 1515 Script->adjustSectionsAfterSorting(); 1516 } 1517 1518 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1519 InputSection *LA = A->getLinkOrderDep(); 1520 InputSection *LB = B->getLinkOrderDep(); 1521 OutputSection *AOut = LA->getParent(); 1522 OutputSection *BOut = LB->getParent(); 1523 1524 if (AOut != BOut) 1525 return AOut->SectionIndex < BOut->SectionIndex; 1526 return LA->OutSecOff < LB->OutSecOff; 1527 } 1528 1529 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1530 for (OutputSection *Sec : OutputSections) { 1531 if (!(Sec->Flags & SHF_LINK_ORDER)) 1532 continue; 1533 1534 // Link order may be distributed across several InputSectionDescriptions 1535 // but sort must consider them all at once. 1536 std::vector<InputSection **> ScriptSections; 1537 std::vector<InputSection *> Sections; 1538 for (BaseCommand *Base : Sec->SectionCommands) { 1539 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1540 for (InputSection *&IS : ISD->Sections) { 1541 ScriptSections.push_back(&IS); 1542 Sections.push_back(IS); 1543 } 1544 } 1545 } 1546 1547 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1548 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1549 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1550 Sec->Type == SHT_ARM_EXIDX) 1551 continue; 1552 1553 llvm::stable_sort(Sections, compareByFilePosition); 1554 1555 for (int I = 0, N = Sections.size(); I < N; ++I) 1556 *ScriptSections[I] = Sections[I]; 1557 } 1558 } 1559 1560 // We need to generate and finalize the content that depends on the address of 1561 // InputSections. As the generation of the content may also alter InputSection 1562 // addresses we must converge to a fixed point. We do that here. See the comment 1563 // in Writer<ELFT>::finalizeSections(). 1564 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1565 ThunkCreator TC; 1566 AArch64Err843419Patcher A64P; 1567 1568 // For some targets, like x86, this loop iterates only once. 1569 for (;;) { 1570 bool Changed = false; 1571 1572 Script->assignAddresses(); 1573 1574 if (Target->NeedsThunks) 1575 Changed |= TC.createThunks(OutputSections); 1576 1577 if (Config->FixCortexA53Errata843419) { 1578 if (Changed) 1579 Script->assignAddresses(); 1580 Changed |= A64P.createFixes(); 1581 } 1582 1583 if (In.MipsGot) 1584 In.MipsGot->updateAllocSize(); 1585 1586 for (Partition &Part : Partitions) { 1587 Changed |= Part.RelaDyn->updateAllocSize(); 1588 if (Part.RelrDyn) 1589 Changed |= Part.RelrDyn->updateAllocSize(); 1590 } 1591 1592 if (!Changed) 1593 return; 1594 } 1595 } 1596 1597 static void finalizeSynthetic(SyntheticSection *Sec) { 1598 if (Sec && Sec->isNeeded() && Sec->getParent()) 1599 Sec->finalizeContents(); 1600 } 1601 1602 // In order to allow users to manipulate linker-synthesized sections, 1603 // we had to add synthetic sections to the input section list early, 1604 // even before we make decisions whether they are needed. This allows 1605 // users to write scripts like this: ".mygot : { .got }". 1606 // 1607 // Doing it has an unintended side effects. If it turns out that we 1608 // don't need a .got (for example) at all because there's no 1609 // relocation that needs a .got, we don't want to emit .got. 1610 // 1611 // To deal with the above problem, this function is called after 1612 // scanRelocations is called to remove synthetic sections that turn 1613 // out to be empty. 1614 static void removeUnusedSyntheticSections() { 1615 // All input synthetic sections that can be empty are placed after 1616 // all regular ones. We iterate over them all and exit at first 1617 // non-synthetic. 1618 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1619 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1620 if (!SS) 1621 return; 1622 OutputSection *OS = SS->getParent(); 1623 if (!OS || SS->isNeeded()) 1624 continue; 1625 1626 // If we reach here, then SS is an unused synthetic section and we want to 1627 // remove it from corresponding input section description of output section. 1628 for (BaseCommand *B : OS->SectionCommands) 1629 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1630 llvm::erase_if(ISD->Sections, 1631 [=](InputSection *IS) { return IS == SS; }); 1632 } 1633 } 1634 1635 // Returns true if a symbol can be replaced at load-time by a symbol 1636 // with the same name defined in other ELF executable or DSO. 1637 static bool computeIsPreemptible(const Symbol &B) { 1638 assert(!B.isLocal()); 1639 1640 // Only symbols that appear in dynsym can be preempted. 1641 if (!B.includeInDynsym()) 1642 return false; 1643 1644 // Only default visibility symbols can be preempted. 1645 if (B.Visibility != STV_DEFAULT) 1646 return false; 1647 1648 // At this point copy relocations have not been created yet, so any 1649 // symbol that is not defined locally is preemptible. 1650 if (!B.isDefined()) 1651 return true; 1652 1653 // If we have a dynamic list it specifies which local symbols are preemptible. 1654 if (Config->HasDynamicList) 1655 return false; 1656 1657 if (!Config->Shared) 1658 return false; 1659 1660 // -Bsymbolic means that definitions are not preempted. 1661 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1662 return false; 1663 return true; 1664 } 1665 1666 // Create output section objects and add them to OutputSections. 1667 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1668 Out::PreinitArray = findSection(".preinit_array"); 1669 Out::InitArray = findSection(".init_array"); 1670 Out::FiniArray = findSection(".fini_array"); 1671 1672 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1673 // symbols for sections, so that the runtime can get the start and end 1674 // addresses of each section by section name. Add such symbols. 1675 if (!Config->Relocatable) { 1676 addStartEndSymbols(); 1677 for (BaseCommand *Base : Script->SectionCommands) 1678 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1679 addStartStopSymbols(Sec); 1680 } 1681 1682 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1683 // It should be okay as no one seems to care about the type. 1684 // Even the author of gold doesn't remember why gold behaves that way. 1685 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1686 if (Main->Dynamic->Parent) 1687 Symtab->addSymbol(Defined{/*File=*/nullptr, "_DYNAMIC", STB_WEAK, 1688 STV_HIDDEN, STT_NOTYPE, 1689 /*Value=*/0, /*Size=*/0, Main->Dynamic}); 1690 1691 // Define __rel[a]_iplt_{start,end} symbols if needed. 1692 addRelIpltSymbols(); 1693 1694 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined. 1695 if (Config->EMachine == EM_RISCV) 1696 if (!dyn_cast_or_null<Defined>(Symtab->find("__global_pointer$"))) 1697 addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800); 1698 1699 if (Config->EMachine == EM_X86_64) { 1700 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1701 // way that: 1702 // 1703 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1704 // computes 0. 1705 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1706 // the TLS block). 1707 // 1708 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1709 // an absolute symbol of zero. This is different from GNU linkers which 1710 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1711 Symbol *S = Symtab->find("_TLS_MODULE_BASE_"); 1712 if (S && S->isUndefined()) { 1713 S->resolve(Defined{/*File=*/nullptr, S->getName(), STB_GLOBAL, STV_HIDDEN, 1714 STT_TLS, /*Value=*/0, 0, 1715 /*Section=*/nullptr}); 1716 ElfSym::TlsModuleBase = cast<Defined>(S); 1717 } 1718 } 1719 1720 // This responsible for splitting up .eh_frame section into 1721 // pieces. The relocation scan uses those pieces, so this has to be 1722 // earlier. 1723 for (Partition &Part : Partitions) 1724 finalizeSynthetic(Part.EhFrame); 1725 1726 Symtab->forEachSymbol([](Symbol *S) { 1727 if (!S->IsPreemptible) 1728 S->IsPreemptible = computeIsPreemptible(*S); 1729 }); 1730 1731 // Scan relocations. This must be done after every symbol is declared so that 1732 // we can correctly decide if a dynamic relocation is needed. 1733 if (!Config->Relocatable) 1734 forEachRelSec(scanRelocations<ELFT>); 1735 1736 addIRelativeRelocs(); 1737 1738 if (In.Plt && In.Plt->isNeeded()) 1739 In.Plt->addSymbols(); 1740 if (In.Iplt && In.Iplt->isNeeded()) 1741 In.Iplt->addSymbols(); 1742 1743 if (!Config->AllowShlibUndefined) { 1744 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1745 // entires are seen. These cases would otherwise lead to runtime errors 1746 // reported by the dynamic linker. 1747 // 1748 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1749 // catch more cases. That is too much for us. Our approach resembles the one 1750 // used in ld.gold, achieves a good balance to be useful but not too smart. 1751 for (SharedFile *File : SharedFiles) 1752 File->AllNeededIsKnown = 1753 llvm::all_of(File->DtNeeded, [&](StringRef Needed) { 1754 return Symtab->SoNames.count(Needed); 1755 }); 1756 1757 Symtab->forEachSymbol([](Symbol *Sym) { 1758 if (Sym->isUndefined() && !Sym->isWeak()) 1759 if (auto *F = dyn_cast_or_null<SharedFile>(Sym->File)) 1760 if (F->AllNeededIsKnown) 1761 error(toString(F) + ": undefined reference to " + toString(*Sym)); 1762 }); 1763 } 1764 1765 // Now that we have defined all possible global symbols including linker- 1766 // synthesized ones. Visit all symbols to give the finishing touches. 1767 Symtab->forEachSymbol([](Symbol *Sym) { 1768 if (!includeInSymtab(*Sym)) 1769 return; 1770 if (In.SymTab) 1771 In.SymTab->addSymbol(Sym); 1772 1773 if (Sym->includeInDynsym()) { 1774 Partitions[Sym->Partition - 1].DynSymTab->addSymbol(Sym); 1775 if (auto *File = dyn_cast_or_null<SharedFile>(Sym->File)) 1776 if (File->IsNeeded && !Sym->isUndefined()) 1777 addVerneed(Sym); 1778 } 1779 }); 1780 1781 // We also need to scan the dynamic relocation tables of the other partitions 1782 // and add any referenced symbols to the partition's dynsym. 1783 for (Partition &Part : MutableArrayRef<Partition>(Partitions).slice(1)) { 1784 DenseSet<Symbol *> Syms; 1785 for (const SymbolTableEntry &E : Part.DynSymTab->getSymbols()) 1786 Syms.insert(E.Sym); 1787 for (DynamicReloc &Reloc : Part.RelaDyn->Relocs) 1788 if (Reloc.Sym && !Reloc.UseSymVA && Syms.insert(Reloc.Sym).second) 1789 Part.DynSymTab->addSymbol(Reloc.Sym); 1790 } 1791 1792 // Do not proceed if there was an undefined symbol. 1793 if (errorCount()) 1794 return; 1795 1796 if (In.MipsGot) 1797 In.MipsGot->build(); 1798 1799 removeUnusedSyntheticSections(); 1800 1801 sortSections(); 1802 1803 // Now that we have the final list, create a list of all the 1804 // OutputSections for convenience. 1805 for (BaseCommand *Base : Script->SectionCommands) 1806 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1807 OutputSections.push_back(Sec); 1808 1809 // Prefer command line supplied address over other constraints. 1810 for (OutputSection *Sec : OutputSections) { 1811 auto I = Config->SectionStartMap.find(Sec->Name); 1812 if (I != Config->SectionStartMap.end()) 1813 Sec->AddrExpr = [=] { return I->second; }; 1814 } 1815 1816 // This is a bit of a hack. A value of 0 means undef, so we set it 1817 // to 1 to make __ehdr_start defined. The section number is not 1818 // particularly relevant. 1819 Out::ElfHeader->SectionIndex = 1; 1820 1821 for (size_t I = 0, E = OutputSections.size(); I != E; ++I) { 1822 OutputSection *Sec = OutputSections[I]; 1823 Sec->SectionIndex = I + 1; 1824 Sec->ShName = In.ShStrTab->addString(Sec->Name); 1825 } 1826 1827 // Binary and relocatable output does not have PHDRS. 1828 // The headers have to be created before finalize as that can influence the 1829 // image base and the dynamic section on mips includes the image base. 1830 if (!Config->Relocatable && !Config->OFormatBinary) { 1831 for (Partition &Part : Partitions) { 1832 Part.Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() 1833 : createPhdrs(Part); 1834 if (Config->EMachine == EM_ARM) { 1835 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1836 addPhdrForSection(Part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1837 } 1838 if (Config->EMachine == EM_MIPS) { 1839 // Add separate segments for MIPS-specific sections. 1840 addPhdrForSection(Part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1841 addPhdrForSection(Part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1842 addPhdrForSection(Part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1843 } 1844 } 1845 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Main->Phdrs.size(); 1846 1847 // Find the TLS segment. This happens before the section layout loop so that 1848 // Android relocation packing can look up TLS symbol addresses. We only need 1849 // to care about the main partition here because all TLS symbols were moved 1850 // to the main partition (see MarkLive.cpp). 1851 for (PhdrEntry *P : Main->Phdrs) 1852 if (P->p_type == PT_TLS) 1853 Out::TlsPhdr = P; 1854 } 1855 1856 // Some symbols are defined in term of program headers. Now that we 1857 // have the headers, we can find out which sections they point to. 1858 setReservedSymbolSections(); 1859 1860 finalizeSynthetic(In.Bss); 1861 finalizeSynthetic(In.BssRelRo); 1862 finalizeSynthetic(In.SymTabShndx); 1863 finalizeSynthetic(In.ShStrTab); 1864 finalizeSynthetic(In.StrTab); 1865 finalizeSynthetic(In.Got); 1866 finalizeSynthetic(In.MipsGot); 1867 finalizeSynthetic(In.IgotPlt); 1868 finalizeSynthetic(In.GotPlt); 1869 finalizeSynthetic(In.RelaIplt); 1870 finalizeSynthetic(In.RelaPlt); 1871 finalizeSynthetic(In.Plt); 1872 finalizeSynthetic(In.Iplt); 1873 finalizeSynthetic(In.PPC32Got2); 1874 finalizeSynthetic(In.PartIndex); 1875 1876 // Dynamic section must be the last one in this list and dynamic 1877 // symbol table section (DynSymTab) must be the first one. 1878 for (Partition &Part : Partitions) { 1879 finalizeSynthetic(Part.ARMExidx); 1880 finalizeSynthetic(Part.DynSymTab); 1881 finalizeSynthetic(Part.GnuHashTab); 1882 finalizeSynthetic(Part.HashTab); 1883 finalizeSynthetic(Part.VerDef); 1884 finalizeSynthetic(Part.RelaDyn); 1885 finalizeSynthetic(Part.RelrDyn); 1886 finalizeSynthetic(Part.EhFrameHdr); 1887 finalizeSynthetic(Part.VerSym); 1888 finalizeSynthetic(Part.VerNeed); 1889 finalizeSynthetic(Part.Dynamic); 1890 } 1891 1892 if (!Script->HasSectionsCommand && !Config->Relocatable) 1893 fixSectionAlignments(); 1894 1895 // SHFLinkOrder processing must be processed after relative section placements are 1896 // known but before addresses are allocated. 1897 resolveShfLinkOrder(); 1898 1899 // This is used to: 1900 // 1) Create "thunks": 1901 // Jump instructions in many ISAs have small displacements, and therefore 1902 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1903 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1904 // responsibility to create and insert small pieces of code between 1905 // sections to extend the ranges if jump targets are out of range. Such 1906 // code pieces are called "thunks". 1907 // 1908 // We add thunks at this stage. We couldn't do this before this point 1909 // because this is the earliest point where we know sizes of sections and 1910 // their layouts (that are needed to determine if jump targets are in 1911 // range). 1912 // 1913 // 2) Update the sections. We need to generate content that depends on the 1914 // address of InputSections. For example, MIPS GOT section content or 1915 // android packed relocations sections content. 1916 // 1917 // 3) Assign the final values for the linker script symbols. Linker scripts 1918 // sometimes using forward symbol declarations. We want to set the correct 1919 // values. They also might change after adding the thunks. 1920 finalizeAddressDependentContent(); 1921 1922 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1923 finalizeSynthetic(In.SymTab); 1924 finalizeSynthetic(In.PPC64LongBranchTarget); 1925 1926 // Fill other section headers. The dynamic table is finalized 1927 // at the end because some tags like RELSZ depend on result 1928 // of finalizing other sections. 1929 for (OutputSection *Sec : OutputSections) 1930 Sec->finalize(); 1931 } 1932 1933 // Ensure data sections are not mixed with executable sections when 1934 // -execute-only is used. -execute-only is a feature to make pages executable 1935 // but not readable, and the feature is currently supported only on AArch64. 1936 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1937 if (!Config->ExecuteOnly) 1938 return; 1939 1940 for (OutputSection *OS : OutputSections) 1941 if (OS->Flags & SHF_EXECINSTR) 1942 for (InputSection *IS : getInputSections(OS)) 1943 if (!(IS->Flags & SHF_EXECINSTR)) 1944 error("cannot place " + toString(IS) + " into " + toString(OS->Name) + 1945 ": -execute-only does not support intermingling data and code"); 1946 } 1947 1948 // The linker is expected to define SECNAME_start and SECNAME_end 1949 // symbols for a few sections. This function defines them. 1950 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1951 // If a section does not exist, there's ambiguity as to how we 1952 // define _start and _end symbols for an init/fini section. Since 1953 // the loader assume that the symbols are always defined, we need to 1954 // always define them. But what value? The loader iterates over all 1955 // pointers between _start and _end to run global ctors/dtors, so if 1956 // the section is empty, their symbol values don't actually matter 1957 // as long as _start and _end point to the same location. 1958 // 1959 // That said, we don't want to set the symbols to 0 (which is 1960 // probably the simplest value) because that could cause some 1961 // program to fail to link due to relocation overflow, if their 1962 // program text is above 2 GiB. We use the address of the .text 1963 // section instead to prevent that failure. 1964 // 1965 // In a rare sitaution, .text section may not exist. If that's the 1966 // case, use the image base address as a last resort. 1967 OutputSection *Default = findSection(".text"); 1968 if (!Default) 1969 Default = Out::ElfHeader; 1970 1971 auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) { 1972 if (OS) { 1973 addOptionalRegular(Start, OS, 0); 1974 addOptionalRegular(End, OS, -1); 1975 } else { 1976 addOptionalRegular(Start, Default, 0); 1977 addOptionalRegular(End, Default, 0); 1978 } 1979 }; 1980 1981 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1982 Define("__init_array_start", "__init_array_end", Out::InitArray); 1983 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1984 1985 if (OutputSection *Sec = findSection(".ARM.exidx")) 1986 Define("__exidx_start", "__exidx_end", Sec); 1987 } 1988 1989 // If a section name is valid as a C identifier (which is rare because of 1990 // the leading '.'), linkers are expected to define __start_<secname> and 1991 // __stop_<secname> symbols. They are at beginning and end of the section, 1992 // respectively. This is not requested by the ELF standard, but GNU ld and 1993 // gold provide the feature, and used by many programs. 1994 template <class ELFT> 1995 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 1996 StringRef S = Sec->Name; 1997 if (!isValidCIdentifier(S)) 1998 return; 1999 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); 2000 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); 2001 } 2002 2003 static bool needsPtLoad(OutputSection *Sec) { 2004 if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) 2005 return false; 2006 2007 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2008 // responsible for allocating space for them, not the PT_LOAD that 2009 // contains the TLS initialization image. 2010 if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS) 2011 return false; 2012 return true; 2013 } 2014 2015 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2016 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2017 // RW. This means that there is no alignment in the RO to RX transition and we 2018 // cannot create a PT_LOAD there. 2019 static uint64_t computeFlags(uint64_t Flags) { 2020 if (Config->Omagic) 2021 return PF_R | PF_W | PF_X; 2022 if (Config->ExecuteOnly && (Flags & PF_X)) 2023 return Flags & ~PF_R; 2024 if (Config->SingleRoRx && !(Flags & PF_W)) 2025 return Flags | PF_X; 2026 return Flags; 2027 } 2028 2029 // Decide which program headers to create and which sections to include in each 2030 // one. 2031 template <class ELFT> 2032 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &Part) { 2033 std::vector<PhdrEntry *> Ret; 2034 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 2035 Ret.push_back(make<PhdrEntry>(Type, Flags)); 2036 return Ret.back(); 2037 }; 2038 2039 unsigned PartNo = Part.getNumber(); 2040 bool IsMain = PartNo == 1; 2041 2042 // The first phdr entry is PT_PHDR which describes the program header itself. 2043 if (IsMain) 2044 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 2045 else 2046 AddHdr(PT_PHDR, PF_R)->add(Part.ProgramHeaders->getParent()); 2047 2048 // PT_INTERP must be the second entry if exists. 2049 if (OutputSection *Cmd = findSection(".interp", PartNo)) 2050 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 2051 2052 // Add the first PT_LOAD segment for regular output sections. 2053 uint64_t Flags = computeFlags(PF_R); 2054 PhdrEntry *Load = nullptr; 2055 2056 // Add the headers. We will remove them if they don't fit. 2057 // In the other partitions the headers are ordinary sections, so they don't 2058 // need to be added here. 2059 if (IsMain) { 2060 Load = AddHdr(PT_LOAD, Flags); 2061 Load->add(Out::ElfHeader); 2062 Load->add(Out::ProgramHeaders); 2063 } 2064 2065 // PT_GNU_RELRO includes all sections that should be marked as 2066 // read-only by dynamic linker after proccessing relocations. 2067 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2068 // an error message if more than one PT_GNU_RELRO PHDR is required. 2069 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2070 bool InRelroPhdr = false; 2071 OutputSection *RelroEnd = nullptr; 2072 for (OutputSection *Sec : OutputSections) { 2073 if (Sec->Partition != PartNo || !needsPtLoad(Sec)) 2074 continue; 2075 if (isRelroSection(Sec)) { 2076 InRelroPhdr = true; 2077 if (!RelroEnd) 2078 RelRo->add(Sec); 2079 else 2080 error("section: " + Sec->Name + " is not contiguous with other relro" + 2081 " sections"); 2082 } else if (InRelroPhdr) { 2083 InRelroPhdr = false; 2084 RelroEnd = Sec; 2085 } 2086 } 2087 2088 for (OutputSection *Sec : OutputSections) { 2089 if (!(Sec->Flags & SHF_ALLOC)) 2090 break; 2091 if (!needsPtLoad(Sec)) 2092 continue; 2093 2094 // Normally, sections in partitions other than the current partition are 2095 // ignored. But partition number 255 is a special case: it contains the 2096 // partition end marker (.part.end). It needs to be added to the main 2097 // partition so that a segment is created for it in the main partition, 2098 // which will cause the dynamic loader to reserve space for the other 2099 // partitions. 2100 if (Sec->Partition != PartNo) { 2101 if (IsMain && Sec->Partition == 255) 2102 AddHdr(PT_LOAD, computeFlags(Sec->getPhdrFlags()))->add(Sec); 2103 continue; 2104 } 2105 2106 // Segments are contiguous memory regions that has the same attributes 2107 // (e.g. executable or writable). There is one phdr for each segment. 2108 // Therefore, we need to create a new phdr when the next section has 2109 // different flags or is loaded at a discontiguous address or memory 2110 // region using AT or AT> linker script command, respectively. At the same 2111 // time, we don't want to create a separate load segment for the headers, 2112 // even if the first output section has an AT or AT> attribute. 2113 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 2114 if (!Load || 2115 ((Sec->LMAExpr || 2116 (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) && 2117 Load->LastSec != Out::ProgramHeaders) || 2118 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags || 2119 Sec == RelroEnd) { 2120 Load = AddHdr(PT_LOAD, NewFlags); 2121 Flags = NewFlags; 2122 } 2123 2124 Load->add(Sec); 2125 } 2126 2127 // Add a TLS segment if any. 2128 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2129 for (OutputSection *Sec : OutputSections) 2130 if (Sec->Partition == PartNo && Sec->Flags & SHF_TLS) 2131 TlsHdr->add(Sec); 2132 if (TlsHdr->FirstSec) 2133 Ret.push_back(TlsHdr); 2134 2135 // Add an entry for .dynamic. 2136 if (OutputSection *Sec = Part.Dynamic->getParent()) 2137 AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec); 2138 2139 if (RelRo->FirstSec) 2140 Ret.push_back(RelRo); 2141 2142 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2143 if (Part.EhFrame->isNeeded() && Part.EhFrameHdr && 2144 Part.EhFrame->getParent() && Part.EhFrameHdr->getParent()) 2145 AddHdr(PT_GNU_EH_FRAME, Part.EhFrameHdr->getParent()->getPhdrFlags()) 2146 ->add(Part.EhFrameHdr->getParent()); 2147 2148 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2149 // the dynamic linker fill the segment with random data. 2150 if (OutputSection *Cmd = findSection(".openbsd.randomdata", PartNo)) 2151 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 2152 2153 // PT_GNU_STACK is a special section to tell the loader to make the 2154 // pages for the stack non-executable. If you really want an executable 2155 // stack, you can pass -z execstack, but that's not recommended for 2156 // security reasons. 2157 unsigned Perm = PF_R | PF_W; 2158 if (Config->ZExecstack) 2159 Perm |= PF_X; 2160 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 2161 2162 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2163 // is expected to perform W^X violations, such as calling mprotect(2) or 2164 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2165 // OpenBSD. 2166 if (Config->ZWxneeded) 2167 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 2168 2169 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2170 // same alignment. 2171 PhdrEntry *Note = nullptr; 2172 for (OutputSection *Sec : OutputSections) { 2173 if (Sec->Partition != PartNo) 2174 continue; 2175 if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) { 2176 if (!Note || Sec->LMAExpr || Note->LastSec->Alignment != Sec->Alignment) 2177 Note = AddHdr(PT_NOTE, PF_R); 2178 Note->add(Sec); 2179 } else { 2180 Note = nullptr; 2181 } 2182 } 2183 return Ret; 2184 } 2185 2186 template <class ELFT> 2187 void Writer<ELFT>::addPhdrForSection(Partition &Part, unsigned ShType, 2188 unsigned PType, unsigned PFlags) { 2189 unsigned PartNo = Part.getNumber(); 2190 auto I = llvm::find_if(OutputSections, [=](OutputSection *Cmd) { 2191 return Cmd->Partition == PartNo && Cmd->Type == ShType; 2192 }); 2193 if (I == OutputSections.end()) 2194 return; 2195 2196 PhdrEntry *Entry = make<PhdrEntry>(PType, PFlags); 2197 Entry->add(*I); 2198 Part.Phdrs.push_back(Entry); 2199 } 2200 2201 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 2202 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 2203 // linker can set the permissions. 2204 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2205 auto PageAlign = [](OutputSection *Cmd) { 2206 if (Cmd && !Cmd->AddrExpr) 2207 Cmd->AddrExpr = [=] { 2208 return alignTo(Script->getDot(), Config->MaxPageSize); 2209 }; 2210 }; 2211 2212 for (Partition &Part : Partitions) { 2213 for (const PhdrEntry *P : Part.Phdrs) 2214 if (P->p_type == PT_LOAD && P->FirstSec) 2215 PageAlign(P->FirstSec); 2216 2217 for (const PhdrEntry *P : Part.Phdrs) { 2218 if (P->p_type != PT_GNU_RELRO) 2219 continue; 2220 2221 if (P->FirstSec) 2222 PageAlign(P->FirstSec); 2223 2224 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 2225 // have to align it to a page. 2226 auto End = OutputSections.end(); 2227 auto I = llvm::find(OutputSections, P->LastSec); 2228 if (I == End || (I + 1) == End) 2229 continue; 2230 2231 OutputSection *Cmd = (*(I + 1)); 2232 if (needsPtLoad(Cmd)) 2233 PageAlign(Cmd); 2234 } 2235 } 2236 } 2237 2238 // Compute an in-file position for a given section. The file offset must be the 2239 // same with its virtual address modulo the page size, so that the loader can 2240 // load executables without any address adjustment. 2241 static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) { 2242 // File offsets are not significant for .bss sections. By convention, we keep 2243 // section offsets monotonically increasing rather than setting to zero. 2244 if (OS->Type == SHT_NOBITS) 2245 return Off; 2246 2247 // If the section is not in a PT_LOAD, we just have to align it. 2248 if (!OS->PtLoad) 2249 return alignTo(Off, OS->Alignment); 2250 2251 // The first section in a PT_LOAD has to have congruent offset and address 2252 // module the page size. 2253 OutputSection *First = OS->PtLoad->FirstSec; 2254 if (OS == First) { 2255 uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize); 2256 return alignTo(Off, Alignment, OS->Addr); 2257 } 2258 2259 // If two sections share the same PT_LOAD the file offset is calculated 2260 // using this formula: Off2 = Off1 + (VA2 - VA1). 2261 return First->Offset + OS->Addr - First->Addr; 2262 } 2263 2264 // Set an in-file position to a given section and returns the end position of 2265 // the section. 2266 static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) { 2267 Off = computeFileOffset(OS, Off); 2268 OS->Offset = Off; 2269 2270 if (OS->Type == SHT_NOBITS) 2271 return Off; 2272 return Off + OS->Size; 2273 } 2274 2275 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2276 uint64_t Off = 0; 2277 for (OutputSection *Sec : OutputSections) 2278 if (Sec->Flags & SHF_ALLOC) 2279 Off = setFileOffset(Sec, Off); 2280 FileSize = alignTo(Off, Config->Wordsize); 2281 } 2282 2283 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 2284 return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; 2285 } 2286 2287 // Assign file offsets to output sections. 2288 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2289 uint64_t Off = 0; 2290 Off = setFileOffset(Out::ElfHeader, Off); 2291 Off = setFileOffset(Out::ProgramHeaders, Off); 2292 2293 PhdrEntry *LastRX = nullptr; 2294 for (Partition &Part : Partitions) 2295 for (PhdrEntry *P : Part.Phdrs) 2296 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2297 LastRX = P; 2298 2299 for (OutputSection *Sec : OutputSections) { 2300 Off = setFileOffset(Sec, Off); 2301 if (Script->HasSectionsCommand) 2302 continue; 2303 2304 // If this is a last section of the last executable segment and that 2305 // segment is the last loadable segment, align the offset of the 2306 // following section to avoid loading non-segments parts of the file. 2307 if (LastRX && LastRX->LastSec == Sec) 2308 Off = alignTo(Off, Config->CommonPageSize); 2309 } 2310 2311 SectionHeaderOff = alignTo(Off, Config->Wordsize); 2312 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 2313 2314 // Our logic assumes that sections have rising VA within the same segment. 2315 // With use of linker scripts it is possible to violate this rule and get file 2316 // offset overlaps or overflows. That should never happen with a valid script 2317 // which does not move the location counter backwards and usually scripts do 2318 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2319 // kernel, which control segment distribution explicitly and move the counter 2320 // backwards, so we have to allow doing that to support linking them. We 2321 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2322 // we want to prevent file size overflows because it would crash the linker. 2323 for (OutputSection *Sec : OutputSections) { 2324 if (Sec->Type == SHT_NOBITS) 2325 continue; 2326 if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) 2327 error("unable to place section " + Sec->Name + " at file offset " + 2328 rangeToString(Sec->Offset, Sec->Size) + 2329 "; check your linker script for overflows"); 2330 } 2331 } 2332 2333 // Finalize the program headers. We call this function after we assign 2334 // file offsets and VAs to all sections. 2335 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &Part) { 2336 for (PhdrEntry *P : Part.Phdrs) { 2337 OutputSection *First = P->FirstSec; 2338 OutputSection *Last = P->LastSec; 2339 2340 if (First) { 2341 P->p_filesz = Last->Offset - First->Offset; 2342 if (Last->Type != SHT_NOBITS) 2343 P->p_filesz += Last->Size; 2344 2345 P->p_memsz = Last->Addr + Last->Size - First->Addr; 2346 P->p_offset = First->Offset; 2347 P->p_vaddr = First->Addr; 2348 2349 // File offsets in partitions other than the main partition are relative 2350 // to the offset of the ELF headers. Perform that adjustment now. 2351 if (Part.ElfHeader) 2352 P->p_offset -= Part.ElfHeader->getParent()->Offset; 2353 2354 if (!P->HasLMA) 2355 P->p_paddr = First->getLMA(); 2356 } 2357 2358 if (P->p_type == PT_LOAD) { 2359 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 2360 } else if (P->p_type == PT_GNU_RELRO) { 2361 P->p_align = 1; 2362 // The glibc dynamic loader rounds the size down, so we need to round up 2363 // to protect the last page. This is a no-op on FreeBSD which always 2364 // rounds up. 2365 P->p_memsz = alignTo(P->p_memsz, Config->CommonPageSize); 2366 } 2367 } 2368 } 2369 2370 // A helper struct for checkSectionOverlap. 2371 namespace { 2372 struct SectionOffset { 2373 OutputSection *Sec; 2374 uint64_t Offset; 2375 }; 2376 } // namespace 2377 2378 // Check whether sections overlap for a specific address range (file offsets, 2379 // load and virtual adresses). 2380 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections, 2381 bool IsVirtualAddr) { 2382 llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) { 2383 return A.Offset < B.Offset; 2384 }); 2385 2386 // Finding overlap is easy given a vector is sorted by start position. 2387 // If an element starts before the end of the previous element, they overlap. 2388 for (size_t I = 1, End = Sections.size(); I < End; ++I) { 2389 SectionOffset A = Sections[I - 1]; 2390 SectionOffset B = Sections[I]; 2391 if (B.Offset >= A.Offset + A.Sec->Size) 2392 continue; 2393 2394 // If both sections are in OVERLAY we allow the overlapping of virtual 2395 // addresses, because it is what OVERLAY was designed for. 2396 if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay) 2397 continue; 2398 2399 errorOrWarn("section " + A.Sec->Name + " " + Name + 2400 " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name + 2401 " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + 2402 B.Sec->Name + " range is " + 2403 rangeToString(B.Offset, B.Sec->Size)); 2404 } 2405 } 2406 2407 // Check for overlapping sections and address overflows. 2408 // 2409 // In this function we check that none of the output sections have overlapping 2410 // file offsets. For SHF_ALLOC sections we also check that the load address 2411 // ranges and the virtual address ranges don't overlap 2412 template <class ELFT> void Writer<ELFT>::checkSections() { 2413 // First, check that section's VAs fit in available address space for target. 2414 for (OutputSection *OS : OutputSections) 2415 if ((OS->Addr + OS->Size < OS->Addr) || 2416 (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) 2417 errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + 2418 " of size 0x" + utohexstr(OS->Size) + 2419 " exceeds available address space"); 2420 2421 // Check for overlapping file offsets. In this case we need to skip any 2422 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2423 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2424 // binary is specified only add SHF_ALLOC sections are added to the output 2425 // file so we skip any non-allocated sections in that case. 2426 std::vector<SectionOffset> FileOffs; 2427 for (OutputSection *Sec : OutputSections) 2428 if (Sec->Size > 0 && Sec->Type != SHT_NOBITS && 2429 (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) 2430 FileOffs.push_back({Sec, Sec->Offset}); 2431 checkOverlap("file", FileOffs, false); 2432 2433 // When linking with -r there is no need to check for overlapping virtual/load 2434 // addresses since those addresses will only be assigned when the final 2435 // executable/shared object is created. 2436 if (Config->Relocatable) 2437 return; 2438 2439 // Checking for overlapping virtual and load addresses only needs to take 2440 // into account SHF_ALLOC sections since others will not be loaded. 2441 // Furthermore, we also need to skip SHF_TLS sections since these will be 2442 // mapped to other addresses at runtime and can therefore have overlapping 2443 // ranges in the file. 2444 std::vector<SectionOffset> VMAs; 2445 for (OutputSection *Sec : OutputSections) 2446 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2447 VMAs.push_back({Sec, Sec->Addr}); 2448 checkOverlap("virtual address", VMAs, true); 2449 2450 // Finally, check that the load addresses don't overlap. This will usually be 2451 // the same as the virtual addresses but can be different when using a linker 2452 // script with AT(). 2453 std::vector<SectionOffset> LMAs; 2454 for (OutputSection *Sec : OutputSections) 2455 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2456 LMAs.push_back({Sec, Sec->getLMA()}); 2457 checkOverlap("load address", LMAs, false); 2458 } 2459 2460 // The entry point address is chosen in the following ways. 2461 // 2462 // 1. the '-e' entry command-line option; 2463 // 2. the ENTRY(symbol) command in a linker control script; 2464 // 3. the value of the symbol _start, if present; 2465 // 4. the number represented by the entry symbol, if it is a number; 2466 // 5. the address of the first byte of the .text section, if present; 2467 // 6. the address 0. 2468 static uint64_t getEntryAddr() { 2469 // Case 1, 2 or 3 2470 if (Symbol *B = Symtab->find(Config->Entry)) 2471 return B->getVA(); 2472 2473 // Case 4 2474 uint64_t Addr; 2475 if (to_integer(Config->Entry, Addr)) 2476 return Addr; 2477 2478 // Case 5 2479 if (OutputSection *Sec = findSection(".text")) { 2480 if (Config->WarnMissingEntry) 2481 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2482 utohexstr(Sec->Addr)); 2483 return Sec->Addr; 2484 } 2485 2486 // Case 6 2487 if (Config->WarnMissingEntry) 2488 warn("cannot find entry symbol " + Config->Entry + 2489 "; not setting start address"); 2490 return 0; 2491 } 2492 2493 static uint16_t getELFType() { 2494 if (Config->Pic) 2495 return ET_DYN; 2496 if (Config->Relocatable) 2497 return ET_REL; 2498 return ET_EXEC; 2499 } 2500 2501 template <class ELFT> void Writer<ELFT>::writeHeader() { 2502 writeEhdr<ELFT>(Out::BufferStart, *Main); 2503 writePhdrs<ELFT>(Out::BufferStart + sizeof(Elf_Ehdr), *Main); 2504 2505 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Out::BufferStart); 2506 EHdr->e_type = getELFType(); 2507 EHdr->e_entry = getEntryAddr(); 2508 EHdr->e_shoff = SectionHeaderOff; 2509 2510 // Write the section header table. 2511 // 2512 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2513 // and e_shstrndx fields. When the value of one of these fields exceeds 2514 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2515 // use fields in the section header at index 0 to store 2516 // the value. The sentinel values and fields are: 2517 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2518 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2519 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Out::BufferStart + EHdr->e_shoff); 2520 size_t Num = OutputSections.size() + 1; 2521 if (Num >= SHN_LORESERVE) 2522 SHdrs->sh_size = Num; 2523 else 2524 EHdr->e_shnum = Num; 2525 2526 uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex; 2527 if (StrTabIndex >= SHN_LORESERVE) { 2528 SHdrs->sh_link = StrTabIndex; 2529 EHdr->e_shstrndx = SHN_XINDEX; 2530 } else { 2531 EHdr->e_shstrndx = StrTabIndex; 2532 } 2533 2534 for (OutputSection *Sec : OutputSections) 2535 Sec->writeHeaderTo<ELFT>(++SHdrs); 2536 } 2537 2538 // Open a result file. 2539 template <class ELFT> void Writer<ELFT>::openFile() { 2540 uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX; 2541 if (FileSize != size_t(FileSize) || MaxSize < FileSize) { 2542 error("output file too large: " + Twine(FileSize) + " bytes"); 2543 return; 2544 } 2545 2546 unlinkAsync(Config->OutputFile); 2547 unsigned Flags = 0; 2548 if (!Config->Relocatable) 2549 Flags = FileOutputBuffer::F_executable; 2550 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2551 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2552 2553 if (!BufferOrErr) { 2554 error("failed to open " + Config->OutputFile + ": " + 2555 llvm::toString(BufferOrErr.takeError())); 2556 return; 2557 } 2558 Buffer = std::move(*BufferOrErr); 2559 Out::BufferStart = Buffer->getBufferStart(); 2560 } 2561 2562 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2563 for (OutputSection *Sec : OutputSections) 2564 if (Sec->Flags & SHF_ALLOC) 2565 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2566 } 2567 2568 static void fillTrap(uint8_t *I, uint8_t *End) { 2569 for (; I + 4 <= End; I += 4) 2570 memcpy(I, &Target->TrapInstr, 4); 2571 } 2572 2573 // Fill the last page of executable segments with trap instructions 2574 // instead of leaving them as zero. Even though it is not required by any 2575 // standard, it is in general a good thing to do for security reasons. 2576 // 2577 // We'll leave other pages in segments as-is because the rest will be 2578 // overwritten by output sections. 2579 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2580 if (Script->HasSectionsCommand) 2581 return; 2582 2583 for (Partition &Part : Partitions) { 2584 // Fill the last page. 2585 for (PhdrEntry *P : Part.Phdrs) 2586 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2587 fillTrap(Out::BufferStart + alignDown(P->FirstSec->Offset + P->p_filesz, 2588 Config->CommonPageSize), 2589 Out::BufferStart + alignTo(P->FirstSec->Offset + P->p_filesz, 2590 Config->CommonPageSize)); 2591 2592 // Round up the file size of the last segment to the page boundary iff it is 2593 // an executable segment to ensure that other tools don't accidentally 2594 // trim the instruction padding (e.g. when stripping the file). 2595 PhdrEntry *Last = nullptr; 2596 for (PhdrEntry *P : Part.Phdrs) 2597 if (P->p_type == PT_LOAD) 2598 Last = P; 2599 2600 if (Last && (Last->p_flags & PF_X)) 2601 Last->p_memsz = Last->p_filesz = 2602 alignTo(Last->p_filesz, Config->CommonPageSize); 2603 } 2604 } 2605 2606 // Write section contents to a mmap'ed file. 2607 template <class ELFT> void Writer<ELFT>::writeSections() { 2608 // In -r or -emit-relocs mode, write the relocation sections first as in 2609 // ELf_Rel targets we might find out that we need to modify the relocated 2610 // section while doing it. 2611 for (OutputSection *Sec : OutputSections) 2612 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2613 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2614 2615 for (OutputSection *Sec : OutputSections) 2616 if (Sec->Type != SHT_REL && Sec->Type != SHT_RELA) 2617 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2618 } 2619 2620 // Split one uint8 array into small pieces of uint8 arrays. 2621 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr, 2622 size_t ChunkSize) { 2623 std::vector<ArrayRef<uint8_t>> Ret; 2624 while (Arr.size() > ChunkSize) { 2625 Ret.push_back(Arr.take_front(ChunkSize)); 2626 Arr = Arr.drop_front(ChunkSize); 2627 } 2628 if (!Arr.empty()) 2629 Ret.push_back(Arr); 2630 return Ret; 2631 } 2632 2633 // Computes a hash value of Data using a given hash function. 2634 // In order to utilize multiple cores, we first split data into 1MB 2635 // chunks, compute a hash for each chunk, and then compute a hash value 2636 // of the hash values. 2637 static void 2638 computeHash(llvm::MutableArrayRef<uint8_t> HashBuf, 2639 llvm::ArrayRef<uint8_t> Data, 2640 std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) { 2641 std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024); 2642 std::vector<uint8_t> Hashes(Chunks.size() * HashBuf.size()); 2643 2644 // Compute hash values. 2645 parallelForEachN(0, Chunks.size(), [&](size_t I) { 2646 HashFn(Hashes.data() + I * HashBuf.size(), Chunks[I]); 2647 }); 2648 2649 // Write to the final output buffer. 2650 HashFn(HashBuf.data(), Hashes); 2651 } 2652 2653 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2654 if (!Main->BuildId || !Main->BuildId->getParent()) 2655 return; 2656 2657 if (Config->BuildId == BuildIdKind::Hexstring) { 2658 for (Partition &Part : Partitions) 2659 Part.BuildId->writeBuildId(Config->BuildIdVector); 2660 return; 2661 } 2662 2663 // Compute a hash of all sections of the output file. 2664 size_t HashSize = Main->BuildId->HashSize; 2665 std::vector<uint8_t> BuildId(HashSize); 2666 llvm::ArrayRef<uint8_t> Buf{Out::BufferStart, size_t(FileSize)}; 2667 2668 switch (Config->BuildId) { 2669 case BuildIdKind::Fast: 2670 computeHash(BuildId, Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { 2671 write64le(Dest, xxHash64(Arr)); 2672 }); 2673 break; 2674 case BuildIdKind::Md5: 2675 computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef<uint8_t> Arr) { 2676 memcpy(Dest, MD5::hash(Arr).data(), HashSize); 2677 }); 2678 break; 2679 case BuildIdKind::Sha1: 2680 computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef<uint8_t> Arr) { 2681 memcpy(Dest, SHA1::hash(Arr).data(), HashSize); 2682 }); 2683 break; 2684 case BuildIdKind::Uuid: 2685 if (auto EC = llvm::getRandomBytes(BuildId.data(), HashSize)) 2686 error("entropy source failure: " + EC.message()); 2687 break; 2688 default: 2689 llvm_unreachable("unknown BuildIdKind"); 2690 } 2691 for (Partition &Part : Partitions) 2692 Part.BuildId->writeBuildId(BuildId); 2693 } 2694 2695 template void elf::writeResult<ELF32LE>(); 2696 template void elf::writeResult<ELF32BE>(); 2697 template void elf::writeResult<ELF64LE>(); 2698 template void elf::writeResult<ELF64BE>(); 2699