xref: /llvm-project-15.0.7/lld/ELF/Writer.cpp (revision 2ea3c8a5)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "LinkerScript.h"
15 #include "MapFile.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "lld/Common/Arrays.h"
23 #include "lld/Common/Filesystem.h"
24 #include "lld/Common/Memory.h"
25 #include "lld/Common/Strings.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Support/Parallel.h"
29 #include "llvm/Support/RandomNumberGenerator.h"
30 #include "llvm/Support/SHA1.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include "llvm/Support/xxhash.h"
33 #include <climits>
34 
35 #define DEBUG_TYPE "lld"
36 
37 using namespace llvm;
38 using namespace llvm::ELF;
39 using namespace llvm::object;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44 
45 namespace {
46 // The writer writes a SymbolTable result to a file.
47 template <class ELFT> class Writer {
48 public:
49   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
50 
51   Writer() : buffer(errorHandler().outputBuffer) {}
52 
53   void run();
54 
55 private:
56   void copyLocalSymbols();
57   void addSectionSymbols();
58   void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
59   void sortSections();
60   void resolveShfLinkOrder();
61   void finalizeAddressDependentContent();
62   void optimizeBasicBlockJumps();
63   void sortInputSections();
64   void finalizeSections();
65   void checkExecuteOnly();
66   void setReservedSymbolSections();
67 
68   std::vector<PhdrEntry *> createPhdrs(Partition &part);
69   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
70                          unsigned pFlags);
71   void assignFileOffsets();
72   void assignFileOffsetsBinary();
73   void setPhdrs(Partition &part);
74   void checkSections();
75   void fixSectionAlignments();
76   void openFile();
77   void writeTrapInstr();
78   void writeHeader();
79   void writeSections();
80   void writeSectionsBinary();
81   void writeBuildId();
82 
83   std::unique_ptr<FileOutputBuffer> &buffer;
84 
85   void addRelIpltSymbols();
86   void addStartEndSymbols();
87   void addStartStopSymbols(OutputSection *sec);
88 
89   uint64_t fileSize;
90   uint64_t sectionHeaderOff;
91 };
92 } // anonymous namespace
93 
94 static bool needsInterpSection() {
95   return !config->relocatable && !config->shared &&
96          !config->dynamicLinker.empty() && script->needsInterpSection();
97 }
98 
99 template <class ELFT> void elf::writeResult() {
100   Writer<ELFT>().run();
101 }
102 
103 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
104   auto it = std::stable_partition(
105       phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
106         if (p->p_type != PT_LOAD)
107           return true;
108         if (!p->firstSec)
109           return false;
110         uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
111         return size != 0;
112       });
113 
114   // Clear OutputSection::ptLoad for sections contained in removed
115   // segments.
116   DenseSet<PhdrEntry *> removed(it, phdrs.end());
117   for (OutputSection *sec : outputSections)
118     if (removed.count(sec->ptLoad))
119       sec->ptLoad = nullptr;
120   phdrs.erase(it, phdrs.end());
121 }
122 
123 void elf::copySectionsIntoPartitions() {
124   std::vector<InputSectionBase *> newSections;
125   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
126     for (InputSectionBase *s : inputSections) {
127       if (!(s->flags & SHF_ALLOC) || !s->isLive())
128         continue;
129       InputSectionBase *copy;
130       if (s->type == SHT_NOTE)
131         copy = make<InputSection>(cast<InputSection>(*s));
132       else if (auto *es = dyn_cast<EhInputSection>(s))
133         copy = make<EhInputSection>(*es);
134       else
135         continue;
136       copy->partition = part;
137       newSections.push_back(copy);
138     }
139   }
140 
141   inputSections.insert(inputSections.end(), newSections.begin(),
142                        newSections.end());
143 }
144 
145 void elf::combineEhSections() {
146   llvm::TimeTraceScope timeScope("Combine EH sections");
147   for (InputSectionBase *&s : inputSections) {
148     // Ignore dead sections and the partition end marker (.part.end),
149     // whose partition number is out of bounds.
150     if (!s->isLive() || s->partition == 255)
151       continue;
152 
153     Partition &part = s->getPartition();
154     if (auto *es = dyn_cast<EhInputSection>(s)) {
155       part.ehFrame->addSection(es);
156       s = nullptr;
157     } else if (s->kind() == SectionBase::Regular && part.armExidx &&
158                part.armExidx->addSection(cast<InputSection>(s))) {
159       s = nullptr;
160     }
161   }
162 
163   llvm::erase_value(inputSections, nullptr);
164 }
165 
166 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
167                                    uint64_t val, uint8_t stOther = STV_HIDDEN) {
168   Symbol *s = symtab->find(name);
169   if (!s || s->isDefined())
170     return nullptr;
171 
172   s->resolve(Defined{/*file=*/nullptr, name, STB_GLOBAL, stOther, STT_NOTYPE,
173                      val,
174                      /*size=*/0, sec});
175   return cast<Defined>(s);
176 }
177 
178 static Defined *addAbsolute(StringRef name) {
179   Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
180                                           STT_NOTYPE, 0, 0, nullptr});
181   return cast<Defined>(sym);
182 }
183 
184 // The linker is expected to define some symbols depending on
185 // the linking result. This function defines such symbols.
186 void elf::addReservedSymbols() {
187   if (config->emachine == EM_MIPS) {
188     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
189     // so that it points to an absolute address which by default is relative
190     // to GOT. Default offset is 0x7ff0.
191     // See "Global Data Symbols" in Chapter 6 in the following document:
192     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
193     ElfSym::mipsGp = addAbsolute("_gp");
194 
195     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
196     // start of function and 'gp' pointer into GOT.
197     if (symtab->find("_gp_disp"))
198       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
199 
200     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
201     // pointer. This symbol is used in the code generated by .cpload pseudo-op
202     // in case of using -mno-shared option.
203     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
204     if (symtab->find("__gnu_local_gp"))
205       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
206   } else if (config->emachine == EM_PPC) {
207     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
208     // support Small Data Area, define it arbitrarily as 0.
209     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
210   } else if (config->emachine == EM_PPC64) {
211     addPPC64SaveRestore();
212   }
213 
214   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
215   // combines the typical ELF GOT with the small data sections. It commonly
216   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
217   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
218   // represent the TOC base which is offset by 0x8000 bytes from the start of
219   // the .got section.
220   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
221   // correctness of some relocations depends on its value.
222   StringRef gotSymName =
223       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
224 
225   if (Symbol *s = symtab->find(gotSymName)) {
226     if (s->isDefined()) {
227       error(toString(s->file) + " cannot redefine linker defined symbol '" +
228             gotSymName + "'");
229       return;
230     }
231 
232     uint64_t gotOff = 0;
233     if (config->emachine == EM_PPC64)
234       gotOff = 0x8000;
235 
236     s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
237                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
238     ElfSym::globalOffsetTable = cast<Defined>(s);
239   }
240 
241   // __ehdr_start is the location of ELF file headers. Note that we define
242   // this symbol unconditionally even when using a linker script, which
243   // differs from the behavior implemented by GNU linker which only define
244   // this symbol if ELF headers are in the memory mapped segment.
245   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
246 
247   // __executable_start is not documented, but the expectation of at
248   // least the Android libc is that it points to the ELF header.
249   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
250 
251   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
252   // each DSO. The address of the symbol doesn't matter as long as they are
253   // different in different DSOs, so we chose the start address of the DSO.
254   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
255 
256   // If linker script do layout we do not need to create any standard symbols.
257   if (script->hasSectionsCommand)
258     return;
259 
260   auto add = [](StringRef s, int64_t pos) {
261     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
262   };
263 
264   ElfSym::bss = add("__bss_start", 0);
265   ElfSym::end1 = add("end", -1);
266   ElfSym::end2 = add("_end", -1);
267   ElfSym::etext1 = add("etext", -1);
268   ElfSym::etext2 = add("_etext", -1);
269   ElfSym::edata1 = add("edata", -1);
270   ElfSym::edata2 = add("_edata", -1);
271 }
272 
273 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
274   for (SectionCommand *cmd : script->sectionCommands)
275     if (auto *sec = dyn_cast<OutputSection>(cmd))
276       if (sec->name == name && sec->partition == partition)
277         return sec;
278   return nullptr;
279 }
280 
281 template <class ELFT> void elf::createSyntheticSections() {
282   // Initialize all pointers with NULL. This is needed because
283   // you can call lld::elf::main more than once as a library.
284   Out::tlsPhdr = nullptr;
285   Out::preinitArray = nullptr;
286   Out::initArray = nullptr;
287   Out::finiArray = nullptr;
288 
289   // Add the .interp section first because it is not a SyntheticSection.
290   // The removeUnusedSyntheticSections() function relies on the
291   // SyntheticSections coming last.
292   if (needsInterpSection()) {
293     for (size_t i = 1; i <= partitions.size(); ++i) {
294       InputSection *sec = createInterpSection();
295       sec->partition = i;
296       inputSections.push_back(sec);
297     }
298   }
299 
300   auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
301 
302   in.shStrTab = make<StringTableSection>(".shstrtab", false);
303 
304   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
305   Out::programHeaders->alignment = config->wordsize;
306 
307   if (config->strip != StripPolicy::All) {
308     in.strTab = make<StringTableSection>(".strtab", false);
309     in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
310     in.symTabShndx = make<SymtabShndxSection>();
311   }
312 
313   in.bss = make<BssSection>(".bss", 0, 1);
314   add(in.bss);
315 
316   // If there is a SECTIONS command and a .data.rel.ro section name use name
317   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
318   // This makes sure our relro is contiguous.
319   bool hasDataRelRo =
320       script->hasSectionsCommand && findSection(".data.rel.ro", 0);
321   in.bssRelRo =
322       make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
323   add(in.bssRelRo);
324 
325   // Add MIPS-specific sections.
326   if (config->emachine == EM_MIPS) {
327     if (!config->shared && config->hasDynSymTab) {
328       in.mipsRldMap = make<MipsRldMapSection>();
329       add(in.mipsRldMap);
330     }
331     if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
332       add(sec);
333     if (auto *sec = MipsOptionsSection<ELFT>::create())
334       add(sec);
335     if (auto *sec = MipsReginfoSection<ELFT>::create())
336       add(sec);
337   }
338 
339   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
340 
341   for (Partition &part : partitions) {
342     auto add = [&](SyntheticSection *sec) {
343       sec->partition = part.getNumber();
344       inputSections.push_back(sec);
345     };
346 
347     if (!part.name.empty()) {
348       part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
349       part.elfHeader->name = part.name;
350       add(part.elfHeader);
351 
352       part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
353       add(part.programHeaders);
354     }
355 
356     if (config->buildId != BuildIdKind::None) {
357       part.buildId = make<BuildIdSection>();
358       add(part.buildId);
359     }
360 
361     part.dynStrTab = make<StringTableSection>(".dynstr", true);
362     part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
363     part.dynamic = make<DynamicSection<ELFT>>();
364     if (config->androidPackDynRelocs)
365       part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
366     else
367       part.relaDyn =
368           make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
369 
370     if (config->hasDynSymTab) {
371       add(part.dynSymTab);
372 
373       part.verSym = make<VersionTableSection>();
374       add(part.verSym);
375 
376       if (!namedVersionDefs().empty()) {
377         part.verDef = make<VersionDefinitionSection>();
378         add(part.verDef);
379       }
380 
381       part.verNeed = make<VersionNeedSection<ELFT>>();
382       add(part.verNeed);
383 
384       if (config->gnuHash) {
385         part.gnuHashTab = make<GnuHashTableSection>();
386         add(part.gnuHashTab);
387       }
388 
389       if (config->sysvHash) {
390         part.hashTab = make<HashTableSection>();
391         add(part.hashTab);
392       }
393 
394       add(part.dynamic);
395       add(part.dynStrTab);
396       add(part.relaDyn);
397     }
398 
399     if (config->relrPackDynRelocs) {
400       part.relrDyn = make<RelrSection<ELFT>>();
401       add(part.relrDyn);
402     }
403 
404     if (!config->relocatable) {
405       if (config->ehFrameHdr) {
406         part.ehFrameHdr = make<EhFrameHeader>();
407         add(part.ehFrameHdr);
408       }
409       part.ehFrame = make<EhFrameSection>();
410       add(part.ehFrame);
411     }
412 
413     if (config->emachine == EM_ARM && !config->relocatable) {
414       // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
415       // InputSections.
416       part.armExidx = make<ARMExidxSyntheticSection>();
417       add(part.armExidx);
418     }
419   }
420 
421   if (partitions.size() != 1) {
422     // Create the partition end marker. This needs to be in partition number 255
423     // so that it is sorted after all other partitions. It also has other
424     // special handling (see createPhdrs() and combineEhSections()).
425     in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
426     in.partEnd->partition = 255;
427     add(in.partEnd);
428 
429     in.partIndex = make<PartitionIndexSection>();
430     addOptionalRegular("__part_index_begin", in.partIndex, 0);
431     addOptionalRegular("__part_index_end", in.partIndex,
432                        in.partIndex->getSize());
433     add(in.partIndex);
434   }
435 
436   // Add .got. MIPS' .got is so different from the other archs,
437   // it has its own class.
438   if (config->emachine == EM_MIPS) {
439     in.mipsGot = make<MipsGotSection>();
440     add(in.mipsGot);
441   } else {
442     in.got = make<GotSection>();
443     add(in.got);
444   }
445 
446   if (config->emachine == EM_PPC) {
447     in.ppc32Got2 = make<PPC32Got2Section>();
448     add(in.ppc32Got2);
449   }
450 
451   if (config->emachine == EM_PPC64) {
452     in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
453     add(in.ppc64LongBranchTarget);
454   }
455 
456   in.gotPlt = make<GotPltSection>();
457   add(in.gotPlt);
458   in.igotPlt = make<IgotPltSection>();
459   add(in.igotPlt);
460 
461   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
462   // it as a relocation and ensure the referenced section is created.
463   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
464     if (target->gotBaseSymInGotPlt)
465       in.gotPlt->hasGotPltOffRel = true;
466     else
467       in.got->hasGotOffRel = true;
468   }
469 
470   if (config->gdbIndex)
471     add(GdbIndexSection::create<ELFT>());
472 
473   // We always need to add rel[a].plt to output if it has entries.
474   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
475   in.relaPlt = make<RelocationSection<ELFT>>(
476       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
477   add(in.relaPlt);
478 
479   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
480   // relocations are processed last by the dynamic loader. We cannot place the
481   // iplt section in .rel.dyn when Android relocation packing is enabled because
482   // that would cause a section type mismatch. However, because the Android
483   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
484   // behaviour by placing the iplt section in .rel.plt.
485   in.relaIplt = make<RelocationSection<ELFT>>(
486       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
487       /*sort=*/false);
488   add(in.relaIplt);
489 
490   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
491       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
492     in.ibtPlt = make<IBTPltSection>();
493     add(in.ibtPlt);
494   }
495 
496   in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>()
497                                       : make<PltSection>();
498   add(in.plt);
499   in.iplt = make<IpltSection>();
500   add(in.iplt);
501 
502   if (config->andFeatures)
503     add(make<GnuPropertySection>());
504 
505   // .note.GNU-stack is always added when we are creating a re-linkable
506   // object file. Other linkers are using the presence of this marker
507   // section to control the executable-ness of the stack area, but that
508   // is irrelevant these days. Stack area should always be non-executable
509   // by default. So we emit this section unconditionally.
510   if (config->relocatable)
511     add(make<GnuStackSection>());
512 
513   if (in.symTab)
514     add(in.symTab);
515   if (in.symTabShndx)
516     add(in.symTabShndx);
517   add(in.shStrTab);
518   if (in.strTab)
519     add(in.strTab);
520 }
521 
522 // The main function of the writer.
523 template <class ELFT> void Writer<ELFT>::run() {
524   copyLocalSymbols();
525 
526   if (config->copyRelocs)
527     addSectionSymbols();
528 
529   // Now that we have a complete set of output sections. This function
530   // completes section contents. For example, we need to add strings
531   // to the string table, and add entries to .got and .plt.
532   // finalizeSections does that.
533   finalizeSections();
534   checkExecuteOnly();
535   if (errorCount())
536     return;
537 
538   // If --compressed-debug-sections is specified, compress .debug_* sections.
539   // Do it right now because it changes the size of output sections.
540   for (OutputSection *sec : outputSections)
541     sec->maybeCompress<ELFT>();
542 
543   if (script->hasSectionsCommand)
544     script->allocateHeaders(mainPart->phdrs);
545 
546   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
547   // 0 sized region. This has to be done late since only after assignAddresses
548   // we know the size of the sections.
549   for (Partition &part : partitions)
550     removeEmptyPTLoad(part.phdrs);
551 
552   if (!config->oFormatBinary)
553     assignFileOffsets();
554   else
555     assignFileOffsetsBinary();
556 
557   for (Partition &part : partitions)
558     setPhdrs(part);
559 
560   if (config->relocatable)
561     for (OutputSection *sec : outputSections)
562       sec->addr = 0;
563 
564   // Handle --print-map(-M)/--Map, --why-extract=, --cref and
565   // --print-archive-stats=. Dump them before checkSections() because the files
566   // may be useful in case checkSections() or openFile() fails, for example, due
567   // to an erroneous file size.
568   writeMapAndCref();
569   writeWhyExtract();
570   writeArchiveStats();
571 
572   if (config->checkSections)
573     checkSections();
574 
575   // It does not make sense try to open the file if we have error already.
576   if (errorCount())
577     return;
578 
579   {
580     llvm::TimeTraceScope timeScope("Write output file");
581     // Write the result down to a file.
582     openFile();
583     if (errorCount())
584       return;
585 
586     if (!config->oFormatBinary) {
587       if (config->zSeparate != SeparateSegmentKind::None)
588         writeTrapInstr();
589       writeHeader();
590       writeSections();
591     } else {
592       writeSectionsBinary();
593     }
594 
595     // Backfill .note.gnu.build-id section content. This is done at last
596     // because the content is usually a hash value of the entire output file.
597     writeBuildId();
598     if (errorCount())
599       return;
600 
601     if (auto e = buffer->commit())
602       error("failed to write to the output file: " + toString(std::move(e)));
603   }
604 }
605 
606 template <class ELFT, class RelTy>
607 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
608                                      llvm::ArrayRef<RelTy> rels) {
609   for (const RelTy &rel : rels) {
610     Symbol &sym = file->getRelocTargetSym(rel);
611     if (sym.isLocal())
612       sym.used = true;
613   }
614 }
615 
616 // The function ensures that the "used" field of local symbols reflects the fact
617 // that the symbol is used in a relocation from a live section.
618 template <class ELFT> static void markUsedLocalSymbols() {
619   // With --gc-sections, the field is already filled.
620   // See MarkLive<ELFT>::resolveReloc().
621   if (config->gcSections)
622     return;
623   // Without --gc-sections, the field is initialized with "true".
624   // Drop the flag first and then rise for symbols referenced in relocations.
625   for (InputFile *file : objectFiles) {
626     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
627     for (Symbol *b : f->getLocalSymbols())
628       b->used = false;
629     for (InputSectionBase *s : f->getSections()) {
630       InputSection *isec = dyn_cast_or_null<InputSection>(s);
631       if (!isec)
632         continue;
633       if (isec->type == SHT_REL)
634         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
635       else if (isec->type == SHT_RELA)
636         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
637     }
638   }
639 }
640 
641 static bool shouldKeepInSymtab(const Defined &sym) {
642   if (sym.isSection())
643     return false;
644 
645   // If --emit-reloc or -r is given, preserve symbols referenced by relocations
646   // from live sections.
647   if (config->copyRelocs && sym.used)
648     return true;
649 
650   // Exclude local symbols pointing to .ARM.exidx sections.
651   // They are probably mapping symbols "$d", which are optional for these
652   // sections. After merging the .ARM.exidx sections, some of these symbols
653   // may become dangling. The easiest way to avoid the issue is not to add
654   // them to the symbol table from the beginning.
655   if (config->emachine == EM_ARM && sym.section &&
656       sym.section->type == SHT_ARM_EXIDX)
657     return false;
658 
659   if (config->discard == DiscardPolicy::None)
660     return true;
661   if (config->discard == DiscardPolicy::All)
662     return false;
663 
664   // In ELF assembly .L symbols are normally discarded by the assembler.
665   // If the assembler fails to do so, the linker discards them if
666   // * --discard-locals is used.
667   // * The symbol is in a SHF_MERGE section, which is normally the reason for
668   //   the assembler keeping the .L symbol.
669   if (sym.getName().startswith(".L") &&
670       (config->discard == DiscardPolicy::Locals ||
671        (sym.section && (sym.section->flags & SHF_MERGE))))
672     return false;
673   return true;
674 }
675 
676 static bool includeInSymtab(const Symbol &b) {
677   if (!b.isLocal() && !b.isUsedInRegularObj)
678     return false;
679 
680   if (auto *d = dyn_cast<Defined>(&b)) {
681     // Always include absolute symbols.
682     SectionBase *sec = d->section;
683     if (!sec)
684       return true;
685     sec = sec->repl;
686 
687     // Exclude symbols pointing to garbage-collected sections.
688     if (isa<InputSectionBase>(sec) && !sec->isLive())
689       return false;
690 
691     if (auto *s = dyn_cast<MergeInputSection>(sec))
692       if (!s->getSectionPiece(d->value)->live)
693         return false;
694     return true;
695   }
696   return b.used;
697 }
698 
699 // Local symbols are not in the linker's symbol table. This function scans
700 // each object file's symbol table to copy local symbols to the output.
701 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
702   if (!in.symTab)
703     return;
704   llvm::TimeTraceScope timeScope("Add local symbols");
705   if (config->copyRelocs && config->discard != DiscardPolicy::None)
706     markUsedLocalSymbols<ELFT>();
707   for (InputFile *file : objectFiles) {
708     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
709     for (Symbol *b : f->getLocalSymbols()) {
710       assert(b->isLocal() && "should have been caught in initializeSymbols()");
711       auto *dr = dyn_cast<Defined>(b);
712 
713       // No reason to keep local undefined symbol in symtab.
714       if (!dr)
715         continue;
716       if (!includeInSymtab(*b))
717         continue;
718       if (!shouldKeepInSymtab(*dr))
719         continue;
720       in.symTab->addSymbol(b);
721     }
722   }
723 }
724 
725 // Create a section symbol for each output section so that we can represent
726 // relocations that point to the section. If we know that no relocation is
727 // referring to a section (that happens if the section is a synthetic one), we
728 // don't create a section symbol for that section.
729 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
730   for (SectionCommand *cmd : script->sectionCommands) {
731     auto *sec = dyn_cast<OutputSection>(cmd);
732     if (!sec)
733       continue;
734     auto i = llvm::find_if(sec->commands, [](SectionCommand *cmd) {
735       if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
736         return !isd->sections.empty();
737       return false;
738     });
739     if (i == sec->commands.end())
740       continue;
741     InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
742 
743     // Relocations are not using REL[A] section symbols.
744     if (isec->type == SHT_REL || isec->type == SHT_RELA)
745       continue;
746 
747     // Unlike other synthetic sections, mergeable output sections contain data
748     // copied from input sections, and there may be a relocation pointing to its
749     // contents if -r or --emit-reloc is given.
750     if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
751       continue;
752 
753     // Set the symbol to be relative to the output section so that its st_value
754     // equals the output section address. Note, there may be a gap between the
755     // start of the output section and isec.
756     auto *sym =
757         make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
758                       /*value=*/0, /*size=*/0, isec->getOutputSection());
759     in.symTab->addSymbol(sym);
760   }
761 }
762 
763 // Today's loaders have a feature to make segments read-only after
764 // processing dynamic relocations to enhance security. PT_GNU_RELRO
765 // is defined for that.
766 //
767 // This function returns true if a section needs to be put into a
768 // PT_GNU_RELRO segment.
769 static bool isRelroSection(const OutputSection *sec) {
770   if (!config->zRelro)
771     return false;
772 
773   uint64_t flags = sec->flags;
774 
775   // Non-allocatable or non-writable sections don't need RELRO because
776   // they are not writable or not even mapped to memory in the first place.
777   // RELRO is for sections that are essentially read-only but need to
778   // be writable only at process startup to allow dynamic linker to
779   // apply relocations.
780   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
781     return false;
782 
783   // Once initialized, TLS data segments are used as data templates
784   // for a thread-local storage. For each new thread, runtime
785   // allocates memory for a TLS and copy templates there. No thread
786   // are supposed to use templates directly. Thus, it can be in RELRO.
787   if (flags & SHF_TLS)
788     return true;
789 
790   // .init_array, .preinit_array and .fini_array contain pointers to
791   // functions that are executed on process startup or exit. These
792   // pointers are set by the static linker, and they are not expected
793   // to change at runtime. But if you are an attacker, you could do
794   // interesting things by manipulating pointers in .fini_array, for
795   // example. So they are put into RELRO.
796   uint32_t type = sec->type;
797   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
798       type == SHT_PREINIT_ARRAY)
799     return true;
800 
801   // .got contains pointers to external symbols. They are resolved by
802   // the dynamic linker when a module is loaded into memory, and after
803   // that they are not expected to change. So, it can be in RELRO.
804   if (in.got && sec == in.got->getParent())
805     return true;
806 
807   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
808   // through r2 register, which is reserved for that purpose. Since r2 is used
809   // for accessing .got as well, .got and .toc need to be close enough in the
810   // virtual address space. Usually, .toc comes just after .got. Since we place
811   // .got into RELRO, .toc needs to be placed into RELRO too.
812   if (sec->name.equals(".toc"))
813     return true;
814 
815   // .got.plt contains pointers to external function symbols. They are
816   // by default resolved lazily, so we usually cannot put it into RELRO.
817   // However, if "-z now" is given, the lazy symbol resolution is
818   // disabled, which enables us to put it into RELRO.
819   if (sec == in.gotPlt->getParent())
820     return config->zNow;
821 
822   // .dynamic section contains data for the dynamic linker, and
823   // there's no need to write to it at runtime, so it's better to put
824   // it into RELRO.
825   if (sec->name == ".dynamic")
826     return true;
827 
828   // Sections with some special names are put into RELRO. This is a
829   // bit unfortunate because section names shouldn't be significant in
830   // ELF in spirit. But in reality many linker features depend on
831   // magic section names.
832   StringRef s = sec->name;
833   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
834          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
835          s == ".fini_array" || s == ".init_array" ||
836          s == ".openbsd.randomdata" || s == ".preinit_array";
837 }
838 
839 // We compute a rank for each section. The rank indicates where the
840 // section should be placed in the file.  Instead of using simple
841 // numbers (0,1,2...), we use a series of flags. One for each decision
842 // point when placing the section.
843 // Using flags has two key properties:
844 // * It is easy to check if a give branch was taken.
845 // * It is easy two see how similar two ranks are (see getRankProximity).
846 enum RankFlags {
847   RF_NOT_ADDR_SET = 1 << 27,
848   RF_NOT_ALLOC = 1 << 26,
849   RF_PARTITION = 1 << 18, // Partition number (8 bits)
850   RF_NOT_PART_EHDR = 1 << 17,
851   RF_NOT_PART_PHDR = 1 << 16,
852   RF_NOT_INTERP = 1 << 15,
853   RF_NOT_NOTE = 1 << 14,
854   RF_WRITE = 1 << 13,
855   RF_EXEC_WRITE = 1 << 12,
856   RF_EXEC = 1 << 11,
857   RF_RODATA = 1 << 10,
858   RF_NOT_RELRO = 1 << 9,
859   RF_NOT_TLS = 1 << 8,
860   RF_BSS = 1 << 7,
861   RF_PPC_NOT_TOCBSS = 1 << 6,
862   RF_PPC_TOCL = 1 << 5,
863   RF_PPC_TOC = 1 << 4,
864   RF_PPC_GOT = 1 << 3,
865   RF_PPC_BRANCH_LT = 1 << 2,
866   RF_MIPS_GPREL = 1 << 1,
867   RF_MIPS_NOT_GOT = 1 << 0
868 };
869 
870 static unsigned getSectionRank(const OutputSection *sec) {
871   unsigned rank = sec->partition * RF_PARTITION;
872 
873   // We want to put section specified by -T option first, so we
874   // can start assigning VA starting from them later.
875   if (config->sectionStartMap.count(sec->name))
876     return rank;
877   rank |= RF_NOT_ADDR_SET;
878 
879   // Allocatable sections go first to reduce the total PT_LOAD size and
880   // so debug info doesn't change addresses in actual code.
881   if (!(sec->flags & SHF_ALLOC))
882     return rank | RF_NOT_ALLOC;
883 
884   if (sec->type == SHT_LLVM_PART_EHDR)
885     return rank;
886   rank |= RF_NOT_PART_EHDR;
887 
888   if (sec->type == SHT_LLVM_PART_PHDR)
889     return rank;
890   rank |= RF_NOT_PART_PHDR;
891 
892   // Put .interp first because some loaders want to see that section
893   // on the first page of the executable file when loaded into memory.
894   if (sec->name == ".interp")
895     return rank;
896   rank |= RF_NOT_INTERP;
897 
898   // Put .note sections (which make up one PT_NOTE) at the beginning so that
899   // they are likely to be included in a core file even if core file size is
900   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
901   // included in a core to match core files with executables.
902   if (sec->type == SHT_NOTE)
903     return rank;
904   rank |= RF_NOT_NOTE;
905 
906   // Sort sections based on their access permission in the following
907   // order: R, RX, RWX, RW.  This order is based on the following
908   // considerations:
909   // * Read-only sections come first such that they go in the
910   //   PT_LOAD covering the program headers at the start of the file.
911   // * Read-only, executable sections come next.
912   // * Writable, executable sections follow such that .plt on
913   //   architectures where it needs to be writable will be placed
914   //   between .text and .data.
915   // * Writable sections come last, such that .bss lands at the very
916   //   end of the last PT_LOAD.
917   bool isExec = sec->flags & SHF_EXECINSTR;
918   bool isWrite = sec->flags & SHF_WRITE;
919 
920   if (isExec) {
921     if (isWrite)
922       rank |= RF_EXEC_WRITE;
923     else
924       rank |= RF_EXEC;
925   } else if (isWrite) {
926     rank |= RF_WRITE;
927   } else if (sec->type == SHT_PROGBITS) {
928     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
929     // .eh_frame) closer to .text. They likely contain PC or GOT relative
930     // relocations and there could be relocation overflow if other huge sections
931     // (.dynstr .dynsym) were placed in between.
932     rank |= RF_RODATA;
933   }
934 
935   // Place RelRo sections first. After considering SHT_NOBITS below, the
936   // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
937   // where | marks where page alignment happens. An alternative ordering is
938   // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
939   // waste more bytes due to 2 alignment places.
940   if (!isRelroSection(sec))
941     rank |= RF_NOT_RELRO;
942 
943   // If we got here we know that both A and B are in the same PT_LOAD.
944 
945   // The TLS initialization block needs to be a single contiguous block in a R/W
946   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
947   // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
948   // after PROGBITS.
949   if (!(sec->flags & SHF_TLS))
950     rank |= RF_NOT_TLS;
951 
952   // Within TLS sections, or within other RelRo sections, or within non-RelRo
953   // sections, place non-NOBITS sections first.
954   if (sec->type == SHT_NOBITS)
955     rank |= RF_BSS;
956 
957   // Some architectures have additional ordering restrictions for sections
958   // within the same PT_LOAD.
959   if (config->emachine == EM_PPC64) {
960     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
961     // that we would like to make sure appear is a specific order to maximize
962     // their coverage by a single signed 16-bit offset from the TOC base
963     // pointer. Conversely, the special .tocbss section should be first among
964     // all SHT_NOBITS sections. This will put it next to the loaded special
965     // PPC64 sections (and, thus, within reach of the TOC base pointer).
966     StringRef name = sec->name;
967     if (name != ".tocbss")
968       rank |= RF_PPC_NOT_TOCBSS;
969 
970     if (name == ".toc1")
971       rank |= RF_PPC_TOCL;
972 
973     if (name == ".toc")
974       rank |= RF_PPC_TOC;
975 
976     if (name == ".got")
977       rank |= RF_PPC_GOT;
978 
979     if (name == ".branch_lt")
980       rank |= RF_PPC_BRANCH_LT;
981   }
982 
983   if (config->emachine == EM_MIPS) {
984     // All sections with SHF_MIPS_GPREL flag should be grouped together
985     // because data in these sections is addressable with a gp relative address.
986     if (sec->flags & SHF_MIPS_GPREL)
987       rank |= RF_MIPS_GPREL;
988 
989     if (sec->name != ".got")
990       rank |= RF_MIPS_NOT_GOT;
991   }
992 
993   return rank;
994 }
995 
996 static bool compareSections(const SectionCommand *aCmd,
997                             const SectionCommand *bCmd) {
998   const OutputSection *a = cast<OutputSection>(aCmd);
999   const OutputSection *b = cast<OutputSection>(bCmd);
1000 
1001   if (a->sortRank != b->sortRank)
1002     return a->sortRank < b->sortRank;
1003 
1004   if (!(a->sortRank & RF_NOT_ADDR_SET))
1005     return config->sectionStartMap.lookup(a->name) <
1006            config->sectionStartMap.lookup(b->name);
1007   return false;
1008 }
1009 
1010 void PhdrEntry::add(OutputSection *sec) {
1011   lastSec = sec;
1012   if (!firstSec)
1013     firstSec = sec;
1014   p_align = std::max(p_align, sec->alignment);
1015   if (p_type == PT_LOAD)
1016     sec->ptLoad = this;
1017 }
1018 
1019 // The beginning and the ending of .rel[a].plt section are marked
1020 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1021 // executable. The runtime needs these symbols in order to resolve
1022 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1023 // need these symbols, since IRELATIVE relocs are resolved through GOT
1024 // and PLT. For details, see http://www.airs.com/blog/archives/403.
1025 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1026   if (config->relocatable || config->isPic)
1027     return;
1028 
1029   // By default, __rela_iplt_{start,end} belong to a dummy section 0
1030   // because .rela.plt might be empty and thus removed from output.
1031   // We'll override Out::elfHeader with In.relaIplt later when we are
1032   // sure that .rela.plt exists in output.
1033   ElfSym::relaIpltStart = addOptionalRegular(
1034       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1035       Out::elfHeader, 0, STV_HIDDEN);
1036 
1037   ElfSym::relaIpltEnd = addOptionalRegular(
1038       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1039       Out::elfHeader, 0, STV_HIDDEN);
1040 }
1041 
1042 template <class ELFT>
1043 void Writer<ELFT>::forEachRelSec(
1044     llvm::function_ref<void(InputSectionBase &)> fn) {
1045   // Scan all relocations. Each relocation goes through a series
1046   // of tests to determine if it needs special treatment, such as
1047   // creating GOT, PLT, copy relocations, etc.
1048   // Note that relocations for non-alloc sections are directly
1049   // processed by InputSection::relocateNonAlloc.
1050   for (InputSectionBase *isec : inputSections)
1051     if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1052       fn(*isec);
1053   for (Partition &part : partitions) {
1054     for (EhInputSection *es : part.ehFrame->sections)
1055       fn(*es);
1056     if (part.armExidx && part.armExidx->isLive())
1057       for (InputSection *ex : part.armExidx->exidxSections)
1058         fn(*ex);
1059   }
1060 }
1061 
1062 // This function generates assignments for predefined symbols (e.g. _end or
1063 // _etext) and inserts them into the commands sequence to be processed at the
1064 // appropriate time. This ensures that the value is going to be correct by the
1065 // time any references to these symbols are processed and is equivalent to
1066 // defining these symbols explicitly in the linker script.
1067 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1068   if (ElfSym::globalOffsetTable) {
1069     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1070     // to the start of the .got or .got.plt section.
1071     InputSection *gotSection = in.gotPlt;
1072     if (!target->gotBaseSymInGotPlt)
1073       gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1074                               : cast<InputSection>(in.got);
1075     ElfSym::globalOffsetTable->section = gotSection;
1076   }
1077 
1078   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1079   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1080     ElfSym::relaIpltStart->section = in.relaIplt;
1081     ElfSym::relaIpltEnd->section = in.relaIplt;
1082     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1083   }
1084 
1085   PhdrEntry *last = nullptr;
1086   PhdrEntry *lastRO = nullptr;
1087 
1088   for (Partition &part : partitions) {
1089     for (PhdrEntry *p : part.phdrs) {
1090       if (p->p_type != PT_LOAD)
1091         continue;
1092       last = p;
1093       if (!(p->p_flags & PF_W))
1094         lastRO = p;
1095     }
1096   }
1097 
1098   if (lastRO) {
1099     // _etext is the first location after the last read-only loadable segment.
1100     if (ElfSym::etext1)
1101       ElfSym::etext1->section = lastRO->lastSec;
1102     if (ElfSym::etext2)
1103       ElfSym::etext2->section = lastRO->lastSec;
1104   }
1105 
1106   if (last) {
1107     // _edata points to the end of the last mapped initialized section.
1108     OutputSection *edata = nullptr;
1109     for (OutputSection *os : outputSections) {
1110       if (os->type != SHT_NOBITS)
1111         edata = os;
1112       if (os == last->lastSec)
1113         break;
1114     }
1115 
1116     if (ElfSym::edata1)
1117       ElfSym::edata1->section = edata;
1118     if (ElfSym::edata2)
1119       ElfSym::edata2->section = edata;
1120 
1121     // _end is the first location after the uninitialized data region.
1122     if (ElfSym::end1)
1123       ElfSym::end1->section = last->lastSec;
1124     if (ElfSym::end2)
1125       ElfSym::end2->section = last->lastSec;
1126   }
1127 
1128   if (ElfSym::bss)
1129     ElfSym::bss->section = findSection(".bss");
1130 
1131   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1132   // be equal to the _gp symbol's value.
1133   if (ElfSym::mipsGp) {
1134     // Find GP-relative section with the lowest address
1135     // and use this address to calculate default _gp value.
1136     for (OutputSection *os : outputSections) {
1137       if (os->flags & SHF_MIPS_GPREL) {
1138         ElfSym::mipsGp->section = os;
1139         ElfSym::mipsGp->value = 0x7ff0;
1140         break;
1141       }
1142     }
1143   }
1144 }
1145 
1146 // We want to find how similar two ranks are.
1147 // The more branches in getSectionRank that match, the more similar they are.
1148 // Since each branch corresponds to a bit flag, we can just use
1149 // countLeadingZeros.
1150 static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1151   return countLeadingZeros(a->sortRank ^ b->sortRank);
1152 }
1153 
1154 static int getRankProximity(OutputSection *a, SectionCommand *b) {
1155   auto *sec = dyn_cast<OutputSection>(b);
1156   return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1157 }
1158 
1159 // When placing orphan sections, we want to place them after symbol assignments
1160 // so that an orphan after
1161 //   begin_foo = .;
1162 //   foo : { *(foo) }
1163 //   end_foo = .;
1164 // doesn't break the intended meaning of the begin/end symbols.
1165 // We don't want to go over sections since findOrphanPos is the
1166 // one in charge of deciding the order of the sections.
1167 // We don't want to go over changes to '.', since doing so in
1168 //  rx_sec : { *(rx_sec) }
1169 //  . = ALIGN(0x1000);
1170 //  /* The RW PT_LOAD starts here*/
1171 //  rw_sec : { *(rw_sec) }
1172 // would mean that the RW PT_LOAD would become unaligned.
1173 static bool shouldSkip(SectionCommand *cmd) {
1174   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1175     return assign->name != ".";
1176   return false;
1177 }
1178 
1179 // We want to place orphan sections so that they share as much
1180 // characteristics with their neighbors as possible. For example, if
1181 // both are rw, or both are tls.
1182 static std::vector<SectionCommand *>::iterator
1183 findOrphanPos(std::vector<SectionCommand *>::iterator b,
1184               std::vector<SectionCommand *>::iterator e) {
1185   OutputSection *sec = cast<OutputSection>(*e);
1186 
1187   // Find the first element that has as close a rank as possible.
1188   auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) {
1189     return getRankProximity(sec, a) < getRankProximity(sec, b);
1190   });
1191   if (i == e)
1192     return e;
1193   auto foundSec = dyn_cast<OutputSection>(*i);
1194   if (!foundSec)
1195     return e;
1196 
1197   // Consider all existing sections with the same proximity.
1198   int proximity = getRankProximity(sec, *i);
1199   unsigned sortRank = sec->sortRank;
1200   if (script->hasPhdrsCommands() || !script->memoryRegions.empty())
1201     // Prevent the orphan section to be placed before the found section. If
1202     // custom program headers are defined, that helps to avoid adding it to a
1203     // previous segment and changing flags of that segment, for example, making
1204     // a read-only segment writable. If memory regions are defined, an orphan
1205     // section should continue the same region as the found section to better
1206     // resemble the behavior of GNU ld.
1207     sortRank = std::max(sortRank, foundSec->sortRank);
1208   for (; i != e; ++i) {
1209     auto *curSec = dyn_cast<OutputSection>(*i);
1210     if (!curSec || !curSec->hasInputSections)
1211       continue;
1212     if (getRankProximity(sec, curSec) != proximity ||
1213         sortRank < curSec->sortRank)
1214       break;
1215   }
1216 
1217   auto isOutputSecWithInputSections = [](SectionCommand *cmd) {
1218     auto *os = dyn_cast<OutputSection>(cmd);
1219     return os && os->hasInputSections;
1220   };
1221   auto j = std::find_if(llvm::make_reverse_iterator(i),
1222                         llvm::make_reverse_iterator(b),
1223                         isOutputSecWithInputSections);
1224   i = j.base();
1225 
1226   // As a special case, if the orphan section is the last section, put
1227   // it at the very end, past any other commands.
1228   // This matches bfd's behavior and is convenient when the linker script fully
1229   // specifies the start of the file, but doesn't care about the end (the non
1230   // alloc sections for example).
1231   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1232   if (nextSec == e)
1233     return e;
1234 
1235   while (i != e && shouldSkip(*i))
1236     ++i;
1237   return i;
1238 }
1239 
1240 // Adds random priorities to sections not already in the map.
1241 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1242   if (config->shuffleSections.empty())
1243     return;
1244 
1245   std::vector<InputSectionBase *> matched, sections = inputSections;
1246   matched.reserve(sections.size());
1247   for (const auto &patAndSeed : config->shuffleSections) {
1248     matched.clear();
1249     for (InputSectionBase *sec : sections)
1250       if (patAndSeed.first.match(sec->name))
1251         matched.push_back(sec);
1252     const uint32_t seed = patAndSeed.second;
1253     if (seed == UINT32_MAX) {
1254       // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1255       // section order is stable even if the number of sections changes. This is
1256       // useful to catch issues like static initialization order fiasco
1257       // reliably.
1258       std::reverse(matched.begin(), matched.end());
1259     } else {
1260       std::mt19937 g(seed ? seed : std::random_device()());
1261       llvm::shuffle(matched.begin(), matched.end(), g);
1262     }
1263     size_t i = 0;
1264     for (InputSectionBase *&sec : sections)
1265       if (patAndSeed.first.match(sec->name))
1266         sec = matched[i++];
1267   }
1268 
1269   // Existing priorities are < 0, so use priorities >= 0 for the missing
1270   // sections.
1271   int prio = 0;
1272   for (InputSectionBase *sec : sections) {
1273     if (order.try_emplace(sec, prio).second)
1274       ++prio;
1275   }
1276 }
1277 
1278 // Builds section order for handling --symbol-ordering-file.
1279 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1280   DenseMap<const InputSectionBase *, int> sectionOrder;
1281   // Use the rarely used option --call-graph-ordering-file to sort sections.
1282   if (!config->callGraphProfile.empty())
1283     return computeCallGraphProfileOrder();
1284 
1285   if (config->symbolOrderingFile.empty())
1286     return sectionOrder;
1287 
1288   struct SymbolOrderEntry {
1289     int priority;
1290     bool present;
1291   };
1292 
1293   // Build a map from symbols to their priorities. Symbols that didn't
1294   // appear in the symbol ordering file have the lowest priority 0.
1295   // All explicitly mentioned symbols have negative (higher) priorities.
1296   DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1297   int priority = -config->symbolOrderingFile.size();
1298   for (StringRef s : config->symbolOrderingFile)
1299     symbolOrder.insert({s, {priority++, false}});
1300 
1301   // Build a map from sections to their priorities.
1302   auto addSym = [&](Symbol &sym) {
1303     auto it = symbolOrder.find(sym.getName());
1304     if (it == symbolOrder.end())
1305       return;
1306     SymbolOrderEntry &ent = it->second;
1307     ent.present = true;
1308 
1309     maybeWarnUnorderableSymbol(&sym);
1310 
1311     if (auto *d = dyn_cast<Defined>(&sym)) {
1312       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1313         int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1314         priority = std::min(priority, ent.priority);
1315       }
1316     }
1317   };
1318 
1319   // We want both global and local symbols. We get the global ones from the
1320   // symbol table and iterate the object files for the local ones.
1321   for (Symbol *sym : symtab->symbols())
1322     if (!sym->isLazy())
1323       addSym(*sym);
1324 
1325   for (InputFile *file : objectFiles)
1326     for (Symbol *sym : file->getSymbols()) {
1327       if (!sym->isLocal())
1328         break;
1329       addSym(*sym);
1330     }
1331 
1332   if (config->warnSymbolOrdering)
1333     for (auto orderEntry : symbolOrder)
1334       if (!orderEntry.second.present)
1335         warn("symbol ordering file: no such symbol: " + orderEntry.first);
1336 
1337   return sectionOrder;
1338 }
1339 
1340 // Sorts the sections in ISD according to the provided section order.
1341 static void
1342 sortISDBySectionOrder(InputSectionDescription *isd,
1343                       const DenseMap<const InputSectionBase *, int> &order) {
1344   std::vector<InputSection *> unorderedSections;
1345   std::vector<std::pair<InputSection *, int>> orderedSections;
1346   uint64_t unorderedSize = 0;
1347 
1348   for (InputSection *isec : isd->sections) {
1349     auto i = order.find(isec);
1350     if (i == order.end()) {
1351       unorderedSections.push_back(isec);
1352       unorderedSize += isec->getSize();
1353       continue;
1354     }
1355     orderedSections.push_back({isec, i->second});
1356   }
1357   llvm::sort(orderedSections, llvm::less_second());
1358 
1359   // Find an insertion point for the ordered section list in the unordered
1360   // section list. On targets with limited-range branches, this is the mid-point
1361   // of the unordered section list. This decreases the likelihood that a range
1362   // extension thunk will be needed to enter or exit the ordered region. If the
1363   // ordered section list is a list of hot functions, we can generally expect
1364   // the ordered functions to be called more often than the unordered functions,
1365   // making it more likely that any particular call will be within range, and
1366   // therefore reducing the number of thunks required.
1367   //
1368   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1369   // If the layout is:
1370   //
1371   // 8MB hot
1372   // 32MB cold
1373   //
1374   // only the first 8-16MB of the cold code (depending on which hot function it
1375   // is actually calling) can call the hot code without a range extension thunk.
1376   // However, if we use this layout:
1377   //
1378   // 16MB cold
1379   // 8MB hot
1380   // 16MB cold
1381   //
1382   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1383   // of the second block of cold code can call the hot code without a thunk. So
1384   // we effectively double the amount of code that could potentially call into
1385   // the hot code without a thunk.
1386   size_t insPt = 0;
1387   if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1388     uint64_t unorderedPos = 0;
1389     for (; insPt != unorderedSections.size(); ++insPt) {
1390       unorderedPos += unorderedSections[insPt]->getSize();
1391       if (unorderedPos > unorderedSize / 2)
1392         break;
1393     }
1394   }
1395 
1396   isd->sections.clear();
1397   for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1398     isd->sections.push_back(isec);
1399   for (std::pair<InputSection *, int> p : orderedSections)
1400     isd->sections.push_back(p.first);
1401   for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1402     isd->sections.push_back(isec);
1403 }
1404 
1405 static void sortSection(OutputSection *sec,
1406                         const DenseMap<const InputSectionBase *, int> &order) {
1407   StringRef name = sec->name;
1408 
1409   // Never sort these.
1410   if (name == ".init" || name == ".fini")
1411     return;
1412 
1413   // IRelative relocations that usually live in the .rel[a].dyn section should
1414   // be processed last by the dynamic loader. To achieve that we add synthetic
1415   // sections in the required order from the beginning so that the in.relaIplt
1416   // section is placed last in an output section. Here we just do not apply
1417   // sorting for an output section which holds the in.relaIplt section.
1418   if (in.relaIplt->getParent() == sec)
1419     return;
1420 
1421   // Sort input sections by priority using the list provided by
1422   // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1423   // digit radix sort. The sections may be sorted stably again by a more
1424   // significant key.
1425   if (!order.empty())
1426     for (SectionCommand *b : sec->commands)
1427       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1428         sortISDBySectionOrder(isd, order);
1429 
1430   if (script->hasSectionsCommand)
1431     return;
1432 
1433   if (name == ".init_array" || name == ".fini_array") {
1434     sec->sortInitFini();
1435   } else if (name == ".ctors" || name == ".dtors") {
1436     sec->sortCtorsDtors();
1437   } else if (config->emachine == EM_PPC64 && name == ".toc") {
1438     // .toc is allocated just after .got and is accessed using GOT-relative
1439     // relocations. Object files compiled with small code model have an
1440     // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1441     // To reduce the risk of relocation overflow, .toc contents are sorted so
1442     // that sections having smaller relocation offsets are at beginning of .toc
1443     assert(sec->commands.size() == 1);
1444     auto *isd = cast<InputSectionDescription>(sec->commands[0]);
1445     llvm::stable_sort(isd->sections,
1446                       [](const InputSection *a, const InputSection *b) -> bool {
1447                         return a->file->ppc64SmallCodeModelTocRelocs &&
1448                                !b->file->ppc64SmallCodeModelTocRelocs;
1449                       });
1450   }
1451 }
1452 
1453 // If no layout was provided by linker script, we want to apply default
1454 // sorting for special input sections. This also handles --symbol-ordering-file.
1455 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1456   // Build the order once since it is expensive.
1457   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1458   maybeShuffle(order);
1459   for (SectionCommand *cmd : script->sectionCommands)
1460     if (auto *sec = dyn_cast<OutputSection>(cmd))
1461       sortSection(sec, order);
1462 }
1463 
1464 template <class ELFT> void Writer<ELFT>::sortSections() {
1465   llvm::TimeTraceScope timeScope("Sort sections");
1466   script->adjustSectionsBeforeSorting();
1467 
1468   // Don't sort if using -r. It is not necessary and we want to preserve the
1469   // relative order for SHF_LINK_ORDER sections.
1470   if (config->relocatable)
1471     return;
1472 
1473   sortInputSections();
1474 
1475   for (SectionCommand *cmd : script->sectionCommands) {
1476     auto *os = dyn_cast<OutputSection>(cmd);
1477     if (!os)
1478       continue;
1479     os->sortRank = getSectionRank(os);
1480 
1481     // We want to assign rude approximation values to outSecOff fields
1482     // to know the relative order of the input sections. We use it for
1483     // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1484     uint64_t i = 0;
1485     for (InputSection *sec : getInputSections(os))
1486       sec->outSecOff = i++;
1487   }
1488 
1489   if (!script->hasSectionsCommand) {
1490     // We know that all the OutputSections are contiguous in this case.
1491     auto isSection = [](SectionCommand *cmd) {
1492       return isa<OutputSection>(cmd);
1493     };
1494     std::stable_sort(
1495         llvm::find_if(script->sectionCommands, isSection),
1496         llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1497         compareSections);
1498 
1499     // Process INSERT commands. From this point onwards the order of
1500     // script->sectionCommands is fixed.
1501     script->processInsertCommands();
1502     return;
1503   }
1504 
1505   script->processInsertCommands();
1506 
1507   // Orphan sections are sections present in the input files which are
1508   // not explicitly placed into the output file by the linker script.
1509   //
1510   // The sections in the linker script are already in the correct
1511   // order. We have to figuere out where to insert the orphan
1512   // sections.
1513   //
1514   // The order of the sections in the script is arbitrary and may not agree with
1515   // compareSections. This means that we cannot easily define a strict weak
1516   // ordering. To see why, consider a comparison of a section in the script and
1517   // one not in the script. We have a two simple options:
1518   // * Make them equivalent (a is not less than b, and b is not less than a).
1519   //   The problem is then that equivalence has to be transitive and we can
1520   //   have sections a, b and c with only b in a script and a less than c
1521   //   which breaks this property.
1522   // * Use compareSectionsNonScript. Given that the script order doesn't have
1523   //   to match, we can end up with sections a, b, c, d where b and c are in the
1524   //   script and c is compareSectionsNonScript less than b. In which case d
1525   //   can be equivalent to c, a to b and d < a. As a concrete example:
1526   //   .a (rx) # not in script
1527   //   .b (rx) # in script
1528   //   .c (ro) # in script
1529   //   .d (ro) # not in script
1530   //
1531   // The way we define an order then is:
1532   // *  Sort only the orphan sections. They are in the end right now.
1533   // *  Move each orphan section to its preferred position. We try
1534   //    to put each section in the last position where it can share
1535   //    a PT_LOAD.
1536   //
1537   // There is some ambiguity as to where exactly a new entry should be
1538   // inserted, because Commands contains not only output section
1539   // commands but also other types of commands such as symbol assignment
1540   // expressions. There's no correct answer here due to the lack of the
1541   // formal specification of the linker script. We use heuristics to
1542   // determine whether a new output command should be added before or
1543   // after another commands. For the details, look at shouldSkip
1544   // function.
1545 
1546   auto i = script->sectionCommands.begin();
1547   auto e = script->sectionCommands.end();
1548   auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) {
1549     if (auto *sec = dyn_cast<OutputSection>(cmd))
1550       return sec->sectionIndex == UINT32_MAX;
1551     return false;
1552   });
1553 
1554   // Sort the orphan sections.
1555   std::stable_sort(nonScriptI, e, compareSections);
1556 
1557   // As a horrible special case, skip the first . assignment if it is before any
1558   // section. We do this because it is common to set a load address by starting
1559   // the script with ". = 0xabcd" and the expectation is that every section is
1560   // after that.
1561   auto firstSectionOrDotAssignment =
1562       std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); });
1563   if (firstSectionOrDotAssignment != e &&
1564       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1565     ++firstSectionOrDotAssignment;
1566   i = firstSectionOrDotAssignment;
1567 
1568   while (nonScriptI != e) {
1569     auto pos = findOrphanPos(i, nonScriptI);
1570     OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1571 
1572     // As an optimization, find all sections with the same sort rank
1573     // and insert them with one rotate.
1574     unsigned rank = orphan->sortRank;
1575     auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) {
1576       return cast<OutputSection>(cmd)->sortRank != rank;
1577     });
1578     std::rotate(pos, nonScriptI, end);
1579     nonScriptI = end;
1580   }
1581 
1582   script->adjustSectionsAfterSorting();
1583 }
1584 
1585 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1586   InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1587   InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1588   // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1589   // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1590   if (!la || !lb)
1591     return la && !lb;
1592   OutputSection *aOut = la->getParent();
1593   OutputSection *bOut = lb->getParent();
1594 
1595   if (aOut != bOut)
1596     return aOut->addr < bOut->addr;
1597   return la->outSecOff < lb->outSecOff;
1598 }
1599 
1600 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1601   llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1602   for (OutputSection *sec : outputSections) {
1603     if (!(sec->flags & SHF_LINK_ORDER))
1604       continue;
1605 
1606     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1607     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1608     if (!config->relocatable && config->emachine == EM_ARM &&
1609         sec->type == SHT_ARM_EXIDX)
1610       continue;
1611 
1612     // Link order may be distributed across several InputSectionDescriptions.
1613     // Sorting is performed separately.
1614     std::vector<InputSection **> scriptSections;
1615     std::vector<InputSection *> sections;
1616     for (SectionCommand *cmd : sec->commands) {
1617       auto *isd = dyn_cast<InputSectionDescription>(cmd);
1618       if (!isd)
1619         continue;
1620       bool hasLinkOrder = false;
1621       scriptSections.clear();
1622       sections.clear();
1623       for (InputSection *&isec : isd->sections) {
1624         if (isec->flags & SHF_LINK_ORDER) {
1625           InputSection *link = isec->getLinkOrderDep();
1626           if (link && !link->getParent())
1627             error(toString(isec) + ": sh_link points to discarded section " +
1628                   toString(link));
1629           hasLinkOrder = true;
1630         }
1631         scriptSections.push_back(&isec);
1632         sections.push_back(isec);
1633       }
1634       if (hasLinkOrder && errorCount() == 0) {
1635         llvm::stable_sort(sections, compareByFilePosition);
1636         for (int i = 0, n = sections.size(); i != n; ++i)
1637           *scriptSections[i] = sections[i];
1638       }
1639     }
1640   }
1641 }
1642 
1643 static void finalizeSynthetic(SyntheticSection *sec) {
1644   if (sec && sec->isNeeded() && sec->getParent()) {
1645     llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1646     sec->finalizeContents();
1647   }
1648 }
1649 
1650 // We need to generate and finalize the content that depends on the address of
1651 // InputSections. As the generation of the content may also alter InputSection
1652 // addresses we must converge to a fixed point. We do that here. See the comment
1653 // in Writer<ELFT>::finalizeSections().
1654 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1655   llvm::TimeTraceScope timeScope("Finalize address dependent content");
1656   ThunkCreator tc;
1657   AArch64Err843419Patcher a64p;
1658   ARMErr657417Patcher a32p;
1659   script->assignAddresses();
1660   // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1661   // do require the relative addresses of OutputSections because linker scripts
1662   // can assign Virtual Addresses to OutputSections that are not monotonically
1663   // increasing.
1664   for (Partition &part : partitions)
1665     finalizeSynthetic(part.armExidx);
1666   resolveShfLinkOrder();
1667 
1668   // Converts call x@GDPLT to call __tls_get_addr
1669   if (config->emachine == EM_HEXAGON)
1670     hexagonTLSSymbolUpdate(outputSections);
1671 
1672   int assignPasses = 0;
1673   for (;;) {
1674     bool changed = target->needsThunks && tc.createThunks(outputSections);
1675 
1676     // With Thunk Size much smaller than branch range we expect to
1677     // converge quickly; if we get to 15 something has gone wrong.
1678     if (changed && tc.pass >= 15) {
1679       error("thunk creation not converged");
1680       break;
1681     }
1682 
1683     if (config->fixCortexA53Errata843419) {
1684       if (changed)
1685         script->assignAddresses();
1686       changed |= a64p.createFixes();
1687     }
1688     if (config->fixCortexA8) {
1689       if (changed)
1690         script->assignAddresses();
1691       changed |= a32p.createFixes();
1692     }
1693 
1694     if (in.mipsGot)
1695       in.mipsGot->updateAllocSize();
1696 
1697     for (Partition &part : partitions) {
1698       changed |= part.relaDyn->updateAllocSize();
1699       if (part.relrDyn)
1700         changed |= part.relrDyn->updateAllocSize();
1701     }
1702 
1703     const Defined *changedSym = script->assignAddresses();
1704     if (!changed) {
1705       // Some symbols may be dependent on section addresses. When we break the
1706       // loop, the symbol values are finalized because a previous
1707       // assignAddresses() finalized section addresses.
1708       if (!changedSym)
1709         break;
1710       if (++assignPasses == 5) {
1711         errorOrWarn("assignment to symbol " + toString(*changedSym) +
1712                     " does not converge");
1713         break;
1714       }
1715     }
1716   }
1717 
1718   // If addrExpr is set, the address may not be a multiple of the alignment.
1719   // Warn because this is error-prone.
1720   for (SectionCommand *cmd : script->sectionCommands)
1721     if (auto *os = dyn_cast<OutputSection>(cmd))
1722       if (os->addr % os->alignment != 0)
1723         warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " +
1724              os->name + " is not a multiple of alignment (" +
1725              Twine(os->alignment) + ")");
1726 }
1727 
1728 // If Input Sections have been shrunk (basic block sections) then
1729 // update symbol values and sizes associated with these sections.  With basic
1730 // block sections, input sections can shrink when the jump instructions at
1731 // the end of the section are relaxed.
1732 static void fixSymbolsAfterShrinking() {
1733   for (InputFile *File : objectFiles) {
1734     parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1735       auto *def = dyn_cast<Defined>(Sym);
1736       if (!def)
1737         return;
1738 
1739       const SectionBase *sec = def->section;
1740       if (!sec)
1741         return;
1742 
1743       const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl);
1744       if (!inputSec || !inputSec->bytesDropped)
1745         return;
1746 
1747       const size_t OldSize = inputSec->data().size();
1748       const size_t NewSize = OldSize - inputSec->bytesDropped;
1749 
1750       if (def->value > NewSize && def->value <= OldSize) {
1751         LLVM_DEBUG(llvm::dbgs()
1752                    << "Moving symbol " << Sym->getName() << " from "
1753                    << def->value << " to "
1754                    << def->value - inputSec->bytesDropped << " bytes\n");
1755         def->value -= inputSec->bytesDropped;
1756         return;
1757       }
1758 
1759       if (def->value + def->size > NewSize && def->value <= OldSize &&
1760           def->value + def->size <= OldSize) {
1761         LLVM_DEBUG(llvm::dbgs()
1762                    << "Shrinking symbol " << Sym->getName() << " from "
1763                    << def->size << " to " << def->size - inputSec->bytesDropped
1764                    << " bytes\n");
1765         def->size -= inputSec->bytesDropped;
1766       }
1767     });
1768   }
1769 }
1770 
1771 // If basic block sections exist, there are opportunities to delete fall thru
1772 // jumps and shrink jump instructions after basic block reordering.  This
1773 // relaxation pass does that.  It is only enabled when --optimize-bb-jumps
1774 // option is used.
1775 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1776   assert(config->optimizeBBJumps);
1777 
1778   script->assignAddresses();
1779   // For every output section that has executable input sections, this
1780   // does the following:
1781   //   1. Deletes all direct jump instructions in input sections that
1782   //      jump to the following section as it is not required.
1783   //   2. If there are two consecutive jump instructions, it checks
1784   //      if they can be flipped and one can be deleted.
1785   for (OutputSection *os : outputSections) {
1786     if (!(os->flags & SHF_EXECINSTR))
1787       continue;
1788     std::vector<InputSection *> sections = getInputSections(os);
1789     std::vector<unsigned> result(sections.size());
1790     // Delete all fall through jump instructions.  Also, check if two
1791     // consecutive jump instructions can be flipped so that a fall
1792     // through jmp instruction can be deleted.
1793     parallelForEachN(0, sections.size(), [&](size_t i) {
1794       InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1795       InputSection &is = *sections[i];
1796       result[i] =
1797           target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0;
1798     });
1799     size_t numDeleted = std::count(result.begin(), result.end(), 1);
1800     if (numDeleted > 0) {
1801       script->assignAddresses();
1802       LLVM_DEBUG(llvm::dbgs()
1803                  << "Removing " << numDeleted << " fall through jumps\n");
1804     }
1805   }
1806 
1807   fixSymbolsAfterShrinking();
1808 
1809   for (OutputSection *os : outputSections) {
1810     std::vector<InputSection *> sections = getInputSections(os);
1811     for (InputSection *is : sections)
1812       is->trim();
1813   }
1814 }
1815 
1816 // In order to allow users to manipulate linker-synthesized sections,
1817 // we had to add synthetic sections to the input section list early,
1818 // even before we make decisions whether they are needed. This allows
1819 // users to write scripts like this: ".mygot : { .got }".
1820 //
1821 // Doing it has an unintended side effects. If it turns out that we
1822 // don't need a .got (for example) at all because there's no
1823 // relocation that needs a .got, we don't want to emit .got.
1824 //
1825 // To deal with the above problem, this function is called after
1826 // scanRelocations is called to remove synthetic sections that turn
1827 // out to be empty.
1828 static void removeUnusedSyntheticSections() {
1829   // All input synthetic sections that can be empty are placed after
1830   // all regular ones. Reverse iterate to find the first synthetic section
1831   // after a non-synthetic one which will be our starting point.
1832   auto start = std::find_if(inputSections.rbegin(), inputSections.rend(),
1833                             [](InputSectionBase *s) {
1834                               return !isa<SyntheticSection>(s);
1835                             })
1836                    .base();
1837 
1838   // Remove unused synthetic sections from inputSections;
1839   DenseSet<InputSectionBase *> unused;
1840   auto end =
1841       std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) {
1842         auto *sec = cast<SyntheticSection>(s);
1843         if (sec->getParent() && sec->isNeeded())
1844           return false;
1845         unused.insert(sec);
1846         return true;
1847       });
1848   inputSections.erase(end, inputSections.end());
1849 
1850   // Remove unused synthetic sections from the corresponding input section
1851   // description and orphanSections.
1852   for (auto *sec : unused)
1853     if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent())
1854       for (SectionCommand *cmd : osec->commands)
1855         if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
1856           llvm::erase_if(isd->sections, [&](InputSection *isec) {
1857             return unused.count(isec);
1858           });
1859   llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) {
1860     return unused.count(sec);
1861   });
1862 }
1863 
1864 // Create output section objects and add them to OutputSections.
1865 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1866   Out::preinitArray = findSection(".preinit_array");
1867   Out::initArray = findSection(".init_array");
1868   Out::finiArray = findSection(".fini_array");
1869 
1870   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1871   // symbols for sections, so that the runtime can get the start and end
1872   // addresses of each section by section name. Add such symbols.
1873   if (!config->relocatable) {
1874     addStartEndSymbols();
1875     for (SectionCommand *cmd : script->sectionCommands)
1876       if (auto *sec = dyn_cast<OutputSection>(cmd))
1877         addStartStopSymbols(sec);
1878   }
1879 
1880   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1881   // It should be okay as no one seems to care about the type.
1882   // Even the author of gold doesn't remember why gold behaves that way.
1883   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1884   if (mainPart->dynamic->parent)
1885     symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1886                               STV_HIDDEN, STT_NOTYPE,
1887                               /*value=*/0, /*size=*/0, mainPart->dynamic});
1888 
1889   // Define __rel[a]_iplt_{start,end} symbols if needed.
1890   addRelIpltSymbols();
1891 
1892   // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1893   // should only be defined in an executable. If .sdata does not exist, its
1894   // value/section does not matter but it has to be relative, so set its
1895   // st_shndx arbitrarily to 1 (Out::elfHeader).
1896   if (config->emachine == EM_RISCV && !config->shared) {
1897     OutputSection *sec = findSection(".sdata");
1898     ElfSym::riscvGlobalPointer =
1899         addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1900                            0x800, STV_DEFAULT);
1901   }
1902 
1903   if (config->emachine == EM_386 || config->emachine == EM_X86_64) {
1904     // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1905     // way that:
1906     //
1907     // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1908     // computes 0.
1909     // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1910     // the TLS block).
1911     //
1912     // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1913     // an absolute symbol of zero. This is different from GNU linkers which
1914     // define _TLS_MODULE_BASE_ relative to the first TLS section.
1915     Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1916     if (s && s->isUndefined()) {
1917       s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1918                          STT_TLS, /*value=*/0, 0,
1919                          /*section=*/nullptr});
1920       ElfSym::tlsModuleBase = cast<Defined>(s);
1921     }
1922   }
1923 
1924   {
1925     llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1926     // This responsible for splitting up .eh_frame section into
1927     // pieces. The relocation scan uses those pieces, so this has to be
1928     // earlier.
1929     for (Partition &part : partitions)
1930       finalizeSynthetic(part.ehFrame);
1931   }
1932 
1933   for (Symbol *sym : symtab->symbols())
1934     sym->isPreemptible = computeIsPreemptible(*sym);
1935 
1936   // Change values of linker-script-defined symbols from placeholders (assigned
1937   // by declareSymbols) to actual definitions.
1938   script->processSymbolAssignments();
1939 
1940   {
1941     llvm::TimeTraceScope timeScope("Scan relocations");
1942     // Scan relocations. This must be done after every symbol is declared so
1943     // that we can correctly decide if a dynamic relocation is needed. This is
1944     // called after processSymbolAssignments() because it needs to know whether
1945     // a linker-script-defined symbol is absolute.
1946     ppc64noTocRelax.clear();
1947     if (!config->relocatable) {
1948       forEachRelSec(scanRelocations<ELFT>);
1949       reportUndefinedSymbols<ELFT>();
1950     }
1951   }
1952 
1953   if (in.plt && in.plt->isNeeded())
1954     in.plt->addSymbols();
1955   if (in.iplt && in.iplt->isNeeded())
1956     in.iplt->addSymbols();
1957 
1958   if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
1959     auto diagnose =
1960         config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
1961             ? errorOrWarn
1962             : warn;
1963     // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1964     // entries are seen. These cases would otherwise lead to runtime errors
1965     // reported by the dynamic linker.
1966     //
1967     // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1968     // catch more cases. That is too much for us. Our approach resembles the one
1969     // used in ld.gold, achieves a good balance to be useful but not too smart.
1970     for (SharedFile *file : sharedFiles) {
1971       bool allNeededIsKnown =
1972           llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1973             return symtab->soNames.count(needed);
1974           });
1975       if (!allNeededIsKnown)
1976         continue;
1977       for (Symbol *sym : file->requiredSymbols)
1978         if (sym->isUndefined() && !sym->isWeak())
1979           diagnose(toString(file) + ": undefined reference to " +
1980                    toString(*sym) + " [--no-allow-shlib-undefined]");
1981     }
1982   }
1983 
1984   {
1985     llvm::TimeTraceScope timeScope("Add symbols to symtabs");
1986     // Now that we have defined all possible global symbols including linker-
1987     // synthesized ones. Visit all symbols to give the finishing touches.
1988     for (Symbol *sym : symtab->symbols()) {
1989       if (!includeInSymtab(*sym))
1990         continue;
1991       if (in.symTab)
1992         in.symTab->addSymbol(sym);
1993 
1994       if (sym->includeInDynsym()) {
1995         partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1996         if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
1997           if (file->isNeeded && !sym->isUndefined())
1998             addVerneed(sym);
1999       }
2000     }
2001 
2002     // We also need to scan the dynamic relocation tables of the other
2003     // partitions and add any referenced symbols to the partition's dynsym.
2004     for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
2005       DenseSet<Symbol *> syms;
2006       for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
2007         syms.insert(e.sym);
2008       for (DynamicReloc &reloc : part.relaDyn->relocs)
2009         if (reloc.sym && reloc.needsDynSymIndex() &&
2010             syms.insert(reloc.sym).second)
2011           part.dynSymTab->addSymbol(reloc.sym);
2012     }
2013   }
2014 
2015   // Do not proceed if there was an undefined symbol.
2016   if (errorCount())
2017     return;
2018 
2019   if (in.mipsGot)
2020     in.mipsGot->build();
2021 
2022   removeUnusedSyntheticSections();
2023   script->diagnoseOrphanHandling();
2024 
2025   sortSections();
2026 
2027   // Create a list of OutputSections, assign sectionIndex, and populate
2028   // in.shStrTab.
2029   for (SectionCommand *cmd : script->sectionCommands)
2030     if (auto *osec = dyn_cast<OutputSection>(cmd)) {
2031       outputSections.push_back(osec);
2032       osec->sectionIndex = outputSections.size();
2033       osec->shName = in.shStrTab->addString(osec->name);
2034     }
2035 
2036   // Prefer command line supplied address over other constraints.
2037   for (OutputSection *sec : outputSections) {
2038     auto i = config->sectionStartMap.find(sec->name);
2039     if (i != config->sectionStartMap.end())
2040       sec->addrExpr = [=] { return i->second; };
2041   }
2042 
2043   // With the outputSections available check for GDPLT relocations
2044   // and add __tls_get_addr symbol if needed.
2045   if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2046     Symbol *sym = symtab->addSymbol(Undefined{
2047         nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2048     sym->isPreemptible = true;
2049     partitions[0].dynSymTab->addSymbol(sym);
2050   }
2051 
2052   // This is a bit of a hack. A value of 0 means undef, so we set it
2053   // to 1 to make __ehdr_start defined. The section number is not
2054   // particularly relevant.
2055   Out::elfHeader->sectionIndex = 1;
2056   Out::elfHeader->size = sizeof(typename ELFT::Ehdr);
2057 
2058   // Binary and relocatable output does not have PHDRS.
2059   // The headers have to be created before finalize as that can influence the
2060   // image base and the dynamic section on mips includes the image base.
2061   if (!config->relocatable && !config->oFormatBinary) {
2062     for (Partition &part : partitions) {
2063       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2064                                               : createPhdrs(part);
2065       if (config->emachine == EM_ARM) {
2066         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2067         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2068       }
2069       if (config->emachine == EM_MIPS) {
2070         // Add separate segments for MIPS-specific sections.
2071         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2072         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2073         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2074       }
2075     }
2076     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2077 
2078     // Find the TLS segment. This happens before the section layout loop so that
2079     // Android relocation packing can look up TLS symbol addresses. We only need
2080     // to care about the main partition here because all TLS symbols were moved
2081     // to the main partition (see MarkLive.cpp).
2082     for (PhdrEntry *p : mainPart->phdrs)
2083       if (p->p_type == PT_TLS)
2084         Out::tlsPhdr = p;
2085   }
2086 
2087   // Some symbols are defined in term of program headers. Now that we
2088   // have the headers, we can find out which sections they point to.
2089   setReservedSymbolSections();
2090 
2091   {
2092     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2093 
2094     finalizeSynthetic(in.bss);
2095     finalizeSynthetic(in.bssRelRo);
2096     finalizeSynthetic(in.symTabShndx);
2097     finalizeSynthetic(in.shStrTab);
2098     finalizeSynthetic(in.strTab);
2099     finalizeSynthetic(in.got);
2100     finalizeSynthetic(in.mipsGot);
2101     finalizeSynthetic(in.igotPlt);
2102     finalizeSynthetic(in.gotPlt);
2103     finalizeSynthetic(in.relaIplt);
2104     finalizeSynthetic(in.relaPlt);
2105     finalizeSynthetic(in.plt);
2106     finalizeSynthetic(in.iplt);
2107     finalizeSynthetic(in.ppc32Got2);
2108     finalizeSynthetic(in.partIndex);
2109 
2110     // Dynamic section must be the last one in this list and dynamic
2111     // symbol table section (dynSymTab) must be the first one.
2112     for (Partition &part : partitions) {
2113       finalizeSynthetic(part.dynSymTab);
2114       finalizeSynthetic(part.gnuHashTab);
2115       finalizeSynthetic(part.hashTab);
2116       finalizeSynthetic(part.verDef);
2117       finalizeSynthetic(part.relaDyn);
2118       finalizeSynthetic(part.relrDyn);
2119       finalizeSynthetic(part.ehFrameHdr);
2120       finalizeSynthetic(part.verSym);
2121       finalizeSynthetic(part.verNeed);
2122       finalizeSynthetic(part.dynamic);
2123     }
2124   }
2125 
2126   if (!script->hasSectionsCommand && !config->relocatable)
2127     fixSectionAlignments();
2128 
2129   // This is used to:
2130   // 1) Create "thunks":
2131   //    Jump instructions in many ISAs have small displacements, and therefore
2132   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
2133   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
2134   //    responsibility to create and insert small pieces of code between
2135   //    sections to extend the ranges if jump targets are out of range. Such
2136   //    code pieces are called "thunks".
2137   //
2138   //    We add thunks at this stage. We couldn't do this before this point
2139   //    because this is the earliest point where we know sizes of sections and
2140   //    their layouts (that are needed to determine if jump targets are in
2141   //    range).
2142   //
2143   // 2) Update the sections. We need to generate content that depends on the
2144   //    address of InputSections. For example, MIPS GOT section content or
2145   //    android packed relocations sections content.
2146   //
2147   // 3) Assign the final values for the linker script symbols. Linker scripts
2148   //    sometimes using forward symbol declarations. We want to set the correct
2149   //    values. They also might change after adding the thunks.
2150   finalizeAddressDependentContent();
2151   if (errorCount())
2152     return;
2153 
2154   {
2155     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2156     // finalizeAddressDependentContent may have added local symbols to the
2157     // static symbol table.
2158     finalizeSynthetic(in.symTab);
2159     finalizeSynthetic(in.ppc64LongBranchTarget);
2160   }
2161 
2162   // Relaxation to delete inter-basic block jumps created by basic block
2163   // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2164   // can relax jump instructions based on symbol offset.
2165   if (config->optimizeBBJumps)
2166     optimizeBasicBlockJumps();
2167 
2168   // Fill other section headers. The dynamic table is finalized
2169   // at the end because some tags like RELSZ depend on result
2170   // of finalizing other sections.
2171   for (OutputSection *sec : outputSections)
2172     sec->finalize();
2173 }
2174 
2175 // Ensure data sections are not mixed with executable sections when
2176 // --execute-only is used. --execute-only make pages executable but not
2177 // readable.
2178 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2179   if (!config->executeOnly)
2180     return;
2181 
2182   for (OutputSection *os : outputSections)
2183     if (os->flags & SHF_EXECINSTR)
2184       for (InputSection *isec : getInputSections(os))
2185         if (!(isec->flags & SHF_EXECINSTR))
2186           error("cannot place " + toString(isec) + " into " + toString(os->name) +
2187                 ": -execute-only does not support intermingling data and code");
2188 }
2189 
2190 // The linker is expected to define SECNAME_start and SECNAME_end
2191 // symbols for a few sections. This function defines them.
2192 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2193   // If a section does not exist, there's ambiguity as to how we
2194   // define _start and _end symbols for an init/fini section. Since
2195   // the loader assume that the symbols are always defined, we need to
2196   // always define them. But what value? The loader iterates over all
2197   // pointers between _start and _end to run global ctors/dtors, so if
2198   // the section is empty, their symbol values don't actually matter
2199   // as long as _start and _end point to the same location.
2200   //
2201   // That said, we don't want to set the symbols to 0 (which is
2202   // probably the simplest value) because that could cause some
2203   // program to fail to link due to relocation overflow, if their
2204   // program text is above 2 GiB. We use the address of the .text
2205   // section instead to prevent that failure.
2206   //
2207   // In rare situations, the .text section may not exist. If that's the
2208   // case, use the image base address as a last resort.
2209   OutputSection *Default = findSection(".text");
2210   if (!Default)
2211     Default = Out::elfHeader;
2212 
2213   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2214     if (os && !script->isDiscarded(os)) {
2215       addOptionalRegular(start, os, 0);
2216       addOptionalRegular(end, os, -1);
2217     } else {
2218       addOptionalRegular(start, Default, 0);
2219       addOptionalRegular(end, Default, 0);
2220     }
2221   };
2222 
2223   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2224   define("__init_array_start", "__init_array_end", Out::initArray);
2225   define("__fini_array_start", "__fini_array_end", Out::finiArray);
2226 
2227   if (OutputSection *sec = findSection(".ARM.exidx"))
2228     define("__exidx_start", "__exidx_end", sec);
2229 }
2230 
2231 // If a section name is valid as a C identifier (which is rare because of
2232 // the leading '.'), linkers are expected to define __start_<secname> and
2233 // __stop_<secname> symbols. They are at beginning and end of the section,
2234 // respectively. This is not requested by the ELF standard, but GNU ld and
2235 // gold provide the feature, and used by many programs.
2236 template <class ELFT>
2237 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
2238   StringRef s = sec->name;
2239   if (!isValidCIdentifier(s))
2240     return;
2241   addOptionalRegular(saver.save("__start_" + s), sec, 0,
2242                      config->zStartStopVisibility);
2243   addOptionalRegular(saver.save("__stop_" + s), sec, -1,
2244                      config->zStartStopVisibility);
2245 }
2246 
2247 static bool needsPtLoad(OutputSection *sec) {
2248   if (!(sec->flags & SHF_ALLOC))
2249     return false;
2250 
2251   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2252   // responsible for allocating space for them, not the PT_LOAD that
2253   // contains the TLS initialization image.
2254   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2255     return false;
2256   return true;
2257 }
2258 
2259 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2260 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2261 // RW. This means that there is no alignment in the RO to RX transition and we
2262 // cannot create a PT_LOAD there.
2263 static uint64_t computeFlags(uint64_t flags) {
2264   if (config->omagic)
2265     return PF_R | PF_W | PF_X;
2266   if (config->executeOnly && (flags & PF_X))
2267     return flags & ~PF_R;
2268   if (config->singleRoRx && !(flags & PF_W))
2269     return flags | PF_X;
2270   return flags;
2271 }
2272 
2273 // Decide which program headers to create and which sections to include in each
2274 // one.
2275 template <class ELFT>
2276 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2277   std::vector<PhdrEntry *> ret;
2278   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2279     ret.push_back(make<PhdrEntry>(type, flags));
2280     return ret.back();
2281   };
2282 
2283   unsigned partNo = part.getNumber();
2284   bool isMain = partNo == 1;
2285 
2286   // Add the first PT_LOAD segment for regular output sections.
2287   uint64_t flags = computeFlags(PF_R);
2288   PhdrEntry *load = nullptr;
2289 
2290   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2291   // PT_LOAD.
2292   if (!config->nmagic && !config->omagic) {
2293     // The first phdr entry is PT_PHDR which describes the program header
2294     // itself.
2295     if (isMain)
2296       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2297     else
2298       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2299 
2300     // PT_INTERP must be the second entry if exists.
2301     if (OutputSection *cmd = findSection(".interp", partNo))
2302       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2303 
2304     // Add the headers. We will remove them if they don't fit.
2305     // In the other partitions the headers are ordinary sections, so they don't
2306     // need to be added here.
2307     if (isMain) {
2308       load = addHdr(PT_LOAD, flags);
2309       load->add(Out::elfHeader);
2310       load->add(Out::programHeaders);
2311     }
2312   }
2313 
2314   // PT_GNU_RELRO includes all sections that should be marked as
2315   // read-only by dynamic linker after processing relocations.
2316   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2317   // an error message if more than one PT_GNU_RELRO PHDR is required.
2318   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2319   bool inRelroPhdr = false;
2320   OutputSection *relroEnd = nullptr;
2321   for (OutputSection *sec : outputSections) {
2322     if (sec->partition != partNo || !needsPtLoad(sec))
2323       continue;
2324     if (isRelroSection(sec)) {
2325       inRelroPhdr = true;
2326       if (!relroEnd)
2327         relRo->add(sec);
2328       else
2329         error("section: " + sec->name + " is not contiguous with other relro" +
2330               " sections");
2331     } else if (inRelroPhdr) {
2332       inRelroPhdr = false;
2333       relroEnd = sec;
2334     }
2335   }
2336 
2337   for (OutputSection *sec : outputSections) {
2338     if (!needsPtLoad(sec))
2339       continue;
2340 
2341     // Normally, sections in partitions other than the current partition are
2342     // ignored. But partition number 255 is a special case: it contains the
2343     // partition end marker (.part.end). It needs to be added to the main
2344     // partition so that a segment is created for it in the main partition,
2345     // which will cause the dynamic loader to reserve space for the other
2346     // partitions.
2347     if (sec->partition != partNo) {
2348       if (isMain && sec->partition == 255)
2349         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2350       continue;
2351     }
2352 
2353     // Segments are contiguous memory regions that has the same attributes
2354     // (e.g. executable or writable). There is one phdr for each segment.
2355     // Therefore, we need to create a new phdr when the next section has
2356     // different flags or is loaded at a discontiguous address or memory
2357     // region using AT or AT> linker script command, respectively. At the same
2358     // time, we don't want to create a separate load segment for the headers,
2359     // even if the first output section has an AT or AT> attribute.
2360     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2361     bool sameLMARegion =
2362         load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2363     if (!(load && newFlags == flags && sec != relroEnd &&
2364           sec->memRegion == load->firstSec->memRegion &&
2365           (sameLMARegion || load->lastSec == Out::programHeaders))) {
2366       load = addHdr(PT_LOAD, newFlags);
2367       flags = newFlags;
2368     }
2369 
2370     load->add(sec);
2371   }
2372 
2373   // Add a TLS segment if any.
2374   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2375   for (OutputSection *sec : outputSections)
2376     if (sec->partition == partNo && sec->flags & SHF_TLS)
2377       tlsHdr->add(sec);
2378   if (tlsHdr->firstSec)
2379     ret.push_back(tlsHdr);
2380 
2381   // Add an entry for .dynamic.
2382   if (OutputSection *sec = part.dynamic->getParent())
2383     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2384 
2385   if (relRo->firstSec)
2386     ret.push_back(relRo);
2387 
2388   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2389   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2390       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2391     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2392         ->add(part.ehFrameHdr->getParent());
2393 
2394   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2395   // the dynamic linker fill the segment with random data.
2396   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2397     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2398 
2399   if (config->zGnustack != GnuStackKind::None) {
2400     // PT_GNU_STACK is a special section to tell the loader to make the
2401     // pages for the stack non-executable. If you really want an executable
2402     // stack, you can pass -z execstack, but that's not recommended for
2403     // security reasons.
2404     unsigned perm = PF_R | PF_W;
2405     if (config->zGnustack == GnuStackKind::Exec)
2406       perm |= PF_X;
2407     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2408   }
2409 
2410   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2411   // is expected to perform W^X violations, such as calling mprotect(2) or
2412   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2413   // OpenBSD.
2414   if (config->zWxneeded)
2415     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2416 
2417   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2418     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2419 
2420   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2421   // same alignment.
2422   PhdrEntry *note = nullptr;
2423   for (OutputSection *sec : outputSections) {
2424     if (sec->partition != partNo)
2425       continue;
2426     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2427       if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2428         note = addHdr(PT_NOTE, PF_R);
2429       note->add(sec);
2430     } else {
2431       note = nullptr;
2432     }
2433   }
2434   return ret;
2435 }
2436 
2437 template <class ELFT>
2438 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2439                                      unsigned pType, unsigned pFlags) {
2440   unsigned partNo = part.getNumber();
2441   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2442     return cmd->partition == partNo && cmd->type == shType;
2443   });
2444   if (i == outputSections.end())
2445     return;
2446 
2447   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2448   entry->add(*i);
2449   part.phdrs.push_back(entry);
2450 }
2451 
2452 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2453 // This is achieved by assigning an alignment expression to addrExpr of each
2454 // such section.
2455 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2456   const PhdrEntry *prev;
2457   auto pageAlign = [&](const PhdrEntry *p) {
2458     OutputSection *cmd = p->firstSec;
2459     if (!cmd)
2460       return;
2461     cmd->alignExpr = [align = cmd->alignment]() { return align; };
2462     if (!cmd->addrExpr) {
2463       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2464       // padding in the file contents.
2465       //
2466       // When -z separate-code is used we must not have any overlap in pages
2467       // between an executable segment and a non-executable segment. We align to
2468       // the next maximum page size boundary on transitions between executable
2469       // and non-executable segments.
2470       //
2471       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2472       // sections will be extracted to a separate file. Align to the next
2473       // maximum page size boundary so that we can find the ELF header at the
2474       // start. We cannot benefit from overlapping p_offset ranges with the
2475       // previous segment anyway.
2476       if (config->zSeparate == SeparateSegmentKind::Loadable ||
2477           (config->zSeparate == SeparateSegmentKind::Code && prev &&
2478            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2479           cmd->type == SHT_LLVM_PART_EHDR)
2480         cmd->addrExpr = [] {
2481           return alignTo(script->getDot(), config->maxPageSize);
2482         };
2483       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2484       // it must be the RW. Align to p_align(PT_TLS) to make sure
2485       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2486       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2487       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2488       // be congruent to 0 modulo p_align(PT_TLS).
2489       //
2490       // Technically this is not required, but as of 2019, some dynamic loaders
2491       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2492       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2493       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2494       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2495       // blocks correctly. We need to keep the workaround for a while.
2496       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2497         cmd->addrExpr = [] {
2498           return alignTo(script->getDot(), config->maxPageSize) +
2499                  alignTo(script->getDot() % config->maxPageSize,
2500                          Out::tlsPhdr->p_align);
2501         };
2502       else
2503         cmd->addrExpr = [] {
2504           return alignTo(script->getDot(), config->maxPageSize) +
2505                  script->getDot() % config->maxPageSize;
2506         };
2507     }
2508   };
2509 
2510   for (Partition &part : partitions) {
2511     prev = nullptr;
2512     for (const PhdrEntry *p : part.phdrs)
2513       if (p->p_type == PT_LOAD && p->firstSec) {
2514         pageAlign(p);
2515         prev = p;
2516       }
2517   }
2518 }
2519 
2520 // Compute an in-file position for a given section. The file offset must be the
2521 // same with its virtual address modulo the page size, so that the loader can
2522 // load executables without any address adjustment.
2523 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2524   // The first section in a PT_LOAD has to have congruent offset and address
2525   // modulo the maximum page size.
2526   if (os->ptLoad && os->ptLoad->firstSec == os)
2527     return alignTo(off, os->ptLoad->p_align, os->addr);
2528 
2529   // File offsets are not significant for .bss sections other than the first one
2530   // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2531   // increasing rather than setting to zero.
2532   if (os->type == SHT_NOBITS &&
2533       (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os))
2534      return off;
2535 
2536   // If the section is not in a PT_LOAD, we just have to align it.
2537   if (!os->ptLoad)
2538     return alignTo(off, os->alignment);
2539 
2540   // If two sections share the same PT_LOAD the file offset is calculated
2541   // using this formula: Off2 = Off1 + (VA2 - VA1).
2542   OutputSection *first = os->ptLoad->firstSec;
2543   return first->offset + os->addr - first->addr;
2544 }
2545 
2546 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2547   // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2548   auto needsOffset = [](OutputSection &sec) {
2549     return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2550   };
2551   uint64_t minAddr = UINT64_MAX;
2552   for (OutputSection *sec : outputSections)
2553     if (needsOffset(*sec)) {
2554       sec->offset = sec->getLMA();
2555       minAddr = std::min(minAddr, sec->offset);
2556     }
2557 
2558   // Sections are laid out at LMA minus minAddr.
2559   fileSize = 0;
2560   for (OutputSection *sec : outputSections)
2561     if (needsOffset(*sec)) {
2562       sec->offset -= minAddr;
2563       fileSize = std::max(fileSize, sec->offset + sec->size);
2564     }
2565 }
2566 
2567 static std::string rangeToString(uint64_t addr, uint64_t len) {
2568   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2569 }
2570 
2571 // Assign file offsets to output sections.
2572 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2573   Out::programHeaders->offset = Out::elfHeader->size;
2574   uint64_t off = Out::elfHeader->size + Out::programHeaders->size;
2575 
2576   PhdrEntry *lastRX = nullptr;
2577   for (Partition &part : partitions)
2578     for (PhdrEntry *p : part.phdrs)
2579       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2580         lastRX = p;
2581 
2582   // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2583   // will not occupy file offsets contained by a PT_LOAD.
2584   for (OutputSection *sec : outputSections) {
2585     if (!(sec->flags & SHF_ALLOC))
2586       continue;
2587     off = computeFileOffset(sec, off);
2588     sec->offset = off;
2589     if (sec->type != SHT_NOBITS)
2590       off += sec->size;
2591 
2592     // If this is a last section of the last executable segment and that
2593     // segment is the last loadable segment, align the offset of the
2594     // following section to avoid loading non-segments parts of the file.
2595     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2596         lastRX->lastSec == sec)
2597       off = alignTo(off, config->maxPageSize);
2598   }
2599   for (OutputSection *osec : outputSections)
2600     if (!(osec->flags & SHF_ALLOC)) {
2601       osec->offset = alignTo(off, osec->alignment);
2602       off = osec->offset + osec->size;
2603     }
2604 
2605   sectionHeaderOff = alignTo(off, config->wordsize);
2606   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2607 
2608   // Our logic assumes that sections have rising VA within the same segment.
2609   // With use of linker scripts it is possible to violate this rule and get file
2610   // offset overlaps or overflows. That should never happen with a valid script
2611   // which does not move the location counter backwards and usually scripts do
2612   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2613   // kernel, which control segment distribution explicitly and move the counter
2614   // backwards, so we have to allow doing that to support linking them. We
2615   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2616   // we want to prevent file size overflows because it would crash the linker.
2617   for (OutputSection *sec : outputSections) {
2618     if (sec->type == SHT_NOBITS)
2619       continue;
2620     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2621       error("unable to place section " + sec->name + " at file offset " +
2622             rangeToString(sec->offset, sec->size) +
2623             "; check your linker script for overflows");
2624   }
2625 }
2626 
2627 // Finalize the program headers. We call this function after we assign
2628 // file offsets and VAs to all sections.
2629 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2630   for (PhdrEntry *p : part.phdrs) {
2631     OutputSection *first = p->firstSec;
2632     OutputSection *last = p->lastSec;
2633 
2634     if (first) {
2635       p->p_filesz = last->offset - first->offset;
2636       if (last->type != SHT_NOBITS)
2637         p->p_filesz += last->size;
2638 
2639       p->p_memsz = last->addr + last->size - first->addr;
2640       p->p_offset = first->offset;
2641       p->p_vaddr = first->addr;
2642 
2643       // File offsets in partitions other than the main partition are relative
2644       // to the offset of the ELF headers. Perform that adjustment now.
2645       if (part.elfHeader)
2646         p->p_offset -= part.elfHeader->getParent()->offset;
2647 
2648       if (!p->hasLMA)
2649         p->p_paddr = first->getLMA();
2650     }
2651 
2652     if (p->p_type == PT_GNU_RELRO) {
2653       p->p_align = 1;
2654       // musl/glibc ld.so rounds the size down, so we need to round up
2655       // to protect the last page. This is a no-op on FreeBSD which always
2656       // rounds up.
2657       p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2658                    p->p_offset;
2659     }
2660   }
2661 }
2662 
2663 // A helper struct for checkSectionOverlap.
2664 namespace {
2665 struct SectionOffset {
2666   OutputSection *sec;
2667   uint64_t offset;
2668 };
2669 } // namespace
2670 
2671 // Check whether sections overlap for a specific address range (file offsets,
2672 // load and virtual addresses).
2673 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2674                          bool isVirtualAddr) {
2675   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2676     return a.offset < b.offset;
2677   });
2678 
2679   // Finding overlap is easy given a vector is sorted by start position.
2680   // If an element starts before the end of the previous element, they overlap.
2681   for (size_t i = 1, end = sections.size(); i < end; ++i) {
2682     SectionOffset a = sections[i - 1];
2683     SectionOffset b = sections[i];
2684     if (b.offset >= a.offset + a.sec->size)
2685       continue;
2686 
2687     // If both sections are in OVERLAY we allow the overlapping of virtual
2688     // addresses, because it is what OVERLAY was designed for.
2689     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2690       continue;
2691 
2692     errorOrWarn("section " + a.sec->name + " " + name +
2693                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2694                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2695                 b.sec->name + " range is " +
2696                 rangeToString(b.offset, b.sec->size));
2697   }
2698 }
2699 
2700 // Check for overlapping sections and address overflows.
2701 //
2702 // In this function we check that none of the output sections have overlapping
2703 // file offsets. For SHF_ALLOC sections we also check that the load address
2704 // ranges and the virtual address ranges don't overlap
2705 template <class ELFT> void Writer<ELFT>::checkSections() {
2706   // First, check that section's VAs fit in available address space for target.
2707   for (OutputSection *os : outputSections)
2708     if ((os->addr + os->size < os->addr) ||
2709         (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2710       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2711                   " of size 0x" + utohexstr(os->size) +
2712                   " exceeds available address space");
2713 
2714   // Check for overlapping file offsets. In this case we need to skip any
2715   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2716   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2717   // binary is specified only add SHF_ALLOC sections are added to the output
2718   // file so we skip any non-allocated sections in that case.
2719   std::vector<SectionOffset> fileOffs;
2720   for (OutputSection *sec : outputSections)
2721     if (sec->size > 0 && sec->type != SHT_NOBITS &&
2722         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2723       fileOffs.push_back({sec, sec->offset});
2724   checkOverlap("file", fileOffs, false);
2725 
2726   // When linking with -r there is no need to check for overlapping virtual/load
2727   // addresses since those addresses will only be assigned when the final
2728   // executable/shared object is created.
2729   if (config->relocatable)
2730     return;
2731 
2732   // Checking for overlapping virtual and load addresses only needs to take
2733   // into account SHF_ALLOC sections since others will not be loaded.
2734   // Furthermore, we also need to skip SHF_TLS sections since these will be
2735   // mapped to other addresses at runtime and can therefore have overlapping
2736   // ranges in the file.
2737   std::vector<SectionOffset> vmas;
2738   for (OutputSection *sec : outputSections)
2739     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2740       vmas.push_back({sec, sec->addr});
2741   checkOverlap("virtual address", vmas, true);
2742 
2743   // Finally, check that the load addresses don't overlap. This will usually be
2744   // the same as the virtual addresses but can be different when using a linker
2745   // script with AT().
2746   std::vector<SectionOffset> lmas;
2747   for (OutputSection *sec : outputSections)
2748     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2749       lmas.push_back({sec, sec->getLMA()});
2750   checkOverlap("load address", lmas, false);
2751 }
2752 
2753 // The entry point address is chosen in the following ways.
2754 //
2755 // 1. the '-e' entry command-line option;
2756 // 2. the ENTRY(symbol) command in a linker control script;
2757 // 3. the value of the symbol _start, if present;
2758 // 4. the number represented by the entry symbol, if it is a number;
2759 // 5. the address 0.
2760 static uint64_t getEntryAddr() {
2761   // Case 1, 2 or 3
2762   if (Symbol *b = symtab->find(config->entry))
2763     return b->getVA();
2764 
2765   // Case 4
2766   uint64_t addr;
2767   if (to_integer(config->entry, addr))
2768     return addr;
2769 
2770   // Case 5
2771   if (config->warnMissingEntry)
2772     warn("cannot find entry symbol " + config->entry +
2773          "; not setting start address");
2774   return 0;
2775 }
2776 
2777 static uint16_t getELFType() {
2778   if (config->isPic)
2779     return ET_DYN;
2780   if (config->relocatable)
2781     return ET_REL;
2782   return ET_EXEC;
2783 }
2784 
2785 template <class ELFT> void Writer<ELFT>::writeHeader() {
2786   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2787   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2788 
2789   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2790   eHdr->e_type = getELFType();
2791   eHdr->e_entry = getEntryAddr();
2792   eHdr->e_shoff = sectionHeaderOff;
2793 
2794   // Write the section header table.
2795   //
2796   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2797   // and e_shstrndx fields. When the value of one of these fields exceeds
2798   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2799   // use fields in the section header at index 0 to store
2800   // the value. The sentinel values and fields are:
2801   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2802   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2803   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2804   size_t num = outputSections.size() + 1;
2805   if (num >= SHN_LORESERVE)
2806     sHdrs->sh_size = num;
2807   else
2808     eHdr->e_shnum = num;
2809 
2810   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2811   if (strTabIndex >= SHN_LORESERVE) {
2812     sHdrs->sh_link = strTabIndex;
2813     eHdr->e_shstrndx = SHN_XINDEX;
2814   } else {
2815     eHdr->e_shstrndx = strTabIndex;
2816   }
2817 
2818   for (OutputSection *sec : outputSections)
2819     sec->writeHeaderTo<ELFT>(++sHdrs);
2820 }
2821 
2822 // Open a result file.
2823 template <class ELFT> void Writer<ELFT>::openFile() {
2824   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2825   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2826     std::string msg;
2827     raw_string_ostream s(msg);
2828     s << "output file too large: " << Twine(fileSize) << " bytes\n"
2829       << "section sizes:\n";
2830     for (OutputSection *os : outputSections)
2831       s << os->name << ' ' << os->size << "\n";
2832     error(s.str());
2833     return;
2834   }
2835 
2836   unlinkAsync(config->outputFile);
2837   unsigned flags = 0;
2838   if (!config->relocatable)
2839     flags |= FileOutputBuffer::F_executable;
2840   if (!config->mmapOutputFile)
2841     flags |= FileOutputBuffer::F_no_mmap;
2842   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2843       FileOutputBuffer::create(config->outputFile, fileSize, flags);
2844 
2845   if (!bufferOrErr) {
2846     error("failed to open " + config->outputFile + ": " +
2847           llvm::toString(bufferOrErr.takeError()));
2848     return;
2849   }
2850   buffer = std::move(*bufferOrErr);
2851   Out::bufferStart = buffer->getBufferStart();
2852 }
2853 
2854 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2855   for (OutputSection *sec : outputSections)
2856     if (sec->flags & SHF_ALLOC)
2857       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2858 }
2859 
2860 static void fillTrap(uint8_t *i, uint8_t *end) {
2861   for (; i + 4 <= end; i += 4)
2862     memcpy(i, &target->trapInstr, 4);
2863 }
2864 
2865 // Fill the last page of executable segments with trap instructions
2866 // instead of leaving them as zero. Even though it is not required by any
2867 // standard, it is in general a good thing to do for security reasons.
2868 //
2869 // We'll leave other pages in segments as-is because the rest will be
2870 // overwritten by output sections.
2871 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2872   for (Partition &part : partitions) {
2873     // Fill the last page.
2874     for (PhdrEntry *p : part.phdrs)
2875       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2876         fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2877                                               config->maxPageSize),
2878                  Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2879                                             config->maxPageSize));
2880 
2881     // Round up the file size of the last segment to the page boundary iff it is
2882     // an executable segment to ensure that other tools don't accidentally
2883     // trim the instruction padding (e.g. when stripping the file).
2884     PhdrEntry *last = nullptr;
2885     for (PhdrEntry *p : part.phdrs)
2886       if (p->p_type == PT_LOAD)
2887         last = p;
2888 
2889     if (last && (last->p_flags & PF_X))
2890       last->p_memsz = last->p_filesz =
2891           alignTo(last->p_filesz, config->maxPageSize);
2892   }
2893 }
2894 
2895 // Write section contents to a mmap'ed file.
2896 template <class ELFT> void Writer<ELFT>::writeSections() {
2897   // In -r or --emit-relocs mode, write the relocation sections first as in
2898   // ELf_Rel targets we might find out that we need to modify the relocated
2899   // section while doing it.
2900   for (OutputSection *sec : outputSections)
2901     if (sec->type == SHT_REL || sec->type == SHT_RELA)
2902       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2903 
2904   for (OutputSection *sec : outputSections)
2905     if (sec->type != SHT_REL && sec->type != SHT_RELA)
2906       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2907 
2908   // Finally, check that all dynamic relocation addends were written correctly.
2909   if (config->checkDynamicRelocs && config->writeAddends) {
2910     for (OutputSection *sec : outputSections)
2911       if (sec->type == SHT_REL || sec->type == SHT_RELA)
2912         sec->checkDynRelAddends(Out::bufferStart);
2913   }
2914 }
2915 
2916 // Computes a hash value of Data using a given hash function.
2917 // In order to utilize multiple cores, we first split data into 1MB
2918 // chunks, compute a hash for each chunk, and then compute a hash value
2919 // of the hash values.
2920 static void
2921 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2922             llvm::ArrayRef<uint8_t> data,
2923             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2924   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2925   std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
2926 
2927   // Compute hash values.
2928   parallelForEachN(0, chunks.size(), [&](size_t i) {
2929     hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
2930   });
2931 
2932   // Write to the final output buffer.
2933   hashFn(hashBuf.data(), hashes);
2934 }
2935 
2936 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2937   if (!mainPart->buildId || !mainPart->buildId->getParent())
2938     return;
2939 
2940   if (config->buildId == BuildIdKind::Hexstring) {
2941     for (Partition &part : partitions)
2942       part.buildId->writeBuildId(config->buildIdVector);
2943     return;
2944   }
2945 
2946   // Compute a hash of all sections of the output file.
2947   size_t hashSize = mainPart->buildId->hashSize;
2948   std::vector<uint8_t> buildId(hashSize);
2949   llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
2950 
2951   switch (config->buildId) {
2952   case BuildIdKind::Fast:
2953     computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2954       write64le(dest, xxHash64(arr));
2955     });
2956     break;
2957   case BuildIdKind::Md5:
2958     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2959       memcpy(dest, MD5::hash(arr).data(), hashSize);
2960     });
2961     break;
2962   case BuildIdKind::Sha1:
2963     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2964       memcpy(dest, SHA1::hash(arr).data(), hashSize);
2965     });
2966     break;
2967   case BuildIdKind::Uuid:
2968     if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
2969       error("entropy source failure: " + ec.message());
2970     break;
2971   default:
2972     llvm_unreachable("unknown BuildIdKind");
2973   }
2974   for (Partition &part : partitions)
2975     part.buildId->writeBuildId(buildId);
2976 }
2977 
2978 template void elf::createSyntheticSections<ELF32LE>();
2979 template void elf::createSyntheticSections<ELF32BE>();
2980 template void elf::createSyntheticSections<ELF64LE>();
2981 template void elf::createSyntheticSections<ELF64BE>();
2982 
2983 template void elf::writeResult<ELF32LE>();
2984 template void elf::writeResult<ELF32BE>();
2985 template void elf::writeResult<ELF64LE>();
2986 template void elf::writeResult<ELF64BE>();
2987