1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "CallGraphSort.h" 12 #include "Config.h" 13 #include "LinkerScript.h" 14 #include "MapFile.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "lld/Common/Filesystem.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/RandomNumberGenerator.h" 28 #include "llvm/Support/SHA1.h" 29 #include "llvm/Support/xxhash.h" 30 #include <climits> 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::support; 36 using namespace llvm::support::endian; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 namespace { 42 // The writer writes a SymbolTable result to a file. 43 template <class ELFT> class Writer { 44 public: 45 Writer() : Buffer(errorHandler().OutputBuffer) {} 46 using Elf_Shdr = typename ELFT::Shdr; 47 using Elf_Ehdr = typename ELFT::Ehdr; 48 using Elf_Phdr = typename ELFT::Phdr; 49 50 void run(); 51 52 private: 53 void copyLocalSymbols(); 54 void addSectionSymbols(); 55 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn); 56 void sortSections(); 57 void resolveShfLinkOrder(); 58 void finalizeAddressDependentContent(); 59 void sortInputSections(); 60 void finalizeSections(); 61 void checkExecuteOnly(); 62 void setReservedSymbolSections(); 63 64 std::vector<PhdrEntry *> createPhdrs(Partition &Part); 65 void removeEmptyPTLoad(std::vector<PhdrEntry *> &PhdrEntry); 66 void addPhdrForSection(Partition &Part, unsigned ShType, unsigned PType, 67 unsigned PFlags); 68 void assignFileOffsets(); 69 void assignFileOffsetsBinary(); 70 void setPhdrs(Partition &Part); 71 void checkSections(); 72 void fixSectionAlignments(); 73 void openFile(); 74 void writeTrapInstr(); 75 void writeHeader(); 76 void writeSections(); 77 void writeSectionsBinary(); 78 void writeBuildId(); 79 80 std::unique_ptr<FileOutputBuffer> &Buffer; 81 82 void addRelIpltSymbols(); 83 void addStartEndSymbols(); 84 void addStartStopSymbols(OutputSection *Sec); 85 86 uint64_t FileSize; 87 uint64_t SectionHeaderOff; 88 }; 89 } // anonymous namespace 90 91 static bool isSectionPrefix(StringRef Prefix, StringRef Name) { 92 return Name.startswith(Prefix) || Name == Prefix.drop_back(); 93 } 94 95 StringRef elf::getOutputSectionName(const InputSectionBase *S) { 96 if (Config->Relocatable) 97 return S->Name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if (auto *IS = dyn_cast<InputSection>(S)) { 103 if (InputSectionBase *Rel = IS->getRelocatedSection()) { 104 OutputSection *Out = Rel->getOutputSection(); 105 if (S->Type == SHT_RELA) 106 return Saver.save(".rela" + Out->Name); 107 return Saver.save(".rel" + Out->Name); 108 } 109 } 110 111 // This check is for -z keep-text-section-prefix. This option separates text 112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 113 // ".text.exit". 114 // When enabled, this allows identifying the hot code region (.text.hot) in 115 // the final binary which can be selectively mapped to huge pages or mlocked, 116 // for instance. 117 if (Config->ZKeepTextSectionPrefix) 118 for (StringRef V : 119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 120 if (isSectionPrefix(V, S->Name)) 121 return V.drop_back(); 122 123 for (StringRef V : 124 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 125 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 126 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 127 if (isSectionPrefix(V, S->Name)) 128 return V.drop_back(); 129 130 // CommonSection is identified as "COMMON" in linker scripts. 131 // By default, it should go to .bss section. 132 if (S->Name == "COMMON") 133 return ".bss"; 134 135 return S->Name; 136 } 137 138 static bool needsInterpSection() { 139 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 140 Script->needsInterpSection(); 141 } 142 143 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 144 145 template <class ELFT> 146 void Writer<ELFT>::removeEmptyPTLoad(std::vector<PhdrEntry *> &Phdrs) { 147 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 148 if (P->p_type != PT_LOAD) 149 return false; 150 if (!P->FirstSec) 151 return true; 152 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 153 return Size == 0; 154 }); 155 } 156 157 template <class ELFT> static void copySectionsIntoPartitions() { 158 std::vector<InputSectionBase *> NewSections; 159 for (unsigned Part = 2; Part != Partitions.size() + 1; ++Part) { 160 for (InputSectionBase *S : InputSections) { 161 if (!(S->Flags & SHF_ALLOC) || !S->isLive()) 162 continue; 163 InputSectionBase *Copy; 164 if (S->Type == SHT_NOTE) 165 Copy = make<InputSection>(cast<InputSection>(*S)); 166 else if (auto *ES = dyn_cast<EhInputSection>(S)) 167 Copy = make<EhInputSection>(*ES); 168 else 169 continue; 170 Copy->Partition = Part; 171 NewSections.push_back(Copy); 172 } 173 } 174 175 InputSections.insert(InputSections.end(), NewSections.begin(), 176 NewSections.end()); 177 } 178 179 template <class ELFT> static void combineEhSections() { 180 for (InputSectionBase *&S : InputSections) { 181 // Ignore dead sections and the partition end marker (.part.end), 182 // whose partition number is out of bounds. 183 if (!S->isLive() || S->Partition == 255) 184 continue; 185 186 Partition &Part = S->getPartition(); 187 if (auto *ES = dyn_cast<EhInputSection>(S)) { 188 Part.EhFrame->addSection<ELFT>(ES); 189 S = nullptr; 190 } else if (S->kind() == SectionBase::Regular && Part.ARMExidx && 191 Part.ARMExidx->addSection(cast<InputSection>(S))) { 192 S = nullptr; 193 } 194 } 195 196 std::vector<InputSectionBase *> &V = InputSections; 197 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 198 } 199 200 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 201 uint64_t Val, uint8_t StOther = STV_HIDDEN, 202 uint8_t Binding = STB_GLOBAL) { 203 Symbol *S = Symtab->find(Name); 204 if (!S || S->isDefined()) 205 return nullptr; 206 207 S->resolve(Defined{/*File=*/nullptr, Name, Binding, StOther, STT_NOTYPE, Val, 208 /*Size=*/0, Sec}); 209 return cast<Defined>(S); 210 } 211 212 static Defined *addAbsolute(StringRef Name) { 213 Symbol *Sym = Symtab->addSymbol(Defined{nullptr, Name, STB_GLOBAL, STV_HIDDEN, 214 STT_NOTYPE, 0, 0, nullptr}); 215 return cast<Defined>(Sym); 216 } 217 218 // The linker is expected to define some symbols depending on 219 // the linking result. This function defines such symbols. 220 void elf::addReservedSymbols() { 221 if (Config->EMachine == EM_MIPS) { 222 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 223 // so that it points to an absolute address which by default is relative 224 // to GOT. Default offset is 0x7ff0. 225 // See "Global Data Symbols" in Chapter 6 in the following document: 226 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 227 ElfSym::MipsGp = addAbsolute("_gp"); 228 229 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 230 // start of function and 'gp' pointer into GOT. 231 if (Symtab->find("_gp_disp")) 232 ElfSym::MipsGpDisp = addAbsolute("_gp_disp"); 233 234 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 235 // pointer. This symbol is used in the code generated by .cpload pseudo-op 236 // in case of using -mno-shared option. 237 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 238 if (Symtab->find("__gnu_local_gp")) 239 ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp"); 240 } else if (Config->EMachine == EM_PPC) { 241 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 242 // support Small Data Area, define it arbitrarily as 0. 243 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 244 } 245 246 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 247 // combines the typical ELF GOT with the small data sections. It commonly 248 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 249 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 250 // represent the TOC base which is offset by 0x8000 bytes from the start of 251 // the .got section. 252 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 253 // correctness of some relocations depends on its value. 254 StringRef GotSymName = 255 (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 256 257 if (Symbol *S = Symtab->find(GotSymName)) { 258 if (S->isDefined()) { 259 error(toString(S->File) + " cannot redefine linker defined symbol '" + 260 GotSymName + "'"); 261 return; 262 } 263 264 uint64_t GotOff = 0; 265 if (Config->EMachine == EM_PPC64) 266 GotOff = 0x8000; 267 268 S->resolve(Defined{/*File=*/nullptr, GotSymName, STB_GLOBAL, STV_HIDDEN, 269 STT_NOTYPE, GotOff, /*Size=*/0, Out::ElfHeader}); 270 ElfSym::GlobalOffsetTable = cast<Defined>(S); 271 } 272 273 // __ehdr_start is the location of ELF file headers. Note that we define 274 // this symbol unconditionally even when using a linker script, which 275 // differs from the behavior implemented by GNU linker which only define 276 // this symbol if ELF headers are in the memory mapped segment. 277 addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); 278 279 // __executable_start is not documented, but the expectation of at 280 // least the Android libc is that it points to the ELF header. 281 addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); 282 283 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 284 // each DSO. The address of the symbol doesn't matter as long as they are 285 // different in different DSOs, so we chose the start address of the DSO. 286 addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); 287 288 // If linker script do layout we do not need to create any standart symbols. 289 if (Script->HasSectionsCommand) 290 return; 291 292 auto Add = [](StringRef S, int64_t Pos) { 293 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 294 }; 295 296 ElfSym::Bss = Add("__bss_start", 0); 297 ElfSym::End1 = Add("end", -1); 298 ElfSym::End2 = Add("_end", -1); 299 ElfSym::Etext1 = Add("etext", -1); 300 ElfSym::Etext2 = Add("_etext", -1); 301 ElfSym::Edata1 = Add("edata", -1); 302 ElfSym::Edata2 = Add("_edata", -1); 303 } 304 305 static OutputSection *findSection(StringRef Name, unsigned Partition = 1) { 306 for (BaseCommand *Base : Script->SectionCommands) 307 if (auto *Sec = dyn_cast<OutputSection>(Base)) 308 if (Sec->Name == Name && Sec->Partition == Partition) 309 return Sec; 310 return nullptr; 311 } 312 313 // Initialize Out members. 314 template <class ELFT> static void createSyntheticSections() { 315 // Initialize all pointers with NULL. This is needed because 316 // you can call lld::elf::main more than once as a library. 317 memset(&Out::First, 0, sizeof(Out)); 318 319 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 320 321 In.ShStrTab = make<StringTableSection>(".shstrtab", false); 322 323 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 324 Out::ProgramHeaders->Alignment = Config->Wordsize; 325 326 if (Config->Strip != StripPolicy::All) { 327 In.StrTab = make<StringTableSection>(".strtab", false); 328 In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab); 329 In.SymTabShndx = make<SymtabShndxSection>(); 330 } 331 332 In.Bss = make<BssSection>(".bss", 0, 1); 333 Add(In.Bss); 334 335 // If there is a SECTIONS command and a .data.rel.ro section name use name 336 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 337 // This makes sure our relro is contiguous. 338 bool HasDataRelRo = 339 Script->HasSectionsCommand && findSection(".data.rel.ro", 0); 340 In.BssRelRo = 341 make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 342 Add(In.BssRelRo); 343 344 // Add MIPS-specific sections. 345 if (Config->EMachine == EM_MIPS) { 346 if (!Config->Shared && Config->HasDynSymTab) { 347 In.MipsRldMap = make<MipsRldMapSection>(); 348 Add(In.MipsRldMap); 349 } 350 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 351 Add(Sec); 352 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 353 Add(Sec); 354 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 355 Add(Sec); 356 } 357 358 for (Partition &Part : Partitions) { 359 auto Add = [&](InputSectionBase *Sec) { 360 Sec->Partition = Part.getNumber(); 361 InputSections.push_back(Sec); 362 }; 363 364 if (!Part.Name.empty()) { 365 Part.ElfHeader = make<PartitionElfHeaderSection<ELFT>>(); 366 Part.ElfHeader->Name = Part.Name; 367 Add(Part.ElfHeader); 368 369 Part.ProgramHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 370 Add(Part.ProgramHeaders); 371 } 372 373 if (Config->BuildId != BuildIdKind::None) { 374 Part.BuildId = make<BuildIdSection>(); 375 Add(Part.BuildId); 376 } 377 378 Part.DynStrTab = make<StringTableSection>(".dynstr", true); 379 Part.DynSymTab = make<SymbolTableSection<ELFT>>(*Part.DynStrTab); 380 Part.Dynamic = make<DynamicSection<ELFT>>(); 381 if (Config->AndroidPackDynRelocs) { 382 Part.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 383 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 384 } else { 385 Part.RelaDyn = make<RelocationSection<ELFT>>( 386 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 387 } 388 389 if (needsInterpSection()) 390 Add(createInterpSection()); 391 392 if (Config->HasDynSymTab) { 393 Part.DynSymTab = make<SymbolTableSection<ELFT>>(*Part.DynStrTab); 394 Add(Part.DynSymTab); 395 396 Part.VerSym = make<VersionTableSection>(); 397 Add(Part.VerSym); 398 399 if (!Config->VersionDefinitions.empty()) { 400 Part.VerDef = make<VersionDefinitionSection>(); 401 Add(Part.VerDef); 402 } 403 404 Part.VerNeed = make<VersionNeedSection<ELFT>>(); 405 Add(Part.VerNeed); 406 407 if (Config->GnuHash) { 408 Part.GnuHashTab = make<GnuHashTableSection>(); 409 Add(Part.GnuHashTab); 410 } 411 412 if (Config->SysvHash) { 413 Part.HashTab = make<HashTableSection>(); 414 Add(Part.HashTab); 415 } 416 417 Add(Part.Dynamic); 418 Add(Part.DynStrTab); 419 Add(Part.RelaDyn); 420 } 421 422 if (Config->RelrPackDynRelocs) { 423 Part.RelrDyn = make<RelrSection<ELFT>>(); 424 Add(Part.RelrDyn); 425 } 426 427 if (!Config->Relocatable) { 428 if (Config->EhFrameHdr) { 429 Part.EhFrameHdr = make<EhFrameHeader>(); 430 Add(Part.EhFrameHdr); 431 } 432 Part.EhFrame = make<EhFrameSection>(); 433 Add(Part.EhFrame); 434 } 435 436 if (Config->EMachine == EM_ARM && !Config->Relocatable) { 437 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 438 // InputSections. 439 Part.ARMExidx = make<ARMExidxSyntheticSection>(); 440 Add(Part.ARMExidx); 441 } 442 } 443 444 if (Partitions.size() != 1) { 445 // Create the partition end marker. This needs to be in partition number 255 446 // so that it is sorted after all other partitions. It also has other 447 // special handling (see createPhdrs() and combineEhSections()). 448 In.PartEnd = make<BssSection>(".part.end", Config->MaxPageSize, 1); 449 In.PartEnd->Partition = 255; 450 Add(In.PartEnd); 451 452 In.PartIndex = make<PartitionIndexSection>(); 453 addOptionalRegular("__part_index_begin", In.PartIndex, 0); 454 addOptionalRegular("__part_index_end", In.PartIndex, 455 In.PartIndex->getSize()); 456 Add(In.PartIndex); 457 } 458 459 // Add .got. MIPS' .got is so different from the other archs, 460 // it has its own class. 461 if (Config->EMachine == EM_MIPS) { 462 In.MipsGot = make<MipsGotSection>(); 463 Add(In.MipsGot); 464 } else { 465 In.Got = make<GotSection>(); 466 Add(In.Got); 467 } 468 469 if (Config->EMachine == EM_PPC) { 470 In.PPC32Got2 = make<PPC32Got2Section>(); 471 Add(In.PPC32Got2); 472 } 473 474 if (Config->EMachine == EM_PPC64) { 475 In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 476 Add(In.PPC64LongBranchTarget); 477 } 478 479 if (Config->EMachine == EM_RISCV) { 480 In.RISCVSdata = make<RISCVSdataSection>(); 481 Add(In.RISCVSdata); 482 } 483 484 In.GotPlt = make<GotPltSection>(); 485 Add(In.GotPlt); 486 In.IgotPlt = make<IgotPltSection>(); 487 Add(In.IgotPlt); 488 489 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 490 // it as a relocation and ensure the referenced section is created. 491 if (ElfSym::GlobalOffsetTable && Config->EMachine != EM_MIPS) { 492 if (Target->GotBaseSymInGotPlt) 493 In.GotPlt->HasGotPltOffRel = true; 494 else 495 In.Got->HasGotOffRel = true; 496 } 497 498 if (Config->GdbIndex) 499 Add(GdbIndexSection::create<ELFT>()); 500 501 // We always need to add rel[a].plt to output if it has entries. 502 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 503 In.RelaPlt = make<RelocationSection<ELFT>>( 504 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 505 Add(In.RelaPlt); 506 507 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 508 // that the IRelative relocations are processed last by the dynamic loader. 509 // We cannot place the iplt section in .rel.dyn when Android relocation 510 // packing is enabled because that would cause a section type mismatch. 511 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 512 // we can get the desired behaviour by placing the iplt section in .rel.plt. 513 In.RelaIplt = make<RelocationSection<ELFT>>( 514 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 515 ? ".rel.dyn" 516 : In.RelaPlt->Name, 517 false /*Sort*/); 518 Add(In.RelaIplt); 519 520 In.Plt = make<PltSection>(false); 521 Add(In.Plt); 522 In.Iplt = make<PltSection>(true); 523 Add(In.Iplt); 524 525 if (Config->AndFeatures) 526 Add(make<GnuPropertySection>()); 527 528 // .note.GNU-stack is always added when we are creating a re-linkable 529 // object file. Other linkers are using the presence of this marker 530 // section to control the executable-ness of the stack area, but that 531 // is irrelevant these days. Stack area should always be non-executable 532 // by default. So we emit this section unconditionally. 533 if (Config->Relocatable) 534 Add(make<GnuStackSection>()); 535 536 if (In.SymTab) 537 Add(In.SymTab); 538 if (In.SymTabShndx) 539 Add(In.SymTabShndx); 540 Add(In.ShStrTab); 541 if (In.StrTab) 542 Add(In.StrTab); 543 } 544 545 // The main function of the writer. 546 template <class ELFT> void Writer<ELFT>::run() { 547 // Make copies of any input sections that need to be copied into each 548 // partition. 549 copySectionsIntoPartitions<ELFT>(); 550 551 // Create linker-synthesized sections such as .got or .plt. 552 // Such sections are of type input section. 553 createSyntheticSections<ELFT>(); 554 555 // Some input sections that are used for exception handling need to be moved 556 // into synthetic sections. Do that now so that they aren't assigned to 557 // output sections in the usual way. 558 if (!Config->Relocatable) 559 combineEhSections<ELFT>(); 560 561 // We want to process linker script commands. When SECTIONS command 562 // is given we let it create sections. 563 Script->processSectionCommands(); 564 565 // Linker scripts controls how input sections are assigned to output sections. 566 // Input sections that were not handled by scripts are called "orphans", and 567 // they are assigned to output sections by the default rule. Process that. 568 Script->addOrphanSections(); 569 570 if (Config->Discard != DiscardPolicy::All) 571 copyLocalSymbols(); 572 573 if (Config->CopyRelocs) 574 addSectionSymbols(); 575 576 // Now that we have a complete set of output sections. This function 577 // completes section contents. For example, we need to add strings 578 // to the string table, and add entries to .got and .plt. 579 // finalizeSections does that. 580 finalizeSections(); 581 checkExecuteOnly(); 582 if (errorCount()) 583 return; 584 585 Script->assignAddresses(); 586 587 // If -compressed-debug-sections is specified, we need to compress 588 // .debug_* sections. Do it right now because it changes the size of 589 // output sections. 590 for (OutputSection *Sec : OutputSections) 591 Sec->maybeCompress<ELFT>(); 592 593 Script->allocateHeaders(Main->Phdrs); 594 595 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 596 // 0 sized region. This has to be done late since only after assignAddresses 597 // we know the size of the sections. 598 for (Partition &Part : Partitions) 599 removeEmptyPTLoad(Part.Phdrs); 600 601 if (!Config->OFormatBinary) 602 assignFileOffsets(); 603 else 604 assignFileOffsetsBinary(); 605 606 for (Partition &Part : Partitions) 607 setPhdrs(Part); 608 609 if (Config->Relocatable) 610 for (OutputSection *Sec : OutputSections) 611 Sec->Addr = 0; 612 613 if (Config->CheckSections) 614 checkSections(); 615 616 // It does not make sense try to open the file if we have error already. 617 if (errorCount()) 618 return; 619 // Write the result down to a file. 620 openFile(); 621 if (errorCount()) 622 return; 623 624 if (!Config->OFormatBinary) { 625 writeTrapInstr(); 626 writeHeader(); 627 writeSections(); 628 } else { 629 writeSectionsBinary(); 630 } 631 632 // Backfill .note.gnu.build-id section content. This is done at last 633 // because the content is usually a hash value of the entire output file. 634 writeBuildId(); 635 if (errorCount()) 636 return; 637 638 // Handle -Map and -cref options. 639 writeMapFile(); 640 writeCrossReferenceTable(); 641 if (errorCount()) 642 return; 643 644 if (auto E = Buffer->commit()) 645 error("failed to write to the output file: " + toString(std::move(E))); 646 } 647 648 static bool shouldKeepInSymtab(const Defined &Sym) { 649 if (Sym.isSection()) 650 return false; 651 652 if (Config->Discard == DiscardPolicy::None) 653 return true; 654 655 // If -emit-reloc is given, all symbols including local ones need to be 656 // copied because they may be referenced by relocations. 657 if (Config->EmitRelocs) 658 return true; 659 660 // In ELF assembly .L symbols are normally discarded by the assembler. 661 // If the assembler fails to do so, the linker discards them if 662 // * --discard-locals is used. 663 // * The symbol is in a SHF_MERGE section, which is normally the reason for 664 // the assembler keeping the .L symbol. 665 StringRef Name = Sym.getName(); 666 bool IsLocal = Name.startswith(".L") || Name.empty(); 667 if (!IsLocal) 668 return true; 669 670 if (Config->Discard == DiscardPolicy::Locals) 671 return false; 672 673 SectionBase *Sec = Sym.Section; 674 return !Sec || !(Sec->Flags & SHF_MERGE); 675 } 676 677 static bool includeInSymtab(const Symbol &B) { 678 if (!B.isLocal() && !B.IsUsedInRegularObj) 679 return false; 680 681 if (auto *D = dyn_cast<Defined>(&B)) { 682 // Always include absolute symbols. 683 SectionBase *Sec = D->Section; 684 if (!Sec) 685 return true; 686 Sec = Sec->Repl; 687 688 // Exclude symbols pointing to garbage-collected sections. 689 if (isa<InputSectionBase>(Sec) && !Sec->isLive()) 690 return false; 691 692 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 693 if (!S->getSectionPiece(D->Value)->Live) 694 return false; 695 return true; 696 } 697 return B.Used; 698 } 699 700 // Local symbols are not in the linker's symbol table. This function scans 701 // each object file's symbol table to copy local symbols to the output. 702 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 703 if (!In.SymTab) 704 return; 705 for (InputFile *File : ObjectFiles) { 706 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 707 for (Symbol *B : F->getLocalSymbols()) { 708 if (!B->isLocal()) 709 fatal(toString(F) + 710 ": broken object: getLocalSymbols returns a non-local symbol"); 711 auto *DR = dyn_cast<Defined>(B); 712 713 // No reason to keep local undefined symbol in symtab. 714 if (!DR) 715 continue; 716 if (!includeInSymtab(*B)) 717 continue; 718 if (!shouldKeepInSymtab(*DR)) 719 continue; 720 In.SymTab->addSymbol(B); 721 } 722 } 723 } 724 725 // Create a section symbol for each output section so that we can represent 726 // relocations that point to the section. If we know that no relocation is 727 // referring to a section (that happens if the section is a synthetic one), we 728 // don't create a section symbol for that section. 729 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 730 for (BaseCommand *Base : Script->SectionCommands) { 731 auto *Sec = dyn_cast<OutputSection>(Base); 732 if (!Sec) 733 continue; 734 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 735 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 736 return !ISD->Sections.empty(); 737 return false; 738 }); 739 if (I == Sec->SectionCommands.end()) 740 continue; 741 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 742 743 // Relocations are not using REL[A] section symbols. 744 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 745 continue; 746 747 // Unlike other synthetic sections, mergeable output sections contain data 748 // copied from input sections, and there may be a relocation pointing to its 749 // contents if -r or -emit-reloc are given. 750 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 751 continue; 752 753 auto *Sym = 754 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 755 /*Value=*/0, /*Size=*/0, IS); 756 In.SymTab->addSymbol(Sym); 757 } 758 } 759 760 // Today's loaders have a feature to make segments read-only after 761 // processing dynamic relocations to enhance security. PT_GNU_RELRO 762 // is defined for that. 763 // 764 // This function returns true if a section needs to be put into a 765 // PT_GNU_RELRO segment. 766 static bool isRelroSection(const OutputSection *Sec) { 767 if (!Config->ZRelro) 768 return false; 769 770 uint64_t Flags = Sec->Flags; 771 772 // Non-allocatable or non-writable sections don't need RELRO because 773 // they are not writable or not even mapped to memory in the first place. 774 // RELRO is for sections that are essentially read-only but need to 775 // be writable only at process startup to allow dynamic linker to 776 // apply relocations. 777 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 778 return false; 779 780 // Once initialized, TLS data segments are used as data templates 781 // for a thread-local storage. For each new thread, runtime 782 // allocates memory for a TLS and copy templates there. No thread 783 // are supposed to use templates directly. Thus, it can be in RELRO. 784 if (Flags & SHF_TLS) 785 return true; 786 787 // .init_array, .preinit_array and .fini_array contain pointers to 788 // functions that are executed on process startup or exit. These 789 // pointers are set by the static linker, and they are not expected 790 // to change at runtime. But if you are an attacker, you could do 791 // interesting things by manipulating pointers in .fini_array, for 792 // example. So they are put into RELRO. 793 uint32_t Type = Sec->Type; 794 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 795 Type == SHT_PREINIT_ARRAY) 796 return true; 797 798 // .got contains pointers to external symbols. They are resolved by 799 // the dynamic linker when a module is loaded into memory, and after 800 // that they are not expected to change. So, it can be in RELRO. 801 if (In.Got && Sec == In.Got->getParent()) 802 return true; 803 804 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 805 // through r2 register, which is reserved for that purpose. Since r2 is used 806 // for accessing .got as well, .got and .toc need to be close enough in the 807 // virtual address space. Usually, .toc comes just after .got. Since we place 808 // .got into RELRO, .toc needs to be placed into RELRO too. 809 if (Sec->Name.equals(".toc")) 810 return true; 811 812 // .got.plt contains pointers to external function symbols. They are 813 // by default resolved lazily, so we usually cannot put it into RELRO. 814 // However, if "-z now" is given, the lazy symbol resolution is 815 // disabled, which enables us to put it into RELRO. 816 if (Sec == In.GotPlt->getParent()) 817 return Config->ZNow; 818 819 // .dynamic section contains data for the dynamic linker, and 820 // there's no need to write to it at runtime, so it's better to put 821 // it into RELRO. 822 if (Sec->Name == ".dynamic") 823 return true; 824 825 // Sections with some special names are put into RELRO. This is a 826 // bit unfortunate because section names shouldn't be significant in 827 // ELF in spirit. But in reality many linker features depend on 828 // magic section names. 829 StringRef S = Sec->Name; 830 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 831 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 832 S == ".openbsd.randomdata"; 833 } 834 835 // We compute a rank for each section. The rank indicates where the 836 // section should be placed in the file. Instead of using simple 837 // numbers (0,1,2...), we use a series of flags. One for each decision 838 // point when placing the section. 839 // Using flags has two key properties: 840 // * It is easy to check if a give branch was taken. 841 // * It is easy two see how similar two ranks are (see getRankProximity). 842 enum RankFlags { 843 RF_NOT_ADDR_SET = 1 << 27, 844 RF_NOT_ALLOC = 1 << 26, 845 RF_PARTITION = 1 << 18, // Partition number (8 bits) 846 RF_NOT_PART_EHDR = 1 << 17, 847 RF_NOT_PART_PHDR = 1 << 16, 848 RF_NOT_INTERP = 1 << 15, 849 RF_NOT_NOTE = 1 << 14, 850 RF_WRITE = 1 << 13, 851 RF_EXEC_WRITE = 1 << 12, 852 RF_EXEC = 1 << 11, 853 RF_RODATA = 1 << 10, 854 RF_NOT_RELRO = 1 << 9, 855 RF_NOT_TLS = 1 << 8, 856 RF_BSS = 1 << 7, 857 RF_PPC_NOT_TOCBSS = 1 << 6, 858 RF_PPC_TOCL = 1 << 5, 859 RF_PPC_TOC = 1 << 4, 860 RF_PPC_GOT = 1 << 3, 861 RF_PPC_BRANCH_LT = 1 << 2, 862 RF_MIPS_GPREL = 1 << 1, 863 RF_MIPS_NOT_GOT = 1 << 0 864 }; 865 866 static unsigned getSectionRank(const OutputSection *Sec) { 867 unsigned Rank = Sec->Partition * RF_PARTITION; 868 869 // We want to put section specified by -T option first, so we 870 // can start assigning VA starting from them later. 871 if (Config->SectionStartMap.count(Sec->Name)) 872 return Rank; 873 Rank |= RF_NOT_ADDR_SET; 874 875 // Allocatable sections go first to reduce the total PT_LOAD size and 876 // so debug info doesn't change addresses in actual code. 877 if (!(Sec->Flags & SHF_ALLOC)) 878 return Rank | RF_NOT_ALLOC; 879 880 if (Sec->Type == SHT_LLVM_PART_EHDR) 881 return Rank; 882 Rank |= RF_NOT_PART_EHDR; 883 884 if (Sec->Type == SHT_LLVM_PART_PHDR) 885 return Rank; 886 Rank |= RF_NOT_PART_PHDR; 887 888 // Put .interp first because some loaders want to see that section 889 // on the first page of the executable file when loaded into memory. 890 if (Sec->Name == ".interp") 891 return Rank; 892 Rank |= RF_NOT_INTERP; 893 894 // Put .note sections (which make up one PT_NOTE) at the beginning so that 895 // they are likely to be included in a core file even if core file size is 896 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 897 // included in a core to match core files with executables. 898 if (Sec->Type == SHT_NOTE) 899 return Rank; 900 Rank |= RF_NOT_NOTE; 901 902 // Sort sections based on their access permission in the following 903 // order: R, RX, RWX, RW. This order is based on the following 904 // considerations: 905 // * Read-only sections come first such that they go in the 906 // PT_LOAD covering the program headers at the start of the file. 907 // * Read-only, executable sections come next. 908 // * Writable, executable sections follow such that .plt on 909 // architectures where it needs to be writable will be placed 910 // between .text and .data. 911 // * Writable sections come last, such that .bss lands at the very 912 // end of the last PT_LOAD. 913 bool IsExec = Sec->Flags & SHF_EXECINSTR; 914 bool IsWrite = Sec->Flags & SHF_WRITE; 915 916 if (IsExec) { 917 if (IsWrite) 918 Rank |= RF_EXEC_WRITE; 919 else 920 Rank |= RF_EXEC; 921 } else if (IsWrite) { 922 Rank |= RF_WRITE; 923 } else if (Sec->Type == SHT_PROGBITS) { 924 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 925 // .eh_frame) closer to .text. They likely contain PC or GOT relative 926 // relocations and there could be relocation overflow if other huge sections 927 // (.dynstr .dynsym) were placed in between. 928 Rank |= RF_RODATA; 929 } 930 931 // Place RelRo sections first. After considering SHT_NOBITS below, the 932 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 933 // where | marks where page alignment happens. An alternative ordering is 934 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 935 // waste more bytes due to 2 alignment places. 936 if (!isRelroSection(Sec)) 937 Rank |= RF_NOT_RELRO; 938 939 // If we got here we know that both A and B are in the same PT_LOAD. 940 941 // The TLS initialization block needs to be a single contiguous block in a R/W 942 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 943 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 944 // after PROGBITS. 945 if (!(Sec->Flags & SHF_TLS)) 946 Rank |= RF_NOT_TLS; 947 948 // Within TLS sections, or within other RelRo sections, or within non-RelRo 949 // sections, place non-NOBITS sections first. 950 if (Sec->Type == SHT_NOBITS) 951 Rank |= RF_BSS; 952 953 // Some architectures have additional ordering restrictions for sections 954 // within the same PT_LOAD. 955 if (Config->EMachine == EM_PPC64) { 956 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 957 // that we would like to make sure appear is a specific order to maximize 958 // their coverage by a single signed 16-bit offset from the TOC base 959 // pointer. Conversely, the special .tocbss section should be first among 960 // all SHT_NOBITS sections. This will put it next to the loaded special 961 // PPC64 sections (and, thus, within reach of the TOC base pointer). 962 StringRef Name = Sec->Name; 963 if (Name != ".tocbss") 964 Rank |= RF_PPC_NOT_TOCBSS; 965 966 if (Name == ".toc1") 967 Rank |= RF_PPC_TOCL; 968 969 if (Name == ".toc") 970 Rank |= RF_PPC_TOC; 971 972 if (Name == ".got") 973 Rank |= RF_PPC_GOT; 974 975 if (Name == ".branch_lt") 976 Rank |= RF_PPC_BRANCH_LT; 977 } 978 979 if (Config->EMachine == EM_MIPS) { 980 // All sections with SHF_MIPS_GPREL flag should be grouped together 981 // because data in these sections is addressable with a gp relative address. 982 if (Sec->Flags & SHF_MIPS_GPREL) 983 Rank |= RF_MIPS_GPREL; 984 985 if (Sec->Name != ".got") 986 Rank |= RF_MIPS_NOT_GOT; 987 } 988 989 return Rank; 990 } 991 992 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 993 const OutputSection *A = cast<OutputSection>(ACmd); 994 const OutputSection *B = cast<OutputSection>(BCmd); 995 996 if (A->SortRank != B->SortRank) 997 return A->SortRank < B->SortRank; 998 999 if (!(A->SortRank & RF_NOT_ADDR_SET)) 1000 return Config->SectionStartMap.lookup(A->Name) < 1001 Config->SectionStartMap.lookup(B->Name); 1002 return false; 1003 } 1004 1005 void PhdrEntry::add(OutputSection *Sec) { 1006 LastSec = Sec; 1007 if (!FirstSec) 1008 FirstSec = Sec; 1009 p_align = std::max(p_align, Sec->Alignment); 1010 if (p_type == PT_LOAD) 1011 Sec->PtLoad = this; 1012 } 1013 1014 // The beginning and the ending of .rel[a].plt section are marked 1015 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1016 // executable. The runtime needs these symbols in order to resolve 1017 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1018 // need these symbols, since IRELATIVE relocs are resolved through GOT 1019 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1020 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1021 if (Config->Relocatable || needsInterpSection()) 1022 return; 1023 1024 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1025 // because .rela.plt might be empty and thus removed from output. 1026 // We'll override Out::ElfHeader with In.RelaIplt later when we are 1027 // sure that .rela.plt exists in output. 1028 ElfSym::RelaIpltStart = addOptionalRegular( 1029 Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start", 1030 Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); 1031 1032 ElfSym::RelaIpltEnd = addOptionalRegular( 1033 Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end", 1034 Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); 1035 } 1036 1037 template <class ELFT> 1038 void Writer<ELFT>::forEachRelSec( 1039 llvm::function_ref<void(InputSectionBase &)> Fn) { 1040 // Scan all relocations. Each relocation goes through a series 1041 // of tests to determine if it needs special treatment, such as 1042 // creating GOT, PLT, copy relocations, etc. 1043 // Note that relocations for non-alloc sections are directly 1044 // processed by InputSection::relocateNonAlloc. 1045 for (InputSectionBase *IS : InputSections) 1046 if (IS->isLive() && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 1047 Fn(*IS); 1048 for (Partition &Part : Partitions) { 1049 for (EhInputSection *ES : Part.EhFrame->Sections) 1050 Fn(*ES); 1051 if (Part.ARMExidx && Part.ARMExidx->isLive()) 1052 for (InputSection *Ex : Part.ARMExidx->ExidxSections) 1053 Fn(*Ex); 1054 } 1055 } 1056 1057 // This function generates assignments for predefined symbols (e.g. _end or 1058 // _etext) and inserts them into the commands sequence to be processed at the 1059 // appropriate time. This ensures that the value is going to be correct by the 1060 // time any references to these symbols are processed and is equivalent to 1061 // defining these symbols explicitly in the linker script. 1062 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1063 if (ElfSym::GlobalOffsetTable) { 1064 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1065 // to the start of the .got or .got.plt section. 1066 InputSection *GotSection = In.GotPlt; 1067 if (!Target->GotBaseSymInGotPlt) 1068 GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot) 1069 : cast<InputSection>(In.Got); 1070 ElfSym::GlobalOffsetTable->Section = GotSection; 1071 } 1072 1073 // .rela_iplt_{start,end} mark the start and the end of .rela.plt section. 1074 if (ElfSym::RelaIpltStart && In.RelaIplt->isNeeded()) { 1075 ElfSym::RelaIpltStart->Section = In.RelaIplt; 1076 ElfSym::RelaIpltEnd->Section = In.RelaIplt; 1077 ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize(); 1078 } 1079 1080 PhdrEntry *Last = nullptr; 1081 PhdrEntry *LastRO = nullptr; 1082 1083 for (Partition &Part : Partitions) { 1084 for (PhdrEntry *P : Part.Phdrs) { 1085 if (P->p_type != PT_LOAD) 1086 continue; 1087 Last = P; 1088 if (!(P->p_flags & PF_W)) 1089 LastRO = P; 1090 } 1091 } 1092 1093 if (LastRO) { 1094 // _etext is the first location after the last read-only loadable segment. 1095 if (ElfSym::Etext1) 1096 ElfSym::Etext1->Section = LastRO->LastSec; 1097 if (ElfSym::Etext2) 1098 ElfSym::Etext2->Section = LastRO->LastSec; 1099 } 1100 1101 if (Last) { 1102 // _edata points to the end of the last mapped initialized section. 1103 OutputSection *Edata = nullptr; 1104 for (OutputSection *OS : OutputSections) { 1105 if (OS->Type != SHT_NOBITS) 1106 Edata = OS; 1107 if (OS == Last->LastSec) 1108 break; 1109 } 1110 1111 if (ElfSym::Edata1) 1112 ElfSym::Edata1->Section = Edata; 1113 if (ElfSym::Edata2) 1114 ElfSym::Edata2->Section = Edata; 1115 1116 // _end is the first location after the uninitialized data region. 1117 if (ElfSym::End1) 1118 ElfSym::End1->Section = Last->LastSec; 1119 if (ElfSym::End2) 1120 ElfSym::End2->Section = Last->LastSec; 1121 } 1122 1123 if (ElfSym::Bss) 1124 ElfSym::Bss->Section = findSection(".bss"); 1125 1126 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1127 // be equal to the _gp symbol's value. 1128 if (ElfSym::MipsGp) { 1129 // Find GP-relative section with the lowest address 1130 // and use this address to calculate default _gp value. 1131 for (OutputSection *OS : OutputSections) { 1132 if (OS->Flags & SHF_MIPS_GPREL) { 1133 ElfSym::MipsGp->Section = OS; 1134 ElfSym::MipsGp->Value = 0x7ff0; 1135 break; 1136 } 1137 } 1138 } 1139 } 1140 1141 // We want to find how similar two ranks are. 1142 // The more branches in getSectionRank that match, the more similar they are. 1143 // Since each branch corresponds to a bit flag, we can just use 1144 // countLeadingZeros. 1145 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 1146 return countLeadingZeros(A->SortRank ^ B->SortRank); 1147 } 1148 1149 static int getRankProximity(OutputSection *A, BaseCommand *B) { 1150 auto *Sec = dyn_cast<OutputSection>(B); 1151 return (Sec && Sec->HasInputSections) ? getRankProximityAux(A, Sec) : -1; 1152 } 1153 1154 // When placing orphan sections, we want to place them after symbol assignments 1155 // so that an orphan after 1156 // begin_foo = .; 1157 // foo : { *(foo) } 1158 // end_foo = .; 1159 // doesn't break the intended meaning of the begin/end symbols. 1160 // We don't want to go over sections since findOrphanPos is the 1161 // one in charge of deciding the order of the sections. 1162 // We don't want to go over changes to '.', since doing so in 1163 // rx_sec : { *(rx_sec) } 1164 // . = ALIGN(0x1000); 1165 // /* The RW PT_LOAD starts here*/ 1166 // rw_sec : { *(rw_sec) } 1167 // would mean that the RW PT_LOAD would become unaligned. 1168 static bool shouldSkip(BaseCommand *Cmd) { 1169 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 1170 return Assign->Name != "."; 1171 return false; 1172 } 1173 1174 // We want to place orphan sections so that they share as much 1175 // characteristics with their neighbors as possible. For example, if 1176 // both are rw, or both are tls. 1177 static std::vector<BaseCommand *>::iterator 1178 findOrphanPos(std::vector<BaseCommand *>::iterator B, 1179 std::vector<BaseCommand *>::iterator E) { 1180 OutputSection *Sec = cast<OutputSection>(*E); 1181 1182 // Find the first element that has as close a rank as possible. 1183 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 1184 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 1185 }); 1186 if (I == E) 1187 return E; 1188 1189 // Consider all existing sections with the same proximity. 1190 int Proximity = getRankProximity(Sec, *I); 1191 for (; I != E; ++I) { 1192 auto *CurSec = dyn_cast<OutputSection>(*I); 1193 if (!CurSec || !CurSec->HasInputSections) 1194 continue; 1195 if (getRankProximity(Sec, CurSec) != Proximity || 1196 Sec->SortRank < CurSec->SortRank) 1197 break; 1198 } 1199 1200 auto IsOutputSecWithInputSections = [](BaseCommand *Cmd) { 1201 auto *OS = dyn_cast<OutputSection>(Cmd); 1202 return OS && OS->HasInputSections; 1203 }; 1204 auto J = std::find_if(llvm::make_reverse_iterator(I), 1205 llvm::make_reverse_iterator(B), 1206 IsOutputSecWithInputSections); 1207 I = J.base(); 1208 1209 // As a special case, if the orphan section is the last section, put 1210 // it at the very end, past any other commands. 1211 // This matches bfd's behavior and is convenient when the linker script fully 1212 // specifies the start of the file, but doesn't care about the end (the non 1213 // alloc sections for example). 1214 auto NextSec = std::find_if(I, E, IsOutputSecWithInputSections); 1215 if (NextSec == E) 1216 return E; 1217 1218 while (I != E && shouldSkip(*I)) 1219 ++I; 1220 return I; 1221 } 1222 1223 // Builds section order for handling --symbol-ordering-file. 1224 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1225 DenseMap<const InputSectionBase *, int> SectionOrder; 1226 // Use the rarely used option -call-graph-ordering-file to sort sections. 1227 if (!Config->CallGraphProfile.empty()) 1228 return computeCallGraphProfileOrder(); 1229 1230 if (Config->SymbolOrderingFile.empty()) 1231 return SectionOrder; 1232 1233 struct SymbolOrderEntry { 1234 int Priority; 1235 bool Present; 1236 }; 1237 1238 // Build a map from symbols to their priorities. Symbols that didn't 1239 // appear in the symbol ordering file have the lowest priority 0. 1240 // All explicitly mentioned symbols have negative (higher) priorities. 1241 DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; 1242 int Priority = -Config->SymbolOrderingFile.size(); 1243 for (StringRef S : Config->SymbolOrderingFile) 1244 SymbolOrder.insert({S, {Priority++, false}}); 1245 1246 // Build a map from sections to their priorities. 1247 auto AddSym = [&](Symbol &Sym) { 1248 auto It = SymbolOrder.find(Sym.getName()); 1249 if (It == SymbolOrder.end()) 1250 return; 1251 SymbolOrderEntry &Ent = It->second; 1252 Ent.Present = true; 1253 1254 maybeWarnUnorderableSymbol(&Sym); 1255 1256 if (auto *D = dyn_cast<Defined>(&Sym)) { 1257 if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { 1258 int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; 1259 Priority = std::min(Priority, Ent.Priority); 1260 } 1261 } 1262 }; 1263 1264 // We want both global and local symbols. We get the global ones from the 1265 // symbol table and iterate the object files for the local ones. 1266 Symtab->forEachSymbol([&](Symbol *Sym) { 1267 if (!Sym->isLazy()) 1268 AddSym(*Sym); 1269 }); 1270 1271 for (InputFile *File : ObjectFiles) 1272 for (Symbol *Sym : File->getSymbols()) 1273 if (Sym->isLocal()) 1274 AddSym(*Sym); 1275 1276 if (Config->WarnSymbolOrdering) 1277 for (auto OrderEntry : SymbolOrder) 1278 if (!OrderEntry.second.Present) 1279 warn("symbol ordering file: no such symbol: " + OrderEntry.first); 1280 1281 return SectionOrder; 1282 } 1283 1284 // Sorts the sections in ISD according to the provided section order. 1285 static void 1286 sortISDBySectionOrder(InputSectionDescription *ISD, 1287 const DenseMap<const InputSectionBase *, int> &Order) { 1288 std::vector<InputSection *> UnorderedSections; 1289 std::vector<std::pair<InputSection *, int>> OrderedSections; 1290 uint64_t UnorderedSize = 0; 1291 1292 for (InputSection *IS : ISD->Sections) { 1293 auto I = Order.find(IS); 1294 if (I == Order.end()) { 1295 UnorderedSections.push_back(IS); 1296 UnorderedSize += IS->getSize(); 1297 continue; 1298 } 1299 OrderedSections.push_back({IS, I->second}); 1300 } 1301 llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A, 1302 std::pair<InputSection *, int> B) { 1303 return A.second < B.second; 1304 }); 1305 1306 // Find an insertion point for the ordered section list in the unordered 1307 // section list. On targets with limited-range branches, this is the mid-point 1308 // of the unordered section list. This decreases the likelihood that a range 1309 // extension thunk will be needed to enter or exit the ordered region. If the 1310 // ordered section list is a list of hot functions, we can generally expect 1311 // the ordered functions to be called more often than the unordered functions, 1312 // making it more likely that any particular call will be within range, and 1313 // therefore reducing the number of thunks required. 1314 // 1315 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1316 // If the layout is: 1317 // 1318 // 8MB hot 1319 // 32MB cold 1320 // 1321 // only the first 8-16MB of the cold code (depending on which hot function it 1322 // is actually calling) can call the hot code without a range extension thunk. 1323 // However, if we use this layout: 1324 // 1325 // 16MB cold 1326 // 8MB hot 1327 // 16MB cold 1328 // 1329 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1330 // of the second block of cold code can call the hot code without a thunk. So 1331 // we effectively double the amount of code that could potentially call into 1332 // the hot code without a thunk. 1333 size_t InsPt = 0; 1334 if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) { 1335 uint64_t UnorderedPos = 0; 1336 for (; InsPt != UnorderedSections.size(); ++InsPt) { 1337 UnorderedPos += UnorderedSections[InsPt]->getSize(); 1338 if (UnorderedPos > UnorderedSize / 2) 1339 break; 1340 } 1341 } 1342 1343 ISD->Sections.clear(); 1344 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) 1345 ISD->Sections.push_back(IS); 1346 for (std::pair<InputSection *, int> P : OrderedSections) 1347 ISD->Sections.push_back(P.first); 1348 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) 1349 ISD->Sections.push_back(IS); 1350 } 1351 1352 static void sortSection(OutputSection *Sec, 1353 const DenseMap<const InputSectionBase *, int> &Order) { 1354 StringRef Name = Sec->Name; 1355 1356 // Sort input sections by section name suffixes for 1357 // __attribute__((init_priority(N))). 1358 if (Name == ".init_array" || Name == ".fini_array") { 1359 if (!Script->HasSectionsCommand) 1360 Sec->sortInitFini(); 1361 return; 1362 } 1363 1364 // Sort input sections by the special rule for .ctors and .dtors. 1365 if (Name == ".ctors" || Name == ".dtors") { 1366 if (!Script->HasSectionsCommand) 1367 Sec->sortCtorsDtors(); 1368 return; 1369 } 1370 1371 // Never sort these. 1372 if (Name == ".init" || Name == ".fini") 1373 return; 1374 1375 // .toc is allocated just after .got and is accessed using GOT-relative 1376 // relocations. Object files compiled with small code model have an 1377 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1378 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1379 // sections having smaller relocation offsets are at beginning of .toc 1380 if (Config->EMachine == EM_PPC64 && Name == ".toc") { 1381 if (Script->HasSectionsCommand) 1382 return; 1383 assert(Sec->SectionCommands.size() == 1); 1384 auto *ISD = cast<InputSectionDescription>(Sec->SectionCommands[0]); 1385 llvm::stable_sort(ISD->Sections, 1386 [](const InputSection *A, const InputSection *B) -> bool { 1387 return A->File->PPC64SmallCodeModelTocRelocs && 1388 !B->File->PPC64SmallCodeModelTocRelocs; 1389 }); 1390 return; 1391 } 1392 1393 // Sort input sections by priority using the list provided 1394 // by --symbol-ordering-file. 1395 if (!Order.empty()) 1396 for (BaseCommand *B : Sec->SectionCommands) 1397 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1398 sortISDBySectionOrder(ISD, Order); 1399 } 1400 1401 // If no layout was provided by linker script, we want to apply default 1402 // sorting for special input sections. This also handles --symbol-ordering-file. 1403 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1404 // Build the order once since it is expensive. 1405 DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); 1406 for (BaseCommand *Base : Script->SectionCommands) 1407 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1408 sortSection(Sec, Order); 1409 } 1410 1411 template <class ELFT> void Writer<ELFT>::sortSections() { 1412 Script->adjustSectionsBeforeSorting(); 1413 1414 // Don't sort if using -r. It is not necessary and we want to preserve the 1415 // relative order for SHF_LINK_ORDER sections. 1416 if (Config->Relocatable) 1417 return; 1418 1419 sortInputSections(); 1420 1421 for (BaseCommand *Base : Script->SectionCommands) { 1422 auto *OS = dyn_cast<OutputSection>(Base); 1423 if (!OS) 1424 continue; 1425 OS->SortRank = getSectionRank(OS); 1426 1427 // We want to assign rude approximation values to OutSecOff fields 1428 // to know the relative order of the input sections. We use it for 1429 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1430 uint64_t I = 0; 1431 for (InputSection *Sec : getInputSections(OS)) 1432 Sec->OutSecOff = I++; 1433 } 1434 1435 if (!Script->HasSectionsCommand) { 1436 // We know that all the OutputSections are contiguous in this case. 1437 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1438 std::stable_sort( 1439 llvm::find_if(Script->SectionCommands, IsSection), 1440 llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), 1441 compareSections); 1442 return; 1443 } 1444 1445 // Orphan sections are sections present in the input files which are 1446 // not explicitly placed into the output file by the linker script. 1447 // 1448 // The sections in the linker script are already in the correct 1449 // order. We have to figuere out where to insert the orphan 1450 // sections. 1451 // 1452 // The order of the sections in the script is arbitrary and may not agree with 1453 // compareSections. This means that we cannot easily define a strict weak 1454 // ordering. To see why, consider a comparison of a section in the script and 1455 // one not in the script. We have a two simple options: 1456 // * Make them equivalent (a is not less than b, and b is not less than a). 1457 // The problem is then that equivalence has to be transitive and we can 1458 // have sections a, b and c with only b in a script and a less than c 1459 // which breaks this property. 1460 // * Use compareSectionsNonScript. Given that the script order doesn't have 1461 // to match, we can end up with sections a, b, c, d where b and c are in the 1462 // script and c is compareSectionsNonScript less than b. In which case d 1463 // can be equivalent to c, a to b and d < a. As a concrete example: 1464 // .a (rx) # not in script 1465 // .b (rx) # in script 1466 // .c (ro) # in script 1467 // .d (ro) # not in script 1468 // 1469 // The way we define an order then is: 1470 // * Sort only the orphan sections. They are in the end right now. 1471 // * Move each orphan section to its preferred position. We try 1472 // to put each section in the last position where it can share 1473 // a PT_LOAD. 1474 // 1475 // There is some ambiguity as to where exactly a new entry should be 1476 // inserted, because Commands contains not only output section 1477 // commands but also other types of commands such as symbol assignment 1478 // expressions. There's no correct answer here due to the lack of the 1479 // formal specification of the linker script. We use heuristics to 1480 // determine whether a new output command should be added before or 1481 // after another commands. For the details, look at shouldSkip 1482 // function. 1483 1484 auto I = Script->SectionCommands.begin(); 1485 auto E = Script->SectionCommands.end(); 1486 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1487 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1488 return Sec->SectionIndex == UINT32_MAX; 1489 return false; 1490 }); 1491 1492 // Sort the orphan sections. 1493 std::stable_sort(NonScriptI, E, compareSections); 1494 1495 // As a horrible special case, skip the first . assignment if it is before any 1496 // section. We do this because it is common to set a load address by starting 1497 // the script with ". = 0xabcd" and the expectation is that every section is 1498 // after that. 1499 auto FirstSectionOrDotAssignment = 1500 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1501 if (FirstSectionOrDotAssignment != E && 1502 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1503 ++FirstSectionOrDotAssignment; 1504 I = FirstSectionOrDotAssignment; 1505 1506 while (NonScriptI != E) { 1507 auto Pos = findOrphanPos(I, NonScriptI); 1508 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1509 1510 // As an optimization, find all sections with the same sort rank 1511 // and insert them with one rotate. 1512 unsigned Rank = Orphan->SortRank; 1513 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1514 return cast<OutputSection>(Cmd)->SortRank != Rank; 1515 }); 1516 std::rotate(Pos, NonScriptI, End); 1517 NonScriptI = End; 1518 } 1519 1520 Script->adjustSectionsAfterSorting(); 1521 } 1522 1523 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1524 InputSection *LA = A->getLinkOrderDep(); 1525 InputSection *LB = B->getLinkOrderDep(); 1526 OutputSection *AOut = LA->getParent(); 1527 OutputSection *BOut = LB->getParent(); 1528 1529 if (AOut != BOut) 1530 return AOut->SectionIndex < BOut->SectionIndex; 1531 return LA->OutSecOff < LB->OutSecOff; 1532 } 1533 1534 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1535 for (OutputSection *Sec : OutputSections) { 1536 if (!(Sec->Flags & SHF_LINK_ORDER)) 1537 continue; 1538 1539 // Link order may be distributed across several InputSectionDescriptions 1540 // but sort must consider them all at once. 1541 std::vector<InputSection **> ScriptSections; 1542 std::vector<InputSection *> Sections; 1543 for (BaseCommand *Base : Sec->SectionCommands) { 1544 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1545 for (InputSection *&IS : ISD->Sections) { 1546 ScriptSections.push_back(&IS); 1547 Sections.push_back(IS); 1548 } 1549 } 1550 } 1551 1552 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1553 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1554 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1555 Sec->Type == SHT_ARM_EXIDX) 1556 continue; 1557 1558 llvm::stable_sort(Sections, compareByFilePosition); 1559 1560 for (int I = 0, N = Sections.size(); I < N; ++I) 1561 *ScriptSections[I] = Sections[I]; 1562 } 1563 } 1564 1565 // We need to generate and finalize the content that depends on the address of 1566 // InputSections. As the generation of the content may also alter InputSection 1567 // addresses we must converge to a fixed point. We do that here. See the comment 1568 // in Writer<ELFT>::finalizeSections(). 1569 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1570 ThunkCreator TC; 1571 AArch64Err843419Patcher A64P; 1572 1573 // For some targets, like x86, this loop iterates only once. 1574 for (;;) { 1575 bool Changed = false; 1576 1577 Script->assignAddresses(); 1578 1579 if (Target->NeedsThunks) 1580 Changed |= TC.createThunks(OutputSections); 1581 1582 if (Config->FixCortexA53Errata843419) { 1583 if (Changed) 1584 Script->assignAddresses(); 1585 Changed |= A64P.createFixes(); 1586 } 1587 1588 if (In.MipsGot) 1589 In.MipsGot->updateAllocSize(); 1590 1591 for (Partition &Part : Partitions) { 1592 Changed |= Part.RelaDyn->updateAllocSize(); 1593 if (Part.RelrDyn) 1594 Changed |= Part.RelrDyn->updateAllocSize(); 1595 } 1596 1597 if (!Changed) 1598 return; 1599 } 1600 } 1601 1602 static void finalizeSynthetic(SyntheticSection *Sec) { 1603 if (Sec && Sec->isNeeded() && Sec->getParent()) 1604 Sec->finalizeContents(); 1605 } 1606 1607 // In order to allow users to manipulate linker-synthesized sections, 1608 // we had to add synthetic sections to the input section list early, 1609 // even before we make decisions whether they are needed. This allows 1610 // users to write scripts like this: ".mygot : { .got }". 1611 // 1612 // Doing it has an unintended side effects. If it turns out that we 1613 // don't need a .got (for example) at all because there's no 1614 // relocation that needs a .got, we don't want to emit .got. 1615 // 1616 // To deal with the above problem, this function is called after 1617 // scanRelocations is called to remove synthetic sections that turn 1618 // out to be empty. 1619 static void removeUnusedSyntheticSections() { 1620 // All input synthetic sections that can be empty are placed after 1621 // all regular ones. We iterate over them all and exit at first 1622 // non-synthetic. 1623 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1624 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1625 if (!SS) 1626 return; 1627 OutputSection *OS = SS->getParent(); 1628 if (!OS || SS->isNeeded()) 1629 continue; 1630 1631 // If we reach here, then SS is an unused synthetic section and we want to 1632 // remove it from corresponding input section description of output section. 1633 for (BaseCommand *B : OS->SectionCommands) 1634 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1635 llvm::erase_if(ISD->Sections, 1636 [=](InputSection *IS) { return IS == SS; }); 1637 } 1638 } 1639 1640 // Returns true if a symbol can be replaced at load-time by a symbol 1641 // with the same name defined in other ELF executable or DSO. 1642 static bool computeIsPreemptible(const Symbol &B) { 1643 assert(!B.isLocal()); 1644 1645 // Only symbols that appear in dynsym can be preempted. 1646 if (!B.includeInDynsym()) 1647 return false; 1648 1649 // Only default visibility symbols can be preempted. 1650 if (B.Visibility != STV_DEFAULT) 1651 return false; 1652 1653 // At this point copy relocations have not been created yet, so any 1654 // symbol that is not defined locally is preemptible. 1655 if (!B.isDefined()) 1656 return true; 1657 1658 // If we have a dynamic list it specifies which local symbols are preemptible. 1659 if (Config->HasDynamicList) 1660 return false; 1661 1662 if (!Config->Shared) 1663 return false; 1664 1665 // -Bsymbolic means that definitions are not preempted. 1666 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1667 return false; 1668 return true; 1669 } 1670 1671 // Create output section objects and add them to OutputSections. 1672 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1673 Out::PreinitArray = findSection(".preinit_array"); 1674 Out::InitArray = findSection(".init_array"); 1675 Out::FiniArray = findSection(".fini_array"); 1676 1677 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1678 // symbols for sections, so that the runtime can get the start and end 1679 // addresses of each section by section name. Add such symbols. 1680 if (!Config->Relocatable) { 1681 addStartEndSymbols(); 1682 for (BaseCommand *Base : Script->SectionCommands) 1683 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1684 addStartStopSymbols(Sec); 1685 } 1686 1687 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1688 // It should be okay as no one seems to care about the type. 1689 // Even the author of gold doesn't remember why gold behaves that way. 1690 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1691 if (Main->Dynamic->Parent) 1692 Symtab->addSymbol(Defined{/*File=*/nullptr, "_DYNAMIC", STB_WEAK, 1693 STV_HIDDEN, STT_NOTYPE, 1694 /*Value=*/0, /*Size=*/0, Main->Dynamic}); 1695 1696 // Define __rel[a]_iplt_{start,end} symbols if needed. 1697 addRelIpltSymbols(); 1698 1699 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined. 1700 // This symbol should only be defined in an executable. 1701 if (Config->EMachine == EM_RISCV && !Config->Shared) 1702 ElfSym::RISCVGlobalPointer = 1703 addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800, 1704 STV_DEFAULT, STB_GLOBAL); 1705 1706 if (Config->EMachine == EM_X86_64) { 1707 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1708 // way that: 1709 // 1710 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1711 // computes 0. 1712 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1713 // the TLS block). 1714 // 1715 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1716 // an absolute symbol of zero. This is different from GNU linkers which 1717 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1718 Symbol *S = Symtab->find("_TLS_MODULE_BASE_"); 1719 if (S && S->isUndefined()) { 1720 S->resolve(Defined{/*File=*/nullptr, S->getName(), STB_GLOBAL, STV_HIDDEN, 1721 STT_TLS, /*Value=*/0, 0, 1722 /*Section=*/nullptr}); 1723 ElfSym::TlsModuleBase = cast<Defined>(S); 1724 } 1725 } 1726 1727 // This responsible for splitting up .eh_frame section into 1728 // pieces. The relocation scan uses those pieces, so this has to be 1729 // earlier. 1730 for (Partition &Part : Partitions) 1731 finalizeSynthetic(Part.EhFrame); 1732 1733 Symtab->forEachSymbol([](Symbol *S) { 1734 if (!S->IsPreemptible) 1735 S->IsPreemptible = computeIsPreemptible(*S); 1736 }); 1737 1738 // Scan relocations. This must be done after every symbol is declared so that 1739 // we can correctly decide if a dynamic relocation is needed. 1740 if (!Config->Relocatable) { 1741 forEachRelSec(scanRelocations<ELFT>); 1742 reportUndefinedSymbols<ELFT>(); 1743 } 1744 1745 addIRelativeRelocs(); 1746 1747 if (In.Plt && In.Plt->isNeeded()) 1748 In.Plt->addSymbols(); 1749 if (In.Iplt && In.Iplt->isNeeded()) 1750 In.Iplt->addSymbols(); 1751 1752 if (!Config->AllowShlibUndefined) { 1753 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1754 // entires are seen. These cases would otherwise lead to runtime errors 1755 // reported by the dynamic linker. 1756 // 1757 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1758 // catch more cases. That is too much for us. Our approach resembles the one 1759 // used in ld.gold, achieves a good balance to be useful but not too smart. 1760 for (SharedFile *File : SharedFiles) 1761 File->AllNeededIsKnown = 1762 llvm::all_of(File->DtNeeded, [&](StringRef Needed) { 1763 return Symtab->SoNames.count(Needed); 1764 }); 1765 1766 Symtab->forEachSymbol([](Symbol *Sym) { 1767 if (Sym->isUndefined() && !Sym->isWeak()) 1768 if (auto *F = dyn_cast_or_null<SharedFile>(Sym->File)) 1769 if (F->AllNeededIsKnown) 1770 error(toString(F) + ": undefined reference to " + toString(*Sym)); 1771 }); 1772 } 1773 1774 // Now that we have defined all possible global symbols including linker- 1775 // synthesized ones. Visit all symbols to give the finishing touches. 1776 Symtab->forEachSymbol([](Symbol *Sym) { 1777 if (!includeInSymtab(*Sym)) 1778 return; 1779 if (In.SymTab) 1780 In.SymTab->addSymbol(Sym); 1781 1782 if (Sym->includeInDynsym()) { 1783 Partitions[Sym->Partition - 1].DynSymTab->addSymbol(Sym); 1784 if (auto *File = dyn_cast_or_null<SharedFile>(Sym->File)) 1785 if (File->IsNeeded && !Sym->isUndefined()) 1786 addVerneed(Sym); 1787 } 1788 }); 1789 1790 // We also need to scan the dynamic relocation tables of the other partitions 1791 // and add any referenced symbols to the partition's dynsym. 1792 for (Partition &Part : MutableArrayRef<Partition>(Partitions).slice(1)) { 1793 DenseSet<Symbol *> Syms; 1794 for (const SymbolTableEntry &E : Part.DynSymTab->getSymbols()) 1795 Syms.insert(E.Sym); 1796 for (DynamicReloc &Reloc : Part.RelaDyn->Relocs) 1797 if (Reloc.Sym && !Reloc.UseSymVA && Syms.insert(Reloc.Sym).second) 1798 Part.DynSymTab->addSymbol(Reloc.Sym); 1799 } 1800 1801 // Do not proceed if there was an undefined symbol. 1802 if (errorCount()) 1803 return; 1804 1805 if (In.MipsGot) 1806 In.MipsGot->build(); 1807 1808 removeUnusedSyntheticSections(); 1809 1810 sortSections(); 1811 1812 // Now that we have the final list, create a list of all the 1813 // OutputSections for convenience. 1814 for (BaseCommand *Base : Script->SectionCommands) 1815 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1816 OutputSections.push_back(Sec); 1817 1818 // Prefer command line supplied address over other constraints. 1819 for (OutputSection *Sec : OutputSections) { 1820 auto I = Config->SectionStartMap.find(Sec->Name); 1821 if (I != Config->SectionStartMap.end()) 1822 Sec->AddrExpr = [=] { return I->second; }; 1823 } 1824 1825 // This is a bit of a hack. A value of 0 means undef, so we set it 1826 // to 1 to make __ehdr_start defined. The section number is not 1827 // particularly relevant. 1828 Out::ElfHeader->SectionIndex = 1; 1829 1830 for (size_t I = 0, E = OutputSections.size(); I != E; ++I) { 1831 OutputSection *Sec = OutputSections[I]; 1832 Sec->SectionIndex = I + 1; 1833 Sec->ShName = In.ShStrTab->addString(Sec->Name); 1834 } 1835 1836 // Binary and relocatable output does not have PHDRS. 1837 // The headers have to be created before finalize as that can influence the 1838 // image base and the dynamic section on mips includes the image base. 1839 if (!Config->Relocatable && !Config->OFormatBinary) { 1840 for (Partition &Part : Partitions) { 1841 Part.Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() 1842 : createPhdrs(Part); 1843 if (Config->EMachine == EM_ARM) { 1844 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1845 addPhdrForSection(Part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1846 } 1847 if (Config->EMachine == EM_MIPS) { 1848 // Add separate segments for MIPS-specific sections. 1849 addPhdrForSection(Part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1850 addPhdrForSection(Part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1851 addPhdrForSection(Part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1852 } 1853 } 1854 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Main->Phdrs.size(); 1855 1856 // Find the TLS segment. This happens before the section layout loop so that 1857 // Android relocation packing can look up TLS symbol addresses. We only need 1858 // to care about the main partition here because all TLS symbols were moved 1859 // to the main partition (see MarkLive.cpp). 1860 for (PhdrEntry *P : Main->Phdrs) 1861 if (P->p_type == PT_TLS) 1862 Out::TlsPhdr = P; 1863 } 1864 1865 // Some symbols are defined in term of program headers. Now that we 1866 // have the headers, we can find out which sections they point to. 1867 setReservedSymbolSections(); 1868 1869 finalizeSynthetic(In.Bss); 1870 finalizeSynthetic(In.BssRelRo); 1871 finalizeSynthetic(In.SymTabShndx); 1872 finalizeSynthetic(In.ShStrTab); 1873 finalizeSynthetic(In.StrTab); 1874 finalizeSynthetic(In.Got); 1875 finalizeSynthetic(In.MipsGot); 1876 finalizeSynthetic(In.IgotPlt); 1877 finalizeSynthetic(In.GotPlt); 1878 finalizeSynthetic(In.RelaIplt); 1879 finalizeSynthetic(In.RelaPlt); 1880 finalizeSynthetic(In.Plt); 1881 finalizeSynthetic(In.Iplt); 1882 finalizeSynthetic(In.PPC32Got2); 1883 finalizeSynthetic(In.RISCVSdata); 1884 finalizeSynthetic(In.PartIndex); 1885 1886 // Dynamic section must be the last one in this list and dynamic 1887 // symbol table section (DynSymTab) must be the first one. 1888 for (Partition &Part : Partitions) { 1889 finalizeSynthetic(Part.ARMExidx); 1890 finalizeSynthetic(Part.DynSymTab); 1891 finalizeSynthetic(Part.GnuHashTab); 1892 finalizeSynthetic(Part.HashTab); 1893 finalizeSynthetic(Part.VerDef); 1894 finalizeSynthetic(Part.RelaDyn); 1895 finalizeSynthetic(Part.RelrDyn); 1896 finalizeSynthetic(Part.EhFrameHdr); 1897 finalizeSynthetic(Part.VerSym); 1898 finalizeSynthetic(Part.VerNeed); 1899 finalizeSynthetic(Part.Dynamic); 1900 } 1901 1902 if (!Script->HasSectionsCommand && !Config->Relocatable) 1903 fixSectionAlignments(); 1904 1905 // SHFLinkOrder processing must be processed after relative section placements are 1906 // known but before addresses are allocated. 1907 resolveShfLinkOrder(); 1908 1909 // This is used to: 1910 // 1) Create "thunks": 1911 // Jump instructions in many ISAs have small displacements, and therefore 1912 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1913 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1914 // responsibility to create and insert small pieces of code between 1915 // sections to extend the ranges if jump targets are out of range. Such 1916 // code pieces are called "thunks". 1917 // 1918 // We add thunks at this stage. We couldn't do this before this point 1919 // because this is the earliest point where we know sizes of sections and 1920 // their layouts (that are needed to determine if jump targets are in 1921 // range). 1922 // 1923 // 2) Update the sections. We need to generate content that depends on the 1924 // address of InputSections. For example, MIPS GOT section content or 1925 // android packed relocations sections content. 1926 // 1927 // 3) Assign the final values for the linker script symbols. Linker scripts 1928 // sometimes using forward symbol declarations. We want to set the correct 1929 // values. They also might change after adding the thunks. 1930 finalizeAddressDependentContent(); 1931 1932 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1933 finalizeSynthetic(In.SymTab); 1934 finalizeSynthetic(In.PPC64LongBranchTarget); 1935 1936 // Fill other section headers. The dynamic table is finalized 1937 // at the end because some tags like RELSZ depend on result 1938 // of finalizing other sections. 1939 for (OutputSection *Sec : OutputSections) 1940 Sec->finalize(); 1941 } 1942 1943 // Ensure data sections are not mixed with executable sections when 1944 // -execute-only is used. -execute-only is a feature to make pages executable 1945 // but not readable, and the feature is currently supported only on AArch64. 1946 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1947 if (!Config->ExecuteOnly) 1948 return; 1949 1950 for (OutputSection *OS : OutputSections) 1951 if (OS->Flags & SHF_EXECINSTR) 1952 for (InputSection *IS : getInputSections(OS)) 1953 if (!(IS->Flags & SHF_EXECINSTR)) 1954 error("cannot place " + toString(IS) + " into " + toString(OS->Name) + 1955 ": -execute-only does not support intermingling data and code"); 1956 } 1957 1958 // The linker is expected to define SECNAME_start and SECNAME_end 1959 // symbols for a few sections. This function defines them. 1960 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1961 // If a section does not exist, there's ambiguity as to how we 1962 // define _start and _end symbols for an init/fini section. Since 1963 // the loader assume that the symbols are always defined, we need to 1964 // always define them. But what value? The loader iterates over all 1965 // pointers between _start and _end to run global ctors/dtors, so if 1966 // the section is empty, their symbol values don't actually matter 1967 // as long as _start and _end point to the same location. 1968 // 1969 // That said, we don't want to set the symbols to 0 (which is 1970 // probably the simplest value) because that could cause some 1971 // program to fail to link due to relocation overflow, if their 1972 // program text is above 2 GiB. We use the address of the .text 1973 // section instead to prevent that failure. 1974 // 1975 // In a rare sitaution, .text section may not exist. If that's the 1976 // case, use the image base address as a last resort. 1977 OutputSection *Default = findSection(".text"); 1978 if (!Default) 1979 Default = Out::ElfHeader; 1980 1981 auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) { 1982 if (OS) { 1983 addOptionalRegular(Start, OS, 0); 1984 addOptionalRegular(End, OS, -1); 1985 } else { 1986 addOptionalRegular(Start, Default, 0); 1987 addOptionalRegular(End, Default, 0); 1988 } 1989 }; 1990 1991 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1992 Define("__init_array_start", "__init_array_end", Out::InitArray); 1993 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1994 1995 if (OutputSection *Sec = findSection(".ARM.exidx")) 1996 Define("__exidx_start", "__exidx_end", Sec); 1997 } 1998 1999 // If a section name is valid as a C identifier (which is rare because of 2000 // the leading '.'), linkers are expected to define __start_<secname> and 2001 // __stop_<secname> symbols. They are at beginning and end of the section, 2002 // respectively. This is not requested by the ELF standard, but GNU ld and 2003 // gold provide the feature, and used by many programs. 2004 template <class ELFT> 2005 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 2006 StringRef S = Sec->Name; 2007 if (!isValidCIdentifier(S)) 2008 return; 2009 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); 2010 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); 2011 } 2012 2013 static bool needsPtLoad(OutputSection *Sec) { 2014 if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) 2015 return false; 2016 2017 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2018 // responsible for allocating space for them, not the PT_LOAD that 2019 // contains the TLS initialization image. 2020 if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS) 2021 return false; 2022 return true; 2023 } 2024 2025 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2026 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2027 // RW. This means that there is no alignment in the RO to RX transition and we 2028 // cannot create a PT_LOAD there. 2029 static uint64_t computeFlags(uint64_t Flags) { 2030 if (Config->Omagic) 2031 return PF_R | PF_W | PF_X; 2032 if (Config->ExecuteOnly && (Flags & PF_X)) 2033 return Flags & ~PF_R; 2034 if (Config->SingleRoRx && !(Flags & PF_W)) 2035 return Flags | PF_X; 2036 return Flags; 2037 } 2038 2039 // Decide which program headers to create and which sections to include in each 2040 // one. 2041 template <class ELFT> 2042 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &Part) { 2043 std::vector<PhdrEntry *> Ret; 2044 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 2045 Ret.push_back(make<PhdrEntry>(Type, Flags)); 2046 return Ret.back(); 2047 }; 2048 2049 unsigned PartNo = Part.getNumber(); 2050 bool IsMain = PartNo == 1; 2051 2052 // The first phdr entry is PT_PHDR which describes the program header itself. 2053 if (IsMain) 2054 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 2055 else 2056 AddHdr(PT_PHDR, PF_R)->add(Part.ProgramHeaders->getParent()); 2057 2058 // PT_INTERP must be the second entry if exists. 2059 if (OutputSection *Cmd = findSection(".interp", PartNo)) 2060 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 2061 2062 // Add the first PT_LOAD segment for regular output sections. 2063 uint64_t Flags = computeFlags(PF_R); 2064 PhdrEntry *Load = nullptr; 2065 2066 // Add the headers. We will remove them if they don't fit. 2067 // In the other partitions the headers are ordinary sections, so they don't 2068 // need to be added here. 2069 if (IsMain) { 2070 Load = AddHdr(PT_LOAD, Flags); 2071 Load->add(Out::ElfHeader); 2072 Load->add(Out::ProgramHeaders); 2073 } 2074 2075 // PT_GNU_RELRO includes all sections that should be marked as 2076 // read-only by dynamic linker after proccessing relocations. 2077 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2078 // an error message if more than one PT_GNU_RELRO PHDR is required. 2079 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2080 bool InRelroPhdr = false; 2081 OutputSection *RelroEnd = nullptr; 2082 for (OutputSection *Sec : OutputSections) { 2083 if (Sec->Partition != PartNo || !needsPtLoad(Sec)) 2084 continue; 2085 if (isRelroSection(Sec)) { 2086 InRelroPhdr = true; 2087 if (!RelroEnd) 2088 RelRo->add(Sec); 2089 else 2090 error("section: " + Sec->Name + " is not contiguous with other relro" + 2091 " sections"); 2092 } else if (InRelroPhdr) { 2093 InRelroPhdr = false; 2094 RelroEnd = Sec; 2095 } 2096 } 2097 2098 for (OutputSection *Sec : OutputSections) { 2099 if (!(Sec->Flags & SHF_ALLOC)) 2100 break; 2101 if (!needsPtLoad(Sec)) 2102 continue; 2103 2104 // Normally, sections in partitions other than the current partition are 2105 // ignored. But partition number 255 is a special case: it contains the 2106 // partition end marker (.part.end). It needs to be added to the main 2107 // partition so that a segment is created for it in the main partition, 2108 // which will cause the dynamic loader to reserve space for the other 2109 // partitions. 2110 if (Sec->Partition != PartNo) { 2111 if (IsMain && Sec->Partition == 255) 2112 AddHdr(PT_LOAD, computeFlags(Sec->getPhdrFlags()))->add(Sec); 2113 continue; 2114 } 2115 2116 // Segments are contiguous memory regions that has the same attributes 2117 // (e.g. executable or writable). There is one phdr for each segment. 2118 // Therefore, we need to create a new phdr when the next section has 2119 // different flags or is loaded at a discontiguous address or memory 2120 // region using AT or AT> linker script command, respectively. At the same 2121 // time, we don't want to create a separate load segment for the headers, 2122 // even if the first output section has an AT or AT> attribute. 2123 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 2124 if (!Load || 2125 ((Sec->LMAExpr || 2126 (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) && 2127 Load->LastSec != Out::ProgramHeaders) || 2128 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags || 2129 Sec == RelroEnd) { 2130 Load = AddHdr(PT_LOAD, NewFlags); 2131 Flags = NewFlags; 2132 } 2133 2134 Load->add(Sec); 2135 } 2136 2137 // Add a TLS segment if any. 2138 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2139 for (OutputSection *Sec : OutputSections) 2140 if (Sec->Partition == PartNo && Sec->Flags & SHF_TLS) 2141 TlsHdr->add(Sec); 2142 if (TlsHdr->FirstSec) 2143 Ret.push_back(TlsHdr); 2144 2145 // Add an entry for .dynamic. 2146 if (OutputSection *Sec = Part.Dynamic->getParent()) 2147 AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec); 2148 2149 if (RelRo->FirstSec) 2150 Ret.push_back(RelRo); 2151 2152 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2153 if (Part.EhFrame->isNeeded() && Part.EhFrameHdr && 2154 Part.EhFrame->getParent() && Part.EhFrameHdr->getParent()) 2155 AddHdr(PT_GNU_EH_FRAME, Part.EhFrameHdr->getParent()->getPhdrFlags()) 2156 ->add(Part.EhFrameHdr->getParent()); 2157 2158 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2159 // the dynamic linker fill the segment with random data. 2160 if (OutputSection *Cmd = findSection(".openbsd.randomdata", PartNo)) 2161 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 2162 2163 // PT_GNU_STACK is a special section to tell the loader to make the 2164 // pages for the stack non-executable. If you really want an executable 2165 // stack, you can pass -z execstack, but that's not recommended for 2166 // security reasons. 2167 unsigned Perm = PF_R | PF_W; 2168 if (Config->ZExecstack) 2169 Perm |= PF_X; 2170 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 2171 2172 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2173 // is expected to perform W^X violations, such as calling mprotect(2) or 2174 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2175 // OpenBSD. 2176 if (Config->ZWxneeded) 2177 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 2178 2179 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2180 // same alignment. 2181 PhdrEntry *Note = nullptr; 2182 for (OutputSection *Sec : OutputSections) { 2183 if (Sec->Partition != PartNo) 2184 continue; 2185 if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) { 2186 if (!Note || Sec->LMAExpr || Note->LastSec->Alignment != Sec->Alignment) 2187 Note = AddHdr(PT_NOTE, PF_R); 2188 Note->add(Sec); 2189 } else { 2190 Note = nullptr; 2191 } 2192 } 2193 return Ret; 2194 } 2195 2196 template <class ELFT> 2197 void Writer<ELFT>::addPhdrForSection(Partition &Part, unsigned ShType, 2198 unsigned PType, unsigned PFlags) { 2199 unsigned PartNo = Part.getNumber(); 2200 auto I = llvm::find_if(OutputSections, [=](OutputSection *Cmd) { 2201 return Cmd->Partition == PartNo && Cmd->Type == ShType; 2202 }); 2203 if (I == OutputSections.end()) 2204 return; 2205 2206 PhdrEntry *Entry = make<PhdrEntry>(PType, PFlags); 2207 Entry->add(*I); 2208 Part.Phdrs.push_back(Entry); 2209 } 2210 2211 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 2212 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 2213 // linker can set the permissions. 2214 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2215 auto PageAlign = [](OutputSection *Cmd) { 2216 if (Cmd && !Cmd->AddrExpr) 2217 Cmd->AddrExpr = [=] { 2218 return alignTo(Script->getDot(), Config->MaxPageSize); 2219 }; 2220 }; 2221 2222 for (Partition &Part : Partitions) { 2223 for (const PhdrEntry *P : Part.Phdrs) 2224 if (P->p_type == PT_LOAD && P->FirstSec) 2225 PageAlign(P->FirstSec); 2226 2227 for (const PhdrEntry *P : Part.Phdrs) { 2228 if (P->p_type != PT_GNU_RELRO) 2229 continue; 2230 2231 if (P->FirstSec) 2232 PageAlign(P->FirstSec); 2233 2234 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 2235 // have to align it to a page. 2236 auto End = OutputSections.end(); 2237 auto I = llvm::find(OutputSections, P->LastSec); 2238 if (I == End || (I + 1) == End) 2239 continue; 2240 2241 OutputSection *Cmd = (*(I + 1)); 2242 if (needsPtLoad(Cmd)) 2243 PageAlign(Cmd); 2244 } 2245 } 2246 } 2247 2248 // Compute an in-file position for a given section. The file offset must be the 2249 // same with its virtual address modulo the page size, so that the loader can 2250 // load executables without any address adjustment. 2251 static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) { 2252 // File offsets are not significant for .bss sections. By convention, we keep 2253 // section offsets monotonically increasing rather than setting to zero. 2254 if (OS->Type == SHT_NOBITS) 2255 return Off; 2256 2257 // If the section is not in a PT_LOAD, we just have to align it. 2258 if (!OS->PtLoad) 2259 return alignTo(Off, OS->Alignment); 2260 2261 // The first section in a PT_LOAD has to have congruent offset and address 2262 // module the page size. 2263 OutputSection *First = OS->PtLoad->FirstSec; 2264 if (OS == First) { 2265 uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize); 2266 return alignTo(Off, Alignment, OS->Addr); 2267 } 2268 2269 // If two sections share the same PT_LOAD the file offset is calculated 2270 // using this formula: Off2 = Off1 + (VA2 - VA1). 2271 return First->Offset + OS->Addr - First->Addr; 2272 } 2273 2274 // Set an in-file position to a given section and returns the end position of 2275 // the section. 2276 static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) { 2277 Off = computeFileOffset(OS, Off); 2278 OS->Offset = Off; 2279 2280 if (OS->Type == SHT_NOBITS) 2281 return Off; 2282 return Off + OS->Size; 2283 } 2284 2285 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2286 uint64_t Off = 0; 2287 for (OutputSection *Sec : OutputSections) 2288 if (Sec->Flags & SHF_ALLOC) 2289 Off = setFileOffset(Sec, Off); 2290 FileSize = alignTo(Off, Config->Wordsize); 2291 } 2292 2293 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 2294 return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; 2295 } 2296 2297 // Assign file offsets to output sections. 2298 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2299 uint64_t Off = 0; 2300 Off = setFileOffset(Out::ElfHeader, Off); 2301 Off = setFileOffset(Out::ProgramHeaders, Off); 2302 2303 PhdrEntry *LastRX = nullptr; 2304 for (Partition &Part : Partitions) 2305 for (PhdrEntry *P : Part.Phdrs) 2306 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2307 LastRX = P; 2308 2309 for (OutputSection *Sec : OutputSections) { 2310 Off = setFileOffset(Sec, Off); 2311 if (Script->HasSectionsCommand) 2312 continue; 2313 2314 // If this is a last section of the last executable segment and that 2315 // segment is the last loadable segment, align the offset of the 2316 // following section to avoid loading non-segments parts of the file. 2317 if (LastRX && LastRX->LastSec == Sec) 2318 Off = alignTo(Off, Config->CommonPageSize); 2319 } 2320 2321 SectionHeaderOff = alignTo(Off, Config->Wordsize); 2322 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 2323 2324 // Our logic assumes that sections have rising VA within the same segment. 2325 // With use of linker scripts it is possible to violate this rule and get file 2326 // offset overlaps or overflows. That should never happen with a valid script 2327 // which does not move the location counter backwards and usually scripts do 2328 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2329 // kernel, which control segment distribution explicitly and move the counter 2330 // backwards, so we have to allow doing that to support linking them. We 2331 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2332 // we want to prevent file size overflows because it would crash the linker. 2333 for (OutputSection *Sec : OutputSections) { 2334 if (Sec->Type == SHT_NOBITS) 2335 continue; 2336 if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) 2337 error("unable to place section " + Sec->Name + " at file offset " + 2338 rangeToString(Sec->Offset, Sec->Size) + 2339 "; check your linker script for overflows"); 2340 } 2341 } 2342 2343 // Finalize the program headers. We call this function after we assign 2344 // file offsets and VAs to all sections. 2345 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &Part) { 2346 for (PhdrEntry *P : Part.Phdrs) { 2347 OutputSection *First = P->FirstSec; 2348 OutputSection *Last = P->LastSec; 2349 2350 if (First) { 2351 P->p_filesz = Last->Offset - First->Offset; 2352 if (Last->Type != SHT_NOBITS) 2353 P->p_filesz += Last->Size; 2354 2355 P->p_memsz = Last->Addr + Last->Size - First->Addr; 2356 P->p_offset = First->Offset; 2357 P->p_vaddr = First->Addr; 2358 2359 // File offsets in partitions other than the main partition are relative 2360 // to the offset of the ELF headers. Perform that adjustment now. 2361 if (Part.ElfHeader) 2362 P->p_offset -= Part.ElfHeader->getParent()->Offset; 2363 2364 if (!P->HasLMA) 2365 P->p_paddr = First->getLMA(); 2366 } 2367 2368 if (P->p_type == PT_LOAD) { 2369 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 2370 } else if (P->p_type == PT_GNU_RELRO) { 2371 P->p_align = 1; 2372 // The glibc dynamic loader rounds the size down, so we need to round up 2373 // to protect the last page. This is a no-op on FreeBSD which always 2374 // rounds up. 2375 P->p_memsz = alignTo(P->p_memsz, Config->CommonPageSize); 2376 } 2377 } 2378 } 2379 2380 // A helper struct for checkSectionOverlap. 2381 namespace { 2382 struct SectionOffset { 2383 OutputSection *Sec; 2384 uint64_t Offset; 2385 }; 2386 } // namespace 2387 2388 // Check whether sections overlap for a specific address range (file offsets, 2389 // load and virtual adresses). 2390 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections, 2391 bool IsVirtualAddr) { 2392 llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) { 2393 return A.Offset < B.Offset; 2394 }); 2395 2396 // Finding overlap is easy given a vector is sorted by start position. 2397 // If an element starts before the end of the previous element, they overlap. 2398 for (size_t I = 1, End = Sections.size(); I < End; ++I) { 2399 SectionOffset A = Sections[I - 1]; 2400 SectionOffset B = Sections[I]; 2401 if (B.Offset >= A.Offset + A.Sec->Size) 2402 continue; 2403 2404 // If both sections are in OVERLAY we allow the overlapping of virtual 2405 // addresses, because it is what OVERLAY was designed for. 2406 if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay) 2407 continue; 2408 2409 errorOrWarn("section " + A.Sec->Name + " " + Name + 2410 " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name + 2411 " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + 2412 B.Sec->Name + " range is " + 2413 rangeToString(B.Offset, B.Sec->Size)); 2414 } 2415 } 2416 2417 // Check for overlapping sections and address overflows. 2418 // 2419 // In this function we check that none of the output sections have overlapping 2420 // file offsets. For SHF_ALLOC sections we also check that the load address 2421 // ranges and the virtual address ranges don't overlap 2422 template <class ELFT> void Writer<ELFT>::checkSections() { 2423 // First, check that section's VAs fit in available address space for target. 2424 for (OutputSection *OS : OutputSections) 2425 if ((OS->Addr + OS->Size < OS->Addr) || 2426 (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) 2427 errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + 2428 " of size 0x" + utohexstr(OS->Size) + 2429 " exceeds available address space"); 2430 2431 // Check for overlapping file offsets. In this case we need to skip any 2432 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2433 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2434 // binary is specified only add SHF_ALLOC sections are added to the output 2435 // file so we skip any non-allocated sections in that case. 2436 std::vector<SectionOffset> FileOffs; 2437 for (OutputSection *Sec : OutputSections) 2438 if (Sec->Size > 0 && Sec->Type != SHT_NOBITS && 2439 (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) 2440 FileOffs.push_back({Sec, Sec->Offset}); 2441 checkOverlap("file", FileOffs, false); 2442 2443 // When linking with -r there is no need to check for overlapping virtual/load 2444 // addresses since those addresses will only be assigned when the final 2445 // executable/shared object is created. 2446 if (Config->Relocatable) 2447 return; 2448 2449 // Checking for overlapping virtual and load addresses only needs to take 2450 // into account SHF_ALLOC sections since others will not be loaded. 2451 // Furthermore, we also need to skip SHF_TLS sections since these will be 2452 // mapped to other addresses at runtime and can therefore have overlapping 2453 // ranges in the file. 2454 std::vector<SectionOffset> VMAs; 2455 for (OutputSection *Sec : OutputSections) 2456 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2457 VMAs.push_back({Sec, Sec->Addr}); 2458 checkOverlap("virtual address", VMAs, true); 2459 2460 // Finally, check that the load addresses don't overlap. This will usually be 2461 // the same as the virtual addresses but can be different when using a linker 2462 // script with AT(). 2463 std::vector<SectionOffset> LMAs; 2464 for (OutputSection *Sec : OutputSections) 2465 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2466 LMAs.push_back({Sec, Sec->getLMA()}); 2467 checkOverlap("load address", LMAs, false); 2468 } 2469 2470 // The entry point address is chosen in the following ways. 2471 // 2472 // 1. the '-e' entry command-line option; 2473 // 2. the ENTRY(symbol) command in a linker control script; 2474 // 3. the value of the symbol _start, if present; 2475 // 4. the number represented by the entry symbol, if it is a number; 2476 // 5. the address of the first byte of the .text section, if present; 2477 // 6. the address 0. 2478 static uint64_t getEntryAddr() { 2479 // Case 1, 2 or 3 2480 if (Symbol *B = Symtab->find(Config->Entry)) 2481 return B->getVA(); 2482 2483 // Case 4 2484 uint64_t Addr; 2485 if (to_integer(Config->Entry, Addr)) 2486 return Addr; 2487 2488 // Case 5 2489 if (OutputSection *Sec = findSection(".text")) { 2490 if (Config->WarnMissingEntry) 2491 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2492 utohexstr(Sec->Addr)); 2493 return Sec->Addr; 2494 } 2495 2496 // Case 6 2497 if (Config->WarnMissingEntry) 2498 warn("cannot find entry symbol " + Config->Entry + 2499 "; not setting start address"); 2500 return 0; 2501 } 2502 2503 static uint16_t getELFType() { 2504 if (Config->Pic) 2505 return ET_DYN; 2506 if (Config->Relocatable) 2507 return ET_REL; 2508 return ET_EXEC; 2509 } 2510 2511 template <class ELFT> void Writer<ELFT>::writeHeader() { 2512 writeEhdr<ELFT>(Out::BufferStart, *Main); 2513 writePhdrs<ELFT>(Out::BufferStart + sizeof(Elf_Ehdr), *Main); 2514 2515 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Out::BufferStart); 2516 EHdr->e_type = getELFType(); 2517 EHdr->e_entry = getEntryAddr(); 2518 EHdr->e_shoff = SectionHeaderOff; 2519 2520 // Write the section header table. 2521 // 2522 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2523 // and e_shstrndx fields. When the value of one of these fields exceeds 2524 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2525 // use fields in the section header at index 0 to store 2526 // the value. The sentinel values and fields are: 2527 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2528 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2529 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Out::BufferStart + EHdr->e_shoff); 2530 size_t Num = OutputSections.size() + 1; 2531 if (Num >= SHN_LORESERVE) 2532 SHdrs->sh_size = Num; 2533 else 2534 EHdr->e_shnum = Num; 2535 2536 uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex; 2537 if (StrTabIndex >= SHN_LORESERVE) { 2538 SHdrs->sh_link = StrTabIndex; 2539 EHdr->e_shstrndx = SHN_XINDEX; 2540 } else { 2541 EHdr->e_shstrndx = StrTabIndex; 2542 } 2543 2544 for (OutputSection *Sec : OutputSections) 2545 Sec->writeHeaderTo<ELFT>(++SHdrs); 2546 } 2547 2548 // Open a result file. 2549 template <class ELFT> void Writer<ELFT>::openFile() { 2550 uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX; 2551 if (FileSize != size_t(FileSize) || MaxSize < FileSize) { 2552 error("output file too large: " + Twine(FileSize) + " bytes"); 2553 return; 2554 } 2555 2556 unlinkAsync(Config->OutputFile); 2557 unsigned Flags = 0; 2558 if (!Config->Relocatable) 2559 Flags = FileOutputBuffer::F_executable; 2560 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2561 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2562 2563 if (!BufferOrErr) { 2564 error("failed to open " + Config->OutputFile + ": " + 2565 llvm::toString(BufferOrErr.takeError())); 2566 return; 2567 } 2568 Buffer = std::move(*BufferOrErr); 2569 Out::BufferStart = Buffer->getBufferStart(); 2570 } 2571 2572 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2573 for (OutputSection *Sec : OutputSections) 2574 if (Sec->Flags & SHF_ALLOC) 2575 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2576 } 2577 2578 static void fillTrap(uint8_t *I, uint8_t *End) { 2579 for (; I + 4 <= End; I += 4) 2580 memcpy(I, &Target->TrapInstr, 4); 2581 } 2582 2583 // Fill the last page of executable segments with trap instructions 2584 // instead of leaving them as zero. Even though it is not required by any 2585 // standard, it is in general a good thing to do for security reasons. 2586 // 2587 // We'll leave other pages in segments as-is because the rest will be 2588 // overwritten by output sections. 2589 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2590 if (Script->HasSectionsCommand) 2591 return; 2592 2593 for (Partition &Part : Partitions) { 2594 // Fill the last page. 2595 for (PhdrEntry *P : Part.Phdrs) 2596 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2597 fillTrap(Out::BufferStart + alignDown(P->FirstSec->Offset + P->p_filesz, 2598 Config->CommonPageSize), 2599 Out::BufferStart + alignTo(P->FirstSec->Offset + P->p_filesz, 2600 Config->CommonPageSize)); 2601 2602 // Round up the file size of the last segment to the page boundary iff it is 2603 // an executable segment to ensure that other tools don't accidentally 2604 // trim the instruction padding (e.g. when stripping the file). 2605 PhdrEntry *Last = nullptr; 2606 for (PhdrEntry *P : Part.Phdrs) 2607 if (P->p_type == PT_LOAD) 2608 Last = P; 2609 2610 if (Last && (Last->p_flags & PF_X)) 2611 Last->p_memsz = Last->p_filesz = 2612 alignTo(Last->p_filesz, Config->CommonPageSize); 2613 } 2614 } 2615 2616 // Write section contents to a mmap'ed file. 2617 template <class ELFT> void Writer<ELFT>::writeSections() { 2618 // In -r or -emit-relocs mode, write the relocation sections first as in 2619 // ELf_Rel targets we might find out that we need to modify the relocated 2620 // section while doing it. 2621 for (OutputSection *Sec : OutputSections) 2622 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2623 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2624 2625 for (OutputSection *Sec : OutputSections) 2626 if (Sec->Type != SHT_REL && Sec->Type != SHT_RELA) 2627 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2628 } 2629 2630 // Split one uint8 array into small pieces of uint8 arrays. 2631 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr, 2632 size_t ChunkSize) { 2633 std::vector<ArrayRef<uint8_t>> Ret; 2634 while (Arr.size() > ChunkSize) { 2635 Ret.push_back(Arr.take_front(ChunkSize)); 2636 Arr = Arr.drop_front(ChunkSize); 2637 } 2638 if (!Arr.empty()) 2639 Ret.push_back(Arr); 2640 return Ret; 2641 } 2642 2643 // Computes a hash value of Data using a given hash function. 2644 // In order to utilize multiple cores, we first split data into 1MB 2645 // chunks, compute a hash for each chunk, and then compute a hash value 2646 // of the hash values. 2647 static void 2648 computeHash(llvm::MutableArrayRef<uint8_t> HashBuf, 2649 llvm::ArrayRef<uint8_t> Data, 2650 std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) { 2651 std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024); 2652 std::vector<uint8_t> Hashes(Chunks.size() * HashBuf.size()); 2653 2654 // Compute hash values. 2655 parallelForEachN(0, Chunks.size(), [&](size_t I) { 2656 HashFn(Hashes.data() + I * HashBuf.size(), Chunks[I]); 2657 }); 2658 2659 // Write to the final output buffer. 2660 HashFn(HashBuf.data(), Hashes); 2661 } 2662 2663 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2664 if (!Main->BuildId || !Main->BuildId->getParent()) 2665 return; 2666 2667 if (Config->BuildId == BuildIdKind::Hexstring) { 2668 for (Partition &Part : Partitions) 2669 Part.BuildId->writeBuildId(Config->BuildIdVector); 2670 return; 2671 } 2672 2673 // Compute a hash of all sections of the output file. 2674 size_t HashSize = Main->BuildId->HashSize; 2675 std::vector<uint8_t> BuildId(HashSize); 2676 llvm::ArrayRef<uint8_t> Buf{Out::BufferStart, size_t(FileSize)}; 2677 2678 switch (Config->BuildId) { 2679 case BuildIdKind::Fast: 2680 computeHash(BuildId, Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { 2681 write64le(Dest, xxHash64(Arr)); 2682 }); 2683 break; 2684 case BuildIdKind::Md5: 2685 computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef<uint8_t> Arr) { 2686 memcpy(Dest, MD5::hash(Arr).data(), HashSize); 2687 }); 2688 break; 2689 case BuildIdKind::Sha1: 2690 computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef<uint8_t> Arr) { 2691 memcpy(Dest, SHA1::hash(Arr).data(), HashSize); 2692 }); 2693 break; 2694 case BuildIdKind::Uuid: 2695 if (auto EC = llvm::getRandomBytes(BuildId.data(), HashSize)) 2696 error("entropy source failure: " + EC.message()); 2697 break; 2698 default: 2699 llvm_unreachable("unknown BuildIdKind"); 2700 } 2701 for (Partition &Part : Partitions) 2702 Part.BuildId->writeBuildId(BuildId); 2703 } 2704 2705 template void elf::writeResult<ELF32LE>(); 2706 template void elf::writeResult<ELF32BE>(); 2707 template void elf::writeResult<ELF64LE>(); 2708 template void elf::writeResult<ELF64BE>(); 2709