1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "AArch64ErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "Filesystem.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include <climits> 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::support; 34 using namespace llvm::support::endian; 35 36 using namespace lld; 37 using namespace lld::elf; 38 39 namespace { 40 // The writer writes a SymbolTable result to a file. 41 template <class ELFT> class Writer { 42 public: 43 Writer() : Buffer(errorHandler().OutputBuffer) {} 44 typedef typename ELFT::Shdr Elf_Shdr; 45 typedef typename ELFT::Ehdr Elf_Ehdr; 46 typedef typename ELFT::Phdr Elf_Phdr; 47 48 void run(); 49 50 private: 51 void copyLocalSymbols(); 52 void addSectionSymbols(); 53 void forEachRelSec(std::function<void(InputSectionBase &)> Fn); 54 void sortSections(); 55 void resolveShfLinkOrder(); 56 void sortInputSections(); 57 void finalizeSections(); 58 void setReservedSymbolSections(); 59 60 std::vector<PhdrEntry *> createPhdrs(); 61 void removeEmptyPTLoad(); 62 void addPtArmExid(std::vector<PhdrEntry *> &Phdrs); 63 void assignFileOffsets(); 64 void assignFileOffsetsBinary(); 65 void setPhdrs(); 66 void checkSections(); 67 void fixSectionAlignments(); 68 void openFile(); 69 void writeTrapInstr(); 70 void writeHeader(); 71 void writeSections(); 72 void writeSectionsBinary(); 73 void writeBuildId(); 74 75 std::unique_ptr<FileOutputBuffer> &Buffer; 76 77 void addRelIpltSymbols(); 78 void addStartEndSymbols(); 79 void addStartStopSymbols(OutputSection *Sec); 80 uint64_t getEntryAddr(); 81 82 std::vector<PhdrEntry *> Phdrs; 83 84 uint64_t FileSize; 85 uint64_t SectionHeaderOff; 86 87 bool HasGotBaseSym = false; 88 }; 89 } // anonymous namespace 90 91 static bool isSectionPrefix(StringRef Prefix, StringRef Name) { 92 return Name.startswith(Prefix) || Name == Prefix.drop_back(); 93 } 94 95 StringRef elf::getOutputSectionName(const InputSectionBase *S) { 96 if (Config->Relocatable) 97 return S->Name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if (auto *IS = dyn_cast<InputSection>(S)) { 103 if (InputSectionBase *Rel = IS->getRelocatedSection()) { 104 OutputSection *Out = Rel->getOutputSection(); 105 if (S->Type == SHT_RELA) 106 return Saver.save(".rela" + Out->Name); 107 return Saver.save(".rel" + Out->Name); 108 } 109 } 110 111 // This check is for -z keep-text-section-prefix. This option separates text 112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 113 // ".text.exit". 114 // When enabled, this allows identifying the hot code region (.text.hot) in 115 // the final binary which can be selectively mapped to huge pages or mlocked, 116 // for instance. 117 if (Config->ZKeepTextSectionPrefix) 118 for (StringRef V : 119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) { 120 if (isSectionPrefix(V, S->Name)) 121 return V.drop_back(); 122 } 123 124 for (StringRef V : 125 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 126 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 127 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) { 128 if (isSectionPrefix(V, S->Name)) 129 return V.drop_back(); 130 } 131 132 // CommonSection is identified as "COMMON" in linker scripts. 133 // By default, it should go to .bss section. 134 if (S->Name == "COMMON") 135 return ".bss"; 136 137 return S->Name; 138 } 139 140 static bool needsInterpSection() { 141 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 142 Script->needsInterpSection(); 143 } 144 145 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 146 147 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { 148 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 149 if (P->p_type != PT_LOAD) 150 return false; 151 if (!P->FirstSec) 152 return true; 153 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 154 return Size == 0; 155 }); 156 } 157 158 template <class ELFT> static void combineEhFrameSections() { 159 for (InputSectionBase *&S : InputSections) { 160 EhInputSection *ES = dyn_cast<EhInputSection>(S); 161 if (!ES || !ES->Live) 162 continue; 163 164 InX::EhFrame->addSection<ELFT>(ES); 165 S = nullptr; 166 } 167 168 std::vector<InputSectionBase *> &V = InputSections; 169 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 170 } 171 172 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 173 uint64_t Val, uint8_t StOther = STV_HIDDEN, 174 uint8_t Binding = STB_GLOBAL) { 175 Symbol *S = Symtab->find(Name); 176 if (!S || S->isDefined()) 177 return nullptr; 178 Symbol *Sym = Symtab->addRegular(Name, StOther, STT_NOTYPE, Val, 179 /*Size=*/0, Binding, Sec, 180 /*File=*/nullptr); 181 return cast<Defined>(Sym); 182 } 183 184 // The linker is expected to define some symbols depending on 185 // the linking result. This function defines such symbols. 186 void elf::addReservedSymbols() { 187 if (Config->EMachine == EM_MIPS) { 188 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 189 // so that it points to an absolute address which by default is relative 190 // to GOT. Default offset is 0x7ff0. 191 // See "Global Data Symbols" in Chapter 6 in the following document: 192 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 193 ElfSym::MipsGp = Symtab->addAbsolute("_gp", STV_HIDDEN, STB_GLOBAL); 194 195 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 196 // start of function and 'gp' pointer into GOT. 197 if (Symtab->find("_gp_disp")) 198 ElfSym::MipsGpDisp = 199 Symtab->addAbsolute("_gp_disp", STV_HIDDEN, STB_GLOBAL); 200 201 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 202 // pointer. This symbol is used in the code generated by .cpload pseudo-op 203 // in case of using -mno-shared option. 204 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 205 if (Symtab->find("__gnu_local_gp")) 206 ElfSym::MipsLocalGp = 207 Symtab->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_GLOBAL); 208 } 209 210 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 211 // combines the typical ELF GOT with the small data sections. It commonly 212 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 213 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 214 // represent the TOC base which is offset by 0x8000 bytes from the start of 215 // the .got section. 216 ElfSym::GlobalOffsetTable = addOptionalRegular( 217 (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_", 218 Out::ElfHeader, Target->GotBaseSymOff); 219 220 // __ehdr_start is the location of ELF file headers. Note that we define 221 // this symbol unconditionally even when using a linker script, which 222 // differs from the behavior implemented by GNU linker which only define 223 // this symbol if ELF headers are in the memory mapped segment. 224 addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); 225 226 // __executable_start is not documented, but the expectation of at 227 // least the Android libc is that it points to the ELF header. 228 addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); 229 230 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 231 // each DSO. The address of the symbol doesn't matter as long as they are 232 // different in different DSOs, so we chose the start address of the DSO. 233 addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); 234 235 // If linker script do layout we do not need to create any standart symbols. 236 if (Script->HasSectionsCommand) 237 return; 238 239 auto Add = [](StringRef S, int64_t Pos) { 240 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 241 }; 242 243 ElfSym::Bss = Add("__bss_start", 0); 244 ElfSym::End1 = Add("end", -1); 245 ElfSym::End2 = Add("_end", -1); 246 ElfSym::Etext1 = Add("etext", -1); 247 ElfSym::Etext2 = Add("_etext", -1); 248 ElfSym::Edata1 = Add("edata", -1); 249 ElfSym::Edata2 = Add("_edata", -1); 250 } 251 252 static OutputSection *findSection(StringRef Name) { 253 for (BaseCommand *Base : Script->SectionCommands) 254 if (auto *Sec = dyn_cast<OutputSection>(Base)) 255 if (Sec->Name == Name) 256 return Sec; 257 return nullptr; 258 } 259 260 // Initialize Out members. 261 template <class ELFT> static void createSyntheticSections() { 262 // Initialize all pointers with NULL. This is needed because 263 // you can call lld::elf::main more than once as a library. 264 memset(&Out::First, 0, sizeof(Out)); 265 266 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 267 268 InX::DynStrTab = make<StringTableSection>(".dynstr", true); 269 InX::Dynamic = make<DynamicSection<ELFT>>(); 270 if (Config->AndroidPackDynRelocs) { 271 InX::RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 272 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 273 } else { 274 InX::RelaDyn = make<RelocationSection<ELFT>>( 275 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 276 } 277 InX::ShStrTab = make<StringTableSection>(".shstrtab", false); 278 279 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 280 Out::ProgramHeaders->Alignment = Config->Wordsize; 281 282 if (needsInterpSection()) { 283 InX::Interp = createInterpSection(); 284 Add(InX::Interp); 285 } else { 286 InX::Interp = nullptr; 287 } 288 289 if (Config->Strip != StripPolicy::All) { 290 InX::StrTab = make<StringTableSection>(".strtab", false); 291 InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab); 292 } 293 294 if (Config->BuildId != BuildIdKind::None) { 295 InX::BuildId = make<BuildIdSection>(); 296 Add(InX::BuildId); 297 } 298 299 InX::Bss = make<BssSection>(".bss", 0, 1); 300 Add(InX::Bss); 301 302 // If there is a SECTIONS command and a .data.rel.ro section name use name 303 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 304 // This makes sure our relro is contiguous. 305 bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro"); 306 InX::BssRelRo = 307 make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 308 Add(InX::BssRelRo); 309 310 // Add MIPS-specific sections. 311 if (Config->EMachine == EM_MIPS) { 312 if (!Config->Shared && Config->HasDynSymTab) { 313 InX::MipsRldMap = make<MipsRldMapSection>(); 314 Add(InX::MipsRldMap); 315 } 316 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 317 Add(Sec); 318 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 319 Add(Sec); 320 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 321 Add(Sec); 322 } 323 324 if (Config->HasDynSymTab) { 325 InX::DynSymTab = make<SymbolTableSection<ELFT>>(*InX::DynStrTab); 326 Add(InX::DynSymTab); 327 328 In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); 329 Add(In<ELFT>::VerSym); 330 331 if (!Config->VersionDefinitions.empty()) { 332 In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); 333 Add(In<ELFT>::VerDef); 334 } 335 336 In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); 337 Add(In<ELFT>::VerNeed); 338 339 if (Config->GnuHash) { 340 InX::GnuHashTab = make<GnuHashTableSection>(); 341 Add(InX::GnuHashTab); 342 } 343 344 if (Config->SysvHash) { 345 InX::HashTab = make<HashTableSection>(); 346 Add(InX::HashTab); 347 } 348 349 Add(InX::Dynamic); 350 Add(InX::DynStrTab); 351 Add(InX::RelaDyn); 352 } 353 354 // Add .got. MIPS' .got is so different from the other archs, 355 // it has its own class. 356 if (Config->EMachine == EM_MIPS) { 357 InX::MipsGot = make<MipsGotSection>(); 358 Add(InX::MipsGot); 359 } else { 360 InX::Got = make<GotSection>(); 361 Add(InX::Got); 362 } 363 364 InX::GotPlt = make<GotPltSection>(); 365 Add(InX::GotPlt); 366 InX::IgotPlt = make<IgotPltSection>(); 367 Add(InX::IgotPlt); 368 369 if (Config->GdbIndex) { 370 InX::GdbIndex = createGdbIndex<ELFT>(); 371 Add(InX::GdbIndex); 372 } 373 374 // We always need to add rel[a].plt to output if it has entries. 375 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 376 InX::RelaPlt = make<RelocationSection<ELFT>>( 377 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 378 Add(InX::RelaPlt); 379 380 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 381 // that the IRelative relocations are processed last by the dynamic loader. 382 // We cannot place the iplt section in .rel.dyn when Android relocation 383 // packing is enabled because that would cause a section type mismatch. 384 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 385 // we can get the desired behaviour by placing the iplt section in .rel.plt. 386 InX::RelaIplt = make<RelocationSection<ELFT>>( 387 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 388 ? ".rel.dyn" 389 : InX::RelaPlt->Name, 390 false /*Sort*/); 391 Add(InX::RelaIplt); 392 393 InX::Plt = make<PltSection>(false); 394 Add(InX::Plt); 395 InX::Iplt = make<PltSection>(true); 396 Add(InX::Iplt); 397 398 if (!Config->Relocatable) { 399 if (Config->EhFrameHdr) { 400 InX::EhFrameHdr = make<EhFrameHeader>(); 401 Add(InX::EhFrameHdr); 402 } 403 InX::EhFrame = make<EhFrameSection>(); 404 Add(InX::EhFrame); 405 } 406 407 if (InX::SymTab) 408 Add(InX::SymTab); 409 Add(InX::ShStrTab); 410 if (InX::StrTab) 411 Add(InX::StrTab); 412 413 if (Config->EMachine == EM_ARM && !Config->Relocatable) 414 // Add a sentinel to terminate .ARM.exidx. It helps an unwinder 415 // to find the exact address range of the last entry. 416 Add(make<ARMExidxSentinelSection>()); 417 } 418 419 // The main function of the writer. 420 template <class ELFT> void Writer<ELFT>::run() { 421 // Create linker-synthesized sections such as .got or .plt. 422 // Such sections are of type input section. 423 createSyntheticSections<ELFT>(); 424 425 if (!Config->Relocatable) 426 combineEhFrameSections<ELFT>(); 427 428 // We want to process linker script commands. When SECTIONS command 429 // is given we let it create sections. 430 Script->processSectionCommands(); 431 432 // Linker scripts controls how input sections are assigned to output sections. 433 // Input sections that were not handled by scripts are called "orphans", and 434 // they are assigned to output sections by the default rule. Process that. 435 Script->addOrphanSections(); 436 437 if (Config->Discard != DiscardPolicy::All) 438 copyLocalSymbols(); 439 440 if (Config->CopyRelocs) 441 addSectionSymbols(); 442 443 // Now that we have a complete set of output sections. This function 444 // completes section contents. For example, we need to add strings 445 // to the string table, and add entries to .got and .plt. 446 // finalizeSections does that. 447 finalizeSections(); 448 if (errorCount()) 449 return; 450 451 Script->assignAddresses(); 452 453 // If -compressed-debug-sections is specified, we need to compress 454 // .debug_* sections. Do it right now because it changes the size of 455 // output sections. 456 for (OutputSection *Sec : OutputSections) 457 Sec->maybeCompress<ELFT>(); 458 459 Script->allocateHeaders(Phdrs); 460 461 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 462 // 0 sized region. This has to be done late since only after assignAddresses 463 // we know the size of the sections. 464 removeEmptyPTLoad(); 465 466 if (!Config->OFormatBinary) 467 assignFileOffsets(); 468 else 469 assignFileOffsetsBinary(); 470 471 setPhdrs(); 472 473 if (Config->Relocatable) { 474 for (OutputSection *Sec : OutputSections) 475 Sec->Addr = 0; 476 } 477 478 if (Config->CheckSections) 479 checkSections(); 480 481 // It does not make sense try to open the file if we have error already. 482 if (errorCount()) 483 return; 484 // Write the result down to a file. 485 openFile(); 486 if (errorCount()) 487 return; 488 489 if (!Config->OFormatBinary) { 490 writeTrapInstr(); 491 writeHeader(); 492 writeSections(); 493 } else { 494 writeSectionsBinary(); 495 } 496 497 // Backfill .note.gnu.build-id section content. This is done at last 498 // because the content is usually a hash value of the entire output file. 499 writeBuildId(); 500 if (errorCount()) 501 return; 502 503 // Handle -Map and -cref options. 504 writeMapFile(); 505 writeCrossReferenceTable(); 506 if (errorCount()) 507 return; 508 509 if (auto E = Buffer->commit()) 510 error("failed to write to the output file: " + toString(std::move(E))); 511 } 512 513 static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, 514 const Symbol &B) { 515 if (B.isSection()) 516 return false; 517 518 // If sym references a section in a discarded group, don't keep it. 519 if (Sec == &InputSection::Discarded) 520 return false; 521 522 if (Config->Discard == DiscardPolicy::None) 523 return true; 524 525 // In ELF assembly .L symbols are normally discarded by the assembler. 526 // If the assembler fails to do so, the linker discards them if 527 // * --discard-locals is used. 528 // * The symbol is in a SHF_MERGE section, which is normally the reason for 529 // the assembler keeping the .L symbol. 530 if (!SymName.startswith(".L") && !SymName.empty()) 531 return true; 532 533 if (Config->Discard == DiscardPolicy::Locals) 534 return false; 535 536 return !Sec || !(Sec->Flags & SHF_MERGE); 537 } 538 539 static bool includeInSymtab(const Symbol &B) { 540 if (!B.isLocal() && !B.IsUsedInRegularObj) 541 return false; 542 543 if (auto *D = dyn_cast<Defined>(&B)) { 544 // Always include absolute symbols. 545 SectionBase *Sec = D->Section; 546 if (!Sec) 547 return true; 548 Sec = Sec->Repl; 549 // Exclude symbols pointing to garbage-collected sections. 550 if (isa<InputSectionBase>(Sec) && !Sec->Live) 551 return false; 552 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 553 if (!S->getSectionPiece(D->Value)->Live) 554 return false; 555 return true; 556 } 557 return B.Used; 558 } 559 560 // Local symbols are not in the linker's symbol table. This function scans 561 // each object file's symbol table to copy local symbols to the output. 562 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 563 if (!InX::SymTab) 564 return; 565 for (InputFile *File : ObjectFiles) { 566 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 567 for (Symbol *B : F->getLocalSymbols()) { 568 if (!B->isLocal()) 569 fatal(toString(F) + 570 ": broken object: getLocalSymbols returns a non-local symbol"); 571 auto *DR = dyn_cast<Defined>(B); 572 573 // No reason to keep local undefined symbol in symtab. 574 if (!DR) 575 continue; 576 if (!includeInSymtab(*B)) 577 continue; 578 579 SectionBase *Sec = DR->Section; 580 if (!shouldKeepInSymtab(Sec, B->getName(), *B)) 581 continue; 582 InX::SymTab->addSymbol(B); 583 } 584 } 585 } 586 587 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 588 // Create a section symbol for each output section so that we can represent 589 // relocations that point to the section. If we know that no relocation is 590 // referring to a section (that happens if the section is a synthetic one), we 591 // don't create a section symbol for that section. 592 for (BaseCommand *Base : Script->SectionCommands) { 593 auto *Sec = dyn_cast<OutputSection>(Base); 594 if (!Sec) 595 continue; 596 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 597 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 598 return !ISD->Sections.empty(); 599 return false; 600 }); 601 if (I == Sec->SectionCommands.end()) 602 continue; 603 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 604 605 // Relocations are not using REL[A] section symbols. 606 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 607 continue; 608 609 // Unlike other synthetic sections, mergeable output sections contain data 610 // copied from input sections, and there may be a relocation pointing to its 611 // contents if -r or -emit-reloc are given. 612 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 613 continue; 614 615 auto *Sym = 616 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 617 /*Value=*/0, /*Size=*/0, IS); 618 InX::SymTab->addSymbol(Sym); 619 } 620 } 621 622 // Today's loaders have a feature to make segments read-only after 623 // processing dynamic relocations to enhance security. PT_GNU_RELRO 624 // is defined for that. 625 // 626 // This function returns true if a section needs to be put into a 627 // PT_GNU_RELRO segment. 628 static bool isRelroSection(const OutputSection *Sec) { 629 if (!Config->ZRelro) 630 return false; 631 632 uint64_t Flags = Sec->Flags; 633 634 // Non-allocatable or non-writable sections don't need RELRO because 635 // they are not writable or not even mapped to memory in the first place. 636 // RELRO is for sections that are essentially read-only but need to 637 // be writable only at process startup to allow dynamic linker to 638 // apply relocations. 639 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 640 return false; 641 642 // Once initialized, TLS data segments are used as data templates 643 // for a thread-local storage. For each new thread, runtime 644 // allocates memory for a TLS and copy templates there. No thread 645 // are supposed to use templates directly. Thus, it can be in RELRO. 646 if (Flags & SHF_TLS) 647 return true; 648 649 // .init_array, .preinit_array and .fini_array contain pointers to 650 // functions that are executed on process startup or exit. These 651 // pointers are set by the static linker, and they are not expected 652 // to change at runtime. But if you are an attacker, you could do 653 // interesting things by manipulating pointers in .fini_array, for 654 // example. So they are put into RELRO. 655 uint32_t Type = Sec->Type; 656 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 657 Type == SHT_PREINIT_ARRAY) 658 return true; 659 660 // .got contains pointers to external symbols. They are resolved by 661 // the dynamic linker when a module is loaded into memory, and after 662 // that they are not expected to change. So, it can be in RELRO. 663 if (InX::Got && Sec == InX::Got->getParent()) 664 return true; 665 666 if (Sec->Name.equals(".toc")) 667 return true; 668 669 // .got.plt contains pointers to external function symbols. They are 670 // by default resolved lazily, so we usually cannot put it into RELRO. 671 // However, if "-z now" is given, the lazy symbol resolution is 672 // disabled, which enables us to put it into RELRO. 673 if (Sec == InX::GotPlt->getParent()) 674 return Config->ZNow; 675 676 // .dynamic section contains data for the dynamic linker, and 677 // there's no need to write to it at runtime, so it's better to put 678 // it into RELRO. 679 if (Sec == InX::Dynamic->getParent()) 680 return true; 681 682 // Sections with some special names are put into RELRO. This is a 683 // bit unfortunate because section names shouldn't be significant in 684 // ELF in spirit. But in reality many linker features depend on 685 // magic section names. 686 StringRef S = Sec->Name; 687 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 688 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 689 S == ".openbsd.randomdata"; 690 } 691 692 // We compute a rank for each section. The rank indicates where the 693 // section should be placed in the file. Instead of using simple 694 // numbers (0,1,2...), we use a series of flags. One for each decision 695 // point when placing the section. 696 // Using flags has two key properties: 697 // * It is easy to check if a give branch was taken. 698 // * It is easy two see how similar two ranks are (see getRankProximity). 699 enum RankFlags { 700 RF_NOT_ADDR_SET = 1 << 18, 701 RF_NOT_INTERP = 1 << 17, 702 RF_NOT_ALLOC = 1 << 16, 703 RF_WRITE = 1 << 15, 704 RF_EXEC_WRITE = 1 << 14, 705 RF_EXEC = 1 << 13, 706 RF_NON_TLS_BSS = 1 << 12, 707 RF_NON_TLS_BSS_RO = 1 << 11, 708 RF_NOT_TLS = 1 << 10, 709 RF_ALLOC_FIRST = 1 << 9, 710 RF_BSS = 1 << 8, 711 RF_NOTE = 1 << 7, 712 RF_PPC_NOT_TOCBSS = 1 << 6, 713 RF_PPC_TOCL = 1 << 5, 714 RF_PPC_TOC = 1 << 4, 715 RF_PPC_GOT = 1 << 3, 716 RF_PPC_BRANCH_LT = 1 << 2, 717 RF_MIPS_GPREL = 1 << 1, 718 RF_MIPS_NOT_GOT = 1 << 0 719 }; 720 721 static unsigned getSectionRank(const OutputSection *Sec) { 722 unsigned Rank = 0; 723 724 // We want to put section specified by -T option first, so we 725 // can start assigning VA starting from them later. 726 if (Config->SectionStartMap.count(Sec->Name)) 727 return Rank; 728 Rank |= RF_NOT_ADDR_SET; 729 730 // Put .interp first because some loaders want to see that section 731 // on the first page of the executable file when loaded into memory. 732 if (Sec->Name == ".interp") 733 return Rank; 734 Rank |= RF_NOT_INTERP; 735 736 // Allocatable sections go first to reduce the total PT_LOAD size and 737 // so debug info doesn't change addresses in actual code. 738 if (!(Sec->Flags & SHF_ALLOC)) 739 return Rank | RF_NOT_ALLOC; 740 741 // Place .dynsym and .dynstr at the beginning of SHF_ALLOC 742 // sections. We want to do this to mitigate the possibility that 743 // huge .dynsym and .dynstr sections placed between ro-data and text 744 // sections cause relocation overflow. Note: .dynstr has SHT_STRTAB 745 // type and SHF_ALLOC attribute, whereas sections that only have 746 // SHT_STRTAB but without SHF_ALLOC is placed at the end. All "Sec" 747 // reaching here has SHF_ALLOC bit set. 748 if (Sec->Type == SHT_DYNSYM || Sec->Type == SHT_STRTAB) 749 return Rank | RF_ALLOC_FIRST; 750 751 // Sort sections based on their access permission in the following 752 // order: R, RX, RWX, RW. This order is based on the following 753 // considerations: 754 // * Read-only sections come first such that they go in the 755 // PT_LOAD covering the program headers at the start of the file. 756 // * Read-only, executable sections come next, unless the 757 // -no-rosegment option is used. 758 // * Writable, executable sections follow such that .plt on 759 // architectures where it needs to be writable will be placed 760 // between .text and .data. 761 // * Writable sections come last, such that .bss lands at the very 762 // end of the last PT_LOAD. 763 bool IsExec = Sec->Flags & SHF_EXECINSTR; 764 bool IsWrite = Sec->Flags & SHF_WRITE; 765 766 if (IsExec) { 767 if (IsWrite) 768 Rank |= RF_EXEC_WRITE; 769 else if (!Config->SingleRoRx) 770 Rank |= RF_EXEC; 771 } else { 772 if (IsWrite) 773 Rank |= RF_WRITE; 774 } 775 776 // If we got here we know that both A and B are in the same PT_LOAD. 777 778 bool IsTls = Sec->Flags & SHF_TLS; 779 bool IsNoBits = Sec->Type == SHT_NOBITS; 780 781 // The first requirement we have is to put (non-TLS) nobits sections last. The 782 // reason is that the only thing the dynamic linker will see about them is a 783 // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the 784 // PT_LOAD, so that has to correspond to the nobits sections. 785 bool IsNonTlsNoBits = IsNoBits && !IsTls; 786 if (IsNonTlsNoBits) 787 Rank |= RF_NON_TLS_BSS; 788 789 // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo 790 // sections after r/w ones, so that the RelRo sections are contiguous. 791 bool IsRelRo = isRelroSection(Sec); 792 if (IsNonTlsNoBits && !IsRelRo) 793 Rank |= RF_NON_TLS_BSS_RO; 794 if (!IsNonTlsNoBits && IsRelRo) 795 Rank |= RF_NON_TLS_BSS_RO; 796 797 // The TLS initialization block needs to be a single contiguous block in a R/W 798 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 799 // sections. The TLS NOBITS sections are placed here as they don't take up 800 // virtual address space in the PT_LOAD. 801 if (!IsTls) 802 Rank |= RF_NOT_TLS; 803 804 // Within the TLS initialization block, the non-nobits sections need to appear 805 // first. 806 if (IsNoBits) 807 Rank |= RF_BSS; 808 809 // We create a NOTE segment for contiguous .note sections, so make 810 // them contigous if there are more than one .note section with the 811 // same attributes. 812 if (Sec->Type == SHT_NOTE) 813 Rank |= RF_NOTE; 814 815 // Some architectures have additional ordering restrictions for sections 816 // within the same PT_LOAD. 817 if (Config->EMachine == EM_PPC64) { 818 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 819 // that we would like to make sure appear is a specific order to maximize 820 // their coverage by a single signed 16-bit offset from the TOC base 821 // pointer. Conversely, the special .tocbss section should be first among 822 // all SHT_NOBITS sections. This will put it next to the loaded special 823 // PPC64 sections (and, thus, within reach of the TOC base pointer). 824 StringRef Name = Sec->Name; 825 if (Name != ".tocbss") 826 Rank |= RF_PPC_NOT_TOCBSS; 827 828 if (Name == ".toc1") 829 Rank |= RF_PPC_TOCL; 830 831 if (Name == ".toc") 832 Rank |= RF_PPC_TOC; 833 834 if (Name == ".got") 835 Rank |= RF_PPC_GOT; 836 837 if (Name == ".branch_lt") 838 Rank |= RF_PPC_BRANCH_LT; 839 } 840 841 if (Config->EMachine == EM_MIPS) { 842 // All sections with SHF_MIPS_GPREL flag should be grouped together 843 // because data in these sections is addressable with a gp relative address. 844 if (Sec->Flags & SHF_MIPS_GPREL) 845 Rank |= RF_MIPS_GPREL; 846 847 if (Sec->Name != ".got") 848 Rank |= RF_MIPS_NOT_GOT; 849 } 850 851 return Rank; 852 } 853 854 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 855 const OutputSection *A = cast<OutputSection>(ACmd); 856 const OutputSection *B = cast<OutputSection>(BCmd); 857 if (A->SortRank != B->SortRank) 858 return A->SortRank < B->SortRank; 859 if (!(A->SortRank & RF_NOT_ADDR_SET)) 860 return Config->SectionStartMap.lookup(A->Name) < 861 Config->SectionStartMap.lookup(B->Name); 862 return false; 863 } 864 865 void PhdrEntry::add(OutputSection *Sec) { 866 LastSec = Sec; 867 if (!FirstSec) 868 FirstSec = Sec; 869 p_align = std::max(p_align, Sec->Alignment); 870 if (p_type == PT_LOAD) 871 Sec->PtLoad = this; 872 } 873 874 // The beginning and the ending of .rel[a].plt section are marked 875 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 876 // executable. The runtime needs these symbols in order to resolve 877 // all IRELATIVE relocs on startup. For dynamic executables, we don't 878 // need these symbols, since IRELATIVE relocs are resolved through GOT 879 // and PLT. For details, see http://www.airs.com/blog/archives/403. 880 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 881 if (needsInterpSection()) 882 return; 883 StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; 884 addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK); 885 886 S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; 887 ElfSym::RelaIpltEnd = 888 addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK); 889 } 890 891 template <class ELFT> 892 void Writer<ELFT>::forEachRelSec(std::function<void(InputSectionBase &)> Fn) { 893 // Scan all relocations. Each relocation goes through a series 894 // of tests to determine if it needs special treatment, such as 895 // creating GOT, PLT, copy relocations, etc. 896 // Note that relocations for non-alloc sections are directly 897 // processed by InputSection::relocateNonAlloc. 898 for (InputSectionBase *IS : InputSections) 899 if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 900 Fn(*IS); 901 for (EhInputSection *ES : InX::EhFrame->Sections) 902 Fn(*ES); 903 } 904 905 // This function generates assignments for predefined symbols (e.g. _end or 906 // _etext) and inserts them into the commands sequence to be processed at the 907 // appropriate time. This ensures that the value is going to be correct by the 908 // time any references to these symbols are processed and is equivalent to 909 // defining these symbols explicitly in the linker script. 910 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 911 if (ElfSym::GlobalOffsetTable) { 912 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 913 // to the start of the .got or .got.plt section. 914 InputSection *GotSection = InX::GotPlt; 915 if (!Target->GotBaseSymInGotPlt) 916 GotSection = InX::MipsGot ? cast<InputSection>(InX::MipsGot) 917 : cast<InputSection>(InX::Got); 918 ElfSym::GlobalOffsetTable->Section = GotSection; 919 } 920 921 if (ElfSym::RelaIpltEnd) 922 ElfSym::RelaIpltEnd->Value = InX::RelaIplt->getSize(); 923 924 PhdrEntry *Last = nullptr; 925 PhdrEntry *LastRO = nullptr; 926 927 for (PhdrEntry *P : Phdrs) { 928 if (P->p_type != PT_LOAD) 929 continue; 930 Last = P; 931 if (!(P->p_flags & PF_W)) 932 LastRO = P; 933 } 934 935 if (LastRO) { 936 // _etext is the first location after the last read-only loadable segment. 937 if (ElfSym::Etext1) 938 ElfSym::Etext1->Section = LastRO->LastSec; 939 if (ElfSym::Etext2) 940 ElfSym::Etext2->Section = LastRO->LastSec; 941 } 942 943 if (Last) { 944 // _edata points to the end of the last mapped initialized section. 945 OutputSection *Edata = nullptr; 946 for (OutputSection *OS : OutputSections) { 947 if (OS->Type != SHT_NOBITS) 948 Edata = OS; 949 if (OS == Last->LastSec) 950 break; 951 } 952 953 if (ElfSym::Edata1) 954 ElfSym::Edata1->Section = Edata; 955 if (ElfSym::Edata2) 956 ElfSym::Edata2->Section = Edata; 957 958 // _end is the first location after the uninitialized data region. 959 if (ElfSym::End1) 960 ElfSym::End1->Section = Last->LastSec; 961 if (ElfSym::End2) 962 ElfSym::End2->Section = Last->LastSec; 963 } 964 965 if (ElfSym::Bss) 966 ElfSym::Bss->Section = findSection(".bss"); 967 968 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 969 // be equal to the _gp symbol's value. 970 if (ElfSym::MipsGp) { 971 // Find GP-relative section with the lowest address 972 // and use this address to calculate default _gp value. 973 for (OutputSection *OS : OutputSections) { 974 if (OS->Flags & SHF_MIPS_GPREL) { 975 ElfSym::MipsGp->Section = OS; 976 ElfSym::MipsGp->Value = 0x7ff0; 977 break; 978 } 979 } 980 } 981 } 982 983 // We want to find how similar two ranks are. 984 // The more branches in getSectionRank that match, the more similar they are. 985 // Since each branch corresponds to a bit flag, we can just use 986 // countLeadingZeros. 987 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 988 return countLeadingZeros(A->SortRank ^ B->SortRank); 989 } 990 991 static int getRankProximity(OutputSection *A, BaseCommand *B) { 992 if (auto *Sec = dyn_cast<OutputSection>(B)) 993 return getRankProximityAux(A, Sec); 994 return -1; 995 } 996 997 // When placing orphan sections, we want to place them after symbol assignments 998 // so that an orphan after 999 // begin_foo = .; 1000 // foo : { *(foo) } 1001 // end_foo = .; 1002 // doesn't break the intended meaning of the begin/end symbols. 1003 // We don't want to go over sections since findOrphanPos is the 1004 // one in charge of deciding the order of the sections. 1005 // We don't want to go over changes to '.', since doing so in 1006 // rx_sec : { *(rx_sec) } 1007 // . = ALIGN(0x1000); 1008 // /* The RW PT_LOAD starts here*/ 1009 // rw_sec : { *(rw_sec) } 1010 // would mean that the RW PT_LOAD would become unaligned. 1011 static bool shouldSkip(BaseCommand *Cmd) { 1012 if (isa<OutputSection>(Cmd)) 1013 return false; 1014 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 1015 return Assign->Name != "."; 1016 return true; 1017 } 1018 1019 // We want to place orphan sections so that they share as much 1020 // characteristics with their neighbors as possible. For example, if 1021 // both are rw, or both are tls. 1022 template <typename ELFT> 1023 static std::vector<BaseCommand *>::iterator 1024 findOrphanPos(std::vector<BaseCommand *>::iterator B, 1025 std::vector<BaseCommand *>::iterator E) { 1026 OutputSection *Sec = cast<OutputSection>(*E); 1027 1028 // Find the first element that has as close a rank as possible. 1029 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 1030 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 1031 }); 1032 if (I == E) 1033 return E; 1034 1035 // Consider all existing sections with the same proximity. 1036 int Proximity = getRankProximity(Sec, *I); 1037 for (; I != E; ++I) { 1038 auto *CurSec = dyn_cast<OutputSection>(*I); 1039 if (!CurSec) 1040 continue; 1041 if (getRankProximity(Sec, CurSec) != Proximity || 1042 Sec->SortRank < CurSec->SortRank) 1043 break; 1044 } 1045 1046 auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); }; 1047 auto J = std::find_if(llvm::make_reverse_iterator(I), 1048 llvm::make_reverse_iterator(B), IsOutputSec); 1049 I = J.base(); 1050 1051 // As a special case, if the orphan section is the last section, put 1052 // it at the very end, past any other commands. 1053 // This matches bfd's behavior and is convenient when the linker script fully 1054 // specifies the start of the file, but doesn't care about the end (the non 1055 // alloc sections for example). 1056 auto NextSec = std::find_if(I, E, IsOutputSec); 1057 if (NextSec == E) 1058 return E; 1059 1060 while (I != E && shouldSkip(*I)) 1061 ++I; 1062 return I; 1063 } 1064 1065 // Builds section order for handling --symbol-ordering-file. 1066 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1067 DenseMap<const InputSectionBase *, int> SectionOrder; 1068 // Use the rarely used option -call-graph-ordering-file to sort sections. 1069 if (!Config->CallGraphProfile.empty()) 1070 return computeCallGraphProfileOrder(); 1071 1072 if (Config->SymbolOrderingFile.empty()) 1073 return SectionOrder; 1074 1075 struct SymbolOrderEntry { 1076 int Priority; 1077 bool Present; 1078 }; 1079 1080 // Build a map from symbols to their priorities. Symbols that didn't 1081 // appear in the symbol ordering file have the lowest priority 0. 1082 // All explicitly mentioned symbols have negative (higher) priorities. 1083 DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; 1084 int Priority = -Config->SymbolOrderingFile.size(); 1085 for (StringRef S : Config->SymbolOrderingFile) 1086 SymbolOrder.insert({S, {Priority++, false}}); 1087 1088 // Build a map from sections to their priorities. 1089 auto AddSym = [&](Symbol &Sym) { 1090 auto It = SymbolOrder.find(Sym.getName()); 1091 if (It == SymbolOrder.end()) 1092 return; 1093 SymbolOrderEntry &Ent = It->second; 1094 Ent.Present = true; 1095 1096 warnUnorderableSymbol(&Sym); 1097 1098 if (auto *D = dyn_cast<Defined>(&Sym)) { 1099 if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { 1100 int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; 1101 Priority = std::min(Priority, Ent.Priority); 1102 } 1103 } 1104 }; 1105 // We want both global and local symbols. We get the global ones from the 1106 // symbol table and iterate the object files for the local ones. 1107 for (Symbol *Sym : Symtab->getSymbols()) 1108 if (!Sym->isLazy()) 1109 AddSym(*Sym); 1110 for (InputFile *File : ObjectFiles) 1111 for (Symbol *Sym : File->getSymbols()) 1112 if (Sym->isLocal()) 1113 AddSym(*Sym); 1114 1115 if (Config->WarnSymbolOrdering) 1116 for (auto OrderEntry : SymbolOrder) 1117 if (!OrderEntry.second.Present) 1118 warn("symbol ordering file: no such symbol: " + OrderEntry.first); 1119 1120 return SectionOrder; 1121 } 1122 1123 // Sorts the sections in ISD according to the provided section order. 1124 static void 1125 sortISDBySectionOrder(InputSectionDescription *ISD, 1126 const DenseMap<const InputSectionBase *, int> &Order) { 1127 std::vector<InputSection *> UnorderedSections; 1128 std::vector<std::pair<InputSection *, int>> OrderedSections; 1129 uint64_t UnorderedSize = 0; 1130 1131 for (InputSection *IS : ISD->Sections) { 1132 auto I = Order.find(IS); 1133 if (I == Order.end()) { 1134 UnorderedSections.push_back(IS); 1135 UnorderedSize += IS->getSize(); 1136 continue; 1137 } 1138 OrderedSections.push_back({IS, I->second}); 1139 } 1140 llvm::sort( 1141 OrderedSections.begin(), OrderedSections.end(), 1142 [&](std::pair<InputSection *, int> A, std::pair<InputSection *, int> B) { 1143 return A.second < B.second; 1144 }); 1145 1146 // Find an insertion point for the ordered section list in the unordered 1147 // section list. On targets with limited-range branches, this is the mid-point 1148 // of the unordered section list. This decreases the likelihood that a range 1149 // extension thunk will be needed to enter or exit the ordered region. If the 1150 // ordered section list is a list of hot functions, we can generally expect 1151 // the ordered functions to be called more often than the unordered functions, 1152 // making it more likely that any particular call will be within range, and 1153 // therefore reducing the number of thunks required. 1154 // 1155 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1156 // If the layout is: 1157 // 1158 // 8MB hot 1159 // 32MB cold 1160 // 1161 // only the first 8-16MB of the cold code (depending on which hot function it 1162 // is actually calling) can call the hot code without a range extension thunk. 1163 // However, if we use this layout: 1164 // 1165 // 16MB cold 1166 // 8MB hot 1167 // 16MB cold 1168 // 1169 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1170 // of the second block of cold code can call the hot code without a thunk. So 1171 // we effectively double the amount of code that could potentially call into 1172 // the hot code without a thunk. 1173 size_t InsPt = 0; 1174 if (Target->ThunkSectionSpacing && !OrderedSections.empty()) { 1175 uint64_t UnorderedPos = 0; 1176 for (; InsPt != UnorderedSections.size(); ++InsPt) { 1177 UnorderedPos += UnorderedSections[InsPt]->getSize(); 1178 if (UnorderedPos > UnorderedSize / 2) 1179 break; 1180 } 1181 } 1182 1183 ISD->Sections.clear(); 1184 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) 1185 ISD->Sections.push_back(IS); 1186 for (std::pair<InputSection *, int> P : OrderedSections) 1187 ISD->Sections.push_back(P.first); 1188 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) 1189 ISD->Sections.push_back(IS); 1190 } 1191 1192 static void sortSection(OutputSection *Sec, 1193 const DenseMap<const InputSectionBase *, int> &Order) { 1194 StringRef Name = Sec->Name; 1195 1196 // Sort input sections by section name suffixes for 1197 // __attribute__((init_priority(N))). 1198 if (Name == ".init_array" || Name == ".fini_array") { 1199 if (!Script->HasSectionsCommand) 1200 Sec->sortInitFini(); 1201 return; 1202 } 1203 1204 // Sort input sections by the special rule for .ctors and .dtors. 1205 if (Name == ".ctors" || Name == ".dtors") { 1206 if (!Script->HasSectionsCommand) 1207 Sec->sortCtorsDtors(); 1208 return; 1209 } 1210 1211 // Never sort these. 1212 if (Name == ".init" || Name == ".fini") 1213 return; 1214 1215 // Sort input sections by priority using the list provided 1216 // by --symbol-ordering-file. 1217 if (!Order.empty()) 1218 for (BaseCommand *B : Sec->SectionCommands) 1219 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1220 sortISDBySectionOrder(ISD, Order); 1221 } 1222 1223 // If no layout was provided by linker script, we want to apply default 1224 // sorting for special input sections. This also handles --symbol-ordering-file. 1225 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1226 // Build the order once since it is expensive. 1227 DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); 1228 for (BaseCommand *Base : Script->SectionCommands) 1229 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1230 sortSection(Sec, Order); 1231 } 1232 1233 template <class ELFT> void Writer<ELFT>::sortSections() { 1234 Script->adjustSectionsBeforeSorting(); 1235 1236 // Don't sort if using -r. It is not necessary and we want to preserve the 1237 // relative order for SHF_LINK_ORDER sections. 1238 if (Config->Relocatable) 1239 return; 1240 1241 sortInputSections(); 1242 1243 for (BaseCommand *Base : Script->SectionCommands) { 1244 auto *OS = dyn_cast<OutputSection>(Base); 1245 if (!OS) 1246 continue; 1247 OS->SortRank = getSectionRank(OS); 1248 1249 // We want to assign rude approximation values to OutSecOff fields 1250 // to know the relative order of the input sections. We use it for 1251 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1252 uint64_t I = 0; 1253 for (InputSection *Sec : getInputSections(OS)) 1254 Sec->OutSecOff = I++; 1255 } 1256 1257 if (!Script->HasSectionsCommand) { 1258 // We know that all the OutputSections are contiguous in this case. 1259 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1260 std::stable_sort( 1261 llvm::find_if(Script->SectionCommands, IsSection), 1262 llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), 1263 compareSections); 1264 return; 1265 } 1266 1267 // Orphan sections are sections present in the input files which are 1268 // not explicitly placed into the output file by the linker script. 1269 // 1270 // The sections in the linker script are already in the correct 1271 // order. We have to figuere out where to insert the orphan 1272 // sections. 1273 // 1274 // The order of the sections in the script is arbitrary and may not agree with 1275 // compareSections. This means that we cannot easily define a strict weak 1276 // ordering. To see why, consider a comparison of a section in the script and 1277 // one not in the script. We have a two simple options: 1278 // * Make them equivalent (a is not less than b, and b is not less than a). 1279 // The problem is then that equivalence has to be transitive and we can 1280 // have sections a, b and c with only b in a script and a less than c 1281 // which breaks this property. 1282 // * Use compareSectionsNonScript. Given that the script order doesn't have 1283 // to match, we can end up with sections a, b, c, d where b and c are in the 1284 // script and c is compareSectionsNonScript less than b. In which case d 1285 // can be equivalent to c, a to b and d < a. As a concrete example: 1286 // .a (rx) # not in script 1287 // .b (rx) # in script 1288 // .c (ro) # in script 1289 // .d (ro) # not in script 1290 // 1291 // The way we define an order then is: 1292 // * Sort only the orphan sections. They are in the end right now. 1293 // * Move each orphan section to its preferred position. We try 1294 // to put each section in the last position where it can share 1295 // a PT_LOAD. 1296 // 1297 // There is some ambiguity as to where exactly a new entry should be 1298 // inserted, because Commands contains not only output section 1299 // commands but also other types of commands such as symbol assignment 1300 // expressions. There's no correct answer here due to the lack of the 1301 // formal specification of the linker script. We use heuristics to 1302 // determine whether a new output command should be added before or 1303 // after another commands. For the details, look at shouldSkip 1304 // function. 1305 1306 auto I = Script->SectionCommands.begin(); 1307 auto E = Script->SectionCommands.end(); 1308 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1309 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1310 return Sec->SectionIndex == UINT32_MAX; 1311 return false; 1312 }); 1313 1314 // Sort the orphan sections. 1315 std::stable_sort(NonScriptI, E, compareSections); 1316 1317 // As a horrible special case, skip the first . assignment if it is before any 1318 // section. We do this because it is common to set a load address by starting 1319 // the script with ". = 0xabcd" and the expectation is that every section is 1320 // after that. 1321 auto FirstSectionOrDotAssignment = 1322 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1323 if (FirstSectionOrDotAssignment != E && 1324 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1325 ++FirstSectionOrDotAssignment; 1326 I = FirstSectionOrDotAssignment; 1327 1328 while (NonScriptI != E) { 1329 auto Pos = findOrphanPos<ELFT>(I, NonScriptI); 1330 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1331 1332 // As an optimization, find all sections with the same sort rank 1333 // and insert them with one rotate. 1334 unsigned Rank = Orphan->SortRank; 1335 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1336 return cast<OutputSection>(Cmd)->SortRank != Rank; 1337 }); 1338 std::rotate(Pos, NonScriptI, End); 1339 NonScriptI = End; 1340 } 1341 1342 Script->adjustSectionsAfterSorting(); 1343 } 1344 1345 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1346 // Synthetic, i. e. a sentinel section, should go last. 1347 if (A->kind() == InputSectionBase::Synthetic || 1348 B->kind() == InputSectionBase::Synthetic) 1349 return A->kind() != InputSectionBase::Synthetic; 1350 InputSection *LA = A->getLinkOrderDep(); 1351 InputSection *LB = B->getLinkOrderDep(); 1352 OutputSection *AOut = LA->getParent(); 1353 OutputSection *BOut = LB->getParent(); 1354 if (AOut != BOut) 1355 return AOut->SectionIndex < BOut->SectionIndex; 1356 return LA->OutSecOff < LB->OutSecOff; 1357 } 1358 1359 // This function is used by the --merge-exidx-entries to detect duplicate 1360 // .ARM.exidx sections. It is Arm only. 1361 // 1362 // The .ARM.exidx section is of the form: 1363 // | PREL31 offset to function | Unwind instructions for function | 1364 // where the unwind instructions are either a small number of unwind 1365 // instructions inlined into the table entry, the special CANT_UNWIND value of 1366 // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind 1367 // instructions. 1368 // 1369 // We return true if all the unwind instructions in the .ARM.exidx entries of 1370 // Cur can be merged into the last entry of Prev. 1371 static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) { 1372 1373 // References to .ARM.Extab Sections have bit 31 clear and are not the 1374 // special EXIDX_CANTUNWIND bit-pattern. 1375 auto IsExtabRef = [](uint32_t Unwind) { 1376 return (Unwind & 0x80000000) == 0 && Unwind != 0x1; 1377 }; 1378 1379 struct ExidxEntry { 1380 ulittle32_t Fn; 1381 ulittle32_t Unwind; 1382 }; 1383 1384 // Get the last table Entry from the previous .ARM.exidx section. 1385 const ExidxEntry &PrevEntry = *reinterpret_cast<const ExidxEntry *>( 1386 Prev->Data.data() + Prev->getSize() - sizeof(ExidxEntry)); 1387 if (IsExtabRef(PrevEntry.Unwind)) 1388 return false; 1389 1390 // We consider the unwind instructions of an .ARM.exidx table entry 1391 // a duplicate if the previous unwind instructions if: 1392 // - Both are the special EXIDX_CANTUNWIND. 1393 // - Both are the same inline unwind instructions. 1394 // We do not attempt to follow and check links into .ARM.extab tables as 1395 // consecutive identical entries are rare and the effort to check that they 1396 // are identical is high. 1397 1398 if (isa<SyntheticSection>(Cur)) 1399 // Exidx sentinel section has implicit EXIDX_CANTUNWIND; 1400 return PrevEntry.Unwind == 0x1; 1401 1402 ArrayRef<const ExidxEntry> Entries( 1403 reinterpret_cast<const ExidxEntry *>(Cur->Data.data()), 1404 Cur->getSize() / sizeof(ExidxEntry)); 1405 for (const ExidxEntry &Entry : Entries) 1406 if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind) 1407 return false; 1408 // All table entries in this .ARM.exidx Section can be merged into the 1409 // previous Section. 1410 return true; 1411 } 1412 1413 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1414 for (OutputSection *Sec : OutputSections) { 1415 if (!(Sec->Flags & SHF_LINK_ORDER)) 1416 continue; 1417 1418 // Link order may be distributed across several InputSectionDescriptions 1419 // but sort must consider them all at once. 1420 std::vector<InputSection **> ScriptSections; 1421 std::vector<InputSection *> Sections; 1422 for (BaseCommand *Base : Sec->SectionCommands) { 1423 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1424 for (InputSection *&IS : ISD->Sections) { 1425 ScriptSections.push_back(&IS); 1426 Sections.push_back(IS); 1427 } 1428 } 1429 } 1430 std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); 1431 1432 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1433 Sec->Type == SHT_ARM_EXIDX) { 1434 1435 if (!Sections.empty() && isa<ARMExidxSentinelSection>(Sections.back())) { 1436 assert(Sections.size() >= 2 && 1437 "We should create a sentinel section only if there are " 1438 "alive regular exidx sections."); 1439 // The last executable section is required to fill the sentinel. 1440 // Remember it here so that we don't have to find it again. 1441 auto *Sentinel = cast<ARMExidxSentinelSection>(Sections.back()); 1442 Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep(); 1443 } 1444 1445 if (Config->MergeArmExidx) { 1446 // The EHABI for the Arm Architecture permits consecutive identical 1447 // table entries to be merged. We use a simple implementation that 1448 // removes a .ARM.exidx Input Section if it can be merged into the 1449 // previous one. This does not require any rewriting of InputSection 1450 // contents but misses opportunities for fine grained deduplication 1451 // where only a subset of the InputSection contents can be merged. 1452 int Cur = 1; 1453 int Prev = 0; 1454 // The last one is a sentinel entry which should not be removed. 1455 int N = Sections.size() - 1; 1456 while (Cur < N) { 1457 if (isDuplicateArmExidxSec(Sections[Prev], Sections[Cur])) 1458 Sections[Cur] = nullptr; 1459 else 1460 Prev = Cur; 1461 ++Cur; 1462 } 1463 } 1464 } 1465 1466 for (int I = 0, N = Sections.size(); I < N; ++I) 1467 *ScriptSections[I] = Sections[I]; 1468 1469 // Remove the Sections we marked as duplicate earlier. 1470 for (BaseCommand *Base : Sec->SectionCommands) 1471 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 1472 llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; }); 1473 } 1474 } 1475 1476 static void applySynthetic(const std::vector<SyntheticSection *> &Sections, 1477 std::function<void(SyntheticSection *)> Fn) { 1478 for (SyntheticSection *SS : Sections) 1479 if (SS && SS->getParent() && !SS->empty()) 1480 Fn(SS); 1481 } 1482 1483 // In order to allow users to manipulate linker-synthesized sections, 1484 // we had to add synthetic sections to the input section list early, 1485 // even before we make decisions whether they are needed. This allows 1486 // users to write scripts like this: ".mygot : { .got }". 1487 // 1488 // Doing it has an unintended side effects. If it turns out that we 1489 // don't need a .got (for example) at all because there's no 1490 // relocation that needs a .got, we don't want to emit .got. 1491 // 1492 // To deal with the above problem, this function is called after 1493 // scanRelocations is called to remove synthetic sections that turn 1494 // out to be empty. 1495 static void removeUnusedSyntheticSections() { 1496 // All input synthetic sections that can be empty are placed after 1497 // all regular ones. We iterate over them all and exit at first 1498 // non-synthetic. 1499 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1500 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1501 if (!SS) 1502 return; 1503 OutputSection *OS = SS->getParent(); 1504 if (!OS || !SS->empty()) 1505 continue; 1506 1507 // If we reach here, then SS is an unused synthetic section and we want to 1508 // remove it from corresponding input section description of output section. 1509 for (BaseCommand *B : OS->SectionCommands) 1510 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1511 llvm::erase_if(ISD->Sections, 1512 [=](InputSection *IS) { return IS == SS; }); 1513 } 1514 } 1515 1516 // Returns true if a symbol can be replaced at load-time by a symbol 1517 // with the same name defined in other ELF executable or DSO. 1518 static bool computeIsPreemptible(const Symbol &B) { 1519 assert(!B.isLocal()); 1520 // Only symbols that appear in dynsym can be preempted. 1521 if (!B.includeInDynsym()) 1522 return false; 1523 1524 // Only default visibility symbols can be preempted. 1525 if (B.Visibility != STV_DEFAULT) 1526 return false; 1527 1528 // At this point copy relocations have not been created yet, so any 1529 // symbol that is not defined locally is preemptible. 1530 if (!B.isDefined()) 1531 return true; 1532 1533 // If we have a dynamic list it specifies which local symbols are preemptible. 1534 if (Config->HasDynamicList) 1535 return false; 1536 1537 if (!Config->Shared) 1538 return false; 1539 1540 // -Bsymbolic means that definitions are not preempted. 1541 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1542 return false; 1543 return true; 1544 } 1545 1546 // Create output section objects and add them to OutputSections. 1547 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1548 Out::DebugInfo = findSection(".debug_info"); 1549 Out::PreinitArray = findSection(".preinit_array"); 1550 Out::InitArray = findSection(".init_array"); 1551 Out::FiniArray = findSection(".fini_array"); 1552 1553 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1554 // symbols for sections, so that the runtime can get the start and end 1555 // addresses of each section by section name. Add such symbols. 1556 if (!Config->Relocatable) { 1557 addStartEndSymbols(); 1558 for (BaseCommand *Base : Script->SectionCommands) 1559 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1560 addStartStopSymbols(Sec); 1561 } 1562 1563 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1564 // It should be okay as no one seems to care about the type. 1565 // Even the author of gold doesn't remember why gold behaves that way. 1566 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1567 if (InX::DynSymTab) 1568 Symtab->addRegular("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/, 1569 /*Size=*/0, STB_WEAK, InX::Dynamic, 1570 /*File=*/nullptr); 1571 1572 // Define __rel[a]_iplt_{start,end} symbols if needed. 1573 addRelIpltSymbols(); 1574 1575 // This responsible for splitting up .eh_frame section into 1576 // pieces. The relocation scan uses those pieces, so this has to be 1577 // earlier. 1578 applySynthetic({InX::EhFrame}, 1579 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1580 1581 for (Symbol *S : Symtab->getSymbols()) 1582 S->IsPreemptible |= computeIsPreemptible(*S); 1583 1584 // Scan relocations. This must be done after every symbol is declared so that 1585 // we can correctly decide if a dynamic relocation is needed. 1586 if (!Config->Relocatable) 1587 forEachRelSec(scanRelocations<ELFT>); 1588 1589 if (InX::Plt && !InX::Plt->empty()) 1590 InX::Plt->addSymbols(); 1591 if (InX::Iplt && !InX::Iplt->empty()) 1592 InX::Iplt->addSymbols(); 1593 1594 // Now that we have defined all possible global symbols including linker- 1595 // synthesized ones. Visit all symbols to give the finishing touches. 1596 for (Symbol *Sym : Symtab->getSymbols()) { 1597 if (!includeInSymtab(*Sym)) 1598 continue; 1599 if (InX::SymTab) 1600 InX::SymTab->addSymbol(Sym); 1601 1602 if (InX::DynSymTab && Sym->includeInDynsym()) { 1603 InX::DynSymTab->addSymbol(Sym); 1604 if (auto *File = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File)) 1605 if (File->IsNeeded && !Sym->isUndefined()) 1606 In<ELFT>::VerNeed->addSymbol(Sym); 1607 } 1608 } 1609 1610 // Do not proceed if there was an undefined symbol. 1611 if (errorCount()) 1612 return; 1613 1614 removeUnusedSyntheticSections(); 1615 1616 sortSections(); 1617 1618 // Now that we have the final list, create a list of all the 1619 // OutputSections for convenience. 1620 for (BaseCommand *Base : Script->SectionCommands) 1621 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1622 OutputSections.push_back(Sec); 1623 1624 // Prefer command line supplied address over other constraints. 1625 for (OutputSection *Sec : OutputSections) { 1626 auto I = Config->SectionStartMap.find(Sec->Name); 1627 if (I != Config->SectionStartMap.end()) 1628 Sec->AddrExpr = [=] { return I->second; }; 1629 } 1630 1631 // This is a bit of a hack. A value of 0 means undef, so we set it 1632 // to 1 to make __ehdr_start defined. The section number is not 1633 // particularly relevant. 1634 Out::ElfHeader->SectionIndex = 1; 1635 1636 unsigned I = 1; 1637 for (OutputSection *Sec : OutputSections) { 1638 Sec->SectionIndex = I++; 1639 Sec->ShName = InX::ShStrTab->addString(Sec->Name); 1640 } 1641 1642 // Binary and relocatable output does not have PHDRS. 1643 // The headers have to be created before finalize as that can influence the 1644 // image base and the dynamic section on mips includes the image base. 1645 if (!Config->Relocatable && !Config->OFormatBinary) { 1646 Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); 1647 addPtArmExid(Phdrs); 1648 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); 1649 } 1650 1651 // Some symbols are defined in term of program headers. Now that we 1652 // have the headers, we can find out which sections they point to. 1653 setReservedSymbolSections(); 1654 1655 // Dynamic section must be the last one in this list and dynamic 1656 // symbol table section (DynSymTab) must be the first one. 1657 applySynthetic( 1658 {InX::DynSymTab, InX::Bss, InX::BssRelRo, InX::GnuHashTab, 1659 InX::HashTab, InX::SymTab, InX::ShStrTab, InX::StrTab, 1660 In<ELFT>::VerDef, InX::DynStrTab, InX::Got, InX::MipsGot, 1661 InX::IgotPlt, InX::GotPlt, InX::RelaDyn, InX::RelaIplt, 1662 InX::RelaPlt, InX::Plt, InX::Iplt, InX::EhFrameHdr, 1663 In<ELFT>::VerSym, In<ELFT>::VerNeed, InX::Dynamic}, 1664 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1665 1666 if (!Script->HasSectionsCommand && !Config->Relocatable) 1667 fixSectionAlignments(); 1668 1669 // After link order processing .ARM.exidx sections can be deduplicated, which 1670 // needs to be resolved before any other address dependent operation. 1671 resolveShfLinkOrder(); 1672 1673 // Some architectures need to generate content that depends on the address 1674 // of InputSections. For example some architectures use small displacements 1675 // for jump instructions that is the linker's responsibility for creating 1676 // range extension thunks for. As the generation of the content may also 1677 // alter InputSection addresses we must converge to a fixed point. 1678 if (Target->NeedsThunks || Config->AndroidPackDynRelocs) { 1679 ThunkCreator TC; 1680 AArch64Err843419Patcher A64P; 1681 bool Changed; 1682 do { 1683 Script->assignAddresses(); 1684 Changed = false; 1685 if (Target->NeedsThunks) 1686 Changed |= TC.createThunks(OutputSections); 1687 if (Config->FixCortexA53Errata843419) { 1688 if (Changed) 1689 Script->assignAddresses(); 1690 Changed |= A64P.createFixes(); 1691 } 1692 if (InX::MipsGot) 1693 InX::MipsGot->updateAllocSize(); 1694 Changed |= InX::RelaDyn->updateAllocSize(); 1695 } while (Changed); 1696 } 1697 1698 // createThunks may have added local symbols to the static symbol table 1699 applySynthetic({InX::SymTab}, 1700 [](SyntheticSection *SS) { SS->postThunkContents(); }); 1701 1702 // Fill other section headers. The dynamic table is finalized 1703 // at the end because some tags like RELSZ depend on result 1704 // of finalizing other sections. 1705 for (OutputSection *Sec : OutputSections) 1706 Sec->finalize<ELFT>(); 1707 } 1708 1709 // The linker is expected to define SECNAME_start and SECNAME_end 1710 // symbols for a few sections. This function defines them. 1711 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1712 // If a section does not exist, there's ambiguity as to how we 1713 // define _start and _end symbols for an init/fini section. Since 1714 // the loader assume that the symbols are always defined, we need to 1715 // always define them. But what value? The loader iterates over all 1716 // pointers between _start and _end to run global ctors/dtors, so if 1717 // the section is empty, their symbol values don't actually matter 1718 // as long as _start and _end point to the same location. 1719 // 1720 // That said, we don't want to set the symbols to 0 (which is 1721 // probably the simplest value) because that could cause some 1722 // program to fail to link due to relocation overflow, if their 1723 // program text is above 2 GiB. We use the address of the .text 1724 // section instead to prevent that failure. 1725 OutputSection *Default = findSection(".text"); 1726 if (!Default) 1727 Default = Out::ElfHeader; 1728 auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) { 1729 if (OS) { 1730 addOptionalRegular(Start, OS, 0); 1731 addOptionalRegular(End, OS, -1); 1732 } else { 1733 addOptionalRegular(Start, Default, 0); 1734 addOptionalRegular(End, Default, 0); 1735 } 1736 }; 1737 1738 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1739 Define("__init_array_start", "__init_array_end", Out::InitArray); 1740 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1741 1742 if (OutputSection *Sec = findSection(".ARM.exidx")) 1743 Define("__exidx_start", "__exidx_end", Sec); 1744 } 1745 1746 // If a section name is valid as a C identifier (which is rare because of 1747 // the leading '.'), linkers are expected to define __start_<secname> and 1748 // __stop_<secname> symbols. They are at beginning and end of the section, 1749 // respectively. This is not requested by the ELF standard, but GNU ld and 1750 // gold provide the feature, and used by many programs. 1751 template <class ELFT> 1752 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 1753 StringRef S = Sec->Name; 1754 if (!isValidCIdentifier(S)) 1755 return; 1756 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); 1757 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); 1758 } 1759 1760 static bool needsPtLoad(OutputSection *Sec) { 1761 if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) 1762 return false; 1763 1764 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1765 // responsible for allocating space for them, not the PT_LOAD that 1766 // contains the TLS initialization image. 1767 if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) 1768 return false; 1769 return true; 1770 } 1771 1772 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1773 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1774 // RW. This means that there is no alignment in the RO to RX transition and we 1775 // cannot create a PT_LOAD there. 1776 static uint64_t computeFlags(uint64_t Flags) { 1777 if (Config->Omagic) 1778 return PF_R | PF_W | PF_X; 1779 if (Config->SingleRoRx && !(Flags & PF_W)) 1780 return Flags | PF_X; 1781 return Flags; 1782 } 1783 1784 // Decide which program headers to create and which sections to include in each 1785 // one. 1786 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { 1787 std::vector<PhdrEntry *> Ret; 1788 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 1789 Ret.push_back(make<PhdrEntry>(Type, Flags)); 1790 return Ret.back(); 1791 }; 1792 1793 // The first phdr entry is PT_PHDR which describes the program header itself. 1794 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 1795 1796 // PT_INTERP must be the second entry if exists. 1797 if (OutputSection *Cmd = findSection(".interp")) 1798 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 1799 1800 // Add the first PT_LOAD segment for regular output sections. 1801 uint64_t Flags = computeFlags(PF_R); 1802 PhdrEntry *Load = AddHdr(PT_LOAD, Flags); 1803 1804 // Add the headers. We will remove them if they don't fit. 1805 Load->add(Out::ElfHeader); 1806 Load->add(Out::ProgramHeaders); 1807 1808 for (OutputSection *Sec : OutputSections) { 1809 if (!(Sec->Flags & SHF_ALLOC)) 1810 break; 1811 if (!needsPtLoad(Sec)) 1812 continue; 1813 1814 // Segments are contiguous memory regions that has the same attributes 1815 // (e.g. executable or writable). There is one phdr for each segment. 1816 // Therefore, we need to create a new phdr when the next section has 1817 // different flags or is loaded at a discontiguous address using AT linker 1818 // script command. At the same time, we don't want to create a separate 1819 // load segment for the headers, even if the first output section has 1820 // an AT attribute. 1821 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 1822 if ((Sec->LMAExpr && Load->LastSec != Out::ProgramHeaders) || 1823 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) { 1824 1825 Load = AddHdr(PT_LOAD, NewFlags); 1826 Flags = NewFlags; 1827 } 1828 1829 Load->add(Sec); 1830 } 1831 1832 // Add a TLS segment if any. 1833 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 1834 for (OutputSection *Sec : OutputSections) 1835 if (Sec->Flags & SHF_TLS) 1836 TlsHdr->add(Sec); 1837 if (TlsHdr->FirstSec) 1838 Ret.push_back(TlsHdr); 1839 1840 // Add an entry for .dynamic. 1841 if (InX::DynSymTab) 1842 AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags()) 1843 ->add(InX::Dynamic->getParent()); 1844 1845 // PT_GNU_RELRO includes all sections that should be marked as 1846 // read-only by dynamic linker after proccessing relocations. 1847 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 1848 // an error message if more than one PT_GNU_RELRO PHDR is required. 1849 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 1850 bool InRelroPhdr = false; 1851 bool IsRelroFinished = false; 1852 for (OutputSection *Sec : OutputSections) { 1853 if (!needsPtLoad(Sec)) 1854 continue; 1855 if (isRelroSection(Sec)) { 1856 InRelroPhdr = true; 1857 if (!IsRelroFinished) 1858 RelRo->add(Sec); 1859 else 1860 error("section: " + Sec->Name + " is not contiguous with other relro" + 1861 " sections"); 1862 } else if (InRelroPhdr) { 1863 InRelroPhdr = false; 1864 IsRelroFinished = true; 1865 } 1866 } 1867 if (RelRo->FirstSec) 1868 Ret.push_back(RelRo); 1869 1870 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 1871 if (!InX::EhFrame->empty() && InX::EhFrameHdr && InX::EhFrame->getParent() && 1872 InX::EhFrameHdr->getParent()) 1873 AddHdr(PT_GNU_EH_FRAME, InX::EhFrameHdr->getParent()->getPhdrFlags()) 1874 ->add(InX::EhFrameHdr->getParent()); 1875 1876 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 1877 // the dynamic linker fill the segment with random data. 1878 if (OutputSection *Cmd = findSection(".openbsd.randomdata")) 1879 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 1880 1881 // PT_GNU_STACK is a special section to tell the loader to make the 1882 // pages for the stack non-executable. If you really want an executable 1883 // stack, you can pass -z execstack, but that's not recommended for 1884 // security reasons. 1885 unsigned Perm = PF_R | PF_W; 1886 if (Config->ZExecstack) 1887 Perm |= PF_X; 1888 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 1889 1890 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 1891 // is expected to perform W^X violations, such as calling mprotect(2) or 1892 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 1893 // OpenBSD. 1894 if (Config->ZWxneeded) 1895 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 1896 1897 // Create one PT_NOTE per a group of contiguous .note sections. 1898 PhdrEntry *Note = nullptr; 1899 for (OutputSection *Sec : OutputSections) { 1900 if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) { 1901 if (!Note || Sec->LMAExpr) 1902 Note = AddHdr(PT_NOTE, PF_R); 1903 Note->add(Sec); 1904 } else { 1905 Note = nullptr; 1906 } 1907 } 1908 return Ret; 1909 } 1910 1911 template <class ELFT> 1912 void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) { 1913 if (Config->EMachine != EM_ARM) 1914 return; 1915 auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) { 1916 return Cmd->Type == SHT_ARM_EXIDX; 1917 }); 1918 if (I == OutputSections.end()) 1919 return; 1920 1921 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1922 PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R); 1923 ARMExidx->add(*I); 1924 Phdrs.push_back(ARMExidx); 1925 } 1926 1927 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 1928 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 1929 // linker can set the permissions. 1930 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 1931 auto PageAlign = [](OutputSection *Cmd) { 1932 if (Cmd && !Cmd->AddrExpr) 1933 Cmd->AddrExpr = [=] { 1934 return alignTo(Script->getDot(), Config->MaxPageSize); 1935 }; 1936 }; 1937 1938 for (const PhdrEntry *P : Phdrs) 1939 if (P->p_type == PT_LOAD && P->FirstSec) 1940 PageAlign(P->FirstSec); 1941 1942 for (const PhdrEntry *P : Phdrs) { 1943 if (P->p_type != PT_GNU_RELRO) 1944 continue; 1945 if (P->FirstSec) 1946 PageAlign(P->FirstSec); 1947 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 1948 // have to align it to a page. 1949 auto End = OutputSections.end(); 1950 auto I = std::find(OutputSections.begin(), End, P->LastSec); 1951 if (I == End || (I + 1) == End) 1952 continue; 1953 OutputSection *Cmd = (*(I + 1)); 1954 if (needsPtLoad(Cmd)) 1955 PageAlign(Cmd); 1956 } 1957 } 1958 1959 // Adjusts the file alignment for a given output section and returns 1960 // its new file offset. The file offset must be the same with its 1961 // virtual address (modulo the page size) so that the loader can load 1962 // executables without any address adjustment. 1963 static uint64_t getFileAlignment(uint64_t Off, OutputSection *Cmd) { 1964 OutputSection *First = Cmd->PtLoad ? Cmd->PtLoad->FirstSec : nullptr; 1965 // The first section in a PT_LOAD has to have congruent offset and address 1966 // module the page size. 1967 if (Cmd == First) 1968 return alignTo(Off, std::max<uint64_t>(Cmd->Alignment, Config->MaxPageSize), 1969 Cmd->Addr); 1970 1971 // For SHT_NOBITS we don't want the alignment of the section to impact the 1972 // offset of the sections that follow. Since nothing seems to care about the 1973 // sh_offset of the SHT_NOBITS section itself, just ignore it. 1974 if (Cmd->Type == SHT_NOBITS) 1975 return Off; 1976 1977 // If the section is not in a PT_LOAD, we just have to align it. 1978 if (!Cmd->PtLoad) 1979 return alignTo(Off, Cmd->Alignment); 1980 1981 // If two sections share the same PT_LOAD the file offset is calculated 1982 // using this formula: Off2 = Off1 + (VA2 - VA1). 1983 return First->Offset + Cmd->Addr - First->Addr; 1984 } 1985 1986 static uint64_t setOffset(OutputSection *Cmd, uint64_t Off) { 1987 Off = getFileAlignment(Off, Cmd); 1988 Cmd->Offset = Off; 1989 1990 // For SHT_NOBITS we should not count the size. 1991 if (Cmd->Type == SHT_NOBITS) 1992 return Off; 1993 1994 return Off + Cmd->Size; 1995 } 1996 1997 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 1998 uint64_t Off = 0; 1999 for (OutputSection *Sec : OutputSections) 2000 if (Sec->Flags & SHF_ALLOC) 2001 Off = setOffset(Sec, Off); 2002 FileSize = alignTo(Off, Config->Wordsize); 2003 } 2004 2005 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 2006 if (Len == 0) 2007 return "<empty range at 0x" + utohexstr(Addr) + ">"; 2008 return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; 2009 } 2010 2011 // Assign file offsets to output sections. 2012 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2013 uint64_t Off = 0; 2014 Off = setOffset(Out::ElfHeader, Off); 2015 Off = setOffset(Out::ProgramHeaders, Off); 2016 2017 PhdrEntry *LastRX = nullptr; 2018 for (PhdrEntry *P : Phdrs) 2019 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2020 LastRX = P; 2021 2022 for (OutputSection *Sec : OutputSections) { 2023 Off = setOffset(Sec, Off); 2024 if (Script->HasSectionsCommand) 2025 continue; 2026 // If this is a last section of the last executable segment and that 2027 // segment is the last loadable segment, align the offset of the 2028 // following section to avoid loading non-segments parts of the file. 2029 if (LastRX && LastRX->LastSec == Sec) 2030 Off = alignTo(Off, Target->PageSize); 2031 } 2032 2033 SectionHeaderOff = alignTo(Off, Config->Wordsize); 2034 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 2035 2036 // Our logic assumes that sections have rising VA within the same segment. 2037 // With use of linker scripts it is possible to violate this rule and get file 2038 // offset overlaps or overflows. That should never happen with a valid script 2039 // which does not move the location counter backwards and usually scripts do 2040 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2041 // kernel, which control segment distribution explicitly and move the counter 2042 // backwards, so we have to allow doing that to support linking them. We 2043 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2044 // we want to prevent file size overflows because it would crash the linker. 2045 for (OutputSection *Sec : OutputSections) { 2046 if (Sec->Type == SHT_NOBITS) 2047 continue; 2048 if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) 2049 error("unable to place section " + Sec->Name + " at file offset " + 2050 rangeToString(Sec->Offset, Sec->Offset + Sec->Size) + 2051 "; check your linker script for overflows"); 2052 } 2053 } 2054 2055 // Finalize the program headers. We call this function after we assign 2056 // file offsets and VAs to all sections. 2057 template <class ELFT> void Writer<ELFT>::setPhdrs() { 2058 for (PhdrEntry *P : Phdrs) { 2059 OutputSection *First = P->FirstSec; 2060 OutputSection *Last = P->LastSec; 2061 if (First) { 2062 P->p_filesz = Last->Offset - First->Offset; 2063 if (Last->Type != SHT_NOBITS) 2064 P->p_filesz += Last->Size; 2065 P->p_memsz = Last->Addr + Last->Size - First->Addr; 2066 P->p_offset = First->Offset; 2067 P->p_vaddr = First->Addr; 2068 if (!P->HasLMA) 2069 P->p_paddr = First->getLMA(); 2070 } 2071 if (P->p_type == PT_LOAD) 2072 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 2073 else if (P->p_type == PT_GNU_RELRO) { 2074 P->p_align = 1; 2075 // The glibc dynamic loader rounds the size down, so we need to round up 2076 // to protect the last page. This is a no-op on FreeBSD which always 2077 // rounds up. 2078 P->p_memsz = alignTo(P->p_memsz, Target->PageSize); 2079 } 2080 2081 // The TLS pointer goes after PT_TLS. At least glibc will align it, 2082 // so round up the size to make sure the offsets are correct. 2083 if (P->p_type == PT_TLS) { 2084 Out::TlsPhdr = P; 2085 if (P->p_memsz) 2086 P->p_memsz = alignTo(P->p_memsz, P->p_align); 2087 } 2088 } 2089 } 2090 2091 // A helper struct for checkSectionOverlap. 2092 namespace { 2093 struct SectionOffset { 2094 OutputSection *Sec; 2095 uint64_t Offset; 2096 }; 2097 } // namespace 2098 2099 // Check whether sections overlap for a specific address range (file offsets, 2100 // load and virtual adresses). 2101 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections) { 2102 llvm::sort(Sections.begin(), Sections.end(), 2103 [=](const SectionOffset &A, const SectionOffset &B) { 2104 return A.Offset < B.Offset; 2105 }); 2106 2107 // Finding overlap is easy given a vector is sorted by start position. 2108 // If an element starts before the end of the previous element, they overlap. 2109 for (size_t I = 1, End = Sections.size(); I < End; ++I) { 2110 SectionOffset A = Sections[I - 1]; 2111 SectionOffset B = Sections[I]; 2112 if (B.Offset < A.Offset + A.Sec->Size) 2113 errorOrWarn( 2114 "section " + A.Sec->Name + " " + Name + " range overlaps with " + 2115 B.Sec->Name + "\n>>> " + A.Sec->Name + " range is " + 2116 rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + B.Sec->Name + 2117 " range is " + rangeToString(B.Offset, B.Sec->Size)); 2118 } 2119 } 2120 2121 // Check for overlapping sections and address overflows. 2122 // 2123 // In this function we check that none of the output sections have overlapping 2124 // file offsets. For SHF_ALLOC sections we also check that the load address 2125 // ranges and the virtual address ranges don't overlap 2126 template <class ELFT> void Writer<ELFT>::checkSections() { 2127 // First, check that section's VAs fit in available address space for target. 2128 for (OutputSection *OS : OutputSections) 2129 if ((OS->Addr + OS->Size < OS->Addr) || 2130 (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) 2131 errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + 2132 " of size 0x" + utohexstr(OS->Size) + 2133 " exceeds available address space"); 2134 2135 // Check for overlapping file offsets. In this case we need to skip any 2136 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2137 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2138 // binary is specified only add SHF_ALLOC sections are added to the output 2139 // file so we skip any non-allocated sections in that case. 2140 std::vector<SectionOffset> FileOffs; 2141 for (OutputSection *Sec : OutputSections) 2142 if (0 < Sec->Size && Sec->Type != SHT_NOBITS && 2143 (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) 2144 FileOffs.push_back({Sec, Sec->Offset}); 2145 checkOverlap("file", FileOffs); 2146 2147 // When linking with -r there is no need to check for overlapping virtual/load 2148 // addresses since those addresses will only be assigned when the final 2149 // executable/shared object is created. 2150 if (Config->Relocatable) 2151 return; 2152 2153 // Checking for overlapping virtual and load addresses only needs to take 2154 // into account SHF_ALLOC sections since others will not be loaded. 2155 // Furthermore, we also need to skip SHF_TLS sections since these will be 2156 // mapped to other addresses at runtime and can therefore have overlapping 2157 // ranges in the file. 2158 std::vector<SectionOffset> VMAs; 2159 for (OutputSection *Sec : OutputSections) 2160 if (0 < Sec->Size && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2161 VMAs.push_back({Sec, Sec->Addr}); 2162 checkOverlap("virtual address", VMAs); 2163 2164 // Finally, check that the load addresses don't overlap. This will usually be 2165 // the same as the virtual addresses but can be different when using a linker 2166 // script with AT(). 2167 std::vector<SectionOffset> LMAs; 2168 for (OutputSection *Sec : OutputSections) 2169 if (0 < Sec->Size && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2170 LMAs.push_back({Sec, Sec->getLMA()}); 2171 checkOverlap("load address", LMAs); 2172 } 2173 2174 // The entry point address is chosen in the following ways. 2175 // 2176 // 1. the '-e' entry command-line option; 2177 // 2. the ENTRY(symbol) command in a linker control script; 2178 // 3. the value of the symbol _start, if present; 2179 // 4. the number represented by the entry symbol, if it is a number; 2180 // 5. the address of the first byte of the .text section, if present; 2181 // 6. the address 0. 2182 template <class ELFT> uint64_t Writer<ELFT>::getEntryAddr() { 2183 // Case 1, 2 or 3 2184 if (Symbol *B = Symtab->find(Config->Entry)) 2185 return B->getVA(); 2186 2187 // Case 4 2188 uint64_t Addr; 2189 if (to_integer(Config->Entry, Addr)) 2190 return Addr; 2191 2192 // Case 5 2193 if (OutputSection *Sec = findSection(".text")) { 2194 if (Config->WarnMissingEntry) 2195 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2196 utohexstr(Sec->Addr)); 2197 return Sec->Addr; 2198 } 2199 2200 // Case 6 2201 if (Config->WarnMissingEntry) 2202 warn("cannot find entry symbol " + Config->Entry + 2203 "; not setting start address"); 2204 return 0; 2205 } 2206 2207 static uint16_t getELFType() { 2208 if (Config->Pic) 2209 return ET_DYN; 2210 if (Config->Relocatable) 2211 return ET_REL; 2212 return ET_EXEC; 2213 } 2214 2215 static uint8_t getAbiVersion() { 2216 // MIPS non-PIC executable gets ABI version 1. 2217 if (Config->EMachine == EM_MIPS && getELFType() == ET_EXEC && 2218 (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 2219 return 1; 2220 return 0; 2221 } 2222 2223 template <class ELFT> void Writer<ELFT>::writeHeader() { 2224 uint8_t *Buf = Buffer->getBufferStart(); 2225 // For executable segments, the trap instructions are written before writing 2226 // the header. Setting Elf header bytes to zero ensures that any unused bytes 2227 // in header are zero-cleared, instead of having trap instructions. 2228 memset(Buf, 0, sizeof(Elf_Ehdr)); 2229 memcpy(Buf, "\177ELF", 4); 2230 2231 // Write the ELF header. 2232 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 2233 EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; 2234 EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; 2235 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 2236 EHdr->e_ident[EI_OSABI] = Config->OSABI; 2237 EHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 2238 EHdr->e_type = getELFType(); 2239 EHdr->e_machine = Config->EMachine; 2240 EHdr->e_version = EV_CURRENT; 2241 EHdr->e_entry = getEntryAddr(); 2242 EHdr->e_shoff = SectionHeaderOff; 2243 EHdr->e_flags = Config->EFlags; 2244 EHdr->e_ehsize = sizeof(Elf_Ehdr); 2245 EHdr->e_phnum = Phdrs.size(); 2246 EHdr->e_shentsize = sizeof(Elf_Shdr); 2247 EHdr->e_shnum = OutputSections.size() + 1; 2248 EHdr->e_shstrndx = InX::ShStrTab->getParent()->SectionIndex; 2249 2250 if (!Config->Relocatable) { 2251 EHdr->e_phoff = sizeof(Elf_Ehdr); 2252 EHdr->e_phentsize = sizeof(Elf_Phdr); 2253 } 2254 2255 // Write the program header table. 2256 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); 2257 for (PhdrEntry *P : Phdrs) { 2258 HBuf->p_type = P->p_type; 2259 HBuf->p_flags = P->p_flags; 2260 HBuf->p_offset = P->p_offset; 2261 HBuf->p_vaddr = P->p_vaddr; 2262 HBuf->p_paddr = P->p_paddr; 2263 HBuf->p_filesz = P->p_filesz; 2264 HBuf->p_memsz = P->p_memsz; 2265 HBuf->p_align = P->p_align; 2266 ++HBuf; 2267 } 2268 2269 // Write the section header table. Note that the first table entry is null. 2270 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 2271 for (OutputSection *Sec : OutputSections) 2272 Sec->writeHeaderTo<ELFT>(++SHdrs); 2273 } 2274 2275 // Open a result file. 2276 template <class ELFT> void Writer<ELFT>::openFile() { 2277 if (!Config->Is64 && FileSize > UINT32_MAX) { 2278 error("output file too large: " + Twine(FileSize) + " bytes"); 2279 return; 2280 } 2281 2282 unlinkAsync(Config->OutputFile); 2283 unsigned Flags = 0; 2284 if (!Config->Relocatable) 2285 Flags = FileOutputBuffer::F_executable; 2286 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2287 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2288 2289 if (!BufferOrErr) 2290 error("failed to open " + Config->OutputFile + ": " + 2291 llvm::toString(BufferOrErr.takeError())); 2292 else 2293 Buffer = std::move(*BufferOrErr); 2294 } 2295 2296 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2297 uint8_t *Buf = Buffer->getBufferStart(); 2298 for (OutputSection *Sec : OutputSections) 2299 if (Sec->Flags & SHF_ALLOC) 2300 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2301 } 2302 2303 static void fillTrap(uint8_t *I, uint8_t *End) { 2304 for (; I + 4 <= End; I += 4) 2305 memcpy(I, &Target->TrapInstr, 4); 2306 } 2307 2308 // Fill the last page of executable segments with trap instructions 2309 // instead of leaving them as zero. Even though it is not required by any 2310 // standard, it is in general a good thing to do for security reasons. 2311 // 2312 // We'll leave other pages in segments as-is because the rest will be 2313 // overwritten by output sections. 2314 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2315 if (Script->HasSectionsCommand) 2316 return; 2317 2318 // Fill the last page. 2319 uint8_t *Buf = Buffer->getBufferStart(); 2320 for (PhdrEntry *P : Phdrs) 2321 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2322 fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize), 2323 Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize)); 2324 2325 // Round up the file size of the last segment to the page boundary iff it is 2326 // an executable segment to ensure that other tools don't accidentally 2327 // trim the instruction padding (e.g. when stripping the file). 2328 PhdrEntry *Last = nullptr; 2329 for (PhdrEntry *P : Phdrs) 2330 if (P->p_type == PT_LOAD) 2331 Last = P; 2332 2333 if (Last && (Last->p_flags & PF_X)) 2334 Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize); 2335 } 2336 2337 // Write section contents to a mmap'ed file. 2338 template <class ELFT> void Writer<ELFT>::writeSections() { 2339 uint8_t *Buf = Buffer->getBufferStart(); 2340 2341 OutputSection *EhFrameHdr = nullptr; 2342 if (InX::EhFrameHdr && !InX::EhFrameHdr->empty()) 2343 EhFrameHdr = InX::EhFrameHdr->getParent(); 2344 2345 // In -r or -emit-relocs mode, write the relocation sections first as in 2346 // ELf_Rel targets we might find out that we need to modify the relocated 2347 // section while doing it. 2348 for (OutputSection *Sec : OutputSections) 2349 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2350 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2351 2352 for (OutputSection *Sec : OutputSections) 2353 if (Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA) 2354 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2355 2356 // The .eh_frame_hdr depends on .eh_frame section contents, therefore 2357 // it should be written after .eh_frame is written. 2358 if (EhFrameHdr) 2359 EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset); 2360 } 2361 2362 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2363 if (!InX::BuildId || !InX::BuildId->getParent()) 2364 return; 2365 2366 // Compute a hash of all sections of the output file. 2367 uint8_t *Start = Buffer->getBufferStart(); 2368 uint8_t *End = Start + FileSize; 2369 InX::BuildId->writeBuildId({Start, End}); 2370 } 2371 2372 template void elf::writeResult<ELF32LE>(); 2373 template void elf::writeResult<ELF32BE>(); 2374 template void elf::writeResult<ELF64LE>(); 2375 template void elf::writeResult<ELF64BE>(); 2376