1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "AArch64ErrataFix.h" 12 #include "Config.h" 13 #include "Filesystem.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "Strings.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include <climits> 28 29 using namespace llvm; 30 using namespace llvm::ELF; 31 using namespace llvm::object; 32 using namespace llvm::support; 33 using namespace llvm::support::endian; 34 35 using namespace lld; 36 using namespace lld::elf; 37 38 namespace { 39 // The writer writes a SymbolTable result to a file. 40 template <class ELFT> class Writer { 41 public: 42 Writer() : Buffer(errorHandler().OutputBuffer) {} 43 typedef typename ELFT::Shdr Elf_Shdr; 44 typedef typename ELFT::Ehdr Elf_Ehdr; 45 typedef typename ELFT::Phdr Elf_Phdr; 46 47 void run(); 48 49 private: 50 void copyLocalSymbols(); 51 void addSectionSymbols(); 52 void forEachRelSec(std::function<void(InputSectionBase &)> Fn); 53 void sortSections(); 54 void resolveShfLinkOrder(); 55 void sortInputSections(); 56 void finalizeSections(); 57 void setReservedSymbolSections(); 58 59 std::vector<PhdrEntry *> createPhdrs(); 60 void removeEmptyPTLoad(); 61 void addPtArmExid(std::vector<PhdrEntry *> &Phdrs); 62 void assignFileOffsets(); 63 void assignFileOffsetsBinary(); 64 void setPhdrs(); 65 void checkNoOverlappingSections(); 66 void fixSectionAlignments(); 67 void openFile(); 68 void writeTrapInstr(); 69 void writeHeader(); 70 void writeSections(); 71 void writeSectionsBinary(); 72 void writeBuildId(); 73 74 std::unique_ptr<FileOutputBuffer> &Buffer; 75 76 void addRelIpltSymbols(); 77 void addStartEndSymbols(); 78 void addStartStopSymbols(OutputSection *Sec); 79 uint64_t getEntryAddr(); 80 81 std::vector<PhdrEntry *> Phdrs; 82 83 uint64_t FileSize; 84 uint64_t SectionHeaderOff; 85 86 bool HasGotBaseSym = false; 87 }; 88 } // anonymous namespace 89 90 StringRef elf::getOutputSectionName(InputSectionBase *S) { 91 // ".zdebug_" is a prefix for ZLIB-compressed sections. 92 // Because we decompressed input sections, we want to remove 'z'. 93 if (S->Name.startswith(".zdebug_")) 94 return Saver.save("." + S->Name.substr(2)); 95 96 if (Config->Relocatable) 97 return S->Name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if ((S->Type == SHT_REL || S->Type == SHT_RELA) && 103 !isa<SyntheticSection>(S)) { 104 OutputSection *Out = 105 cast<InputSection>(S)->getRelocatedSection()->getOutputSection(); 106 if (S->Type == SHT_RELA) 107 return Saver.save(".rela" + Out->Name); 108 return Saver.save(".rel" + Out->Name); 109 } 110 111 for (StringRef V : 112 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 113 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 114 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) { 115 StringRef Prefix = V.drop_back(); 116 if (S->Name.startswith(V) || S->Name == Prefix) 117 return Prefix; 118 } 119 120 // CommonSection is identified as "COMMON" in linker scripts. 121 // By default, it should go to .bss section. 122 if (S->Name == "COMMON") 123 return ".bss"; 124 125 return S->Name; 126 } 127 128 static bool needsInterpSection() { 129 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 130 Script->needsInterpSection(); 131 } 132 133 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 134 135 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { 136 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 137 if (P->p_type != PT_LOAD) 138 return false; 139 if (!P->FirstSec) 140 return true; 141 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 142 return Size == 0; 143 }); 144 } 145 146 template <class ELFT> static void combineEhFrameSections() { 147 for (InputSectionBase *&S : InputSections) { 148 EhInputSection *ES = dyn_cast<EhInputSection>(S); 149 if (!ES || !ES->Live) 150 continue; 151 152 InX::EhFrame->addSection<ELFT>(ES); 153 S = nullptr; 154 } 155 156 std::vector<InputSectionBase *> &V = InputSections; 157 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 158 } 159 160 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 161 uint64_t Val, uint8_t StOther = STV_HIDDEN, 162 uint8_t Binding = STB_GLOBAL) { 163 Symbol *S = Symtab->find(Name); 164 if (!S || S->isDefined()) 165 return nullptr; 166 Symbol *Sym = Symtab->addRegular(Name, StOther, STT_NOTYPE, Val, 167 /*Size=*/0, Binding, Sec, 168 /*File=*/nullptr); 169 return cast<Defined>(Sym); 170 } 171 172 // The linker is expected to define some symbols depending on 173 // the linking result. This function defines such symbols. 174 void elf::addReservedSymbols() { 175 if (Config->EMachine == EM_MIPS) { 176 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 177 // so that it points to an absolute address which by default is relative 178 // to GOT. Default offset is 0x7ff0. 179 // See "Global Data Symbols" in Chapter 6 in the following document: 180 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 181 ElfSym::MipsGp = Symtab->addAbsolute("_gp", STV_HIDDEN, STB_GLOBAL); 182 183 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 184 // start of function and 'gp' pointer into GOT. 185 if (Symtab->find("_gp_disp")) 186 ElfSym::MipsGpDisp = 187 Symtab->addAbsolute("_gp_disp", STV_HIDDEN, STB_GLOBAL); 188 189 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 190 // pointer. This symbol is used in the code generated by .cpload pseudo-op 191 // in case of using -mno-shared option. 192 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 193 if (Symtab->find("__gnu_local_gp")) 194 ElfSym::MipsLocalGp = 195 Symtab->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_GLOBAL); 196 } 197 198 ElfSym::GlobalOffsetTable = addOptionalRegular( 199 "_GLOBAL_OFFSET_TABLE_", Out::ElfHeader, Target->GotBaseSymOff); 200 201 // __ehdr_start is the location of ELF file headers. Note that we define 202 // this symbol unconditionally even when using a linker script, which 203 // differs from the behavior implemented by GNU linker which only define 204 // this symbol if ELF headers are in the memory mapped segment. 205 // __executable_start is not documented, but the expectation of at 206 // least the android libc is that it points to the elf header too. 207 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 208 // each DSO. The address of the symbol doesn't matter as long as they are 209 // different in different DSOs, so we chose the start address of the DSO. 210 for (const char *Name : 211 {"__ehdr_start", "__executable_start", "__dso_handle"}) 212 addOptionalRegular(Name, Out::ElfHeader, 0, STV_HIDDEN); 213 214 // If linker script do layout we do not need to create any standart symbols. 215 if (Script->HasSectionsCommand) 216 return; 217 218 auto Add = [](StringRef S, int64_t Pos) { 219 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 220 }; 221 222 ElfSym::Bss = Add("__bss_start", 0); 223 ElfSym::End1 = Add("end", -1); 224 ElfSym::End2 = Add("_end", -1); 225 ElfSym::Etext1 = Add("etext", -1); 226 ElfSym::Etext2 = Add("_etext", -1); 227 ElfSym::Edata1 = Add("edata", -1); 228 ElfSym::Edata2 = Add("_edata", -1); 229 } 230 231 static OutputSection *findSection(StringRef Name) { 232 for (BaseCommand *Base : Script->SectionCommands) 233 if (auto *Sec = dyn_cast<OutputSection>(Base)) 234 if (Sec->Name == Name) 235 return Sec; 236 return nullptr; 237 } 238 239 // Initialize Out members. 240 template <class ELFT> static void createSyntheticSections() { 241 // Initialize all pointers with NULL. This is needed because 242 // you can call lld::elf::main more than once as a library. 243 memset(&Out::First, 0, sizeof(Out)); 244 245 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 246 247 InX::DynStrTab = make<StringTableSection>(".dynstr", true); 248 InX::Dynamic = make<DynamicSection<ELFT>>(); 249 if (Config->AndroidPackDynRelocs) { 250 InX::RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 251 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 252 } else { 253 InX::RelaDyn = make<RelocationSection<ELFT>>( 254 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 255 } 256 InX::ShStrTab = make<StringTableSection>(".shstrtab", false); 257 258 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 259 Out::ProgramHeaders->Alignment = Config->Wordsize; 260 261 if (needsInterpSection()) { 262 InX::Interp = createInterpSection(); 263 Add(InX::Interp); 264 } else { 265 InX::Interp = nullptr; 266 } 267 268 if (Config->Strip != StripPolicy::All) { 269 InX::StrTab = make<StringTableSection>(".strtab", false); 270 InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab); 271 } 272 273 if (Config->BuildId != BuildIdKind::None) { 274 InX::BuildId = make<BuildIdSection>(); 275 Add(InX::BuildId); 276 } 277 278 InX::Bss = make<BssSection>(".bss", 0, 1); 279 Add(InX::Bss); 280 281 // If there is a SECTIONS command and a .data.rel.ro section name use name 282 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 283 // This makes sure our relro is contiguous. 284 bool HasDataRelRo = 285 Script->HasSectionsCommand && findSection(".data.rel.ro"); 286 InX::BssRelRo = make<BssSection>( 287 HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 288 Add(InX::BssRelRo); 289 290 // Add MIPS-specific sections. 291 if (Config->EMachine == EM_MIPS) { 292 if (!Config->Shared && Config->HasDynSymTab) { 293 InX::MipsRldMap = make<MipsRldMapSection>(); 294 Add(InX::MipsRldMap); 295 } 296 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 297 Add(Sec); 298 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 299 Add(Sec); 300 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 301 Add(Sec); 302 } 303 304 if (Config->HasDynSymTab) { 305 InX::DynSymTab = make<SymbolTableSection<ELFT>>(*InX::DynStrTab); 306 Add(InX::DynSymTab); 307 308 In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); 309 Add(In<ELFT>::VerSym); 310 311 if (!Config->VersionDefinitions.empty()) { 312 In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); 313 Add(In<ELFT>::VerDef); 314 } 315 316 In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); 317 Add(In<ELFT>::VerNeed); 318 319 if (Config->GnuHash) { 320 InX::GnuHashTab = make<GnuHashTableSection>(); 321 Add(InX::GnuHashTab); 322 } 323 324 if (Config->SysvHash) { 325 InX::HashTab = make<HashTableSection>(); 326 Add(InX::HashTab); 327 } 328 329 Add(InX::Dynamic); 330 Add(InX::DynStrTab); 331 Add(InX::RelaDyn); 332 } 333 334 // Add .got. MIPS' .got is so different from the other archs, 335 // it has its own class. 336 if (Config->EMachine == EM_MIPS) { 337 InX::MipsGot = make<MipsGotSection>(); 338 Add(InX::MipsGot); 339 } else { 340 InX::Got = make<GotSection>(); 341 Add(InX::Got); 342 } 343 344 InX::GotPlt = make<GotPltSection>(); 345 Add(InX::GotPlt); 346 InX::IgotPlt = make<IgotPltSection>(); 347 Add(InX::IgotPlt); 348 349 if (Config->GdbIndex) { 350 InX::GdbIndex = createGdbIndex<ELFT>(); 351 Add(InX::GdbIndex); 352 } 353 354 // We always need to add rel[a].plt to output if it has entries. 355 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 356 InX::RelaPlt = make<RelocationSection<ELFT>>( 357 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 358 Add(InX::RelaPlt); 359 360 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 361 // that the IRelative relocations are processed last by the dynamic loader. 362 // We cannot place the iplt section in .rel.dyn when Android relocation 363 // packing is enabled because that would cause a section type mismatch. 364 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 365 // we can get the desired behaviour by placing the iplt section in .rel.plt. 366 InX::RelaIplt = make<RelocationSection<ELFT>>( 367 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 368 ? ".rel.dyn" 369 : InX::RelaPlt->Name, 370 false /*Sort*/); 371 Add(InX::RelaIplt); 372 373 InX::Plt = make<PltSection>(false); 374 Add(InX::Plt); 375 InX::Iplt = make<PltSection>(true); 376 Add(InX::Iplt); 377 378 if (!Config->Relocatable) { 379 if (Config->EhFrameHdr) { 380 InX::EhFrameHdr = make<EhFrameHeader>(); 381 Add(InX::EhFrameHdr); 382 } 383 InX::EhFrame = make<EhFrameSection>(); 384 Add(InX::EhFrame); 385 } 386 387 if (InX::SymTab) 388 Add(InX::SymTab); 389 Add(InX::ShStrTab); 390 if (InX::StrTab) 391 Add(InX::StrTab); 392 393 if (Config->EMachine == EM_ARM && !Config->Relocatable) 394 // Add a sentinel to terminate .ARM.exidx. It helps an unwinder 395 // to find the exact address range of the last entry. 396 Add(make<ARMExidxSentinelSection>()); 397 } 398 399 // The main function of the writer. 400 template <class ELFT> void Writer<ELFT>::run() { 401 // Create linker-synthesized sections such as .got or .plt. 402 // Such sections are of type input section. 403 createSyntheticSections<ELFT>(); 404 405 if (!Config->Relocatable) 406 combineEhFrameSections<ELFT>(); 407 408 // We want to process linker script commands. When SECTIONS command 409 // is given we let it create sections. 410 Script->processSectionCommands(); 411 412 // Linker scripts controls how input sections are assigned to output sections. 413 // Input sections that were not handled by scripts are called "orphans", and 414 // they are assigned to output sections by the default rule. Process that. 415 Script->addOrphanSections(); 416 417 if (Config->Discard != DiscardPolicy::All) 418 copyLocalSymbols(); 419 420 if (Config->CopyRelocs) 421 addSectionSymbols(); 422 423 // Now that we have a complete set of output sections. This function 424 // completes section contents. For example, we need to add strings 425 // to the string table, and add entries to .got and .plt. 426 // finalizeSections does that. 427 finalizeSections(); 428 if (errorCount()) 429 return; 430 431 Script->assignAddresses(); 432 433 // If -compressed-debug-sections is specified, we need to compress 434 // .debug_* sections. Do it right now because it changes the size of 435 // output sections. 436 for (OutputSection *Sec : OutputSections) 437 Sec->maybeCompress<ELFT>(); 438 439 Script->allocateHeaders(Phdrs); 440 441 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 442 // 0 sized region. This has to be done late since only after assignAddresses 443 // we know the size of the sections. 444 removeEmptyPTLoad(); 445 446 if (!Config->OFormatBinary) 447 assignFileOffsets(); 448 else 449 assignFileOffsetsBinary(); 450 451 setPhdrs(); 452 453 if (Config->Relocatable) { 454 for (OutputSection *Sec : OutputSections) 455 Sec->Addr = 0; 456 } 457 458 checkNoOverlappingSections(); 459 460 // It does not make sense try to open the file if we have error already. 461 if (errorCount()) 462 return; 463 // Write the result down to a file. 464 openFile(); 465 if (errorCount()) 466 return; 467 468 if (!Config->OFormatBinary) { 469 writeTrapInstr(); 470 writeHeader(); 471 writeSections(); 472 } else { 473 writeSectionsBinary(); 474 } 475 476 // Backfill .note.gnu.build-id section content. This is done at last 477 // because the content is usually a hash value of the entire output file. 478 writeBuildId(); 479 if (errorCount()) 480 return; 481 482 // Handle -Map option. 483 writeMapFile(); 484 if (errorCount()) 485 return; 486 487 if (auto E = Buffer->commit()) 488 error("failed to write to the output file: " + toString(std::move(E))); 489 } 490 491 static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, 492 const Symbol &B) { 493 if (B.isFile() || B.isSection()) 494 return false; 495 496 // If sym references a section in a discarded group, don't keep it. 497 if (Sec == &InputSection::Discarded) 498 return false; 499 500 if (Config->Discard == DiscardPolicy::None) 501 return true; 502 503 // In ELF assembly .L symbols are normally discarded by the assembler. 504 // If the assembler fails to do so, the linker discards them if 505 // * --discard-locals is used. 506 // * The symbol is in a SHF_MERGE section, which is normally the reason for 507 // the assembler keeping the .L symbol. 508 if (!SymName.startswith(".L") && !SymName.empty()) 509 return true; 510 511 if (Config->Discard == DiscardPolicy::Locals) 512 return false; 513 514 return !Sec || !(Sec->Flags & SHF_MERGE); 515 } 516 517 static bool includeInSymtab(const Symbol &B) { 518 if (!B.isLocal() && !B.IsUsedInRegularObj) 519 return false; 520 521 if (auto *D = dyn_cast<Defined>(&B)) { 522 // Always include absolute symbols. 523 SectionBase *Sec = D->Section; 524 if (!Sec) 525 return true; 526 Sec = Sec->Repl; 527 // Exclude symbols pointing to garbage-collected sections. 528 if (isa<InputSectionBase>(Sec) && !Sec->Live) 529 return false; 530 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 531 if (!S->getSectionPiece(D->Value)->Live) 532 return false; 533 return true; 534 } 535 return B.Used; 536 } 537 538 // Local symbols are not in the linker's symbol table. This function scans 539 // each object file's symbol table to copy local symbols to the output. 540 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 541 if (!InX::SymTab) 542 return; 543 for (InputFile *File : ObjectFiles) { 544 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 545 for (Symbol *B : F->getLocalSymbols()) { 546 if (!B->isLocal()) 547 fatal(toString(F) + 548 ": broken object: getLocalSymbols returns a non-local symbol"); 549 auto *DR = dyn_cast<Defined>(B); 550 551 // No reason to keep local undefined symbol in symtab. 552 if (!DR) 553 continue; 554 if (!includeInSymtab(*B)) 555 continue; 556 557 SectionBase *Sec = DR->Section; 558 if (!shouldKeepInSymtab(Sec, B->getName(), *B)) 559 continue; 560 InX::SymTab->addSymbol(B); 561 } 562 } 563 } 564 565 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 566 // Create a section symbol for each output section so that we can represent 567 // relocations that point to the section. If we know that no relocation is 568 // referring to a section (that happens if the section is a synthetic one), we 569 // don't create a section symbol for that section. 570 for (BaseCommand *Base : Script->SectionCommands) { 571 auto *Sec = dyn_cast<OutputSection>(Base); 572 if (!Sec) 573 continue; 574 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 575 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 576 return !ISD->Sections.empty(); 577 return false; 578 }); 579 if (I == Sec->SectionCommands.end()) 580 continue; 581 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 582 583 // Relocations are not using REL[A] section symbols. 584 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 585 continue; 586 587 // Unlike other synthetic sections, mergeable output sections contain data 588 // copied from input sections, and there may be a relocation pointing to its 589 // contents if -r or -emit-reloc are given. 590 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 591 continue; 592 593 auto *Sym = 594 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 595 /*Value=*/0, /*Size=*/0, IS); 596 InX::SymTab->addSymbol(Sym); 597 } 598 } 599 600 // Today's loaders have a feature to make segments read-only after 601 // processing dynamic relocations to enhance security. PT_GNU_RELRO 602 // is defined for that. 603 // 604 // This function returns true if a section needs to be put into a 605 // PT_GNU_RELRO segment. 606 static bool isRelroSection(const OutputSection *Sec) { 607 if (!Config->ZRelro) 608 return false; 609 610 uint64_t Flags = Sec->Flags; 611 612 // Non-allocatable or non-writable sections don't need RELRO because 613 // they are not writable or not even mapped to memory in the first place. 614 // RELRO is for sections that are essentially read-only but need to 615 // be writable only at process startup to allow dynamic linker to 616 // apply relocations. 617 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 618 return false; 619 620 // Once initialized, TLS data segments are used as data templates 621 // for a thread-local storage. For each new thread, runtime 622 // allocates memory for a TLS and copy templates there. No thread 623 // are supposed to use templates directly. Thus, it can be in RELRO. 624 if (Flags & SHF_TLS) 625 return true; 626 627 // .init_array, .preinit_array and .fini_array contain pointers to 628 // functions that are executed on process startup or exit. These 629 // pointers are set by the static linker, and they are not expected 630 // to change at runtime. But if you are an attacker, you could do 631 // interesting things by manipulating pointers in .fini_array, for 632 // example. So they are put into RELRO. 633 uint32_t Type = Sec->Type; 634 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 635 Type == SHT_PREINIT_ARRAY) 636 return true; 637 638 // .got contains pointers to external symbols. They are resolved by 639 // the dynamic linker when a module is loaded into memory, and after 640 // that they are not expected to change. So, it can be in RELRO. 641 if (InX::Got && Sec == InX::Got->getParent()) 642 return true; 643 644 // .got.plt contains pointers to external function symbols. They are 645 // by default resolved lazily, so we usually cannot put it into RELRO. 646 // However, if "-z now" is given, the lazy symbol resolution is 647 // disabled, which enables us to put it into RELRO. 648 if (Sec == InX::GotPlt->getParent()) 649 return Config->ZNow; 650 651 // .dynamic section contains data for the dynamic linker, and 652 // there's no need to write to it at runtime, so it's better to put 653 // it into RELRO. 654 if (Sec == InX::Dynamic->getParent()) 655 return true; 656 657 // Sections with some special names are put into RELRO. This is a 658 // bit unfortunate because section names shouldn't be significant in 659 // ELF in spirit. But in reality many linker features depend on 660 // magic section names. 661 StringRef S = Sec->Name; 662 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 663 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 664 S == ".openbsd.randomdata"; 665 } 666 667 // We compute a rank for each section. The rank indicates where the 668 // section should be placed in the file. Instead of using simple 669 // numbers (0,1,2...), we use a series of flags. One for each decision 670 // point when placing the section. 671 // Using flags has two key properties: 672 // * It is easy to check if a give branch was taken. 673 // * It is easy two see how similar two ranks are (see getRankProximity). 674 enum RankFlags { 675 RF_NOT_ADDR_SET = 1 << 16, 676 RF_NOT_INTERP = 1 << 15, 677 RF_NOT_ALLOC = 1 << 14, 678 RF_WRITE = 1 << 13, 679 RF_EXEC_WRITE = 1 << 12, 680 RF_EXEC = 1 << 11, 681 RF_NON_TLS_BSS = 1 << 10, 682 RF_NON_TLS_BSS_RO = 1 << 9, 683 RF_NOT_TLS = 1 << 8, 684 RF_BSS = 1 << 7, 685 RF_PPC_NOT_TOCBSS = 1 << 6, 686 RF_PPC_OPD = 1 << 5, 687 RF_PPC_TOCL = 1 << 4, 688 RF_PPC_TOC = 1 << 3, 689 RF_PPC_BRANCH_LT = 1 << 2, 690 RF_MIPS_GPREL = 1 << 1, 691 RF_MIPS_NOT_GOT = 1 << 0 692 }; 693 694 static unsigned getSectionRank(const OutputSection *Sec) { 695 unsigned Rank = 0; 696 697 // We want to put section specified by -T option first, so we 698 // can start assigning VA starting from them later. 699 if (Config->SectionStartMap.count(Sec->Name)) 700 return Rank; 701 Rank |= RF_NOT_ADDR_SET; 702 703 // Put .interp first because some loaders want to see that section 704 // on the first page of the executable file when loaded into memory. 705 if (Sec->Name == ".interp") 706 return Rank; 707 Rank |= RF_NOT_INTERP; 708 709 // Allocatable sections go first to reduce the total PT_LOAD size and 710 // so debug info doesn't change addresses in actual code. 711 if (!(Sec->Flags & SHF_ALLOC)) 712 return Rank | RF_NOT_ALLOC; 713 714 // Sort sections based on their access permission in the following 715 // order: R, RX, RWX, RW. This order is based on the following 716 // considerations: 717 // * Read-only sections come first such that they go in the 718 // PT_LOAD covering the program headers at the start of the file. 719 // * Read-only, executable sections come next, unless the 720 // -no-rosegment option is used. 721 // * Writable, executable sections follow such that .plt on 722 // architectures where it needs to be writable will be placed 723 // between .text and .data. 724 // * Writable sections come last, such that .bss lands at the very 725 // end of the last PT_LOAD. 726 bool IsExec = Sec->Flags & SHF_EXECINSTR; 727 bool IsWrite = Sec->Flags & SHF_WRITE; 728 729 if (IsExec) { 730 if (IsWrite) 731 Rank |= RF_EXEC_WRITE; 732 else if (!Config->SingleRoRx) 733 Rank |= RF_EXEC; 734 } else { 735 if (IsWrite) 736 Rank |= RF_WRITE; 737 } 738 739 // If we got here we know that both A and B are in the same PT_LOAD. 740 741 bool IsTls = Sec->Flags & SHF_TLS; 742 bool IsNoBits = Sec->Type == SHT_NOBITS; 743 744 // The first requirement we have is to put (non-TLS) nobits sections last. The 745 // reason is that the only thing the dynamic linker will see about them is a 746 // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the 747 // PT_LOAD, so that has to correspond to the nobits sections. 748 bool IsNonTlsNoBits = IsNoBits && !IsTls; 749 if (IsNonTlsNoBits) 750 Rank |= RF_NON_TLS_BSS; 751 752 // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo 753 // sections after r/w ones, so that the RelRo sections are contiguous. 754 bool IsRelRo = isRelroSection(Sec); 755 if (IsNonTlsNoBits && !IsRelRo) 756 Rank |= RF_NON_TLS_BSS_RO; 757 if (!IsNonTlsNoBits && IsRelRo) 758 Rank |= RF_NON_TLS_BSS_RO; 759 760 // The TLS initialization block needs to be a single contiguous block in a R/W 761 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 762 // sections. The TLS NOBITS sections are placed here as they don't take up 763 // virtual address space in the PT_LOAD. 764 if (!IsTls) 765 Rank |= RF_NOT_TLS; 766 767 // Within the TLS initialization block, the non-nobits sections need to appear 768 // first. 769 if (IsNoBits) 770 Rank |= RF_BSS; 771 772 // Some architectures have additional ordering restrictions for sections 773 // within the same PT_LOAD. 774 if (Config->EMachine == EM_PPC64) { 775 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 776 // that we would like to make sure appear is a specific order to maximize 777 // their coverage by a single signed 16-bit offset from the TOC base 778 // pointer. Conversely, the special .tocbss section should be first among 779 // all SHT_NOBITS sections. This will put it next to the loaded special 780 // PPC64 sections (and, thus, within reach of the TOC base pointer). 781 StringRef Name = Sec->Name; 782 if (Name != ".tocbss") 783 Rank |= RF_PPC_NOT_TOCBSS; 784 785 if (Name == ".opd") 786 Rank |= RF_PPC_OPD; 787 788 if (Name == ".toc1") 789 Rank |= RF_PPC_TOCL; 790 791 if (Name == ".toc") 792 Rank |= RF_PPC_TOC; 793 794 if (Name == ".branch_lt") 795 Rank |= RF_PPC_BRANCH_LT; 796 } 797 if (Config->EMachine == EM_MIPS) { 798 // All sections with SHF_MIPS_GPREL flag should be grouped together 799 // because data in these sections is addressable with a gp relative address. 800 if (Sec->Flags & SHF_MIPS_GPREL) 801 Rank |= RF_MIPS_GPREL; 802 803 if (Sec->Name != ".got") 804 Rank |= RF_MIPS_NOT_GOT; 805 } 806 807 return Rank; 808 } 809 810 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 811 const OutputSection *A = cast<OutputSection>(ACmd); 812 const OutputSection *B = cast<OutputSection>(BCmd); 813 if (A->SortRank != B->SortRank) 814 return A->SortRank < B->SortRank; 815 if (!(A->SortRank & RF_NOT_ADDR_SET)) 816 return Config->SectionStartMap.lookup(A->Name) < 817 Config->SectionStartMap.lookup(B->Name); 818 return false; 819 } 820 821 void PhdrEntry::add(OutputSection *Sec) { 822 LastSec = Sec; 823 if (!FirstSec) 824 FirstSec = Sec; 825 p_align = std::max(p_align, Sec->Alignment); 826 if (p_type == PT_LOAD) 827 Sec->PtLoad = this; 828 if (Sec->LMAExpr) 829 ASectionHasLMA = true; 830 } 831 832 // The beginning and the ending of .rel[a].plt section are marked 833 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 834 // executable. The runtime needs these symbols in order to resolve 835 // all IRELATIVE relocs on startup. For dynamic executables, we don't 836 // need these symbols, since IRELATIVE relocs are resolved through GOT 837 // and PLT. For details, see http://www.airs.com/blog/archives/403. 838 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 839 if (!Config->Static) 840 return; 841 StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; 842 addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK); 843 844 S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; 845 addOptionalRegular(S, InX::RelaIplt, -1, STV_HIDDEN, STB_WEAK); 846 } 847 848 template <class ELFT> 849 void Writer<ELFT>::forEachRelSec(std::function<void(InputSectionBase &)> Fn) { 850 // Scan all relocations. Each relocation goes through a series 851 // of tests to determine if it needs special treatment, such as 852 // creating GOT, PLT, copy relocations, etc. 853 // Note that relocations for non-alloc sections are directly 854 // processed by InputSection::relocateNonAlloc. 855 for (InputSectionBase *IS : InputSections) 856 if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 857 Fn(*IS); 858 for (EhInputSection *ES : InX::EhFrame->Sections) 859 Fn(*ES); 860 } 861 862 // This function generates assignments for predefined symbols (e.g. _end or 863 // _etext) and inserts them into the commands sequence to be processed at the 864 // appropriate time. This ensures that the value is going to be correct by the 865 // time any references to these symbols are processed and is equivalent to 866 // defining these symbols explicitly in the linker script. 867 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 868 if (ElfSym::GlobalOffsetTable) { 869 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to 870 // be at some offset from the base of the .got section, usually 0 or the end 871 // of the .got 872 InputSection *GotSection = InX::MipsGot ? cast<InputSection>(InX::MipsGot) 873 : cast<InputSection>(InX::Got); 874 ElfSym::GlobalOffsetTable->Section = GotSection; 875 } 876 877 PhdrEntry *Last = nullptr; 878 PhdrEntry *LastRO = nullptr; 879 880 for (PhdrEntry *P : Phdrs) { 881 if (P->p_type != PT_LOAD) 882 continue; 883 Last = P; 884 if (!(P->p_flags & PF_W)) 885 LastRO = P; 886 } 887 888 if (LastRO) { 889 // _etext is the first location after the last read-only loadable segment. 890 if (ElfSym::Etext1) 891 ElfSym::Etext1->Section = LastRO->LastSec; 892 if (ElfSym::Etext2) 893 ElfSym::Etext2->Section = LastRO->LastSec; 894 } 895 896 if (Last) { 897 // _edata points to the end of the last mapped initialized section. 898 OutputSection *Edata = nullptr; 899 for (OutputSection *OS : OutputSections) { 900 if (OS->Type != SHT_NOBITS) 901 Edata = OS; 902 if (OS == Last->LastSec) 903 break; 904 } 905 906 if (ElfSym::Edata1) 907 ElfSym::Edata1->Section = Edata; 908 if (ElfSym::Edata2) 909 ElfSym::Edata2->Section = Edata; 910 911 // _end is the first location after the uninitialized data region. 912 if (ElfSym::End1) 913 ElfSym::End1->Section = Last->LastSec; 914 if (ElfSym::End2) 915 ElfSym::End2->Section = Last->LastSec; 916 } 917 918 if (ElfSym::Bss) 919 ElfSym::Bss->Section = findSection(".bss"); 920 921 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 922 // be equal to the _gp symbol's value. 923 if (ElfSym::MipsGp) { 924 // Find GP-relative section with the lowest address 925 // and use this address to calculate default _gp value. 926 for (OutputSection *OS : OutputSections) { 927 if (OS->Flags & SHF_MIPS_GPREL) { 928 ElfSym::MipsGp->Section = OS; 929 ElfSym::MipsGp->Value = 0x7ff0; 930 break; 931 } 932 } 933 } 934 } 935 936 // We want to find how similar two ranks are. 937 // The more branches in getSectionRank that match, the more similar they are. 938 // Since each branch corresponds to a bit flag, we can just use 939 // countLeadingZeros. 940 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 941 return countLeadingZeros(A->SortRank ^ B->SortRank); 942 } 943 944 static int getRankProximity(OutputSection *A, BaseCommand *B) { 945 if (auto *Sec = dyn_cast<OutputSection>(B)) 946 if (Sec->Live) 947 return getRankProximityAux(A, Sec); 948 return -1; 949 } 950 951 // When placing orphan sections, we want to place them after symbol assignments 952 // so that an orphan after 953 // begin_foo = .; 954 // foo : { *(foo) } 955 // end_foo = .; 956 // doesn't break the intended meaning of the begin/end symbols. 957 // We don't want to go over sections since findOrphanPos is the 958 // one in charge of deciding the order of the sections. 959 // We don't want to go over changes to '.', since doing so in 960 // rx_sec : { *(rx_sec) } 961 // . = ALIGN(0x1000); 962 // /* The RW PT_LOAD starts here*/ 963 // rw_sec : { *(rw_sec) } 964 // would mean that the RW PT_LOAD would become unaligned. 965 static bool shouldSkip(BaseCommand *Cmd) { 966 if (isa<OutputSection>(Cmd)) 967 return false; 968 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 969 return Assign->Name != "."; 970 return true; 971 } 972 973 // We want to place orphan sections so that they share as much 974 // characteristics with their neighbors as possible. For example, if 975 // both are rw, or both are tls. 976 template <typename ELFT> 977 static std::vector<BaseCommand *>::iterator 978 findOrphanPos(std::vector<BaseCommand *>::iterator B, 979 std::vector<BaseCommand *>::iterator E) { 980 OutputSection *Sec = cast<OutputSection>(*E); 981 982 // Find the first element that has as close a rank as possible. 983 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 984 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 985 }); 986 if (I == E) 987 return E; 988 989 // Consider all existing sections with the same proximity. 990 int Proximity = getRankProximity(Sec, *I); 991 for (; I != E; ++I) { 992 auto *CurSec = dyn_cast<OutputSection>(*I); 993 if (!CurSec || !CurSec->Live) 994 continue; 995 if (getRankProximity(Sec, CurSec) != Proximity || 996 Sec->SortRank < CurSec->SortRank) 997 break; 998 } 999 1000 auto IsLiveSection = [](BaseCommand *Cmd) { 1001 auto *OS = dyn_cast<OutputSection>(Cmd); 1002 return OS && OS->Live; 1003 }; 1004 1005 auto J = std::find_if(llvm::make_reverse_iterator(I), 1006 llvm::make_reverse_iterator(B), IsLiveSection); 1007 I = J.base(); 1008 1009 // As a special case, if the orphan section is the last section, put 1010 // it at the very end, past any other commands. 1011 // This matches bfd's behavior and is convenient when the linker script fully 1012 // specifies the start of the file, but doesn't care about the end (the non 1013 // alloc sections for example). 1014 auto NextSec = std::find_if(I, E, IsLiveSection); 1015 if (NextSec == E) 1016 return E; 1017 1018 while (I != E && shouldSkip(*I)) 1019 ++I; 1020 return I; 1021 } 1022 1023 // Builds section order for handling --symbol-ordering-file. 1024 static DenseMap<SectionBase *, int> buildSectionOrder() { 1025 DenseMap<SectionBase *, int> SectionOrder; 1026 if (Config->SymbolOrderingFile.empty()) 1027 return SectionOrder; 1028 1029 // Build a map from symbols to their priorities. Symbols that didn't 1030 // appear in the symbol ordering file have the lowest priority 0. 1031 // All explicitly mentioned symbols have negative (higher) priorities. 1032 DenseMap<StringRef, int> SymbolOrder; 1033 int Priority = -Config->SymbolOrderingFile.size(); 1034 for (StringRef S : Config->SymbolOrderingFile) 1035 SymbolOrder.insert({S, Priority++}); 1036 1037 // Build a map from sections to their priorities. 1038 for (InputFile *File : ObjectFiles) { 1039 for (Symbol *Sym : File->getSymbols()) { 1040 auto *D = dyn_cast<Defined>(Sym); 1041 if (!D || !D->Section) 1042 continue; 1043 int &Priority = SectionOrder[D->Section]; 1044 Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); 1045 } 1046 } 1047 return SectionOrder; 1048 } 1049 1050 // If no layout was provided by linker script, we want to apply default 1051 // sorting for special input sections. This also handles --symbol-ordering-file. 1052 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1053 // Sort input sections by priority using the list provided 1054 // by --symbol-ordering-file. 1055 DenseMap<SectionBase *, int> Order = buildSectionOrder(); 1056 if (!Order.empty()) 1057 for (BaseCommand *Base : Script->SectionCommands) 1058 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1059 if (Sec->Live) 1060 Sec->sort([&](InputSectionBase *S) { return Order.lookup(S); }); 1061 1062 if (Script->HasSectionsCommand) 1063 return; 1064 1065 // Sort input sections by section name suffixes for 1066 // __attribute__((init_priority(N))). 1067 if (OutputSection *Sec = findSection(".init_array")) 1068 Sec->sortInitFini(); 1069 if (OutputSection *Sec = findSection(".fini_array")) 1070 Sec->sortInitFini(); 1071 1072 // Sort input sections by the special rule for .ctors and .dtors. 1073 if (OutputSection *Sec = findSection(".ctors")) 1074 Sec->sortCtorsDtors(); 1075 if (OutputSection *Sec = findSection(".dtors")) 1076 Sec->sortCtorsDtors(); 1077 } 1078 1079 template <class ELFT> void Writer<ELFT>::sortSections() { 1080 Script->adjustSectionsBeforeSorting(); 1081 1082 // Don't sort if using -r. It is not necessary and we want to preserve the 1083 // relative order for SHF_LINK_ORDER sections. 1084 if (Config->Relocatable) 1085 return; 1086 1087 for (BaseCommand *Base : Script->SectionCommands) 1088 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1089 Sec->SortRank = getSectionRank(Sec); 1090 1091 sortInputSections(); 1092 1093 if (!Script->HasSectionsCommand) { 1094 // We know that all the OutputSections are contiguous in this case. 1095 auto E = Script->SectionCommands.end(); 1096 auto I = Script->SectionCommands.begin(); 1097 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1098 I = std::find_if(I, E, IsSection); 1099 E = std::find_if(llvm::make_reverse_iterator(E), 1100 llvm::make_reverse_iterator(I), IsSection) 1101 .base(); 1102 std::stable_sort(I, E, compareSections); 1103 return; 1104 } 1105 1106 // Orphan sections are sections present in the input files which are 1107 // not explicitly placed into the output file by the linker script. 1108 // 1109 // The sections in the linker script are already in the correct 1110 // order. We have to figuere out where to insert the orphan 1111 // sections. 1112 // 1113 // The order of the sections in the script is arbitrary and may not agree with 1114 // compareSections. This means that we cannot easily define a strict weak 1115 // ordering. To see why, consider a comparison of a section in the script and 1116 // one not in the script. We have a two simple options: 1117 // * Make them equivalent (a is not less than b, and b is not less than a). 1118 // The problem is then that equivalence has to be transitive and we can 1119 // have sections a, b and c with only b in a script and a less than c 1120 // which breaks this property. 1121 // * Use compareSectionsNonScript. Given that the script order doesn't have 1122 // to match, we can end up with sections a, b, c, d where b and c are in the 1123 // script and c is compareSectionsNonScript less than b. In which case d 1124 // can be equivalent to c, a to b and d < a. As a concrete example: 1125 // .a (rx) # not in script 1126 // .b (rx) # in script 1127 // .c (ro) # in script 1128 // .d (ro) # not in script 1129 // 1130 // The way we define an order then is: 1131 // * Sort only the orphan sections. They are in the end right now. 1132 // * Move each orphan section to its preferred position. We try 1133 // to put each section in the last position where it it can share 1134 // a PT_LOAD. 1135 // 1136 // There is some ambiguity as to where exactly a new entry should be 1137 // inserted, because Commands contains not only output section 1138 // commands but also other types of commands such as symbol assignment 1139 // expressions. There's no correct answer here due to the lack of the 1140 // formal specification of the linker script. We use heuristics to 1141 // determine whether a new output command should be added before or 1142 // after another commands. For the details, look at shouldSkip 1143 // function. 1144 1145 auto I = Script->SectionCommands.begin(); 1146 auto E = Script->SectionCommands.end(); 1147 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1148 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1149 return Sec->Live && Sec->SectionIndex == INT_MAX; 1150 return false; 1151 }); 1152 1153 // Sort the orphan sections. 1154 std::stable_sort(NonScriptI, E, compareSections); 1155 1156 // As a horrible special case, skip the first . assignment if it is before any 1157 // section. We do this because it is common to set a load address by starting 1158 // the script with ". = 0xabcd" and the expectation is that every section is 1159 // after that. 1160 auto FirstSectionOrDotAssignment = 1161 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1162 if (FirstSectionOrDotAssignment != E && 1163 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1164 ++FirstSectionOrDotAssignment; 1165 I = FirstSectionOrDotAssignment; 1166 1167 while (NonScriptI != E) { 1168 auto Pos = findOrphanPos<ELFT>(I, NonScriptI); 1169 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1170 1171 // As an optimization, find all sections with the same sort rank 1172 // and insert them with one rotate. 1173 unsigned Rank = Orphan->SortRank; 1174 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1175 return cast<OutputSection>(Cmd)->SortRank != Rank; 1176 }); 1177 std::rotate(Pos, NonScriptI, End); 1178 NonScriptI = End; 1179 } 1180 1181 Script->adjustSectionsAfterSorting(); 1182 } 1183 1184 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1185 // Synthetic, i. e. a sentinel section, should go last. 1186 if (A->kind() == InputSectionBase::Synthetic || 1187 B->kind() == InputSectionBase::Synthetic) 1188 return A->kind() != InputSectionBase::Synthetic; 1189 InputSection *LA = A->getLinkOrderDep(); 1190 InputSection *LB = B->getLinkOrderDep(); 1191 OutputSection *AOut = LA->getParent(); 1192 OutputSection *BOut = LB->getParent(); 1193 if (AOut != BOut) 1194 return AOut->SectionIndex < BOut->SectionIndex; 1195 return LA->OutSecOff < LB->OutSecOff; 1196 } 1197 1198 // This function is used by the --merge-exidx-entries to detect duplicate 1199 // .ARM.exidx sections. It is Arm only. 1200 // 1201 // The .ARM.exidx section is of the form: 1202 // | PREL31 offset to function | Unwind instructions for function | 1203 // where the unwind instructions are either a small number of unwind 1204 // instructions inlined into the table entry, the special CANT_UNWIND value of 1205 // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind 1206 // instructions. 1207 // 1208 // We return true if all the unwind instructions in the .ARM.exidx entries of 1209 // Cur can be merged into the last entry of Prev. 1210 static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) { 1211 1212 // References to .ARM.Extab Sections have bit 31 clear and are not the 1213 // special EXIDX_CANTUNWIND bit-pattern. 1214 auto IsExtabRef = [](uint32_t Unwind) { 1215 return (Unwind & 0x80000000) == 0 && Unwind != 0x1; 1216 }; 1217 1218 struct ExidxEntry { 1219 ulittle32_t Fn; 1220 ulittle32_t Unwind; 1221 }; 1222 1223 // Get the last table Entry from the previous .ARM.exidx section. 1224 const ExidxEntry &PrevEntry = *reinterpret_cast<const ExidxEntry *>( 1225 Prev->Data.data() + Prev->getSize() - sizeof(ExidxEntry)); 1226 if (IsExtabRef(PrevEntry.Unwind)) 1227 return false; 1228 1229 // We consider the unwind instructions of an .ARM.exidx table entry 1230 // a duplicate if the previous unwind instructions if: 1231 // - Both are the special EXIDX_CANTUNWIND. 1232 // - Both are the same inline unwind instructions. 1233 // We do not attempt to follow and check links into .ARM.extab tables as 1234 // consecutive identical entries are rare and the effort to check that they 1235 // are identical is high. 1236 1237 if (isa<SyntheticSection>(Cur)) 1238 // Exidx sentinel section has implicit EXIDX_CANTUNWIND; 1239 return PrevEntry.Unwind == 0x1; 1240 1241 ArrayRef<const ExidxEntry> Entries( 1242 reinterpret_cast<const ExidxEntry *>(Cur->Data.data()), 1243 Cur->getSize() / sizeof(ExidxEntry)); 1244 for (const ExidxEntry &Entry : Entries) 1245 if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind) 1246 return false; 1247 // All table entries in this .ARM.exidx Section can be merged into the 1248 // previous Section. 1249 return true; 1250 } 1251 1252 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1253 for (OutputSection *Sec : OutputSections) { 1254 if (!(Sec->Flags & SHF_LINK_ORDER)) 1255 continue; 1256 1257 // Link order may be distributed across several InputSectionDescriptions 1258 // but sort must consider them all at once. 1259 std::vector<InputSection **> ScriptSections; 1260 std::vector<InputSection *> Sections; 1261 for (BaseCommand *Base : Sec->SectionCommands) { 1262 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1263 for (InputSection *&IS : ISD->Sections) { 1264 ScriptSections.push_back(&IS); 1265 Sections.push_back(IS); 1266 } 1267 } 1268 } 1269 std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); 1270 1271 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1272 Sec->Type == SHT_ARM_EXIDX) { 1273 1274 if (!Sections.empty() && isa<ARMExidxSentinelSection>(Sections.back())) { 1275 assert(Sections.size() >= 2 && 1276 "We should create a sentinel section only if there are " 1277 "alive regular exidx sections."); 1278 // The last executable section is required to fill the sentinel. 1279 // Remember it here so that we don't have to find it again. 1280 auto *Sentinel = cast<ARMExidxSentinelSection>(Sections.back()); 1281 Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep(); 1282 } 1283 1284 if (Config->MergeArmExidx) { 1285 // The EHABI for the Arm Architecture permits consecutive identical 1286 // table entries to be merged. We use a simple implementation that 1287 // removes a .ARM.exidx Input Section if it can be merged into the 1288 // previous one. This does not require any rewriting of InputSection 1289 // contents but misses opportunities for fine grained deduplication 1290 // where only a subset of the InputSection contents can be merged. 1291 int Cur = 1; 1292 int Prev = 0; 1293 // The last one is a sentinel entry which should not be removed. 1294 int N = Sections.size() - 1; 1295 while (Cur < N) { 1296 if (isDuplicateArmExidxSec(Sections[Prev], Sections[Cur])) 1297 Sections[Cur] = nullptr; 1298 else 1299 Prev = Cur; 1300 ++Cur; 1301 } 1302 } 1303 } 1304 1305 for (int I = 0, N = Sections.size(); I < N; ++I) 1306 *ScriptSections[I] = Sections[I]; 1307 1308 // Remove the Sections we marked as duplicate earlier. 1309 for (BaseCommand *Base : Sec->SectionCommands) 1310 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 1311 ISD->Sections.erase( 1312 std::remove(ISD->Sections.begin(), ISD->Sections.end(), nullptr), 1313 ISD->Sections.end()); 1314 } 1315 } 1316 1317 static void applySynthetic(const std::vector<SyntheticSection *> &Sections, 1318 std::function<void(SyntheticSection *)> Fn) { 1319 for (SyntheticSection *SS : Sections) 1320 if (SS && SS->getParent() && !SS->empty()) 1321 Fn(SS); 1322 } 1323 1324 // In order to allow users to manipulate linker-synthesized sections, 1325 // we had to add synthetic sections to the input section list early, 1326 // even before we make decisions whether they are needed. This allows 1327 // users to write scripts like this: ".mygot : { .got }". 1328 // 1329 // Doing it has an unintended side effects. If it turns out that we 1330 // don't need a .got (for example) at all because there's no 1331 // relocation that needs a .got, we don't want to emit .got. 1332 // 1333 // To deal with the above problem, this function is called after 1334 // scanRelocations is called to remove synthetic sections that turn 1335 // out to be empty. 1336 static void removeUnusedSyntheticSections() { 1337 // All input synthetic sections that can be empty are placed after 1338 // all regular ones. We iterate over them all and exit at first 1339 // non-synthetic. 1340 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1341 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1342 if (!SS) 1343 return; 1344 OutputSection *OS = SS->getParent(); 1345 if (!OS || !SS->empty()) 1346 continue; 1347 1348 std::vector<BaseCommand *>::iterator Empty = OS->SectionCommands.end(); 1349 for (auto I = OS->SectionCommands.begin(), E = OS->SectionCommands.end(); 1350 I != E; ++I) { 1351 BaseCommand *B = *I; 1352 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) { 1353 llvm::erase_if(ISD->Sections, 1354 [=](InputSection *IS) { return IS == SS; }); 1355 if (ISD->Sections.empty()) 1356 Empty = I; 1357 } 1358 } 1359 if (Empty != OS->SectionCommands.end()) 1360 OS->SectionCommands.erase(Empty); 1361 1362 // If there are no other sections in the output section, remove it from the 1363 // output. 1364 if (OS->SectionCommands.empty()) 1365 OS->Live = false; 1366 } 1367 } 1368 1369 // Returns true if a symbol can be replaced at load-time by a symbol 1370 // with the same name defined in other ELF executable or DSO. 1371 static bool computeIsPreemptible(const Symbol &B) { 1372 assert(!B.isLocal()); 1373 // Only symbols that appear in dynsym can be preempted. 1374 if (!B.includeInDynsym()) 1375 return false; 1376 1377 // Only default visibility symbols can be preempted. 1378 if (B.Visibility != STV_DEFAULT) 1379 return false; 1380 1381 // At this point copy relocations have not been created yet, so any 1382 // symbol that is not defined locally is preemptible. 1383 if (!B.isDefined()) 1384 return true; 1385 1386 // If we have a dynamic list it specifies which local symbols are preemptible. 1387 if (Config->HasDynamicList) 1388 return false; 1389 1390 if (!Config->Shared) 1391 return false; 1392 1393 // -Bsymbolic means that definitions are not preempted. 1394 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1395 return false; 1396 return true; 1397 } 1398 1399 // Create output section objects and add them to OutputSections. 1400 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1401 Out::DebugInfo = findSection(".debug_info"); 1402 Out::PreinitArray = findSection(".preinit_array"); 1403 Out::InitArray = findSection(".init_array"); 1404 Out::FiniArray = findSection(".fini_array"); 1405 1406 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1407 // symbols for sections, so that the runtime can get the start and end 1408 // addresses of each section by section name. Add such symbols. 1409 if (!Config->Relocatable) { 1410 addStartEndSymbols(); 1411 for (BaseCommand *Base : Script->SectionCommands) 1412 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1413 addStartStopSymbols(Sec); 1414 } 1415 1416 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1417 // It should be okay as no one seems to care about the type. 1418 // Even the author of gold doesn't remember why gold behaves that way. 1419 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1420 if (InX::DynSymTab) 1421 Symtab->addRegular("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/, 1422 /*Size=*/0, STB_WEAK, InX::Dynamic, 1423 /*File=*/nullptr); 1424 1425 // Define __rel[a]_iplt_{start,end} symbols if needed. 1426 addRelIpltSymbols(); 1427 1428 // This responsible for splitting up .eh_frame section into 1429 // pieces. The relocation scan uses those pieces, so this has to be 1430 // earlier. 1431 applySynthetic({InX::EhFrame}, 1432 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1433 1434 for (Symbol *S : Symtab->getSymbols()) 1435 S->IsPreemptible |= computeIsPreemptible(*S); 1436 1437 // Scan relocations. This must be done after every symbol is declared so that 1438 // we can correctly decide if a dynamic relocation is needed. 1439 if (!Config->Relocatable) 1440 forEachRelSec(scanRelocations<ELFT>); 1441 1442 if (InX::Plt && !InX::Plt->empty()) 1443 InX::Plt->addSymbols(); 1444 if (InX::Iplt && !InX::Iplt->empty()) 1445 InX::Iplt->addSymbols(); 1446 1447 // Now that we have defined all possible global symbols including linker- 1448 // synthesized ones. Visit all symbols to give the finishing touches. 1449 for (Symbol *Sym : Symtab->getSymbols()) { 1450 if (!includeInSymtab(*Sym)) 1451 continue; 1452 if (InX::SymTab) 1453 InX::SymTab->addSymbol(Sym); 1454 1455 if (InX::DynSymTab && Sym->includeInDynsym()) { 1456 InX::DynSymTab->addSymbol(Sym); 1457 if (auto *SS = dyn_cast<SharedSymbol>(Sym)) 1458 if (cast<SharedFile<ELFT>>(Sym->File)->IsNeeded) 1459 In<ELFT>::VerNeed->addSymbol(SS); 1460 } 1461 } 1462 1463 // Do not proceed if there was an undefined symbol. 1464 if (errorCount()) 1465 return; 1466 1467 removeUnusedSyntheticSections(); 1468 1469 sortSections(); 1470 Script->removeEmptyCommands(); 1471 1472 // Now that we have the final list, create a list of all the 1473 // OutputSections for convenience. 1474 for (BaseCommand *Base : Script->SectionCommands) 1475 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1476 OutputSections.push_back(Sec); 1477 1478 // Prefer command line supplied address over other constraints. 1479 for (OutputSection *Sec : OutputSections) { 1480 auto I = Config->SectionStartMap.find(Sec->Name); 1481 if (I != Config->SectionStartMap.end()) 1482 Sec->AddrExpr = [=] { return I->second; }; 1483 } 1484 1485 // This is a bit of a hack. A value of 0 means undef, so we set it 1486 // to 1 t make __ehdr_start defined. The section number is not 1487 // particularly relevant. 1488 Out::ElfHeader->SectionIndex = 1; 1489 1490 unsigned I = 1; 1491 for (OutputSection *Sec : OutputSections) { 1492 Sec->SectionIndex = I++; 1493 Sec->ShName = InX::ShStrTab->addString(Sec->Name); 1494 } 1495 1496 // Binary and relocatable output does not have PHDRS. 1497 // The headers have to be created before finalize as that can influence the 1498 // image base and the dynamic section on mips includes the image base. 1499 if (!Config->Relocatable && !Config->OFormatBinary) { 1500 Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); 1501 addPtArmExid(Phdrs); 1502 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); 1503 } 1504 1505 // Some symbols are defined in term of program headers. Now that we 1506 // have the headers, we can find out which sections they point to. 1507 setReservedSymbolSections(); 1508 1509 // Dynamic section must be the last one in this list and dynamic 1510 // symbol table section (DynSymTab) must be the first one. 1511 applySynthetic( 1512 {InX::DynSymTab, InX::Bss, InX::BssRelRo, InX::GnuHashTab, 1513 InX::HashTab, InX::SymTab, InX::ShStrTab, InX::StrTab, 1514 In<ELFT>::VerDef, InX::DynStrTab, InX::Got, InX::MipsGot, 1515 InX::IgotPlt, InX::GotPlt, InX::RelaDyn, InX::RelaIplt, 1516 InX::RelaPlt, InX::Plt, InX::Iplt, InX::EhFrameHdr, 1517 In<ELFT>::VerSym, In<ELFT>::VerNeed, InX::Dynamic}, 1518 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1519 1520 if (!Script->HasSectionsCommand && !Config->Relocatable) 1521 fixSectionAlignments(); 1522 1523 // After link order processing .ARM.exidx sections can be deduplicated, which 1524 // needs to be resolved before any other address dependent operation. 1525 resolveShfLinkOrder(); 1526 1527 // Some architectures need to generate content that depends on the address 1528 // of InputSections. For example some architectures use small displacements 1529 // for jump instructions that is is the linker's responsibility for creating 1530 // range extension thunks for. As the generation of the content may also 1531 // alter InputSection addresses we must converge to a fixed point. 1532 if (Target->NeedsThunks || Config->AndroidPackDynRelocs) { 1533 ThunkCreator TC; 1534 AArch64Err843419Patcher A64P; 1535 bool Changed; 1536 do { 1537 Script->assignAddresses(); 1538 Changed = false; 1539 if (Target->NeedsThunks) 1540 Changed |= TC.createThunks(OutputSections); 1541 if (Config->FixCortexA53Errata843419) { 1542 if (Changed) 1543 Script->assignAddresses(); 1544 Changed |= A64P.createFixes(); 1545 } 1546 if (InX::MipsGot) 1547 InX::MipsGot->updateAllocSize(); 1548 Changed |= InX::RelaDyn->updateAllocSize(); 1549 } while (Changed); 1550 } 1551 1552 // Fill other section headers. The dynamic table is finalized 1553 // at the end because some tags like RELSZ depend on result 1554 // of finalizing other sections. 1555 for (OutputSection *Sec : OutputSections) 1556 Sec->finalize<ELFT>(); 1557 1558 // createThunks may have added local symbols to the static symbol table 1559 applySynthetic({InX::SymTab}, 1560 [](SyntheticSection *SS) { SS->postThunkContents(); }); 1561 } 1562 1563 // The linker is expected to define SECNAME_start and SECNAME_end 1564 // symbols for a few sections. This function defines them. 1565 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1566 auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) { 1567 // These symbols resolve to the image base if the section does not exist. 1568 // A special value -1 indicates end of the section. 1569 if (OS) { 1570 addOptionalRegular(Start, OS, 0); 1571 addOptionalRegular(End, OS, -1); 1572 } else { 1573 if (Config->Pic) 1574 OS = Out::ElfHeader; 1575 addOptionalRegular(Start, OS, 0); 1576 addOptionalRegular(End, OS, 0); 1577 } 1578 }; 1579 1580 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1581 Define("__init_array_start", "__init_array_end", Out::InitArray); 1582 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1583 1584 if (OutputSection *Sec = findSection(".ARM.exidx")) 1585 Define("__exidx_start", "__exidx_end", Sec); 1586 } 1587 1588 // If a section name is valid as a C identifier (which is rare because of 1589 // the leading '.'), linkers are expected to define __start_<secname> and 1590 // __stop_<secname> symbols. They are at beginning and end of the section, 1591 // respectively. This is not requested by the ELF standard, but GNU ld and 1592 // gold provide the feature, and used by many programs. 1593 template <class ELFT> 1594 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 1595 StringRef S = Sec->Name; 1596 if (!isValidCIdentifier(S)) 1597 return; 1598 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); 1599 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_DEFAULT); 1600 } 1601 1602 static bool needsPtLoad(OutputSection *Sec) { 1603 if (!(Sec->Flags & SHF_ALLOC)) 1604 return false; 1605 1606 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1607 // responsible for allocating space for them, not the PT_LOAD that 1608 // contains the TLS initialization image. 1609 if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) 1610 return false; 1611 return true; 1612 } 1613 1614 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1615 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1616 // RW. This means that there is no alignment in the RO to RX transition and we 1617 // cannot create a PT_LOAD there. 1618 static uint64_t computeFlags(uint64_t Flags) { 1619 if (Config->Omagic) 1620 return PF_R | PF_W | PF_X; 1621 if (Config->SingleRoRx && !(Flags & PF_W)) 1622 return Flags | PF_X; 1623 return Flags; 1624 } 1625 1626 // Decide which program headers to create and which sections to include in each 1627 // one. 1628 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { 1629 std::vector<PhdrEntry *> Ret; 1630 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 1631 Ret.push_back(make<PhdrEntry>(Type, Flags)); 1632 return Ret.back(); 1633 }; 1634 1635 // The first phdr entry is PT_PHDR which describes the program header itself. 1636 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 1637 1638 // PT_INTERP must be the second entry if exists. 1639 if (OutputSection *Cmd = findSection(".interp")) 1640 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 1641 1642 // Add the first PT_LOAD segment for regular output sections. 1643 uint64_t Flags = computeFlags(PF_R); 1644 PhdrEntry *Load = AddHdr(PT_LOAD, Flags); 1645 1646 // Add the headers. We will remove them if they don't fit. 1647 Load->add(Out::ElfHeader); 1648 Load->add(Out::ProgramHeaders); 1649 1650 for (OutputSection *Sec : OutputSections) { 1651 if (!(Sec->Flags & SHF_ALLOC)) 1652 break; 1653 if (!needsPtLoad(Sec)) 1654 continue; 1655 1656 // Segments are contiguous memory regions that has the same attributes 1657 // (e.g. executable or writable). There is one phdr for each segment. 1658 // Therefore, we need to create a new phdr when the next section has 1659 // different flags or is loaded at a discontiguous address using AT linker 1660 // script command. 1661 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 1662 if ((Sec->LMAExpr && Load->ASectionHasLMA) || 1663 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) { 1664 1665 Load = AddHdr(PT_LOAD, NewFlags); 1666 Flags = NewFlags; 1667 } 1668 1669 Load->add(Sec); 1670 } 1671 1672 // Add a TLS segment if any. 1673 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 1674 for (OutputSection *Sec : OutputSections) 1675 if (Sec->Flags & SHF_TLS) 1676 TlsHdr->add(Sec); 1677 if (TlsHdr->FirstSec) 1678 Ret.push_back(TlsHdr); 1679 1680 // Add an entry for .dynamic. 1681 if (InX::DynSymTab) 1682 AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags()) 1683 ->add(InX::Dynamic->getParent()); 1684 1685 // PT_GNU_RELRO includes all sections that should be marked as 1686 // read-only by dynamic linker after proccessing relocations. 1687 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 1688 // an error message if more than one PT_GNU_RELRO PHDR is required. 1689 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 1690 bool InRelroPhdr = false; 1691 bool IsRelroFinished = false; 1692 for (OutputSection *Sec : OutputSections) { 1693 if (!needsPtLoad(Sec)) 1694 continue; 1695 if (isRelroSection(Sec)) { 1696 InRelroPhdr = true; 1697 if (!IsRelroFinished) 1698 RelRo->add(Sec); 1699 else 1700 error("section: " + Sec->Name + " is not contiguous with other relro" + 1701 " sections"); 1702 } else if (InRelroPhdr) { 1703 InRelroPhdr = false; 1704 IsRelroFinished = true; 1705 } 1706 } 1707 if (RelRo->FirstSec) 1708 Ret.push_back(RelRo); 1709 1710 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 1711 if (!InX::EhFrame->empty() && InX::EhFrameHdr && InX::EhFrame->getParent() && 1712 InX::EhFrameHdr->getParent()) 1713 AddHdr(PT_GNU_EH_FRAME, InX::EhFrameHdr->getParent()->getPhdrFlags()) 1714 ->add(InX::EhFrameHdr->getParent()); 1715 1716 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 1717 // the dynamic linker fill the segment with random data. 1718 if (OutputSection *Cmd = findSection(".openbsd.randomdata")) 1719 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 1720 1721 // PT_GNU_STACK is a special section to tell the loader to make the 1722 // pages for the stack non-executable. If you really want an executable 1723 // stack, you can pass -z execstack, but that's not recommended for 1724 // security reasons. 1725 unsigned Perm; 1726 if (Config->ZExecstack) 1727 Perm = PF_R | PF_W | PF_X; 1728 else 1729 Perm = PF_R | PF_W; 1730 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 1731 1732 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 1733 // is expected to perform W^X violations, such as calling mprotect(2) or 1734 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 1735 // OpenBSD. 1736 if (Config->ZWxneeded) 1737 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 1738 1739 // Create one PT_NOTE per a group of contiguous .note sections. 1740 PhdrEntry *Note = nullptr; 1741 for (OutputSection *Sec : OutputSections) { 1742 if (Sec->Type == SHT_NOTE) { 1743 if (!Note || Sec->LMAExpr) 1744 Note = AddHdr(PT_NOTE, PF_R); 1745 Note->add(Sec); 1746 } else { 1747 Note = nullptr; 1748 } 1749 } 1750 return Ret; 1751 } 1752 1753 template <class ELFT> 1754 void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) { 1755 if (Config->EMachine != EM_ARM) 1756 return; 1757 auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) { 1758 return Cmd->Type == SHT_ARM_EXIDX; 1759 }); 1760 if (I == OutputSections.end()) 1761 return; 1762 1763 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1764 PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R); 1765 ARMExidx->add(*I); 1766 Phdrs.push_back(ARMExidx); 1767 } 1768 1769 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 1770 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 1771 // linker can set the permissions. 1772 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 1773 auto PageAlign = [](OutputSection *Cmd) { 1774 if (Cmd && !Cmd->AddrExpr) 1775 Cmd->AddrExpr = [=] { 1776 return alignTo(Script->getDot(), Config->MaxPageSize); 1777 }; 1778 }; 1779 1780 for (const PhdrEntry *P : Phdrs) 1781 if (P->p_type == PT_LOAD && P->FirstSec) 1782 PageAlign(P->FirstSec); 1783 1784 for (const PhdrEntry *P : Phdrs) { 1785 if (P->p_type != PT_GNU_RELRO) 1786 continue; 1787 if (P->FirstSec) 1788 PageAlign(P->FirstSec); 1789 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 1790 // have to align it to a page. 1791 auto End = OutputSections.end(); 1792 auto I = std::find(OutputSections.begin(), End, P->LastSec); 1793 if (I == End || (I + 1) == End) 1794 continue; 1795 OutputSection *Cmd = (*(I + 1)); 1796 if (needsPtLoad(Cmd)) 1797 PageAlign(Cmd); 1798 } 1799 } 1800 1801 // Adjusts the file alignment for a given output section and returns 1802 // its new file offset. The file offset must be the same with its 1803 // virtual address (modulo the page size) so that the loader can load 1804 // executables without any address adjustment. 1805 static uint64_t getFileAlignment(uint64_t Off, OutputSection *Cmd) { 1806 OutputSection *First = Cmd->PtLoad ? Cmd->PtLoad->FirstSec : nullptr; 1807 // The first section in a PT_LOAD has to have congruent offset and address 1808 // module the page size. 1809 if (Cmd == First) 1810 return alignTo(Off, std::max<uint64_t>(Cmd->Alignment, Config->MaxPageSize), 1811 Cmd->Addr); 1812 1813 // For SHT_NOBITS we don't want the alignment of the section to impact the 1814 // offset of the sections that follow. Since nothing seems to care about the 1815 // sh_offset of the SHT_NOBITS section itself, just ignore it. 1816 if (Cmd->Type == SHT_NOBITS) 1817 return Off; 1818 1819 // If the section is not in a PT_LOAD, we just have to align it. 1820 if (!Cmd->PtLoad) 1821 return alignTo(Off, Cmd->Alignment); 1822 1823 // If two sections share the same PT_LOAD the file offset is calculated 1824 // using this formula: Off2 = Off1 + (VA2 - VA1). 1825 return First->Offset + Cmd->Addr - First->Addr; 1826 } 1827 1828 static uint64_t setOffset(OutputSection *Cmd, uint64_t Off) { 1829 Off = getFileAlignment(Off, Cmd); 1830 Cmd->Offset = Off; 1831 1832 // For SHT_NOBITS we should not count the size. 1833 if (Cmd->Type == SHT_NOBITS) 1834 return Off; 1835 1836 return Off + Cmd->Size; 1837 } 1838 1839 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 1840 uint64_t Off = 0; 1841 for (OutputSection *Sec : OutputSections) 1842 if (Sec->Flags & SHF_ALLOC) 1843 Off = setOffset(Sec, Off); 1844 FileSize = alignTo(Off, Config->Wordsize); 1845 } 1846 1847 // Assign file offsets to output sections. 1848 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 1849 uint64_t Off = 0; 1850 Off = setOffset(Out::ElfHeader, Off); 1851 Off = setOffset(Out::ProgramHeaders, Off); 1852 1853 PhdrEntry *LastRX = nullptr; 1854 for (PhdrEntry *P : Phdrs) 1855 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 1856 LastRX = P; 1857 1858 for (OutputSection *Sec : OutputSections) { 1859 Off = setOffset(Sec, Off); 1860 if (Script->HasSectionsCommand) 1861 continue; 1862 // If this is a last section of the last executable segment and that 1863 // segment is the last loadable segment, align the offset of the 1864 // following section to avoid loading non-segments parts of the file. 1865 if (LastRX && LastRX->LastSec == Sec) 1866 Off = alignTo(Off, Target->PageSize); 1867 } 1868 1869 SectionHeaderOff = alignTo(Off, Config->Wordsize); 1870 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 1871 } 1872 1873 // Finalize the program headers. We call this function after we assign 1874 // file offsets and VAs to all sections. 1875 template <class ELFT> void Writer<ELFT>::setPhdrs() { 1876 for (PhdrEntry *P : Phdrs) { 1877 OutputSection *First = P->FirstSec; 1878 OutputSection *Last = P->LastSec; 1879 if (First) { 1880 P->p_filesz = Last->Offset - First->Offset; 1881 if (Last->Type != SHT_NOBITS) 1882 P->p_filesz += Last->Size; 1883 P->p_memsz = Last->Addr + Last->Size - First->Addr; 1884 P->p_offset = First->Offset; 1885 P->p_vaddr = First->Addr; 1886 if (!P->HasLMA) 1887 P->p_paddr = First->getLMA(); 1888 } 1889 if (P->p_type == PT_LOAD) 1890 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 1891 else if (P->p_type == PT_GNU_RELRO) { 1892 P->p_align = 1; 1893 // The glibc dynamic loader rounds the size down, so we need to round up 1894 // to protect the last page. This is a no-op on FreeBSD which always 1895 // rounds up. 1896 P->p_memsz = alignTo(P->p_memsz, Target->PageSize); 1897 } 1898 1899 // The TLS pointer goes after PT_TLS. At least glibc will align it, 1900 // so round up the size to make sure the offsets are correct. 1901 if (P->p_type == PT_TLS) { 1902 Out::TlsPhdr = P; 1903 if (P->p_memsz) 1904 P->p_memsz = alignTo(P->p_memsz, P->p_align); 1905 } 1906 } 1907 } 1908 1909 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 1910 if (Len == 0) 1911 return "<emtpy range at 0x" + utohexstr(Addr) + ">"; 1912 return "[0x" + utohexstr(Addr) + " -> 0x" + 1913 utohexstr(Addr + Len - 1) + "]"; 1914 } 1915 1916 // Check whether sections overlap for a specific address range (file offsets, 1917 // load and virtual adresses). 1918 // 1919 // This is a helper function called by Writer::checkNoOverlappingSections(). 1920 template <typename Getter, typename Predicate> 1921 static void checkForSectionOverlap(ArrayRef<OutputSection *> AllSections, 1922 StringRef Kind, Getter GetStart, 1923 Predicate ShouldSkip) { 1924 std::vector<OutputSection *> Sections; 1925 // By removing all zero-size sections we can simplify the check for overlap to 1926 // just checking whether the section range contains the other section's start 1927 // address. Additionally, it also slightly speeds up the checking since we 1928 // don't bother checking for overlap with sections that can never overlap. 1929 for (OutputSection *Sec : AllSections) 1930 if (Sec->Size > 0 && !ShouldSkip(Sec)) 1931 Sections.push_back(Sec); 1932 1933 // Instead of comparing every OutputSection with every other output section 1934 // we sort the sections by address (file offset or load/virtual address). This 1935 // way we find all overlapping sections but only need one comparision with the 1936 // next section in the common non-overlapping case. The only time we end up 1937 // doing more than one iteration of the following nested loop is if there are 1938 // overlapping sections. 1939 std::sort(Sections.begin(), Sections.end(), 1940 [=](const OutputSection *A, const OutputSection *B) { 1941 return GetStart(A) < GetStart(B); 1942 }); 1943 for (size_t i = 0; i < Sections.size(); ++i) { 1944 OutputSection *Sec = Sections[i]; 1945 uint64_t Start = GetStart(Sec); 1946 for (auto *Other : ArrayRef<OutputSection *>(Sections).slice(i + 1)) { 1947 // Since the sections are storted by start address we only need to check 1948 // whether the other sections starts before the end of Sec. If this is 1949 // not the case we can break out of this loop since all following sections 1950 // will also start after the end of Sec. 1951 if (Start + Sec->Size <= GetStart(Other)) 1952 break; 1953 errorOrWarn("section " + Sec->Name + " " + Kind + 1954 " range overlaps with " + Other->Name + "\n>>> " + Sec->Name + 1955 " range is " + rangeToString(Start, Sec->Size) + "\n>>> " + 1956 Other->Name + " range is " + 1957 rangeToString(GetStart(Other), Other->Size)); 1958 } 1959 } 1960 } 1961 1962 // Check for overlapping sections 1963 // 1964 // In this function we check that none of the output sections have overlapping 1965 // file offsets. For SHF_ALLOC sections we also check that the load address 1966 // ranges and the virtual address ranges don't overlap 1967 template <class ELFT> void Writer<ELFT>::checkNoOverlappingSections() { 1968 // First check for overlapping file offsets. In this case we need to skip 1969 // Any section marked as SHT_NOBITS. These sections don't actually occupy 1970 // space in the file so Sec->Offset + Sec->Size can overlap with others. 1971 // If --oformat binary is specified only add SHF_ALLOC sections are added to 1972 // the output file so we skip any non-allocated sections in that case. 1973 checkForSectionOverlap( 1974 OutputSections, "file", [](const OutputSection *Sec) { return Sec->Offset; }, 1975 [](const OutputSection *Sec) { 1976 return Sec->Type == SHT_NOBITS || 1977 (Config->OFormatBinary && (Sec->Flags & SHF_ALLOC) == 0); 1978 }); 1979 1980 // When linking with -r there is no need to check for overlapping virtual/load 1981 // addresses since those addresses will only be assigned when the final 1982 // executable/shared object is created. 1983 if (Config->Relocatable) 1984 return; 1985 1986 // Checking for overlapping virtual and load addresses only needs to take 1987 // into account SHF_ALLOC sections since since others will not be loaded. 1988 // Furthermore, we also need to skip SHF_TLS sections since these will be 1989 // mapped to other addresses at runtime and can therefore have overlapping 1990 // ranges in the file. 1991 auto SkipNonAllocSections = [](const OutputSection *Sec) { 1992 return (Sec->Flags & SHF_ALLOC) == 0 || (Sec->Flags & SHF_TLS); 1993 }; 1994 checkForSectionOverlap(OutputSections, "virtual address", 1995 [](const OutputSection *Sec) { return Sec->Addr; }, 1996 SkipNonAllocSections); 1997 1998 // Finally, check that the load addresses don't overlap. This will usually be 1999 // the same as the virtual addresses but can be different when using a linker 2000 // script with AT(). 2001 checkForSectionOverlap(OutputSections, "load address", 2002 [](const OutputSection *Sec) { return Sec->getLMA(); }, 2003 SkipNonAllocSections); 2004 } 2005 2006 // The entry point address is chosen in the following ways. 2007 // 2008 // 1. the '-e' entry command-line option; 2009 // 2. the ENTRY(symbol) command in a linker control script; 2010 // 3. the value of the symbol _start, if present; 2011 // 4. the number represented by the entry symbol, if it is a number; 2012 // 5. the address of the first byte of the .text section, if present; 2013 // 6. the address 0. 2014 template <class ELFT> uint64_t Writer<ELFT>::getEntryAddr() { 2015 // Case 1, 2 or 3 2016 if (Symbol *B = Symtab->find(Config->Entry)) 2017 return B->getVA(); 2018 2019 // Case 4 2020 uint64_t Addr; 2021 if (to_integer(Config->Entry, Addr)) 2022 return Addr; 2023 2024 // Case 5 2025 if (OutputSection *Sec = findSection(".text")) { 2026 if (Config->WarnMissingEntry) 2027 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2028 utohexstr(Sec->Addr)); 2029 return Sec->Addr; 2030 } 2031 2032 // Case 6 2033 if (Config->WarnMissingEntry) 2034 warn("cannot find entry symbol " + Config->Entry + 2035 "; not setting start address"); 2036 return 0; 2037 } 2038 2039 static uint16_t getELFType() { 2040 if (Config->Pic) 2041 return ET_DYN; 2042 if (Config->Relocatable) 2043 return ET_REL; 2044 return ET_EXEC; 2045 } 2046 2047 template <class ELFT> void Writer<ELFT>::writeHeader() { 2048 uint8_t *Buf = Buffer->getBufferStart(); 2049 memcpy(Buf, "\177ELF", 4); 2050 2051 // Write the ELF header. 2052 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 2053 EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; 2054 EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; 2055 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 2056 EHdr->e_ident[EI_OSABI] = Config->OSABI; 2057 EHdr->e_type = getELFType(); 2058 EHdr->e_machine = Config->EMachine; 2059 EHdr->e_version = EV_CURRENT; 2060 EHdr->e_entry = getEntryAddr(); 2061 EHdr->e_shoff = SectionHeaderOff; 2062 EHdr->e_flags = Config->EFlags; 2063 EHdr->e_ehsize = sizeof(Elf_Ehdr); 2064 EHdr->e_phnum = Phdrs.size(); 2065 EHdr->e_shentsize = sizeof(Elf_Shdr); 2066 EHdr->e_shnum = OutputSections.size() + 1; 2067 EHdr->e_shstrndx = InX::ShStrTab->getParent()->SectionIndex; 2068 2069 if (!Config->Relocatable) { 2070 EHdr->e_phoff = sizeof(Elf_Ehdr); 2071 EHdr->e_phentsize = sizeof(Elf_Phdr); 2072 } 2073 2074 // Write the program header table. 2075 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); 2076 for (PhdrEntry *P : Phdrs) { 2077 HBuf->p_type = P->p_type; 2078 HBuf->p_flags = P->p_flags; 2079 HBuf->p_offset = P->p_offset; 2080 HBuf->p_vaddr = P->p_vaddr; 2081 HBuf->p_paddr = P->p_paddr; 2082 HBuf->p_filesz = P->p_filesz; 2083 HBuf->p_memsz = P->p_memsz; 2084 HBuf->p_align = P->p_align; 2085 ++HBuf; 2086 } 2087 2088 // Write the section header table. Note that the first table entry is null. 2089 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 2090 for (OutputSection *Sec : OutputSections) 2091 Sec->writeHeaderTo<ELFT>(++SHdrs); 2092 } 2093 2094 // Open a result file. 2095 template <class ELFT> void Writer<ELFT>::openFile() { 2096 if (!Config->Is64 && FileSize > UINT32_MAX) { 2097 error("output file too large: " + Twine(FileSize) + " bytes"); 2098 return; 2099 } 2100 2101 unlinkAsync(Config->OutputFile); 2102 unsigned Flags = 0; 2103 if (!Config->Relocatable) 2104 Flags = FileOutputBuffer::F_executable; 2105 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2106 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2107 2108 if (!BufferOrErr) 2109 error("failed to open " + Config->OutputFile + ": " + 2110 llvm::toString(BufferOrErr.takeError())); 2111 else 2112 Buffer = std::move(*BufferOrErr); 2113 } 2114 2115 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2116 uint8_t *Buf = Buffer->getBufferStart(); 2117 for (OutputSection *Sec : OutputSections) 2118 if (Sec->Flags & SHF_ALLOC) 2119 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2120 } 2121 2122 static void fillTrap(uint8_t *I, uint8_t *End) { 2123 for (; I + 4 <= End; I += 4) 2124 memcpy(I, &Target->TrapInstr, 4); 2125 } 2126 2127 // Fill the last page of executable segments with trap instructions 2128 // instead of leaving them as zero. Even though it is not required by any 2129 // standard, it is in general a good thing to do for security reasons. 2130 // 2131 // We'll leave other pages in segments as-is because the rest will be 2132 // overwritten by output sections. 2133 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2134 if (Script->HasSectionsCommand) 2135 return; 2136 2137 // Fill the last page. 2138 uint8_t *Buf = Buffer->getBufferStart(); 2139 for (PhdrEntry *P : Phdrs) 2140 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2141 fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize), 2142 Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize)); 2143 2144 // Round up the file size of the last segment to the page boundary iff it is 2145 // an executable segment to ensure that other tools don't accidentally 2146 // trim the instruction padding (e.g. when stripping the file). 2147 PhdrEntry *Last = nullptr; 2148 for (PhdrEntry *P : Phdrs) 2149 if (P->p_type == PT_LOAD) 2150 Last = P; 2151 2152 if (Last && (Last->p_flags & PF_X)) 2153 Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize); 2154 } 2155 2156 // Write section contents to a mmap'ed file. 2157 template <class ELFT> void Writer<ELFT>::writeSections() { 2158 uint8_t *Buf = Buffer->getBufferStart(); 2159 2160 // PPC64 needs to process relocations in the .opd section 2161 // before processing relocations in code-containing sections. 2162 if (auto *OpdCmd = findSection(".opd")) { 2163 Out::Opd = OpdCmd; 2164 Out::OpdBuf = Buf + Out::Opd->Offset; 2165 OpdCmd->template writeTo<ELFT>(Buf + Out::Opd->Offset); 2166 } 2167 2168 OutputSection *EhFrameHdr = nullptr; 2169 if (InX::EhFrameHdr && !InX::EhFrameHdr->empty()) 2170 EhFrameHdr = InX::EhFrameHdr->getParent(); 2171 2172 // In -r or -emit-relocs mode, write the relocation sections first as in 2173 // ELf_Rel targets we might find out that we need to modify the relocated 2174 // section while doing it. 2175 for (OutputSection *Sec : OutputSections) 2176 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2177 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2178 2179 for (OutputSection *Sec : OutputSections) 2180 if (Sec != Out::Opd && Sec != EhFrameHdr && Sec->Type != SHT_REL && 2181 Sec->Type != SHT_RELA) 2182 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2183 2184 // The .eh_frame_hdr depends on .eh_frame section contents, therefore 2185 // it should be written after .eh_frame is written. 2186 if (EhFrameHdr) 2187 EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset); 2188 } 2189 2190 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2191 if (!InX::BuildId || !InX::BuildId->getParent()) 2192 return; 2193 2194 // Compute a hash of all sections of the output file. 2195 uint8_t *Start = Buffer->getBufferStart(); 2196 uint8_t *End = Start + FileSize; 2197 InX::BuildId->writeBuildId({Start, End}); 2198 } 2199 2200 template void elf::writeResult<ELF32LE>(); 2201 template void elf::writeResult<ELF32BE>(); 2202 template void elf::writeResult<ELF64LE>(); 2203 template void elf::writeResult<ELF64BE>(); 2204