1 //===- SyntheticSections.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains linker-synthesized sections. Currently,
10 // synthetic sections are created either output sections or input sections,
11 // but we are rewriting code so that all synthetic sections are created as
12 // input sections.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "SyntheticSections.h"
17 #include "Config.h"
18 #include "DWARF.h"
19 #include "EhFrame.h"
20 #include "InputFiles.h"
21 #include "LinkerScript.h"
22 #include "OutputSections.h"
23 #include "SymbolTable.h"
24 #include "Symbols.h"
25 #include "Target.h"
26 #include "Thunks.h"
27 #include "Writer.h"
28 #include "lld/Common/CommonLinkerContext.h"
29 #include "lld/Common/DWARF.h"
30 #include "lld/Common/Strings.h"
31 #include "lld/Common/Version.h"
32 #include "llvm/ADT/SetOperations.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/BinaryFormat/Dwarf.h"
35 #include "llvm/BinaryFormat/ELF.h"
36 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
37 #include "llvm/Support/Endian.h"
38 #include "llvm/Support/LEB128.h"
39 #include "llvm/Support/Parallel.h"
40 #include "llvm/Support/TimeProfiler.h"
41 #include <cstdlib>
42 
43 using namespace llvm;
44 using namespace llvm::dwarf;
45 using namespace llvm::ELF;
46 using namespace llvm::object;
47 using namespace llvm::support;
48 using namespace lld;
49 using namespace lld::elf;
50 
51 using llvm::support::endian::read32le;
52 using llvm::support::endian::write32le;
53 using llvm::support::endian::write64le;
54 
55 constexpr size_t MergeNoTailSection::numShards;
56 
57 static uint64_t readUint(uint8_t *buf) {
58   return config->is64 ? read64(buf) : read32(buf);
59 }
60 
61 static void writeUint(uint8_t *buf, uint64_t val) {
62   if (config->is64)
63     write64(buf, val);
64   else
65     write32(buf, val);
66 }
67 
68 // Returns an LLD version string.
69 static ArrayRef<uint8_t> getVersion() {
70   // Check LLD_VERSION first for ease of testing.
71   // You can get consistent output by using the environment variable.
72   // This is only for testing.
73   StringRef s = getenv("LLD_VERSION");
74   if (s.empty())
75     s = saver().save(Twine("Linker: ") + getLLDVersion());
76 
77   // +1 to include the terminating '\0'.
78   return {(const uint8_t *)s.data(), s.size() + 1};
79 }
80 
81 // Creates a .comment section containing LLD version info.
82 // With this feature, you can identify LLD-generated binaries easily
83 // by "readelf --string-dump .comment <file>".
84 // The returned object is a mergeable string section.
85 MergeInputSection *elf::createCommentSection() {
86   auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
87                                       getVersion(), ".comment");
88   sec->splitIntoPieces();
89   return sec;
90 }
91 
92 // .MIPS.abiflags section.
93 template <class ELFT>
94 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
95     : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
96       flags(flags) {
97   this->entsize = sizeof(Elf_Mips_ABIFlags);
98 }
99 
100 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
101   memcpy(buf, &flags, sizeof(flags));
102 }
103 
104 template <class ELFT>
105 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() {
106   Elf_Mips_ABIFlags flags = {};
107   bool create = false;
108 
109   for (InputSectionBase *sec : inputSections) {
110     if (sec->type != SHT_MIPS_ABIFLAGS)
111       continue;
112     sec->markDead();
113     create = true;
114 
115     std::string filename = toString(sec->file);
116     const size_t size = sec->rawData.size();
117     // Older version of BFD (such as the default FreeBSD linker) concatenate
118     // .MIPS.abiflags instead of merging. To allow for this case (or potential
119     // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
120     if (size < sizeof(Elf_Mips_ABIFlags)) {
121       error(filename + ": invalid size of .MIPS.abiflags section: got " +
122             Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
123       return nullptr;
124     }
125     auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->rawData.data());
126     if (s->version != 0) {
127       error(filename + ": unexpected .MIPS.abiflags version " +
128             Twine(s->version));
129       return nullptr;
130     }
131 
132     // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
133     // select the highest number of ISA/Rev/Ext.
134     flags.isa_level = std::max(flags.isa_level, s->isa_level);
135     flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
136     flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
137     flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
138     flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
139     flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
140     flags.ases |= s->ases;
141     flags.flags1 |= s->flags1;
142     flags.flags2 |= s->flags2;
143     flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
144   };
145 
146   if (create)
147     return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags);
148   return nullptr;
149 }
150 
151 // .MIPS.options section.
152 template <class ELFT>
153 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
154     : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
155       reginfo(reginfo) {
156   this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
157 }
158 
159 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
160   auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
161   options->kind = ODK_REGINFO;
162   options->size = getSize();
163 
164   if (!config->relocatable)
165     reginfo.ri_gp_value = in.mipsGot->getGp();
166   memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
167 }
168 
169 template <class ELFT>
170 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() {
171   // N64 ABI only.
172   if (!ELFT::Is64Bits)
173     return nullptr;
174 
175   SmallVector<InputSectionBase *, 0> sections;
176   for (InputSectionBase *sec : inputSections)
177     if (sec->type == SHT_MIPS_OPTIONS)
178       sections.push_back(sec);
179 
180   if (sections.empty())
181     return nullptr;
182 
183   Elf_Mips_RegInfo reginfo = {};
184   for (InputSectionBase *sec : sections) {
185     sec->markDead();
186 
187     std::string filename = toString(sec->file);
188     ArrayRef<uint8_t> d = sec->rawData;
189 
190     while (!d.empty()) {
191       if (d.size() < sizeof(Elf_Mips_Options)) {
192         error(filename + ": invalid size of .MIPS.options section");
193         break;
194       }
195 
196       auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
197       if (opt->kind == ODK_REGINFO) {
198         reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
199         sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
200         break;
201       }
202 
203       if (!opt->size)
204         fatal(filename + ": zero option descriptor size");
205       d = d.slice(opt->size);
206     }
207   };
208 
209   return std::make_unique<MipsOptionsSection<ELFT>>(reginfo);
210 }
211 
212 // MIPS .reginfo section.
213 template <class ELFT>
214 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
215     : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
216       reginfo(reginfo) {
217   this->entsize = sizeof(Elf_Mips_RegInfo);
218 }
219 
220 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
221   if (!config->relocatable)
222     reginfo.ri_gp_value = in.mipsGot->getGp();
223   memcpy(buf, &reginfo, sizeof(reginfo));
224 }
225 
226 template <class ELFT>
227 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() {
228   // Section should be alive for O32 and N32 ABIs only.
229   if (ELFT::Is64Bits)
230     return nullptr;
231 
232   SmallVector<InputSectionBase *, 0> sections;
233   for (InputSectionBase *sec : inputSections)
234     if (sec->type == SHT_MIPS_REGINFO)
235       sections.push_back(sec);
236 
237   if (sections.empty())
238     return nullptr;
239 
240   Elf_Mips_RegInfo reginfo = {};
241   for (InputSectionBase *sec : sections) {
242     sec->markDead();
243 
244     if (sec->rawData.size() != sizeof(Elf_Mips_RegInfo)) {
245       error(toString(sec->file) + ": invalid size of .reginfo section");
246       return nullptr;
247     }
248 
249     auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->rawData.data());
250     reginfo.ri_gprmask |= r->ri_gprmask;
251     sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
252   };
253 
254   return std::make_unique<MipsReginfoSection<ELFT>>(reginfo);
255 }
256 
257 InputSection *elf::createInterpSection() {
258   // StringSaver guarantees that the returned string ends with '\0'.
259   StringRef s = saver().save(config->dynamicLinker);
260   ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
261 
262   return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
263                             ".interp");
264 }
265 
266 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
267                                 uint64_t size, InputSectionBase &section) {
268   Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type,
269                            value, size, &section);
270   if (in.symTab)
271     in.symTab->addSymbol(s);
272   return s;
273 }
274 
275 static size_t getHashSize() {
276   switch (config->buildId) {
277   case BuildIdKind::Fast:
278     return 8;
279   case BuildIdKind::Md5:
280   case BuildIdKind::Uuid:
281     return 16;
282   case BuildIdKind::Sha1:
283     return 20;
284   case BuildIdKind::Hexstring:
285     return config->buildIdVector.size();
286   default:
287     llvm_unreachable("unknown BuildIdKind");
288   }
289 }
290 
291 // This class represents a linker-synthesized .note.gnu.property section.
292 //
293 // In x86 and AArch64, object files may contain feature flags indicating the
294 // features that they have used. The flags are stored in a .note.gnu.property
295 // section.
296 //
297 // lld reads the sections from input files and merges them by computing AND of
298 // the flags. The result is written as a new .note.gnu.property section.
299 //
300 // If the flag is zero (which indicates that the intersection of the feature
301 // sets is empty, or some input files didn't have .note.gnu.property sections),
302 // we don't create this section.
303 GnuPropertySection::GnuPropertySection()
304     : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
305                        config->wordsize, ".note.gnu.property") {}
306 
307 void GnuPropertySection::writeTo(uint8_t *buf) {
308   uint32_t featureAndType = config->emachine == EM_AARCH64
309                                 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
310                                 : GNU_PROPERTY_X86_FEATURE_1_AND;
311 
312   write32(buf, 4);                                   // Name size
313   write32(buf + 4, config->is64 ? 16 : 12);          // Content size
314   write32(buf + 8, NT_GNU_PROPERTY_TYPE_0);          // Type
315   memcpy(buf + 12, "GNU", 4);                        // Name string
316   write32(buf + 16, featureAndType);                 // Feature type
317   write32(buf + 20, 4);                              // Feature size
318   write32(buf + 24, config->andFeatures);            // Feature flags
319   if (config->is64)
320     write32(buf + 28, 0); // Padding
321 }
322 
323 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
324 
325 BuildIdSection::BuildIdSection()
326     : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
327       hashSize(getHashSize()) {}
328 
329 void BuildIdSection::writeTo(uint8_t *buf) {
330   write32(buf, 4);                      // Name size
331   write32(buf + 4, hashSize);           // Content size
332   write32(buf + 8, NT_GNU_BUILD_ID);    // Type
333   memcpy(buf + 12, "GNU", 4);           // Name string
334   hashBuf = buf + 16;
335 }
336 
337 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
338   assert(buf.size() == hashSize);
339   memcpy(hashBuf, buf.data(), hashSize);
340 }
341 
342 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
343     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
344   this->bss = true;
345   this->size = size;
346 }
347 
348 EhFrameSection::EhFrameSection()
349     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
350 
351 // Search for an existing CIE record or create a new one.
352 // CIE records from input object files are uniquified by their contents
353 // and where their relocations point to.
354 template <class ELFT, class RelTy>
355 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
356   Symbol *personality = nullptr;
357   unsigned firstRelI = cie.firstRelocation;
358   if (firstRelI != (unsigned)-1)
359     personality =
360         &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
361 
362   // Search for an existing CIE by CIE contents/relocation target pair.
363   CieRecord *&rec = cieMap[{cie.data(), personality}];
364 
365   // If not found, create a new one.
366   if (!rec) {
367     rec = make<CieRecord>();
368     rec->cie = &cie;
369     cieRecords.push_back(rec);
370   }
371   return rec;
372 }
373 
374 // There is one FDE per function. Returns a non-null pointer to the function
375 // symbol if the given FDE points to a live function.
376 template <class ELFT, class RelTy>
377 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
378   auto *sec = cast<EhInputSection>(fde.sec);
379   unsigned firstRelI = fde.firstRelocation;
380 
381   // An FDE should point to some function because FDEs are to describe
382   // functions. That's however not always the case due to an issue of
383   // ld.gold with -r. ld.gold may discard only functions and leave their
384   // corresponding FDEs, which results in creating bad .eh_frame sections.
385   // To deal with that, we ignore such FDEs.
386   if (firstRelI == (unsigned)-1)
387     return nullptr;
388 
389   const RelTy &rel = rels[firstRelI];
390   Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
391 
392   // FDEs for garbage-collected or merged-by-ICF sections, or sections in
393   // another partition, are dead.
394   if (auto *d = dyn_cast<Defined>(&b))
395     if (!d->folded && d->section && d->section->partition == partition)
396       return d;
397   return nullptr;
398 }
399 
400 // .eh_frame is a sequence of CIE or FDE records. In general, there
401 // is one CIE record per input object file which is followed by
402 // a list of FDEs. This function searches an existing CIE or create a new
403 // one and associates FDEs to the CIE.
404 template <class ELFT, class RelTy>
405 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
406   offsetToCie.clear();
407   for (EhSectionPiece &piece : sec->pieces) {
408     // The empty record is the end marker.
409     if (piece.size == 4)
410       return;
411 
412     size_t offset = piece.inputOff;
413     const uint32_t id =
414         endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4);
415     if (id == 0) {
416       offsetToCie[offset] = addCie<ELFT>(piece, rels);
417       continue;
418     }
419 
420     uint32_t cieOffset = offset + 4 - id;
421     CieRecord *rec = offsetToCie[cieOffset];
422     if (!rec)
423       fatal(toString(sec) + ": invalid CIE reference");
424 
425     if (!isFdeLive<ELFT>(piece, rels))
426       continue;
427     rec->fdes.push_back(&piece);
428     numFdes++;
429   }
430 }
431 
432 template <class ELFT>
433 void EhFrameSection::addSectionAux(EhInputSection *sec) {
434   if (!sec->isLive())
435     return;
436   const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
437   if (rels.areRelocsRel())
438     addRecords<ELFT>(sec, rels.rels);
439   else
440     addRecords<ELFT>(sec, rels.relas);
441 }
442 
443 void EhFrameSection::addSection(EhInputSection *sec) {
444   sec->parent = this;
445 
446   alignment = std::max(alignment, sec->alignment);
447   sections.push_back(sec);
448 
449   for (auto *ds : sec->dependentSections)
450     dependentSections.push_back(ds);
451 }
452 
453 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to
454 // EhFrameSection::addRecords().
455 template <class ELFT, class RelTy>
456 void EhFrameSection::iterateFDEWithLSDAAux(
457     EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
458     llvm::function_ref<void(InputSection &)> fn) {
459   for (EhSectionPiece &piece : sec.pieces) {
460     // Skip ZERO terminator.
461     if (piece.size == 4)
462       continue;
463 
464     size_t offset = piece.inputOff;
465     uint32_t id =
466         endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4);
467     if (id == 0) {
468       if (hasLSDA(piece))
469         ciesWithLSDA.insert(offset);
470       continue;
471     }
472     uint32_t cieOffset = offset + 4 - id;
473     if (ciesWithLSDA.count(cieOffset) == 0)
474       continue;
475 
476     // The CIE has a LSDA argument. Call fn with d's section.
477     if (Defined *d = isFdeLive<ELFT>(piece, rels))
478       if (auto *s = dyn_cast_or_null<InputSection>(d->section))
479         fn(*s);
480   }
481 }
482 
483 template <class ELFT>
484 void EhFrameSection::iterateFDEWithLSDA(
485     llvm::function_ref<void(InputSection &)> fn) {
486   DenseSet<size_t> ciesWithLSDA;
487   for (EhInputSection *sec : sections) {
488     ciesWithLSDA.clear();
489     const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
490     if (rels.areRelocsRel())
491       iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
492     else
493       iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
494   }
495 }
496 
497 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
498   memcpy(buf, d.data(), d.size());
499 
500   size_t aligned = alignTo(d.size(), config->wordsize);
501   assert(std::all_of(buf + d.size(), buf + aligned,
502                      [](uint8_t c) { return c == 0; }));
503 
504   // Fix the size field. -4 since size does not include the size field itself.
505   write32(buf, aligned - 4);
506 }
507 
508 void EhFrameSection::finalizeContents() {
509   assert(!this->size); // Not finalized.
510 
511   switch (config->ekind) {
512   case ELFNoneKind:
513     llvm_unreachable("invalid ekind");
514   case ELF32LEKind:
515     for (EhInputSection *sec : sections)
516       addSectionAux<ELF32LE>(sec);
517     break;
518   case ELF32BEKind:
519     for (EhInputSection *sec : sections)
520       addSectionAux<ELF32BE>(sec);
521     break;
522   case ELF64LEKind:
523     for (EhInputSection *sec : sections)
524       addSectionAux<ELF64LE>(sec);
525     break;
526   case ELF64BEKind:
527     for (EhInputSection *sec : sections)
528       addSectionAux<ELF64BE>(sec);
529     break;
530   }
531 
532   size_t off = 0;
533   for (CieRecord *rec : cieRecords) {
534     rec->cie->outputOff = off;
535     off += alignTo(rec->cie->size, config->wordsize);
536 
537     for (EhSectionPiece *fde : rec->fdes) {
538       fde->outputOff = off;
539       off += alignTo(fde->size, config->wordsize);
540     }
541   }
542 
543   // The LSB standard does not allow a .eh_frame section with zero
544   // Call Frame Information records. glibc unwind-dw2-fde.c
545   // classify_object_over_fdes expects there is a CIE record length 0 as a
546   // terminator. Thus we add one unconditionally.
547   off += 4;
548 
549   this->size = off;
550 }
551 
552 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
553 // to get an FDE from an address to which FDE is applied. This function
554 // returns a list of such pairs.
555 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
556   uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
557   SmallVector<FdeData, 0> ret;
558 
559   uint64_t va = getPartition().ehFrameHdr->getVA();
560   for (CieRecord *rec : cieRecords) {
561     uint8_t enc = getFdeEncoding(rec->cie);
562     for (EhSectionPiece *fde : rec->fdes) {
563       uint64_t pc = getFdePc(buf, fde->outputOff, enc);
564       uint64_t fdeVA = getParent()->addr + fde->outputOff;
565       if (!isInt<32>(pc - va))
566         fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
567               Twine::utohexstr(pc - va));
568       ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
569     }
570   }
571 
572   // Sort the FDE list by their PC and uniqueify. Usually there is only
573   // one FDE for a PC (i.e. function), but if ICF merges two functions
574   // into one, there can be more than one FDEs pointing to the address.
575   auto less = [](const FdeData &a, const FdeData &b) {
576     return a.pcRel < b.pcRel;
577   };
578   llvm::stable_sort(ret, less);
579   auto eq = [](const FdeData &a, const FdeData &b) {
580     return a.pcRel == b.pcRel;
581   };
582   ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
583 
584   return ret;
585 }
586 
587 static uint64_t readFdeAddr(uint8_t *buf, int size) {
588   switch (size) {
589   case DW_EH_PE_udata2:
590     return read16(buf);
591   case DW_EH_PE_sdata2:
592     return (int16_t)read16(buf);
593   case DW_EH_PE_udata4:
594     return read32(buf);
595   case DW_EH_PE_sdata4:
596     return (int32_t)read32(buf);
597   case DW_EH_PE_udata8:
598   case DW_EH_PE_sdata8:
599     return read64(buf);
600   case DW_EH_PE_absptr:
601     return readUint(buf);
602   }
603   fatal("unknown FDE size encoding");
604 }
605 
606 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
607 // We need it to create .eh_frame_hdr section.
608 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
609                                   uint8_t enc) const {
610   // The starting address to which this FDE applies is
611   // stored at FDE + 8 byte.
612   size_t off = fdeOff + 8;
613   uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
614   if ((enc & 0x70) == DW_EH_PE_absptr)
615     return addr;
616   if ((enc & 0x70) == DW_EH_PE_pcrel)
617     return addr + getParent()->addr + off;
618   fatal("unknown FDE size relative encoding");
619 }
620 
621 void EhFrameSection::writeTo(uint8_t *buf) {
622   // Write CIE and FDE records.
623   for (CieRecord *rec : cieRecords) {
624     size_t cieOffset = rec->cie->outputOff;
625     writeCieFde(buf + cieOffset, rec->cie->data());
626 
627     for (EhSectionPiece *fde : rec->fdes) {
628       size_t off = fde->outputOff;
629       writeCieFde(buf + off, fde->data());
630 
631       // FDE's second word should have the offset to an associated CIE.
632       // Write it.
633       write32(buf + off + 4, off + 4 - cieOffset);
634     }
635   }
636 
637   // Apply relocations. .eh_frame section contents are not contiguous
638   // in the output buffer, but relocateAlloc() still works because
639   // getOffset() takes care of discontiguous section pieces.
640   for (EhInputSection *s : sections)
641     s->relocateAlloc(buf, nullptr);
642 
643   if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
644     getPartition().ehFrameHdr->write();
645 }
646 
647 GotSection::GotSection()
648     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
649                        target->gotEntrySize, ".got") {
650   numEntries = target->gotHeaderEntriesNum;
651 }
652 
653 void GotSection::addEntry(Symbol &sym) {
654   assert(sym.auxIdx == symAux.size() - 1);
655   symAux.back().gotIdx = numEntries++;
656 }
657 
658 bool GotSection::addTlsDescEntry(Symbol &sym) {
659   assert(sym.auxIdx == symAux.size() - 1);
660   symAux.back().tlsDescIdx = numEntries;
661   numEntries += 2;
662   return true;
663 }
664 
665 bool GotSection::addDynTlsEntry(Symbol &sym) {
666   assert(sym.auxIdx == symAux.size() - 1);
667   symAux.back().tlsGdIdx = numEntries;
668   // Global Dynamic TLS entries take two GOT slots.
669   numEntries += 2;
670   return true;
671 }
672 
673 // Reserves TLS entries for a TLS module ID and a TLS block offset.
674 // In total it takes two GOT slots.
675 bool GotSection::addTlsIndex() {
676   if (tlsIndexOff != uint32_t(-1))
677     return false;
678   tlsIndexOff = numEntries * config->wordsize;
679   numEntries += 2;
680   return true;
681 }
682 
683 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
684   return sym.getTlsDescIdx() * config->wordsize;
685 }
686 
687 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
688   return getVA() + getTlsDescOffset(sym);
689 }
690 
691 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
692   return this->getVA() + b.getTlsGdIdx() * config->wordsize;
693 }
694 
695 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
696   return b.getTlsGdIdx() * config->wordsize;
697 }
698 
699 void GotSection::finalizeContents() {
700   if (config->emachine == EM_PPC64 &&
701       numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable)
702     size = 0;
703   else
704     size = numEntries * config->wordsize;
705 }
706 
707 bool GotSection::isNeeded() const {
708   // Needed if the GOT symbol is used or the number of entries is more than just
709   // the header. A GOT with just the header may not be needed.
710   return hasGotOffRel || numEntries > target->gotHeaderEntriesNum;
711 }
712 
713 void GotSection::writeTo(uint8_t *buf) {
714   target->writeGotHeader(buf);
715   relocateAlloc(buf, buf + size);
716 }
717 
718 static uint64_t getMipsPageAddr(uint64_t addr) {
719   return (addr + 0x8000) & ~0xffff;
720 }
721 
722 static uint64_t getMipsPageCount(uint64_t size) {
723   return (size + 0xfffe) / 0xffff + 1;
724 }
725 
726 MipsGotSection::MipsGotSection()
727     : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
728                        ".got") {}
729 
730 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
731                               RelExpr expr) {
732   FileGot &g = getGot(file);
733   if (expr == R_MIPS_GOT_LOCAL_PAGE) {
734     if (const OutputSection *os = sym.getOutputSection())
735       g.pagesMap.insert({os, {}});
736     else
737       g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
738   } else if (sym.isTls())
739     g.tls.insert({&sym, 0});
740   else if (sym.isPreemptible && expr == R_ABS)
741     g.relocs.insert({&sym, 0});
742   else if (sym.isPreemptible)
743     g.global.insert({&sym, 0});
744   else if (expr == R_MIPS_GOT_OFF32)
745     g.local32.insert({{&sym, addend}, 0});
746   else
747     g.local16.insert({{&sym, addend}, 0});
748 }
749 
750 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
751   getGot(file).dynTlsSymbols.insert({&sym, 0});
752 }
753 
754 void MipsGotSection::addTlsIndex(InputFile &file) {
755   getGot(file).dynTlsSymbols.insert({nullptr, 0});
756 }
757 
758 size_t MipsGotSection::FileGot::getEntriesNum() const {
759   return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
760          tls.size() + dynTlsSymbols.size() * 2;
761 }
762 
763 size_t MipsGotSection::FileGot::getPageEntriesNum() const {
764   size_t num = 0;
765   for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
766     num += p.second.count;
767   return num;
768 }
769 
770 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
771   size_t count = getPageEntriesNum() + local16.size() + global.size();
772   // If there are relocation-only entries in the GOT, TLS entries
773   // are allocated after them. TLS entries should be addressable
774   // by 16-bit index so count both reloc-only and TLS entries.
775   if (!tls.empty() || !dynTlsSymbols.empty())
776     count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
777   return count;
778 }
779 
780 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
781   if (f.mipsGotIndex == uint32_t(-1)) {
782     gots.emplace_back();
783     gots.back().file = &f;
784     f.mipsGotIndex = gots.size() - 1;
785   }
786   return gots[f.mipsGotIndex];
787 }
788 
789 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
790                                             const Symbol &sym,
791                                             int64_t addend) const {
792   const FileGot &g = gots[f->mipsGotIndex];
793   uint64_t index = 0;
794   if (const OutputSection *outSec = sym.getOutputSection()) {
795     uint64_t secAddr = getMipsPageAddr(outSec->addr);
796     uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
797     index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
798   } else {
799     index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
800   }
801   return index * config->wordsize;
802 }
803 
804 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
805                                            int64_t addend) const {
806   const FileGot &g = gots[f->mipsGotIndex];
807   Symbol *sym = const_cast<Symbol *>(&s);
808   if (sym->isTls())
809     return g.tls.lookup(sym) * config->wordsize;
810   if (sym->isPreemptible)
811     return g.global.lookup(sym) * config->wordsize;
812   return g.local16.lookup({sym, addend}) * config->wordsize;
813 }
814 
815 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
816   const FileGot &g = gots[f->mipsGotIndex];
817   return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
818 }
819 
820 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
821                                             const Symbol &s) const {
822   const FileGot &g = gots[f->mipsGotIndex];
823   Symbol *sym = const_cast<Symbol *>(&s);
824   return g.dynTlsSymbols.lookup(sym) * config->wordsize;
825 }
826 
827 const Symbol *MipsGotSection::getFirstGlobalEntry() const {
828   if (gots.empty())
829     return nullptr;
830   const FileGot &primGot = gots.front();
831   if (!primGot.global.empty())
832     return primGot.global.front().first;
833   if (!primGot.relocs.empty())
834     return primGot.relocs.front().first;
835   return nullptr;
836 }
837 
838 unsigned MipsGotSection::getLocalEntriesNum() const {
839   if (gots.empty())
840     return headerEntriesNum;
841   return headerEntriesNum + gots.front().getPageEntriesNum() +
842          gots.front().local16.size();
843 }
844 
845 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
846   FileGot tmp = dst;
847   set_union(tmp.pagesMap, src.pagesMap);
848   set_union(tmp.local16, src.local16);
849   set_union(tmp.global, src.global);
850   set_union(tmp.relocs, src.relocs);
851   set_union(tmp.tls, src.tls);
852   set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
853 
854   size_t count = isPrimary ? headerEntriesNum : 0;
855   count += tmp.getIndexedEntriesNum();
856 
857   if (count * config->wordsize > config->mipsGotSize)
858     return false;
859 
860   std::swap(tmp, dst);
861   return true;
862 }
863 
864 void MipsGotSection::finalizeContents() { updateAllocSize(); }
865 
866 bool MipsGotSection::updateAllocSize() {
867   size = headerEntriesNum * config->wordsize;
868   for (const FileGot &g : gots)
869     size += g.getEntriesNum() * config->wordsize;
870   return false;
871 }
872 
873 void MipsGotSection::build() {
874   if (gots.empty())
875     return;
876 
877   std::vector<FileGot> mergedGots(1);
878 
879   // For each GOT move non-preemptible symbols from the `Global`
880   // to `Local16` list. Preemptible symbol might become non-preemptible
881   // one if, for example, it gets a related copy relocation.
882   for (FileGot &got : gots) {
883     for (auto &p: got.global)
884       if (!p.first->isPreemptible)
885         got.local16.insert({{p.first, 0}, 0});
886     got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
887       return !p.first->isPreemptible;
888     });
889   }
890 
891   // For each GOT remove "reloc-only" entry if there is "global"
892   // entry for the same symbol. And add local entries which indexed
893   // using 32-bit value at the end of 16-bit entries.
894   for (FileGot &got : gots) {
895     got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
896       return got.global.count(p.first);
897     });
898     set_union(got.local16, got.local32);
899     got.local32.clear();
900   }
901 
902   // Evaluate number of "reloc-only" entries in the resulting GOT.
903   // To do that put all unique "reloc-only" and "global" entries
904   // from all GOTs to the future primary GOT.
905   FileGot *primGot = &mergedGots.front();
906   for (FileGot &got : gots) {
907     set_union(primGot->relocs, got.global);
908     set_union(primGot->relocs, got.relocs);
909     got.relocs.clear();
910   }
911 
912   // Evaluate number of "page" entries in each GOT.
913   for (FileGot &got : gots) {
914     for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
915          got.pagesMap) {
916       const OutputSection *os = p.first;
917       uint64_t secSize = 0;
918       for (SectionCommand *cmd : os->commands) {
919         if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
920           for (InputSection *isec : isd->sections) {
921             uint64_t off = alignTo(secSize, isec->alignment);
922             secSize = off + isec->getSize();
923           }
924       }
925       p.second.count = getMipsPageCount(secSize);
926     }
927   }
928 
929   // Merge GOTs. Try to join as much as possible GOTs but do not exceed
930   // maximum GOT size. At first, try to fill the primary GOT because
931   // the primary GOT can be accessed in the most effective way. If it
932   // is not possible, try to fill the last GOT in the list, and finally
933   // create a new GOT if both attempts failed.
934   for (FileGot &srcGot : gots) {
935     InputFile *file = srcGot.file;
936     if (tryMergeGots(mergedGots.front(), srcGot, true)) {
937       file->mipsGotIndex = 0;
938     } else {
939       // If this is the first time we failed to merge with the primary GOT,
940       // MergedGots.back() will also be the primary GOT. We must make sure not
941       // to try to merge again with isPrimary=false, as otherwise, if the
942       // inputs are just right, we could allow the primary GOT to become 1 or 2
943       // words bigger due to ignoring the header size.
944       if (mergedGots.size() == 1 ||
945           !tryMergeGots(mergedGots.back(), srcGot, false)) {
946         mergedGots.emplace_back();
947         std::swap(mergedGots.back(), srcGot);
948       }
949       file->mipsGotIndex = mergedGots.size() - 1;
950     }
951   }
952   std::swap(gots, mergedGots);
953 
954   // Reduce number of "reloc-only" entries in the primary GOT
955   // by subtracting "global" entries in the primary GOT.
956   primGot = &gots.front();
957   primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
958     return primGot->global.count(p.first);
959   });
960 
961   // Calculate indexes for each GOT entry.
962   size_t index = headerEntriesNum;
963   for (FileGot &got : gots) {
964     got.startIndex = &got == primGot ? 0 : index;
965     for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
966          got.pagesMap) {
967       // For each output section referenced by GOT page relocations calculate
968       // and save into pagesMap an upper bound of MIPS GOT entries required
969       // to store page addresses of local symbols. We assume the worst case -
970       // each 64kb page of the output section has at least one GOT relocation
971       // against it. And take in account the case when the section intersects
972       // page boundaries.
973       p.second.firstIndex = index;
974       index += p.second.count;
975     }
976     for (auto &p: got.local16)
977       p.second = index++;
978     for (auto &p: got.global)
979       p.second = index++;
980     for (auto &p: got.relocs)
981       p.second = index++;
982     for (auto &p: got.tls)
983       p.second = index++;
984     for (auto &p: got.dynTlsSymbols) {
985       p.second = index;
986       index += 2;
987     }
988   }
989 
990   // Update SymbolAux::gotIdx field to use this
991   // value later in the `sortMipsSymbols` function.
992   for (auto &p : primGot->global) {
993     if (p.first->auxIdx == uint32_t(-1))
994       p.first->allocateAux();
995     symAux.back().gotIdx = p.second;
996   }
997   for (auto &p : primGot->relocs) {
998     if (p.first->auxIdx == uint32_t(-1))
999       p.first->allocateAux();
1000     symAux.back().gotIdx = p.second;
1001   }
1002 
1003   // Create dynamic relocations.
1004   for (FileGot &got : gots) {
1005     // Create dynamic relocations for TLS entries.
1006     for (std::pair<Symbol *, size_t> &p : got.tls) {
1007       Symbol *s = p.first;
1008       uint64_t offset = p.second * config->wordsize;
1009       // When building a shared library we still need a dynamic relocation
1010       // for the TP-relative offset as we don't know how much other data will
1011       // be allocated before us in the static TLS block.
1012       if (s->isPreemptible || config->shared)
1013         mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset,
1014                                      DynamicReloc::AgainstSymbolWithTargetVA,
1015                                      *s, 0, R_ABS});
1016     }
1017     for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
1018       Symbol *s = p.first;
1019       uint64_t offset = p.second * config->wordsize;
1020       if (s == nullptr) {
1021         if (!config->shared)
1022           continue;
1023         mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset});
1024       } else {
1025         // When building a shared library we still need a dynamic relocation
1026         // for the module index. Therefore only checking for
1027         // S->isPreemptible is not sufficient (this happens e.g. for
1028         // thread-locals that have been marked as local through a linker script)
1029         if (!s->isPreemptible && !config->shared)
1030           continue;
1031         mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this,
1032                                           offset, *s);
1033         // However, we can skip writing the TLS offset reloc for non-preemptible
1034         // symbols since it is known even in shared libraries
1035         if (!s->isPreemptible)
1036           continue;
1037         offset += config->wordsize;
1038         mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset,
1039                                           *s);
1040       }
1041     }
1042 
1043     // Do not create dynamic relocations for non-TLS
1044     // entries in the primary GOT.
1045     if (&got == primGot)
1046       continue;
1047 
1048     // Dynamic relocations for "global" entries.
1049     for (const std::pair<Symbol *, size_t> &p : got.global) {
1050       uint64_t offset = p.second * config->wordsize;
1051       mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset,
1052                                         *p.first);
1053     }
1054     if (!config->isPic)
1055       continue;
1056     // Dynamic relocations for "local" entries in case of PIC.
1057     for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1058          got.pagesMap) {
1059       size_t pageCount = l.second.count;
1060       for (size_t pi = 0; pi < pageCount; ++pi) {
1061         uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
1062         mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
1063                                      int64_t(pi * 0x10000)});
1064       }
1065     }
1066     for (const std::pair<GotEntry, size_t> &p : got.local16) {
1067       uint64_t offset = p.second * config->wordsize;
1068       mainPart->relaDyn->addReloc({target->relativeRel, this, offset,
1069                                    DynamicReloc::AddendOnlyWithTargetVA,
1070                                    *p.first.first, p.first.second, R_ABS});
1071     }
1072   }
1073 }
1074 
1075 bool MipsGotSection::isNeeded() const {
1076   // We add the .got section to the result for dynamic MIPS target because
1077   // its address and properties are mentioned in the .dynamic section.
1078   return !config->relocatable;
1079 }
1080 
1081 uint64_t MipsGotSection::getGp(const InputFile *f) const {
1082   // For files without related GOT or files refer a primary GOT
1083   // returns "common" _gp value. For secondary GOTs calculate
1084   // individual _gp values.
1085   if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
1086     return ElfSym::mipsGp->getVA(0);
1087   return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0;
1088 }
1089 
1090 void MipsGotSection::writeTo(uint8_t *buf) {
1091   // Set the MSB of the second GOT slot. This is not required by any
1092   // MIPS ABI documentation, though.
1093   //
1094   // There is a comment in glibc saying that "The MSB of got[1] of a
1095   // gnu object is set to identify gnu objects," and in GNU gold it
1096   // says "the second entry will be used by some runtime loaders".
1097   // But how this field is being used is unclear.
1098   //
1099   // We are not really willing to mimic other linkers behaviors
1100   // without understanding why they do that, but because all files
1101   // generated by GNU tools have this special GOT value, and because
1102   // we've been doing this for years, it is probably a safe bet to
1103   // keep doing this for now. We really need to revisit this to see
1104   // if we had to do this.
1105   writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1106   for (const FileGot &g : gots) {
1107     auto write = [&](size_t i, const Symbol *s, int64_t a) {
1108       uint64_t va = a;
1109       if (s)
1110         va = s->getVA(a);
1111       writeUint(buf + i * config->wordsize, va);
1112     };
1113     // Write 'page address' entries to the local part of the GOT.
1114     for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1115          g.pagesMap) {
1116       size_t pageCount = l.second.count;
1117       uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1118       for (size_t pi = 0; pi < pageCount; ++pi)
1119         write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1120     }
1121     // Local, global, TLS, reloc-only  entries.
1122     // If TLS entry has a corresponding dynamic relocations, leave it
1123     // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1124     // To calculate the adjustments use offsets for thread-local storage.
1125     // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1126     for (const std::pair<GotEntry, size_t> &p : g.local16)
1127       write(p.second, p.first.first, p.first.second);
1128     // Write VA to the primary GOT only. For secondary GOTs that
1129     // will be done by REL32 dynamic relocations.
1130     if (&g == &gots.front())
1131       for (const std::pair<Symbol *, size_t> &p : g.global)
1132         write(p.second, p.first, 0);
1133     for (const std::pair<Symbol *, size_t> &p : g.relocs)
1134       write(p.second, p.first, 0);
1135     for (const std::pair<Symbol *, size_t> &p : g.tls)
1136       write(p.second, p.first,
1137             p.first->isPreemptible || config->shared ? 0 : -0x7000);
1138     for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1139       if (p.first == nullptr && !config->shared)
1140         write(p.second, nullptr, 1);
1141       else if (p.first && !p.first->isPreemptible) {
1142         // If we are emitting a shared library with relocations we mustn't write
1143         // anything to the GOT here. When using Elf_Rel relocations the value
1144         // one will be treated as an addend and will cause crashes at runtime
1145         if (!config->shared)
1146           write(p.second, nullptr, 1);
1147         write(p.second + 1, p.first, -0x8000);
1148       }
1149     }
1150   }
1151 }
1152 
1153 // On PowerPC the .plt section is used to hold the table of function addresses
1154 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1155 // section. I don't know why we have a BSS style type for the section but it is
1156 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1157 GotPltSection::GotPltSection()
1158     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1159                        ".got.plt") {
1160   if (config->emachine == EM_PPC) {
1161     name = ".plt";
1162   } else if (config->emachine == EM_PPC64) {
1163     type = SHT_NOBITS;
1164     name = ".plt";
1165   }
1166 }
1167 
1168 void GotPltSection::addEntry(Symbol &sym) {
1169   assert(sym.auxIdx == symAux.size() - 1 &&
1170          symAux.back().pltIdx == entries.size());
1171   entries.push_back(&sym);
1172 }
1173 
1174 size_t GotPltSection::getSize() const {
1175   return (target->gotPltHeaderEntriesNum + entries.size()) *
1176          target->gotEntrySize;
1177 }
1178 
1179 void GotPltSection::writeTo(uint8_t *buf) {
1180   target->writeGotPltHeader(buf);
1181   buf += target->gotPltHeaderEntriesNum * target->gotEntrySize;
1182   for (const Symbol *b : entries) {
1183     target->writeGotPlt(buf, *b);
1184     buf += target->gotEntrySize;
1185   }
1186 }
1187 
1188 bool GotPltSection::isNeeded() const {
1189   // We need to emit GOTPLT even if it's empty if there's a relocation relative
1190   // to it.
1191   return !entries.empty() || hasGotPltOffRel;
1192 }
1193 
1194 static StringRef getIgotPltName() {
1195   // On ARM the IgotPltSection is part of the GotSection.
1196   if (config->emachine == EM_ARM)
1197     return ".got";
1198 
1199   // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1200   // needs to be named the same.
1201   if (config->emachine == EM_PPC64)
1202     return ".plt";
1203 
1204   return ".got.plt";
1205 }
1206 
1207 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1208 // with the IgotPltSection.
1209 IgotPltSection::IgotPltSection()
1210     : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1211                        config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1212                        target->gotEntrySize, getIgotPltName()) {}
1213 
1214 void IgotPltSection::addEntry(Symbol &sym) {
1215   assert(symAux.back().pltIdx == entries.size());
1216   entries.push_back(&sym);
1217 }
1218 
1219 size_t IgotPltSection::getSize() const {
1220   return entries.size() * target->gotEntrySize;
1221 }
1222 
1223 void IgotPltSection::writeTo(uint8_t *buf) {
1224   for (const Symbol *b : entries) {
1225     target->writeIgotPlt(buf, *b);
1226     buf += target->gotEntrySize;
1227   }
1228 }
1229 
1230 StringTableSection::StringTableSection(StringRef name, bool dynamic)
1231     : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1232       dynamic(dynamic) {
1233   // ELF string tables start with a NUL byte.
1234   strings.push_back("");
1235   stringMap.try_emplace(CachedHashStringRef(""), 0);
1236   size = 1;
1237 }
1238 
1239 // Adds a string to the string table. If `hashIt` is true we hash and check for
1240 // duplicates. It is optional because the name of global symbols are already
1241 // uniqued and hashing them again has a big cost for a small value: uniquing
1242 // them with some other string that happens to be the same.
1243 unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1244   if (hashIt) {
1245     auto r = stringMap.try_emplace(CachedHashStringRef(s), size);
1246     if (!r.second)
1247       return r.first->second;
1248   }
1249   if (s.empty())
1250     return 0;
1251   unsigned ret = this->size;
1252   this->size = this->size + s.size() + 1;
1253   strings.push_back(s);
1254   return ret;
1255 }
1256 
1257 void StringTableSection::writeTo(uint8_t *buf) {
1258   for (StringRef s : strings) {
1259     memcpy(buf, s.data(), s.size());
1260     buf[s.size()] = '\0';
1261     buf += s.size() + 1;
1262   }
1263 }
1264 
1265 // Returns the number of entries in .gnu.version_d: the number of
1266 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1267 // Note that we don't support vd_cnt > 1 yet.
1268 static unsigned getVerDefNum() {
1269   return namedVersionDefs().size() + 1;
1270 }
1271 
1272 template <class ELFT>
1273 DynamicSection<ELFT>::DynamicSection()
1274     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1275                        ".dynamic") {
1276   this->entsize = ELFT::Is64Bits ? 16 : 8;
1277 
1278   // .dynamic section is not writable on MIPS and on Fuchsia OS
1279   // which passes -z rodynamic.
1280   // See "Special Section" in Chapter 4 in the following document:
1281   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1282   if (config->emachine == EM_MIPS || config->zRodynamic)
1283     this->flags = SHF_ALLOC;
1284 }
1285 
1286 // The output section .rela.dyn may include these synthetic sections:
1287 //
1288 // - part.relaDyn
1289 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1290 // - in.relaPlt: this is included if a linker script places .rela.plt inside
1291 //   .rela.dyn
1292 //
1293 // DT_RELASZ is the total size of the included sections.
1294 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) {
1295   size_t size = relaDyn.getSize();
1296   if (in.relaIplt->getParent() == relaDyn.getParent())
1297     size += in.relaIplt->getSize();
1298   if (in.relaPlt->getParent() == relaDyn.getParent())
1299     size += in.relaPlt->getSize();
1300   return size;
1301 }
1302 
1303 // A Linker script may assign the RELA relocation sections to the same
1304 // output section. When this occurs we cannot just use the OutputSection
1305 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1306 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1307 static uint64_t addPltRelSz() {
1308   size_t size = in.relaPlt->getSize();
1309   if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1310       in.relaIplt->name == in.relaPlt->name)
1311     size += in.relaIplt->getSize();
1312   return size;
1313 }
1314 
1315 // Add remaining entries to complete .dynamic contents.
1316 template <class ELFT>
1317 std::vector<std::pair<int32_t, uint64_t>>
1318 DynamicSection<ELFT>::computeContents() {
1319   elf::Partition &part = getPartition();
1320   bool isMain = part.name.empty();
1321   std::vector<std::pair<int32_t, uint64_t>> entries;
1322 
1323   auto addInt = [&](int32_t tag, uint64_t val) {
1324     entries.emplace_back(tag, val);
1325   };
1326   auto addInSec = [&](int32_t tag, const InputSection &sec) {
1327     entries.emplace_back(tag, sec.getVA());
1328   };
1329 
1330   for (StringRef s : config->filterList)
1331     addInt(DT_FILTER, part.dynStrTab->addString(s));
1332   for (StringRef s : config->auxiliaryList)
1333     addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1334 
1335   if (!config->rpath.empty())
1336     addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1337            part.dynStrTab->addString(config->rpath));
1338 
1339   for (SharedFile *file : sharedFiles)
1340     if (file->isNeeded)
1341       addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1342 
1343   if (isMain) {
1344     if (!config->soName.empty())
1345       addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1346   } else {
1347     if (!config->soName.empty())
1348       addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1349     addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1350   }
1351 
1352   // Set DT_FLAGS and DT_FLAGS_1.
1353   uint32_t dtFlags = 0;
1354   uint32_t dtFlags1 = 0;
1355   if (config->bsymbolic == BsymbolicKind::All)
1356     dtFlags |= DF_SYMBOLIC;
1357   if (config->zGlobal)
1358     dtFlags1 |= DF_1_GLOBAL;
1359   if (config->zInitfirst)
1360     dtFlags1 |= DF_1_INITFIRST;
1361   if (config->zInterpose)
1362     dtFlags1 |= DF_1_INTERPOSE;
1363   if (config->zNodefaultlib)
1364     dtFlags1 |= DF_1_NODEFLIB;
1365   if (config->zNodelete)
1366     dtFlags1 |= DF_1_NODELETE;
1367   if (config->zNodlopen)
1368     dtFlags1 |= DF_1_NOOPEN;
1369   if (config->pie)
1370     dtFlags1 |= DF_1_PIE;
1371   if (config->zNow) {
1372     dtFlags |= DF_BIND_NOW;
1373     dtFlags1 |= DF_1_NOW;
1374   }
1375   if (config->zOrigin) {
1376     dtFlags |= DF_ORIGIN;
1377     dtFlags1 |= DF_1_ORIGIN;
1378   }
1379   if (!config->zText)
1380     dtFlags |= DF_TEXTREL;
1381   if (config->hasTlsIe && config->shared)
1382     dtFlags |= DF_STATIC_TLS;
1383 
1384   if (dtFlags)
1385     addInt(DT_FLAGS, dtFlags);
1386   if (dtFlags1)
1387     addInt(DT_FLAGS_1, dtFlags1);
1388 
1389   // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1390   // need it for each process, so we don't write it for DSOs. The loader writes
1391   // the pointer into this entry.
1392   //
1393   // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1394   // systems (currently only Fuchsia OS) provide other means to give the
1395   // debugger this information. Such systems may choose make .dynamic read-only.
1396   // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1397   if (!config->shared && !config->relocatable && !config->zRodynamic)
1398     addInt(DT_DEBUG, 0);
1399 
1400   if (part.relaDyn->isNeeded() ||
1401       (in.relaIplt->isNeeded() &&
1402        part.relaDyn->getParent() == in.relaIplt->getParent())) {
1403     addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
1404     entries.emplace_back(part.relaDyn->sizeDynamicTag,
1405                          addRelaSz(*part.relaDyn));
1406 
1407     bool isRela = config->isRela;
1408     addInt(isRela ? DT_RELAENT : DT_RELENT,
1409            isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1410 
1411     // MIPS dynamic loader does not support RELCOUNT tag.
1412     // The problem is in the tight relation between dynamic
1413     // relocations and GOT. So do not emit this tag on MIPS.
1414     if (config->emachine != EM_MIPS) {
1415       size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1416       if (config->zCombreloc && numRelativeRels)
1417         addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1418     }
1419   }
1420   if (part.relrDyn && part.relrDyn->getParent() &&
1421       !part.relrDyn->relocs.empty()) {
1422     addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1423              *part.relrDyn);
1424     addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1425            part.relrDyn->getParent()->size);
1426     addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1427            sizeof(Elf_Relr));
1428   }
1429   // .rel[a].plt section usually consists of two parts, containing plt and
1430   // iplt relocations. It is possible to have only iplt relocations in the
1431   // output. In that case relaPlt is empty and have zero offset, the same offset
1432   // as relaIplt has. And we still want to emit proper dynamic tags for that
1433   // case, so here we always use relaPlt as marker for the beginning of
1434   // .rel[a].plt section.
1435   if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1436     addInSec(DT_JMPREL, *in.relaPlt);
1437     entries.emplace_back(DT_PLTRELSZ, addPltRelSz());
1438     switch (config->emachine) {
1439     case EM_MIPS:
1440       addInSec(DT_MIPS_PLTGOT, *in.gotPlt);
1441       break;
1442     case EM_SPARCV9:
1443       addInSec(DT_PLTGOT, *in.plt);
1444       break;
1445     case EM_AARCH64:
1446       if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) {
1447            return r.type == target->pltRel &&
1448                   r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1449           }) != in.relaPlt->relocs.end())
1450         addInt(DT_AARCH64_VARIANT_PCS, 0);
1451       LLVM_FALLTHROUGH;
1452     default:
1453       addInSec(DT_PLTGOT, *in.gotPlt);
1454       break;
1455     }
1456     addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1457   }
1458 
1459   if (config->emachine == EM_AARCH64) {
1460     if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1461       addInt(DT_AARCH64_BTI_PLT, 0);
1462     if (config->zPacPlt)
1463       addInt(DT_AARCH64_PAC_PLT, 0);
1464   }
1465 
1466   addInSec(DT_SYMTAB, *part.dynSymTab);
1467   addInt(DT_SYMENT, sizeof(Elf_Sym));
1468   addInSec(DT_STRTAB, *part.dynStrTab);
1469   addInt(DT_STRSZ, part.dynStrTab->getSize());
1470   if (!config->zText)
1471     addInt(DT_TEXTREL, 0);
1472   if (part.gnuHashTab && part.gnuHashTab->getParent())
1473     addInSec(DT_GNU_HASH, *part.gnuHashTab);
1474   if (part.hashTab && part.hashTab->getParent())
1475     addInSec(DT_HASH, *part.hashTab);
1476 
1477   if (isMain) {
1478     if (Out::preinitArray) {
1479       addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr);
1480       addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size);
1481     }
1482     if (Out::initArray) {
1483       addInt(DT_INIT_ARRAY, Out::initArray->addr);
1484       addInt(DT_INIT_ARRAYSZ, Out::initArray->size);
1485     }
1486     if (Out::finiArray) {
1487       addInt(DT_FINI_ARRAY, Out::finiArray->addr);
1488       addInt(DT_FINI_ARRAYSZ, Out::finiArray->size);
1489     }
1490 
1491     if (Symbol *b = symtab->find(config->init))
1492       if (b->isDefined())
1493         addInt(DT_INIT, b->getVA());
1494     if (Symbol *b = symtab->find(config->fini))
1495       if (b->isDefined())
1496         addInt(DT_FINI, b->getVA());
1497   }
1498 
1499   if (part.verSym && part.verSym->isNeeded())
1500     addInSec(DT_VERSYM, *part.verSym);
1501   if (part.verDef && part.verDef->isLive()) {
1502     addInSec(DT_VERDEF, *part.verDef);
1503     addInt(DT_VERDEFNUM, getVerDefNum());
1504   }
1505   if (part.verNeed && part.verNeed->isNeeded()) {
1506     addInSec(DT_VERNEED, *part.verNeed);
1507     unsigned needNum = 0;
1508     for (SharedFile *f : sharedFiles)
1509       if (!f->vernauxs.empty())
1510         ++needNum;
1511     addInt(DT_VERNEEDNUM, needNum);
1512   }
1513 
1514   if (config->emachine == EM_MIPS) {
1515     addInt(DT_MIPS_RLD_VERSION, 1);
1516     addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1517     addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1518     addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1519     addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum());
1520 
1521     if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1522       addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1523     else
1524       addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1525     addInSec(DT_PLTGOT, *in.mipsGot);
1526     if (in.mipsRldMap) {
1527       if (!config->pie)
1528         addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap);
1529       // Store the offset to the .rld_map section
1530       // relative to the address of the tag.
1531       addInt(DT_MIPS_RLD_MAP_REL,
1532              in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
1533     }
1534   }
1535 
1536   // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1537   // glibc assumes the old-style BSS PLT layout which we don't support.
1538   if (config->emachine == EM_PPC)
1539     addInSec(DT_PPC_GOT, *in.got);
1540 
1541   // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1542   if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1543     // The Glink tag points to 32 bytes before the first lazy symbol resolution
1544     // stub, which starts directly after the header.
1545     addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32);
1546   }
1547 
1548   addInt(DT_NULL, 0);
1549   return entries;
1550 }
1551 
1552 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1553   if (OutputSection *sec = getPartition().dynStrTab->getParent())
1554     getParent()->link = sec->sectionIndex;
1555   this->size = computeContents().size() * this->entsize;
1556 }
1557 
1558 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1559   auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1560 
1561   for (std::pair<int32_t, uint64_t> kv : computeContents()) {
1562     p->d_tag = kv.first;
1563     p->d_un.d_val = kv.second;
1564     ++p;
1565   }
1566 }
1567 
1568 uint64_t DynamicReloc::getOffset() const {
1569   return inputSec->getVA(offsetInSec);
1570 }
1571 
1572 int64_t DynamicReloc::computeAddend() const {
1573   switch (kind) {
1574   case AddendOnly:
1575     assert(sym == nullptr);
1576     return addend;
1577   case AgainstSymbol:
1578     assert(sym != nullptr);
1579     return addend;
1580   case AddendOnlyWithTargetVA:
1581   case AgainstSymbolWithTargetVA:
1582     return InputSection::getRelocTargetVA(inputSec->file, type, addend,
1583                                           getOffset(), *sym, expr);
1584   case MipsMultiGotPage:
1585     assert(sym == nullptr);
1586     return getMipsPageAddr(outputSec->addr) + addend;
1587   }
1588   llvm_unreachable("Unknown DynamicReloc::Kind enum");
1589 }
1590 
1591 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1592   if (!needsDynSymIndex())
1593     return 0;
1594 
1595   size_t index = symTab->getSymbolIndex(sym);
1596   assert((index != 0 || (type != target->gotRel && type != target->pltRel) ||
1597           !mainPart->dynSymTab->getParent()) &&
1598          "GOT or PLT relocation must refer to symbol in dynamic symbol table");
1599   return index;
1600 }
1601 
1602 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1603                                              int32_t dynamicTag,
1604                                              int32_t sizeDynamicTag,
1605                                              bool combreloc)
1606     : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1607       dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
1608       combreloc(combreloc) {}
1609 
1610 void RelocationBaseSection::addSymbolReloc(RelType dynType,
1611                                            InputSectionBase &isec,
1612                                            uint64_t offsetInSec, Symbol &sym,
1613                                            int64_t addend,
1614                                            Optional<RelType> addendRelType) {
1615   addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
1616            R_ADDEND, addendRelType ? *addendRelType : target->noneRel);
1617 }
1618 
1619 void RelocationBaseSection::addRelativeReloc(
1620     RelType dynType, InputSectionBase &inputSec, uint64_t offsetInSec,
1621     Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) {
1622   // This function should only be called for non-preemptible symbols or
1623   // RelExpr values that refer to an address inside the output file (e.g. the
1624   // address of the GOT entry for a potentially preemptible symbol).
1625   assert((!sym.isPreemptible || expr == R_GOT) &&
1626          "cannot add relative relocation against preemptible symbol");
1627   assert(expr != R_ADDEND && "expected non-addend relocation expression");
1628   addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec,
1629            sym, addend, expr, addendRelType);
1630 }
1631 
1632 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1633     RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1634     RelType addendRelType) {
1635   // No need to write an addend to the section for preemptible symbols.
1636   if (sym.isPreemptible)
1637     addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1638               R_ABS});
1639   else
1640     addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec,
1641              sym, 0, R_ABS, addendRelType);
1642 }
1643 
1644 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType,
1645                                      InputSectionBase &inputSec,
1646                                      uint64_t offsetInSec, Symbol &sym,
1647                                      int64_t addend, RelExpr expr,
1648                                      RelType addendRelType) {
1649   // Write the addends to the relocated address if required. We skip
1650   // it if the written value would be zero.
1651   if (config->writeAddends && (expr != R_ADDEND || addend != 0))
1652     inputSec.relocations.push_back(
1653         {expr, addendRelType, offsetInSec, addend, &sym});
1654   addReloc({dynType, &inputSec, offsetInSec, kind, sym, addend, expr});
1655 }
1656 
1657 void RelocationBaseSection::partitionRels() {
1658   if (!combreloc)
1659     return;
1660   const RelType relativeRel = target->relativeRel;
1661   numRelativeRelocs =
1662       llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) -
1663       relocs.begin();
1664 }
1665 
1666 void RelocationBaseSection::finalizeContents() {
1667   SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1668 
1669   // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1670   // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1671   // case.
1672   if (symTab && symTab->getParent())
1673     getParent()->link = symTab->getParent()->sectionIndex;
1674   else
1675     getParent()->link = 0;
1676 
1677   if (in.relaPlt.get() == this && in.gotPlt->getParent()) {
1678     getParent()->flags |= ELF::SHF_INFO_LINK;
1679     getParent()->info = in.gotPlt->getParent()->sectionIndex;
1680   }
1681   if (in.relaIplt.get() == this && in.igotPlt->getParent()) {
1682     getParent()->flags |= ELF::SHF_INFO_LINK;
1683     getParent()->info = in.igotPlt->getParent()->sectionIndex;
1684   }
1685 }
1686 
1687 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) {
1688   r_offset = getOffset();
1689   r_sym = getSymIndex(symtab);
1690   addend = computeAddend();
1691   kind = AddendOnly; // Catch errors
1692 }
1693 
1694 void RelocationBaseSection::computeRels() {
1695   SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1696   parallelForEach(relocs,
1697                   [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); });
1698   // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1699   // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1700   // is to make results easier to read.
1701   if (combreloc) {
1702     auto nonRelative = relocs.begin() + numRelativeRelocs;
1703     parallelSort(relocs.begin(), nonRelative,
1704                  [&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
1705     // Non-relative relocations are few, so don't bother with parallelSort.
1706     std::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) {
1707       return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
1708     });
1709   }
1710 }
1711 
1712 template <class ELFT>
1713 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc)
1714     : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1715                             config->isRela ? DT_RELA : DT_REL,
1716                             config->isRela ? DT_RELASZ : DT_RELSZ, combreloc) {
1717   this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1718 }
1719 
1720 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1721   computeRels();
1722   for (const DynamicReloc &rel : relocs) {
1723     auto *p = reinterpret_cast<Elf_Rela *>(buf);
1724     p->r_offset = rel.r_offset;
1725     p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL);
1726     if (config->isRela)
1727       p->r_addend = rel.addend;
1728     buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1729   }
1730 }
1731 
1732 RelrBaseSection::RelrBaseSection()
1733     : SyntheticSection(SHF_ALLOC,
1734                        config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1735                        config->wordsize, ".relr.dyn") {}
1736 
1737 template <class ELFT>
1738 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1739     StringRef name)
1740     : RelocationBaseSection(
1741           name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1742           config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1743           config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
1744           /*combreloc=*/false) {
1745   this->entsize = 1;
1746 }
1747 
1748 template <class ELFT>
1749 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1750   // This function computes the contents of an Android-format packed relocation
1751   // section.
1752   //
1753   // This format compresses relocations by using relocation groups to factor out
1754   // fields that are common between relocations and storing deltas from previous
1755   // relocations in SLEB128 format (which has a short representation for small
1756   // numbers). A good example of a relocation type with common fields is
1757   // R_*_RELATIVE, which is normally used to represent function pointers in
1758   // vtables. In the REL format, each relative relocation has the same r_info
1759   // field, and is only different from other relative relocations in terms of
1760   // the r_offset field. By sorting relocations by offset, grouping them by
1761   // r_info and representing each relocation with only the delta from the
1762   // previous offset, each 8-byte relocation can be compressed to as little as 1
1763   // byte (or less with run-length encoding). This relocation packer was able to
1764   // reduce the size of the relocation section in an Android Chromium DSO from
1765   // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1766   //
1767   // A relocation section consists of a header containing the literal bytes
1768   // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1769   // elements are the total number of relocations in the section and an initial
1770   // r_offset value. The remaining elements define a sequence of relocation
1771   // groups. Each relocation group starts with a header consisting of the
1772   // following elements:
1773   //
1774   // - the number of relocations in the relocation group
1775   // - flags for the relocation group
1776   // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1777   //   for each relocation in the group.
1778   // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1779   //   field for each relocation in the group.
1780   // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1781   //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1782   //   each relocation in the group.
1783   //
1784   // Following the relocation group header are descriptions of each of the
1785   // relocations in the group. They consist of the following elements:
1786   //
1787   // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1788   //   delta for this relocation.
1789   // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1790   //   field for this relocation.
1791   // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1792   //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1793   //   this relocation.
1794 
1795   size_t oldSize = relocData.size();
1796 
1797   relocData = {'A', 'P', 'S', '2'};
1798   raw_svector_ostream os(relocData);
1799   auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1800 
1801   // The format header includes the number of relocations and the initial
1802   // offset (we set this to zero because the first relocation group will
1803   // perform the initial adjustment).
1804   add(relocs.size());
1805   add(0);
1806 
1807   std::vector<Elf_Rela> relatives, nonRelatives;
1808 
1809   for (const DynamicReloc &rel : relocs) {
1810     Elf_Rela r;
1811     r.r_offset = rel.getOffset();
1812     r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()),
1813                        rel.type, false);
1814     if (config->isRela)
1815       r.r_addend = rel.computeAddend();
1816 
1817     if (r.getType(config->isMips64EL) == target->relativeRel)
1818       relatives.push_back(r);
1819     else
1820       nonRelatives.push_back(r);
1821   }
1822 
1823   llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1824     return a.r_offset < b.r_offset;
1825   });
1826 
1827   // Try to find groups of relative relocations which are spaced one word
1828   // apart from one another. These generally correspond to vtable entries. The
1829   // format allows these groups to be encoded using a sort of run-length
1830   // encoding, but each group will cost 7 bytes in addition to the offset from
1831   // the previous group, so it is only profitable to do this for groups of
1832   // size 8 or larger.
1833   std::vector<Elf_Rela> ungroupedRelatives;
1834   std::vector<std::vector<Elf_Rela>> relativeGroups;
1835   for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1836     std::vector<Elf_Rela> group;
1837     do {
1838       group.push_back(*i++);
1839     } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1840 
1841     if (group.size() < 8)
1842       ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1843                                 group.end());
1844     else
1845       relativeGroups.emplace_back(std::move(group));
1846   }
1847 
1848   // For non-relative relocations, we would like to:
1849   //   1. Have relocations with the same symbol offset to be consecutive, so
1850   //      that the runtime linker can speed-up symbol lookup by implementing an
1851   //      1-entry cache.
1852   //   2. Group relocations by r_info to reduce the size of the relocation
1853   //      section.
1854   // Since the symbol offset is the high bits in r_info, sorting by r_info
1855   // allows us to do both.
1856   //
1857   // For Rela, we also want to sort by r_addend when r_info is the same. This
1858   // enables us to group by r_addend as well.
1859   llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1860     if (a.r_info != b.r_info)
1861       return a.r_info < b.r_info;
1862     if (config->isRela)
1863       return a.r_addend < b.r_addend;
1864     return false;
1865   });
1866 
1867   // Group relocations with the same r_info. Note that each group emits a group
1868   // header and that may make the relocation section larger. It is hard to
1869   // estimate the size of a group header as the encoded size of that varies
1870   // based on r_info. However, we can approximate this trade-off by the number
1871   // of values encoded. Each group header contains 3 values, and each relocation
1872   // in a group encodes one less value, as compared to when it is not grouped.
1873   // Therefore, we only group relocations if there are 3 or more of them with
1874   // the same r_info.
1875   //
1876   // For Rela, the addend for most non-relative relocations is zero, and thus we
1877   // can usually get a smaller relocation section if we group relocations with 0
1878   // addend as well.
1879   std::vector<Elf_Rela> ungroupedNonRelatives;
1880   std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1881   for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1882     auto j = i + 1;
1883     while (j != e && i->r_info == j->r_info &&
1884            (!config->isRela || i->r_addend == j->r_addend))
1885       ++j;
1886     if (j - i < 3 || (config->isRela && i->r_addend != 0))
1887       ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1888     else
1889       nonRelativeGroups.emplace_back(i, j);
1890     i = j;
1891   }
1892 
1893   // Sort ungrouped relocations by offset to minimize the encoded length.
1894   llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1895     return a.r_offset < b.r_offset;
1896   });
1897 
1898   unsigned hasAddendIfRela =
1899       config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1900 
1901   uint64_t offset = 0;
1902   uint64_t addend = 0;
1903 
1904   // Emit the run-length encoding for the groups of adjacent relative
1905   // relocations. Each group is represented using two groups in the packed
1906   // format. The first is used to set the current offset to the start of the
1907   // group (and also encodes the first relocation), and the second encodes the
1908   // remaining relocations.
1909   for (std::vector<Elf_Rela> &g : relativeGroups) {
1910     // The first relocation in the group.
1911     add(1);
1912     add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1913         RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1914     add(g[0].r_offset - offset);
1915     add(target->relativeRel);
1916     if (config->isRela) {
1917       add(g[0].r_addend - addend);
1918       addend = g[0].r_addend;
1919     }
1920 
1921     // The remaining relocations.
1922     add(g.size() - 1);
1923     add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1924         RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1925     add(config->wordsize);
1926     add(target->relativeRel);
1927     if (config->isRela) {
1928       for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) {
1929         add(i->r_addend - addend);
1930         addend = i->r_addend;
1931       }
1932     }
1933 
1934     offset = g.back().r_offset;
1935   }
1936 
1937   // Now the ungrouped relatives.
1938   if (!ungroupedRelatives.empty()) {
1939     add(ungroupedRelatives.size());
1940     add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1941     add(target->relativeRel);
1942     for (Elf_Rela &r : ungroupedRelatives) {
1943       add(r.r_offset - offset);
1944       offset = r.r_offset;
1945       if (config->isRela) {
1946         add(r.r_addend - addend);
1947         addend = r.r_addend;
1948       }
1949     }
1950   }
1951 
1952   // Grouped non-relatives.
1953   for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1954     add(g.size());
1955     add(RELOCATION_GROUPED_BY_INFO_FLAG);
1956     add(g[0].r_info);
1957     for (const Elf_Rela &r : g) {
1958       add(r.r_offset - offset);
1959       offset = r.r_offset;
1960     }
1961     addend = 0;
1962   }
1963 
1964   // Finally the ungrouped non-relative relocations.
1965   if (!ungroupedNonRelatives.empty()) {
1966     add(ungroupedNonRelatives.size());
1967     add(hasAddendIfRela);
1968     for (Elf_Rela &r : ungroupedNonRelatives) {
1969       add(r.r_offset - offset);
1970       offset = r.r_offset;
1971       add(r.r_info);
1972       if (config->isRela) {
1973         add(r.r_addend - addend);
1974         addend = r.r_addend;
1975       }
1976     }
1977   }
1978 
1979   // Don't allow the section to shrink; otherwise the size of the section can
1980   // oscillate infinitely.
1981   if (relocData.size() < oldSize)
1982     relocData.append(oldSize - relocData.size(), 0);
1983 
1984   // Returns whether the section size changed. We need to keep recomputing both
1985   // section layout and the contents of this section until the size converges
1986   // because changing this section's size can affect section layout, which in
1987   // turn can affect the sizes of the LEB-encoded integers stored in this
1988   // section.
1989   return relocData.size() != oldSize;
1990 }
1991 
1992 template <class ELFT> RelrSection<ELFT>::RelrSection() {
1993   this->entsize = config->wordsize;
1994 }
1995 
1996 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
1997   // This function computes the contents of an SHT_RELR packed relocation
1998   // section.
1999   //
2000   // Proposal for adding SHT_RELR sections to generic-abi is here:
2001   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
2002   //
2003   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
2004   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
2005   //
2006   // i.e. start with an address, followed by any number of bitmaps. The address
2007   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
2008   // relocations each, at subsequent offsets following the last address entry.
2009   //
2010   // The bitmap entries must have 1 in the least significant bit. The assumption
2011   // here is that an address cannot have 1 in lsb. Odd addresses are not
2012   // supported.
2013   //
2014   // Excluding the least significant bit in the bitmap, each non-zero bit in
2015   // the bitmap represents a relocation to be applied to a corresponding machine
2016   // word that follows the base address word. The second least significant bit
2017   // represents the machine word immediately following the initial address, and
2018   // each bit that follows represents the next word, in linear order. As such,
2019   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
2020   // 63 relocations in a 64-bit object.
2021   //
2022   // This encoding has a couple of interesting properties:
2023   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2024   //    even means address, odd means bitmap.
2025   // 2. Just a simple list of addresses is a valid encoding.
2026 
2027   size_t oldSize = relrRelocs.size();
2028   relrRelocs.clear();
2029 
2030   // Same as Config->Wordsize but faster because this is a compile-time
2031   // constant.
2032   const size_t wordsize = sizeof(typename ELFT::uint);
2033 
2034   // Number of bits to use for the relocation offsets bitmap.
2035   // Must be either 63 or 31.
2036   const size_t nBits = wordsize * 8 - 1;
2037 
2038   // Get offsets for all relative relocations and sort them.
2039   std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
2040   for (auto it : llvm::enumerate(relocs))
2041     offsets[it.index()] = it.value().getOffset();
2042   std::sort(offsets.get(), offsets.get() + relocs.size());
2043 
2044   // For each leading relocation, find following ones that can be folded
2045   // as a bitmap and fold them.
2046   for (size_t i = 0, e = relocs.size(); i != e;) {
2047     // Add a leading relocation.
2048     relrRelocs.push_back(Elf_Relr(offsets[i]));
2049     uint64_t base = offsets[i] + wordsize;
2050     ++i;
2051 
2052     // Find foldable relocations to construct bitmaps.
2053     for (;;) {
2054       uint64_t bitmap = 0;
2055       for (; i != e; ++i) {
2056         uint64_t d = offsets[i] - base;
2057         if (d >= nBits * wordsize || d % wordsize)
2058           break;
2059         bitmap |= uint64_t(1) << (d / wordsize);
2060       }
2061       if (!bitmap)
2062         break;
2063       relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2064       base += nBits * wordsize;
2065     }
2066   }
2067 
2068   // Don't allow the section to shrink; otherwise the size of the section can
2069   // oscillate infinitely. Trailing 1s do not decode to more relocations.
2070   if (relrRelocs.size() < oldSize) {
2071     log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
2072         " padding word(s)");
2073     relrRelocs.resize(oldSize, Elf_Relr(1));
2074   }
2075 
2076   return relrRelocs.size() != oldSize;
2077 }
2078 
2079 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
2080     : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2081                        strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2082                        config->wordsize,
2083                        strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
2084       strTabSec(strTabSec) {}
2085 
2086 // Orders symbols according to their positions in the GOT,
2087 // in compliance with MIPS ABI rules.
2088 // See "Global Offset Table" in Chapter 5 in the following document
2089 // for detailed description:
2090 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2091 static bool sortMipsSymbols(const SymbolTableEntry &l,
2092                             const SymbolTableEntry &r) {
2093   // Sort entries related to non-local preemptible symbols by GOT indexes.
2094   // All other entries go to the beginning of a dynsym in arbitrary order.
2095   if (l.sym->isInGot() && r.sym->isInGot())
2096     return l.sym->getGotIdx() < r.sym->getGotIdx();
2097   if (!l.sym->isInGot() && !r.sym->isInGot())
2098     return false;
2099   return !l.sym->isInGot();
2100 }
2101 
2102 void SymbolTableBaseSection::finalizeContents() {
2103   if (OutputSection *sec = strTabSec.getParent())
2104     getParent()->link = sec->sectionIndex;
2105 
2106   if (this->type != SHT_DYNSYM) {
2107     sortSymTabSymbols();
2108     return;
2109   }
2110 
2111   // If it is a .dynsym, there should be no local symbols, but we need
2112   // to do a few things for the dynamic linker.
2113 
2114   // Section's Info field has the index of the first non-local symbol.
2115   // Because the first symbol entry is a null entry, 1 is the first.
2116   getParent()->info = 1;
2117 
2118   if (getPartition().gnuHashTab) {
2119     // NB: It also sorts Symbols to meet the GNU hash table requirements.
2120     getPartition().gnuHashTab->addSymbols(symbols);
2121   } else if (config->emachine == EM_MIPS) {
2122     llvm::stable_sort(symbols, sortMipsSymbols);
2123   }
2124 
2125   // Only the main partition's dynsym indexes are stored in the symbols
2126   // themselves. All other partitions use a lookup table.
2127   if (this == mainPart->dynSymTab.get()) {
2128     size_t i = 0;
2129     for (const SymbolTableEntry &s : symbols)
2130       s.sym->dynsymIndex = ++i;
2131   }
2132 }
2133 
2134 // The ELF spec requires that all local symbols precede global symbols, so we
2135 // sort symbol entries in this function. (For .dynsym, we don't do that because
2136 // symbols for dynamic linking are inherently all globals.)
2137 //
2138 // Aside from above, we put local symbols in groups starting with the STT_FILE
2139 // symbol. That is convenient for purpose of identifying where are local symbols
2140 // coming from.
2141 void SymbolTableBaseSection::sortSymTabSymbols() {
2142   // Move all local symbols before global symbols.
2143   auto e = std::stable_partition(
2144       symbols.begin(), symbols.end(),
2145       [](const SymbolTableEntry &s) { return s.sym->isLocal(); });
2146   size_t numLocals = e - symbols.begin();
2147   getParent()->info = numLocals + 1;
2148 
2149   // We want to group the local symbols by file. For that we rebuild the local
2150   // part of the symbols vector. We do not need to care about the STT_FILE
2151   // symbols, they are already naturally placed first in each group. That
2152   // happens because STT_FILE is always the first symbol in the object and hence
2153   // precede all other local symbols we add for a file.
2154   MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
2155   for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2156     arr[s.sym->file].push_back(s);
2157 
2158   auto i = symbols.begin();
2159   for (auto &p : arr)
2160     for (SymbolTableEntry &entry : p.second)
2161       *i++ = entry;
2162 }
2163 
2164 void SymbolTableBaseSection::addSymbol(Symbol *b) {
2165   // Adding a local symbol to a .dynsym is a bug.
2166   assert(this->type != SHT_DYNSYM || !b->isLocal());
2167   symbols.push_back({b, strTabSec.addString(b->getName(), false)});
2168 }
2169 
2170 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2171   if (this == mainPart->dynSymTab.get())
2172     return sym->dynsymIndex;
2173 
2174   // Initializes symbol lookup tables lazily. This is used only for -r,
2175   // --emit-relocs and dynsyms in partitions other than the main one.
2176   llvm::call_once(onceFlag, [&] {
2177     symbolIndexMap.reserve(symbols.size());
2178     size_t i = 0;
2179     for (const SymbolTableEntry &e : symbols) {
2180       if (e.sym->type == STT_SECTION)
2181         sectionIndexMap[e.sym->getOutputSection()] = ++i;
2182       else
2183         symbolIndexMap[e.sym] = ++i;
2184     }
2185   });
2186 
2187   // Section symbols are mapped based on their output sections
2188   // to maintain their semantics.
2189   if (sym->type == STT_SECTION)
2190     return sectionIndexMap.lookup(sym->getOutputSection());
2191   return symbolIndexMap.lookup(sym);
2192 }
2193 
2194 template <class ELFT>
2195 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2196     : SymbolTableBaseSection(strTabSec) {
2197   this->entsize = sizeof(Elf_Sym);
2198 }
2199 
2200 static BssSection *getCommonSec(Symbol *sym) {
2201   if (config->relocatable)
2202     if (auto *d = dyn_cast<Defined>(sym))
2203       return dyn_cast_or_null<BssSection>(d->section);
2204   return nullptr;
2205 }
2206 
2207 static uint32_t getSymSectionIndex(Symbol *sym) {
2208   assert(!(sym->needsCopy && sym->isObject()));
2209   if (!isa<Defined>(sym) || sym->needsCopy)
2210     return SHN_UNDEF;
2211   if (const OutputSection *os = sym->getOutputSection())
2212     return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2213                                              : os->sectionIndex;
2214   return SHN_ABS;
2215 }
2216 
2217 // Write the internal symbol table contents to the output symbol table.
2218 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2219   // The first entry is a null entry as per the ELF spec.
2220   buf += sizeof(Elf_Sym);
2221 
2222   auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2223 
2224   for (SymbolTableEntry &ent : symbols) {
2225     Symbol *sym = ent.sym;
2226     bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2227 
2228     // Set st_name, st_info and st_other.
2229     eSym->st_name = ent.strTabOffset;
2230     eSym->setBindingAndType(sym->binding, sym->type);
2231     eSym->st_other = sym->visibility;
2232 
2233     // The 3 most significant bits of st_other are used by OpenPOWER ABI.
2234     // See getPPC64GlobalEntryToLocalEntryOffset() for more details.
2235     if (config->emachine == EM_PPC64)
2236       eSym->st_other |= sym->stOther & 0xe0;
2237     // The most significant bit of st_other is used by AArch64 ABI for the
2238     // variant PCS.
2239     else if (config->emachine == EM_AARCH64)
2240       eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS;
2241 
2242     if (BssSection *commonSec = getCommonSec(sym)) {
2243       // When -r is specified, a COMMON symbol is not allocated. Its st_shndx
2244       // holds SHN_COMMON and st_value holds the alignment.
2245       eSym->st_shndx = SHN_COMMON;
2246       eSym->st_value = commonSec->alignment;
2247       eSym->st_size = cast<Defined>(sym)->size;
2248     } else {
2249       const uint32_t shndx = getSymSectionIndex(sym);
2250       if (isDefinedHere) {
2251         eSym->st_shndx = shndx;
2252         eSym->st_value = sym->getVA();
2253         // Copy symbol size if it is a defined symbol. st_size is not
2254         // significant for undefined symbols, so whether copying it or not is up
2255         // to us if that's the case. We'll leave it as zero because by not
2256         // setting a value, we can get the exact same outputs for two sets of
2257         // input files that differ only in undefined symbol size in DSOs.
2258         eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0;
2259       } else {
2260         eSym->st_shndx = 0;
2261         eSym->st_value = 0;
2262         eSym->st_size = 0;
2263       }
2264     }
2265 
2266     ++eSym;
2267   }
2268 
2269   // On MIPS we need to mark symbol which has a PLT entry and requires
2270   // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2271   // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2272   // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2273   if (config->emachine == EM_MIPS) {
2274     auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2275 
2276     for (SymbolTableEntry &ent : symbols) {
2277       Symbol *sym = ent.sym;
2278       if (sym->isInPlt() && sym->needsCopy)
2279         eSym->st_other |= STO_MIPS_PLT;
2280       if (isMicroMips()) {
2281         // We already set the less-significant bit for symbols
2282         // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2283         // records. That allows us to distinguish such symbols in
2284         // the `MIPS<ELFT>::relocate()` routine. Now we should
2285         // clear that bit for non-dynamic symbol table, so tools
2286         // like `objdump` will be able to deal with a correct
2287         // symbol position.
2288         if (sym->isDefined() &&
2289             ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsCopy)) {
2290           if (!strTabSec.isDynamic())
2291             eSym->st_value &= ~1;
2292           eSym->st_other |= STO_MIPS_MICROMIPS;
2293         }
2294       }
2295       if (config->relocatable)
2296         if (auto *d = dyn_cast<Defined>(sym))
2297           if (isMipsPIC<ELFT>(d))
2298             eSym->st_other |= STO_MIPS_PIC;
2299       ++eSym;
2300     }
2301   }
2302 }
2303 
2304 SymtabShndxSection::SymtabShndxSection()
2305     : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2306   this->entsize = 4;
2307 }
2308 
2309 void SymtabShndxSection::writeTo(uint8_t *buf) {
2310   // We write an array of 32 bit values, where each value has 1:1 association
2311   // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2312   // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2313   buf += 4; // Ignore .symtab[0] entry.
2314   for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2315     if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX)
2316       write32(buf, entry.sym->getOutputSection()->sectionIndex);
2317     buf += 4;
2318   }
2319 }
2320 
2321 bool SymtabShndxSection::isNeeded() const {
2322   // SHT_SYMTAB can hold symbols with section indices values up to
2323   // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2324   // section. Problem is that we reveal the final section indices a bit too
2325   // late, and we do not know them here. For simplicity, we just always create
2326   // a .symtab_shndx section when the amount of output sections is huge.
2327   size_t size = 0;
2328   for (SectionCommand *cmd : script->sectionCommands)
2329     if (isa<OutputDesc>(cmd))
2330       ++size;
2331   return size >= SHN_LORESERVE;
2332 }
2333 
2334 void SymtabShndxSection::finalizeContents() {
2335   getParent()->link = in.symTab->getParent()->sectionIndex;
2336 }
2337 
2338 size_t SymtabShndxSection::getSize() const {
2339   return in.symTab->getNumSymbols() * 4;
2340 }
2341 
2342 // .hash and .gnu.hash sections contain on-disk hash tables that map
2343 // symbol names to their dynamic symbol table indices. Their purpose
2344 // is to help the dynamic linker resolve symbols quickly. If ELF files
2345 // don't have them, the dynamic linker has to do linear search on all
2346 // dynamic symbols, which makes programs slower. Therefore, a .hash
2347 // section is added to a DSO by default.
2348 //
2349 // The Unix semantics of resolving dynamic symbols is somewhat expensive.
2350 // Each ELF file has a list of DSOs that the ELF file depends on and a
2351 // list of dynamic symbols that need to be resolved from any of the
2352 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2353 // where m is the number of DSOs and n is the number of dynamic
2354 // symbols. For modern large programs, both m and n are large.  So
2355 // making each step faster by using hash tables substantially
2356 // improves time to load programs.
2357 //
2358 // (Note that this is not the only way to design the shared library.
2359 // For instance, the Windows DLL takes a different approach. On
2360 // Windows, each dynamic symbol has a name of DLL from which the symbol
2361 // has to be resolved. That makes the cost of symbol resolution O(n).
2362 // This disables some hacky techniques you can use on Unix such as
2363 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2364 //
2365 // Due to historical reasons, we have two different hash tables, .hash
2366 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2367 // and better version of .hash. .hash is just an on-disk hash table, but
2368 // .gnu.hash has a bloom filter in addition to a hash table to skip
2369 // DSOs very quickly. If you are sure that your dynamic linker knows
2370 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2371 // safe bet is to specify --hash-style=both for backward compatibility.
2372 GnuHashTableSection::GnuHashTableSection()
2373     : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2374 }
2375 
2376 void GnuHashTableSection::finalizeContents() {
2377   if (OutputSection *sec = getPartition().dynSymTab->getParent())
2378     getParent()->link = sec->sectionIndex;
2379 
2380   // Computes bloom filter size in word size. We want to allocate 12
2381   // bits for each symbol. It must be a power of two.
2382   if (symbols.empty()) {
2383     maskWords = 1;
2384   } else {
2385     uint64_t numBits = symbols.size() * 12;
2386     maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2387   }
2388 
2389   size = 16;                            // Header
2390   size += config->wordsize * maskWords; // Bloom filter
2391   size += nBuckets * 4;                 // Hash buckets
2392   size += symbols.size() * 4;           // Hash values
2393 }
2394 
2395 void GnuHashTableSection::writeTo(uint8_t *buf) {
2396   // Write a header.
2397   write32(buf, nBuckets);
2398   write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2399   write32(buf + 8, maskWords);
2400   write32(buf + 12, Shift2);
2401   buf += 16;
2402 
2403   // Write the 2-bit bloom filter.
2404   const unsigned c = config->is64 ? 64 : 32;
2405   for (const Entry &sym : symbols) {
2406     // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2407     // the word using bits [0:5] and [26:31].
2408     size_t i = (sym.hash / c) & (maskWords - 1);
2409     uint64_t val = readUint(buf + i * config->wordsize);
2410     val |= uint64_t(1) << (sym.hash % c);
2411     val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2412     writeUint(buf + i * config->wordsize, val);
2413   }
2414   buf += config->wordsize * maskWords;
2415 
2416   // Write the hash table.
2417   uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2418   uint32_t oldBucket = -1;
2419   uint32_t *values = buckets + nBuckets;
2420   for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2421     // Write a hash value. It represents a sequence of chains that share the
2422     // same hash modulo value. The last element of each chain is terminated by
2423     // LSB 1.
2424     uint32_t hash = i->hash;
2425     bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2426     hash = isLastInChain ? hash | 1 : hash & ~1;
2427     write32(values++, hash);
2428 
2429     if (i->bucketIdx == oldBucket)
2430       continue;
2431     // Write a hash bucket. Hash buckets contain indices in the following hash
2432     // value table.
2433     write32(buckets + i->bucketIdx,
2434             getPartition().dynSymTab->getSymbolIndex(i->sym));
2435     oldBucket = i->bucketIdx;
2436   }
2437 }
2438 
2439 static uint32_t hashGnu(StringRef name) {
2440   uint32_t h = 5381;
2441   for (uint8_t c : name)
2442     h = (h << 5) + h + c;
2443   return h;
2444 }
2445 
2446 // Add symbols to this symbol hash table. Note that this function
2447 // destructively sort a given vector -- which is needed because
2448 // GNU-style hash table places some sorting requirements.
2449 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
2450   // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2451   // its type correctly.
2452   auto mid =
2453       std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2454         return !s.sym->isDefined() || s.sym->partition != partition;
2455       });
2456 
2457   // We chose load factor 4 for the on-disk hash table. For each hash
2458   // collision, the dynamic linker will compare a uint32_t hash value.
2459   // Since the integer comparison is quite fast, we believe we can
2460   // make the load factor even larger. 4 is just a conservative choice.
2461   //
2462   // Note that we don't want to create a zero-sized hash table because
2463   // Android loader as of 2018 doesn't like a .gnu.hash containing such
2464   // table. If that's the case, we create a hash table with one unused
2465   // dummy slot.
2466   nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2467 
2468   if (mid == v.end())
2469     return;
2470 
2471   for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2472     Symbol *b = ent.sym;
2473     uint32_t hash = hashGnu(b->getName());
2474     uint32_t bucketIdx = hash % nBuckets;
2475     symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2476   }
2477 
2478   llvm::sort(symbols, [](const Entry &l, const Entry &r) {
2479     return std::tie(l.bucketIdx, l.strTabOffset) <
2480            std::tie(r.bucketIdx, r.strTabOffset);
2481   });
2482 
2483   v.erase(mid, v.end());
2484   for (const Entry &ent : symbols)
2485     v.push_back({ent.sym, ent.strTabOffset});
2486 }
2487 
2488 HashTableSection::HashTableSection()
2489     : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2490   this->entsize = 4;
2491 }
2492 
2493 void HashTableSection::finalizeContents() {
2494   SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2495 
2496   if (OutputSection *sec = symTab->getParent())
2497     getParent()->link = sec->sectionIndex;
2498 
2499   unsigned numEntries = 2;               // nbucket and nchain.
2500   numEntries += symTab->getNumSymbols(); // The chain entries.
2501 
2502   // Create as many buckets as there are symbols.
2503   numEntries += symTab->getNumSymbols();
2504   this->size = numEntries * 4;
2505 }
2506 
2507 void HashTableSection::writeTo(uint8_t *buf) {
2508   SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2509   unsigned numSymbols = symTab->getNumSymbols();
2510 
2511   uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2512   write32(p++, numSymbols); // nbucket
2513   write32(p++, numSymbols); // nchain
2514 
2515   uint32_t *buckets = p;
2516   uint32_t *chains = p + numSymbols;
2517 
2518   for (const SymbolTableEntry &s : symTab->getSymbols()) {
2519     Symbol *sym = s.sym;
2520     StringRef name = sym->getName();
2521     unsigned i = sym->dynsymIndex;
2522     uint32_t hash = hashSysV(name) % numSymbols;
2523     chains[i] = buckets[hash];
2524     write32(buckets + hash, i);
2525   }
2526 }
2527 
2528 PltSection::PltSection()
2529     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2530       headerSize(target->pltHeaderSize) {
2531   // On PowerPC, this section contains lazy symbol resolvers.
2532   if (config->emachine == EM_PPC64) {
2533     name = ".glink";
2534     alignment = 4;
2535   }
2536 
2537   // On x86 when IBT is enabled, this section contains the second PLT (lazy
2538   // symbol resolvers).
2539   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2540       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2541     name = ".plt.sec";
2542 
2543   // The PLT needs to be writable on SPARC as the dynamic linker will
2544   // modify the instructions in the PLT entries.
2545   if (config->emachine == EM_SPARCV9)
2546     this->flags |= SHF_WRITE;
2547 }
2548 
2549 void PltSection::writeTo(uint8_t *buf) {
2550   // At beginning of PLT, we have code to call the dynamic
2551   // linker to resolve dynsyms at runtime. Write such code.
2552   target->writePltHeader(buf);
2553   size_t off = headerSize;
2554 
2555   for (const Symbol *sym : entries) {
2556     target->writePlt(buf + off, *sym, getVA() + off);
2557     off += target->pltEntrySize;
2558   }
2559 }
2560 
2561 void PltSection::addEntry(Symbol &sym) {
2562   assert(sym.auxIdx == symAux.size() - 1);
2563   symAux.back().pltIdx = entries.size();
2564   entries.push_back(&sym);
2565 }
2566 
2567 size_t PltSection::getSize() const {
2568   return headerSize + entries.size() * target->pltEntrySize;
2569 }
2570 
2571 bool PltSection::isNeeded() const {
2572   // For -z retpolineplt, .iplt needs the .plt header.
2573   return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2574 }
2575 
2576 // Used by ARM to add mapping symbols in the PLT section, which aid
2577 // disassembly.
2578 void PltSection::addSymbols() {
2579   target->addPltHeaderSymbols(*this);
2580 
2581   size_t off = headerSize;
2582   for (size_t i = 0; i < entries.size(); ++i) {
2583     target->addPltSymbols(*this, off);
2584     off += target->pltEntrySize;
2585   }
2586 }
2587 
2588 IpltSection::IpltSection()
2589     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2590   if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2591     name = ".glink";
2592     alignment = 4;
2593   }
2594 }
2595 
2596 void IpltSection::writeTo(uint8_t *buf) {
2597   uint32_t off = 0;
2598   for (const Symbol *sym : entries) {
2599     target->writeIplt(buf + off, *sym, getVA() + off);
2600     off += target->ipltEntrySize;
2601   }
2602 }
2603 
2604 size_t IpltSection::getSize() const {
2605   return entries.size() * target->ipltEntrySize;
2606 }
2607 
2608 void IpltSection::addEntry(Symbol &sym) {
2609   assert(sym.auxIdx == symAux.size() - 1);
2610   symAux.back().pltIdx = entries.size();
2611   entries.push_back(&sym);
2612 }
2613 
2614 // ARM uses mapping symbols to aid disassembly.
2615 void IpltSection::addSymbols() {
2616   size_t off = 0;
2617   for (size_t i = 0, e = entries.size(); i != e; ++i) {
2618     target->addPltSymbols(*this, off);
2619     off += target->pltEntrySize;
2620   }
2621 }
2622 
2623 PPC32GlinkSection::PPC32GlinkSection() {
2624   name = ".glink";
2625   alignment = 4;
2626 }
2627 
2628 void PPC32GlinkSection::writeTo(uint8_t *buf) {
2629   writePPC32GlinkSection(buf, entries.size());
2630 }
2631 
2632 size_t PPC32GlinkSection::getSize() const {
2633   return headerSize + entries.size() * target->pltEntrySize + footerSize;
2634 }
2635 
2636 // This is an x86-only extra PLT section and used only when a security
2637 // enhancement feature called CET is enabled. In this comment, I'll explain what
2638 // the feature is and why we have two PLT sections if CET is enabled.
2639 //
2640 // So, what does CET do? CET introduces a new restriction to indirect jump
2641 // instructions. CET works this way. Assume that CET is enabled. Then, if you
2642 // execute an indirect jump instruction, the processor verifies that a special
2643 // "landing pad" instruction (which is actually a repurposed NOP instruction and
2644 // now called "endbr32" or "endbr64") is at the jump target. If the jump target
2645 // does not start with that instruction, the processor raises an exception
2646 // instead of continuing executing code.
2647 //
2648 // If CET is enabled, the compiler emits endbr to all locations where indirect
2649 // jumps may jump to.
2650 //
2651 // This mechanism makes it extremely hard to transfer the control to a middle of
2652 // a function that is not supporsed to be a indirect jump target, preventing
2653 // certain types of attacks such as ROP or JOP.
2654 //
2655 // Note that the processors in the market as of 2019 don't actually support the
2656 // feature. Only the spec is available at the moment.
2657 //
2658 // Now, I'll explain why we have this extra PLT section for CET.
2659 //
2660 // Since you can indirectly jump to a PLT entry, we have to make PLT entries
2661 // start with endbr. The problem is there's no extra space for endbr (which is 4
2662 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2663 // used.
2664 //
2665 // In order to deal with the issue, we split a PLT entry into two PLT entries.
2666 // Remember that each PLT entry contains code to jump to an address read from
2667 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2668 // the former code is written to .plt.sec, and the latter code is written to
2669 // .plt.
2670 //
2671 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2672 // that the regular .plt is now called .plt.sec and .plt is repurposed to
2673 // contain only code for lazy symbol resolution.
2674 //
2675 // In other words, this is how the 2-PLT scheme works. Application code is
2676 // supposed to jump to .plt.sec to call an external function. Each .plt.sec
2677 // entry contains code to read an address from a corresponding .got.plt entry
2678 // and jump to that address. Addresses in .got.plt initially point to .plt, so
2679 // when an application calls an external function for the first time, the
2680 // control is transferred to a function that resolves a symbol name from
2681 // external shared object files. That function then rewrites a .got.plt entry
2682 // with a resolved address, so that the subsequent function calls directly jump
2683 // to a desired location from .plt.sec.
2684 //
2685 // There is an open question as to whether the 2-PLT scheme was desirable or
2686 // not. We could have simply extended the PLT entry size to 32-bytes to
2687 // accommodate endbr, and that scheme would have been much simpler than the
2688 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2689 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2690 // that the optimization actually makes a difference.
2691 //
2692 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2693 // depend on it, so we implement the ABI.
2694 IBTPltSection::IBTPltSection()
2695     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2696 
2697 void IBTPltSection::writeTo(uint8_t *buf) {
2698   target->writeIBTPlt(buf, in.plt->getNumEntries());
2699 }
2700 
2701 size_t IBTPltSection::getSize() const {
2702   // 16 is the header size of .plt.
2703   return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2704 }
2705 
2706 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; }
2707 
2708 // The string hash function for .gdb_index.
2709 static uint32_t computeGdbHash(StringRef s) {
2710   uint32_t h = 0;
2711   for (uint8_t c : s)
2712     h = h * 67 + toLower(c) - 113;
2713   return h;
2714 }
2715 
2716 GdbIndexSection::GdbIndexSection()
2717     : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2718 
2719 // Returns the desired size of an on-disk hash table for a .gdb_index section.
2720 // There's a tradeoff between size and collision rate. We aim 75% utilization.
2721 size_t GdbIndexSection::computeSymtabSize() const {
2722   return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2723 }
2724 
2725 // Compute the output section size.
2726 void GdbIndexSection::initOutputSize() {
2727   size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8;
2728 
2729   for (GdbChunk &chunk : chunks)
2730     size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2731 
2732   // Add the constant pool size if exists.
2733   if (!symbols.empty()) {
2734     GdbSymbol &sym = symbols.back();
2735     size += sym.nameOff + sym.name.size() + 1;
2736   }
2737 }
2738 
2739 static SmallVector<GdbIndexSection::CuEntry, 0>
2740 readCuList(DWARFContext &dwarf) {
2741   SmallVector<GdbIndexSection::CuEntry, 0> ret;
2742   for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2743     ret.push_back({cu->getOffset(), cu->getLength() + 4});
2744   return ret;
2745 }
2746 
2747 static SmallVector<GdbIndexSection::AddressEntry, 0>
2748 readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2749   SmallVector<GdbIndexSection::AddressEntry, 0> ret;
2750 
2751   uint32_t cuIdx = 0;
2752   for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2753     if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2754       warn(toString(sec) + ": " + toString(std::move(e)));
2755       return {};
2756     }
2757     Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2758     if (!ranges) {
2759       warn(toString(sec) + ": " + toString(ranges.takeError()));
2760       return {};
2761     }
2762 
2763     ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2764     for (DWARFAddressRange &r : *ranges) {
2765       if (r.SectionIndex == -1ULL)
2766         continue;
2767       // Range list with zero size has no effect.
2768       InputSectionBase *s = sections[r.SectionIndex];
2769       if (s && s != &InputSection::discarded && s->isLive())
2770         if (r.LowPC != r.HighPC)
2771           ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2772     }
2773     ++cuIdx;
2774   }
2775 
2776   return ret;
2777 }
2778 
2779 template <class ELFT>
2780 static SmallVector<GdbIndexSection::NameAttrEntry, 0>
2781 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2782                      const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
2783   const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2784   const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2785 
2786   SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
2787   for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2788     DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2789     DWARFDebugPubTable table;
2790     table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2791       warn(toString(pub->sec) + ": " + toString(std::move(e)));
2792     });
2793     for (const DWARFDebugPubTable::Set &set : table.getData()) {
2794       // The value written into the constant pool is kind << 24 | cuIndex. As we
2795       // don't know how many compilation units precede this object to compute
2796       // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2797       // the number of preceding compilation units later.
2798       uint32_t i = llvm::partition_point(cus,
2799                                          [&](GdbIndexSection::CuEntry cu) {
2800                                            return cu.cuOffset < set.Offset;
2801                                          }) -
2802                    cus.begin();
2803       for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2804         ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2805                        (ent.Descriptor.toBits() << 24) | i});
2806     }
2807   }
2808   return ret;
2809 }
2810 
2811 // Create a list of symbols from a given list of symbol names and types
2812 // by uniquifying them by name.
2813 static SmallVector<GdbIndexSection::GdbSymbol, 0> createSymbols(
2814     ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
2815     const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
2816   using GdbSymbol = GdbIndexSection::GdbSymbol;
2817   using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2818 
2819   // For each chunk, compute the number of compilation units preceding it.
2820   uint32_t cuIdx = 0;
2821   std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
2822   for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2823     cuIdxs[i] = cuIdx;
2824     cuIdx += chunks[i].compilationUnits.size();
2825   }
2826 
2827   // The number of symbols we will handle in this function is of the order
2828   // of millions for very large executables, so we use multi-threading to
2829   // speed it up.
2830   constexpr size_t numShards = 32;
2831   size_t concurrency = PowerOf2Floor(
2832       std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
2833                            .compute_thread_count(),
2834                        numShards));
2835 
2836   // A sharded map to uniquify symbols by name.
2837   auto map =
2838       std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards);
2839   size_t shift = 32 - countTrailingZeros(numShards);
2840 
2841   // Instantiate GdbSymbols while uniqufying them by name.
2842   auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards);
2843 
2844   parallelForEachN(0, concurrency, [&](size_t threadId) {
2845     uint32_t i = 0;
2846     for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2847       for (const NameAttrEntry &ent : entries) {
2848         size_t shardId = ent.name.hash() >> shift;
2849         if ((shardId & (concurrency - 1)) != threadId)
2850           continue;
2851 
2852         uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2853         size_t &idx = map[shardId][ent.name];
2854         if (idx) {
2855           symbols[shardId][idx - 1].cuVector.push_back(v);
2856           continue;
2857         }
2858 
2859         idx = symbols[shardId].size() + 1;
2860         symbols[shardId].push_back({ent.name, {v}, 0, 0});
2861       }
2862       ++i;
2863     }
2864   });
2865 
2866   size_t numSymbols = 0;
2867   for (ArrayRef<GdbSymbol> v : makeArrayRef(symbols.get(), numShards))
2868     numSymbols += v.size();
2869 
2870   // The return type is a flattened vector, so we'll copy each vector
2871   // contents to Ret.
2872   SmallVector<GdbSymbol, 0> ret;
2873   ret.reserve(numSymbols);
2874   for (SmallVector<GdbSymbol, 0> &vec :
2875        makeMutableArrayRef(symbols.get(), numShards))
2876     for (GdbSymbol &sym : vec)
2877       ret.push_back(std::move(sym));
2878 
2879   // CU vectors and symbol names are adjacent in the output file.
2880   // We can compute their offsets in the output file now.
2881   size_t off = 0;
2882   for (GdbSymbol &sym : ret) {
2883     sym.cuVectorOff = off;
2884     off += (sym.cuVector.size() + 1) * 4;
2885   }
2886   for (GdbSymbol &sym : ret) {
2887     sym.nameOff = off;
2888     off += sym.name.size() + 1;
2889   }
2890 
2891   return ret;
2892 }
2893 
2894 // Returns a newly-created .gdb_index section.
2895 template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2896   // Collect InputFiles with .debug_info. See the comment in
2897   // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2898   // note that isec->data() may uncompress the full content, which should be
2899   // parallelized.
2900   SetVector<InputFile *> files;
2901   for (InputSectionBase *s : inputSections) {
2902     InputSection *isec = dyn_cast<InputSection>(s);
2903     if (!isec)
2904       continue;
2905     // .debug_gnu_pub{names,types} are useless in executables.
2906     // They are present in input object files solely for creating
2907     // a .gdb_index. So we can remove them from the output.
2908     if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2909       s->markDead();
2910     else if (isec->name == ".debug_info")
2911       files.insert(isec->file);
2912   }
2913   // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
2914   llvm::erase_if(inputSections, [](InputSectionBase *s) {
2915     if (auto *isec = dyn_cast<InputSection>(s))
2916       if (InputSectionBase *rel = isec->getRelocatedSection())
2917         return !rel->isLive();
2918     return !s->isLive();
2919   });
2920 
2921   SmallVector<GdbChunk, 0> chunks(files.size());
2922   SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
2923 
2924   parallelForEachN(0, files.size(), [&](size_t i) {
2925     // To keep memory usage low, we don't want to keep cached DWARFContext, so
2926     // avoid getDwarf() here.
2927     ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2928     DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2929     auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2930 
2931     // If the are multiple compile units .debug_info (very rare ld -r --unique),
2932     // this only picks the last one. Other address ranges are lost.
2933     chunks[i].sec = dobj.getInfoSection();
2934     chunks[i].compilationUnits = readCuList(dwarf);
2935     chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2936     nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2937   });
2938 
2939   auto *ret = make<GdbIndexSection>();
2940   ret->chunks = std::move(chunks);
2941   ret->symbols = createSymbols(nameAttrs, ret->chunks);
2942   ret->initOutputSize();
2943   return ret;
2944 }
2945 
2946 void GdbIndexSection::writeTo(uint8_t *buf) {
2947   // Write the header.
2948   auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2949   uint8_t *start = buf;
2950   hdr->version = 7;
2951   buf += sizeof(*hdr);
2952 
2953   // Write the CU list.
2954   hdr->cuListOff = buf - start;
2955   for (GdbChunk &chunk : chunks) {
2956     for (CuEntry &cu : chunk.compilationUnits) {
2957       write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2958       write64le(buf + 8, cu.cuLength);
2959       buf += 16;
2960     }
2961   }
2962 
2963   // Write the address area.
2964   hdr->cuTypesOff = buf - start;
2965   hdr->addressAreaOff = buf - start;
2966   uint32_t cuOff = 0;
2967   for (GdbChunk &chunk : chunks) {
2968     for (AddressEntry &e : chunk.addressAreas) {
2969       // In the case of ICF there may be duplicate address range entries.
2970       const uint64_t baseAddr = e.section->repl->getVA(0);
2971       write64le(buf, baseAddr + e.lowAddress);
2972       write64le(buf + 8, baseAddr + e.highAddress);
2973       write32le(buf + 16, e.cuIndex + cuOff);
2974       buf += 20;
2975     }
2976     cuOff += chunk.compilationUnits.size();
2977   }
2978 
2979   // Write the on-disk open-addressing hash table containing symbols.
2980   hdr->symtabOff = buf - start;
2981   size_t symtabSize = computeSymtabSize();
2982   uint32_t mask = symtabSize - 1;
2983 
2984   for (GdbSymbol &sym : symbols) {
2985     uint32_t h = sym.name.hash();
2986     uint32_t i = h & mask;
2987     uint32_t step = ((h * 17) & mask) | 1;
2988 
2989     while (read32le(buf + i * 8))
2990       i = (i + step) & mask;
2991 
2992     write32le(buf + i * 8, sym.nameOff);
2993     write32le(buf + i * 8 + 4, sym.cuVectorOff);
2994   }
2995 
2996   buf += symtabSize * 8;
2997 
2998   // Write the string pool.
2999   hdr->constantPoolOff = buf - start;
3000   parallelForEach(symbols, [&](GdbSymbol &sym) {
3001     memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
3002   });
3003 
3004   // Write the CU vectors.
3005   for (GdbSymbol &sym : symbols) {
3006     write32le(buf, sym.cuVector.size());
3007     buf += 4;
3008     for (uint32_t val : sym.cuVector) {
3009       write32le(buf, val);
3010       buf += 4;
3011     }
3012   }
3013 }
3014 
3015 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
3016 
3017 EhFrameHeader::EhFrameHeader()
3018     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
3019 
3020 void EhFrameHeader::writeTo(uint8_t *buf) {
3021   // Unlike most sections, the EhFrameHeader section is written while writing
3022   // another section, namely EhFrameSection, which calls the write() function
3023   // below from its writeTo() function. This is necessary because the contents
3024   // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
3025   // don't know which order the sections will be written in.
3026 }
3027 
3028 // .eh_frame_hdr contains a binary search table of pointers to FDEs.
3029 // Each entry of the search table consists of two values,
3030 // the starting PC from where FDEs covers, and the FDE's address.
3031 // It is sorted by PC.
3032 void EhFrameHeader::write() {
3033   uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
3034   using FdeData = EhFrameSection::FdeData;
3035   SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData();
3036 
3037   buf[0] = 1;
3038   buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3039   buf[2] = DW_EH_PE_udata4;
3040   buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3041   write32(buf + 4,
3042           getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
3043   write32(buf + 8, fdes.size());
3044   buf += 12;
3045 
3046   for (FdeData &fde : fdes) {
3047     write32(buf, fde.pcRel);
3048     write32(buf + 4, fde.fdeVARel);
3049     buf += 8;
3050   }
3051 }
3052 
3053 size_t EhFrameHeader::getSize() const {
3054   // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3055   return 12 + getPartition().ehFrame->numFdes * 8;
3056 }
3057 
3058 bool EhFrameHeader::isNeeded() const {
3059   return isLive() && getPartition().ehFrame->isNeeded();
3060 }
3061 
3062 VersionDefinitionSection::VersionDefinitionSection()
3063     : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
3064                        ".gnu.version_d") {}
3065 
3066 StringRef VersionDefinitionSection::getFileDefName() {
3067   if (!getPartition().name.empty())
3068     return getPartition().name;
3069   if (!config->soName.empty())
3070     return config->soName;
3071   return config->outputFile;
3072 }
3073 
3074 void VersionDefinitionSection::finalizeContents() {
3075   fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
3076   for (const VersionDefinition &v : namedVersionDefs())
3077     verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
3078 
3079   if (OutputSection *sec = getPartition().dynStrTab->getParent())
3080     getParent()->link = sec->sectionIndex;
3081 
3082   // sh_info should be set to the number of definitions. This fact is missed in
3083   // documentation, but confirmed by binutils community:
3084   // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3085   getParent()->info = getVerDefNum();
3086 }
3087 
3088 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3089                                         StringRef name, size_t nameOff) {
3090   uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3091 
3092   // Write a verdef.
3093   write16(buf, 1);                  // vd_version
3094   write16(buf + 2, flags);          // vd_flags
3095   write16(buf + 4, index);          // vd_ndx
3096   write16(buf + 6, 1);              // vd_cnt
3097   write32(buf + 8, hashSysV(name)); // vd_hash
3098   write32(buf + 12, 20);            // vd_aux
3099   write32(buf + 16, 28);            // vd_next
3100 
3101   // Write a veraux.
3102   write32(buf + 20, nameOff); // vda_name
3103   write32(buf + 24, 0);       // vda_next
3104 }
3105 
3106 void VersionDefinitionSection::writeTo(uint8_t *buf) {
3107   writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3108 
3109   auto nameOffIt = verDefNameOffs.begin();
3110   for (const VersionDefinition &v : namedVersionDefs()) {
3111     buf += EntrySize;
3112     writeOne(buf, v.id, v.name, *nameOffIt++);
3113   }
3114 
3115   // Need to terminate the last version definition.
3116   write32(buf + 16, 0); // vd_next
3117 }
3118 
3119 size_t VersionDefinitionSection::getSize() const {
3120   return EntrySize * getVerDefNum();
3121 }
3122 
3123 // .gnu.version is a table where each entry is 2 byte long.
3124 VersionTableSection::VersionTableSection()
3125     : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3126                        ".gnu.version") {
3127   this->entsize = 2;
3128 }
3129 
3130 void VersionTableSection::finalizeContents() {
3131   // At the moment of june 2016 GNU docs does not mention that sh_link field
3132   // should be set, but Sun docs do. Also readelf relies on this field.
3133   getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3134 }
3135 
3136 size_t VersionTableSection::getSize() const {
3137   return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3138 }
3139 
3140 void VersionTableSection::writeTo(uint8_t *buf) {
3141   buf += 2;
3142   for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3143     // For an unextracted lazy symbol (undefined weak), it must have been
3144     // converted to Undefined and have VER_NDX_GLOBAL version here.
3145     assert(!s.sym->isLazy());
3146     write16(buf, s.sym->versionId);
3147     buf += 2;
3148   }
3149 }
3150 
3151 bool VersionTableSection::isNeeded() const {
3152   return isLive() &&
3153          (getPartition().verDef || getPartition().verNeed->isNeeded());
3154 }
3155 
3156 void elf::addVerneed(Symbol *ss) {
3157   auto &file = cast<SharedFile>(*ss->file);
3158   if (ss->verdefIndex == VER_NDX_GLOBAL) {
3159     ss->versionId = VER_NDX_GLOBAL;
3160     return;
3161   }
3162 
3163   if (file.vernauxs.empty())
3164     file.vernauxs.resize(file.verdefs.size());
3165 
3166   // Select a version identifier for the vernaux data structure, if we haven't
3167   // already allocated one. The verdef identifiers cover the range
3168   // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3169   // getVerDefNum()+1.
3170   if (file.vernauxs[ss->verdefIndex] == 0)
3171     file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3172 
3173   ss->versionId = file.vernauxs[ss->verdefIndex];
3174 }
3175 
3176 template <class ELFT>
3177 VersionNeedSection<ELFT>::VersionNeedSection()
3178     : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3179                        ".gnu.version_r") {}
3180 
3181 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3182   for (SharedFile *f : sharedFiles) {
3183     if (f->vernauxs.empty())
3184       continue;
3185     verneeds.emplace_back();
3186     Verneed &vn = verneeds.back();
3187     vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3188     bool isLibc = config->relrGlibc && f->soName.startswith("libc.so.");
3189     bool isGlibc2 = false;
3190     for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3191       if (f->vernauxs[i] == 0)
3192         continue;
3193       auto *verdef =
3194           reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3195       StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
3196       if (isLibc && ver.startswith("GLIBC_2."))
3197         isGlibc2 = true;
3198       vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
3199                              getPartition().dynStrTab->addString(ver)});
3200     }
3201     if (isGlibc2) {
3202       const char *ver = "GLIBC_ABI_DT_RELR";
3203       vn.vernauxs.push_back({hashSysV(ver),
3204                              ++SharedFile::vernauxNum + getVerDefNum(),
3205                              getPartition().dynStrTab->addString(ver)});
3206     }
3207   }
3208 
3209   if (OutputSection *sec = getPartition().dynStrTab->getParent())
3210     getParent()->link = sec->sectionIndex;
3211   getParent()->info = verneeds.size();
3212 }
3213 
3214 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3215   // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3216   auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3217   auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3218 
3219   for (auto &vn : verneeds) {
3220     // Create an Elf_Verneed for this DSO.
3221     verneed->vn_version = 1;
3222     verneed->vn_cnt = vn.vernauxs.size();
3223     verneed->vn_file = vn.nameStrTab;
3224     verneed->vn_aux =
3225         reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3226     verneed->vn_next = sizeof(Elf_Verneed);
3227     ++verneed;
3228 
3229     // Create the Elf_Vernauxs for this Elf_Verneed.
3230     for (auto &vna : vn.vernauxs) {
3231       vernaux->vna_hash = vna.hash;
3232       vernaux->vna_flags = 0;
3233       vernaux->vna_other = vna.verneedIndex;
3234       vernaux->vna_name = vna.nameStrTab;
3235       vernaux->vna_next = sizeof(Elf_Vernaux);
3236       ++vernaux;
3237     }
3238 
3239     vernaux[-1].vna_next = 0;
3240   }
3241   verneed[-1].vn_next = 0;
3242 }
3243 
3244 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3245   return verneeds.size() * sizeof(Elf_Verneed) +
3246          SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3247 }
3248 
3249 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3250   return isLive() && SharedFile::vernauxNum != 0;
3251 }
3252 
3253 void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3254   ms->parent = this;
3255   sections.push_back(ms);
3256   assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS));
3257   alignment = std::max(alignment, ms->alignment);
3258 }
3259 
3260 MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3261                                    uint64_t flags, uint32_t alignment)
3262     : MergeSyntheticSection(name, type, flags, alignment),
3263       builder(StringTableBuilder::RAW, alignment) {}
3264 
3265 size_t MergeTailSection::getSize() const { return builder.getSize(); }
3266 
3267 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3268 
3269 void MergeTailSection::finalizeContents() {
3270   // Add all string pieces to the string table builder to create section
3271   // contents.
3272   for (MergeInputSection *sec : sections)
3273     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3274       if (sec->pieces[i].live)
3275         builder.add(sec->getData(i));
3276 
3277   // Fix the string table content. After this, the contents will never change.
3278   builder.finalize();
3279 
3280   // finalize() fixed tail-optimized strings, so we can now get
3281   // offsets of strings. Get an offset for each string and save it
3282   // to a corresponding SectionPiece for easy access.
3283   for (MergeInputSection *sec : sections)
3284     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3285       if (sec->pieces[i].live)
3286         sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3287 }
3288 
3289 void MergeNoTailSection::writeTo(uint8_t *buf) {
3290   parallelForEachN(0, numShards,
3291                    [&](size_t i) { shards[i].write(buf + shardOffsets[i]); });
3292 }
3293 
3294 // This function is very hot (i.e. it can take several seconds to finish)
3295 // because sometimes the number of inputs is in an order of magnitude of
3296 // millions. So, we use multi-threading.
3297 //
3298 // For any strings S and T, we know S is not mergeable with T if S's hash
3299 // value is different from T's. If that's the case, we can safely put S and
3300 // T into different string builders without worrying about merge misses.
3301 // We do it in parallel.
3302 void MergeNoTailSection::finalizeContents() {
3303   // Initializes string table builders.
3304   for (size_t i = 0; i < numShards; ++i)
3305     shards.emplace_back(StringTableBuilder::RAW, alignment);
3306 
3307   // Concurrency level. Must be a power of 2 to avoid expensive modulo
3308   // operations in the following tight loop.
3309   size_t concurrency = PowerOf2Floor(
3310       std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
3311                            .compute_thread_count(),
3312                        numShards));
3313 
3314   // Add section pieces to the builders.
3315   parallelForEachN(0, concurrency, [&](size_t threadId) {
3316     for (MergeInputSection *sec : sections) {
3317       for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3318         if (!sec->pieces[i].live)
3319           continue;
3320         size_t shardId = getShardId(sec->pieces[i].hash);
3321         if ((shardId & (concurrency - 1)) == threadId)
3322           sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3323       }
3324     }
3325   });
3326 
3327   // Compute an in-section offset for each shard.
3328   size_t off = 0;
3329   for (size_t i = 0; i < numShards; ++i) {
3330     shards[i].finalizeInOrder();
3331     if (shards[i].getSize() > 0)
3332       off = alignTo(off, alignment);
3333     shardOffsets[i] = off;
3334     off += shards[i].getSize();
3335   }
3336   size = off;
3337 
3338   // So far, section pieces have offsets from beginning of shards, but
3339   // we want offsets from beginning of the whole section. Fix them.
3340   parallelForEach(sections, [&](MergeInputSection *sec) {
3341     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3342       if (sec->pieces[i].live)
3343         sec->pieces[i].outputOff +=
3344             shardOffsets[getShardId(sec->pieces[i].hash)];
3345   });
3346 }
3347 
3348 template <class ELFT> void elf::splitSections() {
3349   llvm::TimeTraceScope timeScope("Split sections");
3350   // splitIntoPieces needs to be called on each MergeInputSection
3351   // before calling finalizeContents().
3352   parallelForEach(objectFiles, [](ELFFileBase *file) {
3353     for (InputSectionBase *sec : file->getSections()) {
3354       if (!sec)
3355         continue;
3356       if (auto *s = dyn_cast<MergeInputSection>(sec))
3357         s->splitIntoPieces();
3358       else if (auto *eh = dyn_cast<EhInputSection>(sec))
3359         eh->split<ELFT>();
3360     }
3361   });
3362 }
3363 
3364 MipsRldMapSection::MipsRldMapSection()
3365     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3366                        ".rld_map") {}
3367 
3368 ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3369     : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3370                        config->wordsize, ".ARM.exidx") {}
3371 
3372 static InputSection *findExidxSection(InputSection *isec) {
3373   for (InputSection *d : isec->dependentSections)
3374     if (d->type == SHT_ARM_EXIDX && d->isLive())
3375       return d;
3376   return nullptr;
3377 }
3378 
3379 static bool isValidExidxSectionDep(InputSection *isec) {
3380   return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3381          isec->getSize() > 0;
3382 }
3383 
3384 bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3385   if (isec->type == SHT_ARM_EXIDX) {
3386     if (InputSection *dep = isec->getLinkOrderDep())
3387       if (isValidExidxSectionDep(dep)) {
3388         exidxSections.push_back(isec);
3389         // Every exidxSection is 8 bytes, we need an estimate of
3390         // size before assignAddresses can be called. Final size
3391         // will only be known after finalize is called.
3392         size += 8;
3393       }
3394     return true;
3395   }
3396 
3397   if (isValidExidxSectionDep(isec)) {
3398     executableSections.push_back(isec);
3399     return false;
3400   }
3401 
3402   // FIXME: we do not output a relocation section when --emit-relocs is used
3403   // as we do not have relocation sections for linker generated table entries
3404   // and we would have to erase at a late stage relocations from merged entries.
3405   // Given that exception tables are already position independent and a binary
3406   // analyzer could derive the relocations we choose to erase the relocations.
3407   if (config->emitRelocs && isec->type == SHT_REL)
3408     if (InputSectionBase *ex = isec->getRelocatedSection())
3409       if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3410         return true;
3411 
3412   return false;
3413 }
3414 
3415 // References to .ARM.Extab Sections have bit 31 clear and are not the
3416 // special EXIDX_CANTUNWIND bit-pattern.
3417 static bool isExtabRef(uint32_t unwind) {
3418   return (unwind & 0x80000000) == 0 && unwind != 0x1;
3419 }
3420 
3421 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3422 // section Prev, where Cur follows Prev in the table. This can be done if the
3423 // unwinding instructions in Cur are identical to Prev. Linker generated
3424 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3425 // InputSection.
3426 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3427 
3428   struct ExidxEntry {
3429     ulittle32_t fn;
3430     ulittle32_t unwind;
3431   };
3432   // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3433   // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3434   ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
3435   if (prev)
3436     prevEntry = prev->getDataAs<ExidxEntry>().back();
3437   if (isExtabRef(prevEntry.unwind))
3438     return false;
3439 
3440   // We consider the unwind instructions of an .ARM.exidx table entry
3441   // a duplicate if the previous unwind instructions if:
3442   // - Both are the special EXIDX_CANTUNWIND.
3443   // - Both are the same inline unwind instructions.
3444   // We do not attempt to follow and check links into .ARM.extab tables as
3445   // consecutive identical entries are rare and the effort to check that they
3446   // are identical is high.
3447 
3448   // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3449   if (cur == nullptr)
3450     return prevEntry.unwind == 1;
3451 
3452   for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
3453     if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
3454       return false;
3455 
3456   // All table entries in this .ARM.exidx Section can be merged into the
3457   // previous Section.
3458   return true;
3459 }
3460 
3461 // The .ARM.exidx table must be sorted in ascending order of the address of the
3462 // functions the table describes. Optionally duplicate adjacent table entries
3463 // can be removed. At the end of the function the executableSections must be
3464 // sorted in ascending order of address, Sentinel is set to the InputSection
3465 // with the highest address and any InputSections that have mergeable
3466 // .ARM.exidx table entries are removed from it.
3467 void ARMExidxSyntheticSection::finalizeContents() {
3468   // The executableSections and exidxSections that we use to derive the final
3469   // contents of this SyntheticSection are populated before
3470   // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3471   // ICF may remove executable InputSections and their dependent .ARM.exidx
3472   // section that we recorded earlier.
3473   auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3474   llvm::erase_if(exidxSections, isDiscarded);
3475   // We need to remove discarded InputSections and InputSections without
3476   // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3477   // of range.
3478   auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3479     if (!isec->isLive())
3480       return true;
3481     if (findExidxSection(isec))
3482       return false;
3483     int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3484     return off != llvm::SignExtend64(off, 31);
3485   };
3486   llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3487 
3488   // Sort the executable sections that may or may not have associated
3489   // .ARM.exidx sections by order of ascending address. This requires the
3490   // relative positions of InputSections and OutputSections to be known.
3491   auto compareByFilePosition = [](const InputSection *a,
3492                                   const InputSection *b) {
3493     OutputSection *aOut = a->getParent();
3494     OutputSection *bOut = b->getParent();
3495 
3496     if (aOut != bOut)
3497       return aOut->addr < bOut->addr;
3498     return a->outSecOff < b->outSecOff;
3499   };
3500   llvm::stable_sort(executableSections, compareByFilePosition);
3501   sentinel = executableSections.back();
3502   // Optionally merge adjacent duplicate entries.
3503   if (config->mergeArmExidx) {
3504     SmallVector<InputSection *, 0> selectedSections;
3505     selectedSections.reserve(executableSections.size());
3506     selectedSections.push_back(executableSections[0]);
3507     size_t prev = 0;
3508     for (size_t i = 1; i < executableSections.size(); ++i) {
3509       InputSection *ex1 = findExidxSection(executableSections[prev]);
3510       InputSection *ex2 = findExidxSection(executableSections[i]);
3511       if (!isDuplicateArmExidxSec(ex1, ex2)) {
3512         selectedSections.push_back(executableSections[i]);
3513         prev = i;
3514       }
3515     }
3516     executableSections = std::move(selectedSections);
3517   }
3518 
3519   size_t offset = 0;
3520   size = 0;
3521   for (InputSection *isec : executableSections) {
3522     if (InputSection *d = findExidxSection(isec)) {
3523       d->outSecOff = offset;
3524       d->parent = getParent();
3525       offset += d->getSize();
3526     } else {
3527       offset += 8;
3528     }
3529   }
3530   // Size includes Sentinel.
3531   size = offset + 8;
3532 }
3533 
3534 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3535   return executableSections.front();
3536 }
3537 
3538 // To write the .ARM.exidx table from the ExecutableSections we have three cases
3539 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3540 //     We write the .ARM.exidx section contents and apply its relocations.
3541 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3542 //     must write the contents of an EXIDX_CANTUNWIND directly. We use the
3543 //     start of the InputSection as the purpose of the linker generated
3544 //     section is to terminate the address range of the previous entry.
3545 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3546 //     the table to terminate the address range of the final entry.
3547 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3548 
3549   const uint8_t cantUnwindData[8] = {0, 0, 0, 0,  // PREL31 to target
3550                                      1, 0, 0, 0}; // EXIDX_CANTUNWIND
3551 
3552   uint64_t offset = 0;
3553   for (InputSection *isec : executableSections) {
3554     assert(isec->getParent() != nullptr);
3555     if (InputSection *d = findExidxSection(isec)) {
3556       memcpy(buf + offset, d->rawData.data(), d->rawData.size());
3557       d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize());
3558       offset += d->getSize();
3559     } else {
3560       // A Linker generated CANTUNWIND section.
3561       memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3562       uint64_t s = isec->getVA();
3563       uint64_t p = getVA() + offset;
3564       target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3565       offset += 8;
3566     }
3567   }
3568   // Write Sentinel.
3569   memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3570   uint64_t s = sentinel->getVA(sentinel->getSize());
3571   uint64_t p = getVA() + offset;
3572   target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3573   assert(size == offset + 8);
3574 }
3575 
3576 bool ARMExidxSyntheticSection::isNeeded() const {
3577   return llvm::any_of(exidxSections,
3578                       [](InputSection *isec) { return isec->isLive(); });
3579 }
3580 
3581 ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3582     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
3583                        config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") {
3584   this->parent = os;
3585   this->outSecOff = off;
3586 }
3587 
3588 size_t ThunkSection::getSize() const {
3589   if (roundUpSizeForErrata)
3590     return alignTo(size, 4096);
3591   return size;
3592 }
3593 
3594 void ThunkSection::addThunk(Thunk *t) {
3595   thunks.push_back(t);
3596   t->addSymbols(*this);
3597 }
3598 
3599 void ThunkSection::writeTo(uint8_t *buf) {
3600   for (Thunk *t : thunks)
3601     t->writeTo(buf + t->offset);
3602 }
3603 
3604 InputSection *ThunkSection::getTargetInputSection() const {
3605   if (thunks.empty())
3606     return nullptr;
3607   const Thunk *t = thunks.front();
3608   return t->getTargetInputSection();
3609 }
3610 
3611 bool ThunkSection::assignOffsets() {
3612   uint64_t off = 0;
3613   for (Thunk *t : thunks) {
3614     off = alignTo(off, t->alignment);
3615     t->setOffset(off);
3616     uint32_t size = t->size();
3617     t->getThunkTargetSym()->size = size;
3618     off += size;
3619   }
3620   bool changed = off != size;
3621   size = off;
3622   return changed;
3623 }
3624 
3625 PPC32Got2Section::PPC32Got2Section()
3626     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3627 
3628 bool PPC32Got2Section::isNeeded() const {
3629   // See the comment below. This is not needed if there is no other
3630   // InputSection.
3631   for (SectionCommand *cmd : getParent()->commands)
3632     if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
3633       for (InputSection *isec : isd->sections)
3634         if (isec != this)
3635           return true;
3636   return false;
3637 }
3638 
3639 void PPC32Got2Section::finalizeContents() {
3640   // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3641   // .got2 . This function computes outSecOff of each .got2 to be used in
3642   // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3643   // to collect input sections named ".got2".
3644   for (SectionCommand *cmd : getParent()->commands)
3645     if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
3646       for (InputSection *isec : isd->sections) {
3647         // isec->file may be nullptr for MergeSyntheticSection.
3648         if (isec != this && isec->file)
3649           isec->file->ppc32Got2 = isec;
3650       }
3651     }
3652 }
3653 
3654 // If linking position-dependent code then the table will store the addresses
3655 // directly in the binary so the section has type SHT_PROGBITS. If linking
3656 // position-independent code the section has type SHT_NOBITS since it will be
3657 // allocated and filled in by the dynamic linker.
3658 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3659     : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3660                        config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3661                        ".branch_lt") {}
3662 
3663 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3664                                                   int64_t addend) {
3665   return getVA() + entry_index.find({sym, addend})->second * 8;
3666 }
3667 
3668 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym,
3669                                                           int64_t addend) {
3670   auto res =
3671       entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3672   if (!res.second)
3673     return None;
3674   entries.emplace_back(sym, addend);
3675   return res.first->second;
3676 }
3677 
3678 size_t PPC64LongBranchTargetSection::getSize() const {
3679   return entries.size() * 8;
3680 }
3681 
3682 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3683   // If linking non-pic we have the final addresses of the targets and they get
3684   // written to the table directly. For pic the dynamic linker will allocate
3685   // the section and fill it it.
3686   if (config->isPic)
3687     return;
3688 
3689   for (auto entry : entries) {
3690     const Symbol *sym = entry.first;
3691     int64_t addend = entry.second;
3692     assert(sym->getVA());
3693     // Need calls to branch to the local entry-point since a long-branch
3694     // must be a local-call.
3695     write64(buf, sym->getVA(addend) +
3696                      getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3697     buf += 8;
3698   }
3699 }
3700 
3701 bool PPC64LongBranchTargetSection::isNeeded() const {
3702   // `removeUnusedSyntheticSections()` is called before thunk allocation which
3703   // is too early to determine if this section will be empty or not. We need
3704   // Finalized to keep the section alive until after thunk creation. Finalized
3705   // only gets set to true once `finalizeSections()` is called after thunk
3706   // creation. Because of this, if we don't create any long-branch thunks we end
3707   // up with an empty .branch_lt section in the binary.
3708   return !finalized || !entries.empty();
3709 }
3710 
3711 static uint8_t getAbiVersion() {
3712   // MIPS non-PIC executable gets ABI version 1.
3713   if (config->emachine == EM_MIPS) {
3714     if (!config->isPic && !config->relocatable &&
3715         (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3716       return 1;
3717     return 0;
3718   }
3719 
3720   if (config->emachine == EM_AMDGPU && !objectFiles.empty()) {
3721     uint8_t ver = objectFiles[0]->abiVersion;
3722     for (InputFile *file : makeArrayRef(objectFiles).slice(1))
3723       if (file->abiVersion != ver)
3724         error("incompatible ABI version: " + toString(file));
3725     return ver;
3726   }
3727 
3728   return 0;
3729 }
3730 
3731 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3732   memcpy(buf, "\177ELF", 4);
3733 
3734   auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3735   eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3736   eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3737   eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3738   eHdr->e_ident[EI_OSABI] = config->osabi;
3739   eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3740   eHdr->e_machine = config->emachine;
3741   eHdr->e_version = EV_CURRENT;
3742   eHdr->e_flags = config->eflags;
3743   eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3744   eHdr->e_phnum = part.phdrs.size();
3745   eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3746 
3747   if (!config->relocatable) {
3748     eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3749     eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3750   }
3751 }
3752 
3753 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3754   // Write the program header table.
3755   auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3756   for (PhdrEntry *p : part.phdrs) {
3757     hBuf->p_type = p->p_type;
3758     hBuf->p_flags = p->p_flags;
3759     hBuf->p_offset = p->p_offset;
3760     hBuf->p_vaddr = p->p_vaddr;
3761     hBuf->p_paddr = p->p_paddr;
3762     hBuf->p_filesz = p->p_filesz;
3763     hBuf->p_memsz = p->p_memsz;
3764     hBuf->p_align = p->p_align;
3765     ++hBuf;
3766   }
3767 }
3768 
3769 template <typename ELFT>
3770 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3771     : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3772 
3773 template <typename ELFT>
3774 size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3775   return sizeof(typename ELFT::Ehdr);
3776 }
3777 
3778 template <typename ELFT>
3779 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3780   writeEhdr<ELFT>(buf, getPartition());
3781 
3782   // Loadable partitions are always ET_DYN.
3783   auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3784   eHdr->e_type = ET_DYN;
3785 }
3786 
3787 template <typename ELFT>
3788 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3789     : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3790 
3791 template <typename ELFT>
3792 size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3793   return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3794 }
3795 
3796 template <typename ELFT>
3797 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3798   writePhdrs<ELFT>(buf, getPartition());
3799 }
3800 
3801 PartitionIndexSection::PartitionIndexSection()
3802     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3803 
3804 size_t PartitionIndexSection::getSize() const {
3805   return 12 * (partitions.size() - 1);
3806 }
3807 
3808 void PartitionIndexSection::finalizeContents() {
3809   for (size_t i = 1; i != partitions.size(); ++i)
3810     partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3811 }
3812 
3813 void PartitionIndexSection::writeTo(uint8_t *buf) {
3814   uint64_t va = getVA();
3815   for (size_t i = 1; i != partitions.size(); ++i) {
3816     write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3817     write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3818 
3819     SyntheticSection *next = i == partitions.size() - 1
3820                                  ? in.partEnd.get()
3821                                  : partitions[i + 1].elfHeader.get();
3822     write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3823 
3824     va += 12;
3825     buf += 12;
3826   }
3827 }
3828 
3829 void InStruct::reset() {
3830   attributes.reset();
3831   bss.reset();
3832   bssRelRo.reset();
3833   got.reset();
3834   gotPlt.reset();
3835   igotPlt.reset();
3836   ppc64LongBranchTarget.reset();
3837   mipsAbiFlags.reset();
3838   mipsGot.reset();
3839   mipsOptions.reset();
3840   mipsReginfo.reset();
3841   mipsRldMap.reset();
3842   partEnd.reset();
3843   partIndex.reset();
3844   plt.reset();
3845   iplt.reset();
3846   ppc32Got2.reset();
3847   ibtPlt.reset();
3848   relaPlt.reset();
3849   relaIplt.reset();
3850   shStrTab.reset();
3851   strTab.reset();
3852   symTab.reset();
3853   symTabShndx.reset();
3854 }
3855 
3856 constexpr char kMemtagAndroidNoteName[] = "Android";
3857 void MemtagAndroidNote::writeTo(uint8_t *buf) {
3858   assert(sizeof(kMemtagAndroidNoteName) == 8); // ABI check for Android 11 & 12.
3859   assert((config->androidMemtagStack || config->androidMemtagHeap) &&
3860          "Should only be synthesizing a note if heap || stack is enabled.");
3861 
3862   write32(buf, sizeof(kMemtagAndroidNoteName));
3863   write32(buf + 4, sizeof(uint32_t));
3864   write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG);
3865   memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName));
3866   buf += 12 + sizeof(kMemtagAndroidNoteName);
3867 
3868   uint32_t value = 0;
3869   value |= config->androidMemtagMode;
3870   if (config->androidMemtagHeap)
3871     value |= ELF::NT_MEMTAG_HEAP;
3872   // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
3873   // binary on Android 11 or 12 will result in a checkfail in the loader.
3874   if (config->androidMemtagStack)
3875     value |= ELF::NT_MEMTAG_STACK;
3876   write32(buf, value); // note value
3877 }
3878 
3879 size_t MemtagAndroidNote::getSize() const {
3880   return sizeof(llvm::ELF::Elf64_Nhdr) +
3881          /*namesz=*/sizeof(kMemtagAndroidNoteName) +
3882          /*descsz=*/sizeof(uint32_t);
3883 }
3884 
3885 InStruct elf::in;
3886 
3887 std::vector<Partition> elf::partitions;
3888 Partition *elf::mainPart;
3889 
3890 template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3891 template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3892 template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3893 template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3894 
3895 template void elf::splitSections<ELF32LE>();
3896 template void elf::splitSections<ELF32BE>();
3897 template void elf::splitSections<ELF64LE>();
3898 template void elf::splitSections<ELF64BE>();
3899 
3900 template class elf::MipsAbiFlagsSection<ELF32LE>;
3901 template class elf::MipsAbiFlagsSection<ELF32BE>;
3902 template class elf::MipsAbiFlagsSection<ELF64LE>;
3903 template class elf::MipsAbiFlagsSection<ELF64BE>;
3904 
3905 template class elf::MipsOptionsSection<ELF32LE>;
3906 template class elf::MipsOptionsSection<ELF32BE>;
3907 template class elf::MipsOptionsSection<ELF64LE>;
3908 template class elf::MipsOptionsSection<ELF64BE>;
3909 
3910 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
3911     function_ref<void(InputSection &)>);
3912 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
3913     function_ref<void(InputSection &)>);
3914 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
3915     function_ref<void(InputSection &)>);
3916 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
3917     function_ref<void(InputSection &)>);
3918 
3919 template class elf::MipsReginfoSection<ELF32LE>;
3920 template class elf::MipsReginfoSection<ELF32BE>;
3921 template class elf::MipsReginfoSection<ELF64LE>;
3922 template class elf::MipsReginfoSection<ELF64BE>;
3923 
3924 template class elf::DynamicSection<ELF32LE>;
3925 template class elf::DynamicSection<ELF32BE>;
3926 template class elf::DynamicSection<ELF64LE>;
3927 template class elf::DynamicSection<ELF64BE>;
3928 
3929 template class elf::RelocationSection<ELF32LE>;
3930 template class elf::RelocationSection<ELF32BE>;
3931 template class elf::RelocationSection<ELF64LE>;
3932 template class elf::RelocationSection<ELF64BE>;
3933 
3934 template class elf::AndroidPackedRelocationSection<ELF32LE>;
3935 template class elf::AndroidPackedRelocationSection<ELF32BE>;
3936 template class elf::AndroidPackedRelocationSection<ELF64LE>;
3937 template class elf::AndroidPackedRelocationSection<ELF64BE>;
3938 
3939 template class elf::RelrSection<ELF32LE>;
3940 template class elf::RelrSection<ELF32BE>;
3941 template class elf::RelrSection<ELF64LE>;
3942 template class elf::RelrSection<ELF64BE>;
3943 
3944 template class elf::SymbolTableSection<ELF32LE>;
3945 template class elf::SymbolTableSection<ELF32BE>;
3946 template class elf::SymbolTableSection<ELF64LE>;
3947 template class elf::SymbolTableSection<ELF64BE>;
3948 
3949 template class elf::VersionNeedSection<ELF32LE>;
3950 template class elf::VersionNeedSection<ELF32BE>;
3951 template class elf::VersionNeedSection<ELF64LE>;
3952 template class elf::VersionNeedSection<ELF64BE>;
3953 
3954 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
3955 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
3956 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
3957 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
3958 
3959 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
3960 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
3961 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
3962 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
3963 
3964 template class elf::PartitionElfHeaderSection<ELF32LE>;
3965 template class elf::PartitionElfHeaderSection<ELF32BE>;
3966 template class elf::PartitionElfHeaderSection<ELF64LE>;
3967 template class elf::PartitionElfHeaderSection<ELF64BE>;
3968 
3969 template class elf::PartitionProgramHeadersSection<ELF32LE>;
3970 template class elf::PartitionProgramHeadersSection<ELF32BE>;
3971 template class elf::PartitionProgramHeadersSection<ELF64LE>;
3972 template class elf::PartitionProgramHeadersSection<ELF64BE>;
3973