1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "DWARF.h" 19 #include "EhFrame.h" 20 #include "InputFiles.h" 21 #include "LinkerScript.h" 22 #include "OutputSections.h" 23 #include "SymbolTable.h" 24 #include "Symbols.h" 25 #include "Target.h" 26 #include "Thunks.h" 27 #include "Writer.h" 28 #include "lld/Common/CommonLinkerContext.h" 29 #include "lld/Common/DWARF.h" 30 #include "lld/Common/Strings.h" 31 #include "lld/Common/Version.h" 32 #include "llvm/ADT/SetOperations.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/BinaryFormat/ELF.h" 36 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 37 #include "llvm/Support/Endian.h" 38 #include "llvm/Support/LEB128.h" 39 #include "llvm/Support/Parallel.h" 40 #include "llvm/Support/TimeProfiler.h" 41 #include <cstdlib> 42 43 using namespace llvm; 44 using namespace llvm::dwarf; 45 using namespace llvm::ELF; 46 using namespace llvm::object; 47 using namespace llvm::support; 48 using namespace lld; 49 using namespace lld::elf; 50 51 using llvm::support::endian::read32le; 52 using llvm::support::endian::write32le; 53 using llvm::support::endian::write64le; 54 55 constexpr size_t MergeNoTailSection::numShards; 56 57 static uint64_t readUint(uint8_t *buf) { 58 return config->is64 ? read64(buf) : read32(buf); 59 } 60 61 static void writeUint(uint8_t *buf, uint64_t val) { 62 if (config->is64) 63 write64(buf, val); 64 else 65 write32(buf, val); 66 } 67 68 // Returns an LLD version string. 69 static ArrayRef<uint8_t> getVersion() { 70 // Check LLD_VERSION first for ease of testing. 71 // You can get consistent output by using the environment variable. 72 // This is only for testing. 73 StringRef s = getenv("LLD_VERSION"); 74 if (s.empty()) 75 s = saver().save(Twine("Linker: ") + getLLDVersion()); 76 77 // +1 to include the terminating '\0'. 78 return {(const uint8_t *)s.data(), s.size() + 1}; 79 } 80 81 // Creates a .comment section containing LLD version info. 82 // With this feature, you can identify LLD-generated binaries easily 83 // by "readelf --string-dump .comment <file>". 84 // The returned object is a mergeable string section. 85 MergeInputSection *elf::createCommentSection() { 86 auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 87 getVersion(), ".comment"); 88 sec->splitIntoPieces(); 89 return sec; 90 } 91 92 // .MIPS.abiflags section. 93 template <class ELFT> 94 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 95 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 96 flags(flags) { 97 this->entsize = sizeof(Elf_Mips_ABIFlags); 98 } 99 100 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 101 memcpy(buf, &flags, sizeof(flags)); 102 } 103 104 template <class ELFT> 105 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() { 106 Elf_Mips_ABIFlags flags = {}; 107 bool create = false; 108 109 for (InputSectionBase *sec : inputSections) { 110 if (sec->type != SHT_MIPS_ABIFLAGS) 111 continue; 112 sec->markDead(); 113 create = true; 114 115 std::string filename = toString(sec->file); 116 const size_t size = sec->rawData.size(); 117 // Older version of BFD (such as the default FreeBSD linker) concatenate 118 // .MIPS.abiflags instead of merging. To allow for this case (or potential 119 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 120 if (size < sizeof(Elf_Mips_ABIFlags)) { 121 error(filename + ": invalid size of .MIPS.abiflags section: got " + 122 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 123 return nullptr; 124 } 125 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->rawData.data()); 126 if (s->version != 0) { 127 error(filename + ": unexpected .MIPS.abiflags version " + 128 Twine(s->version)); 129 return nullptr; 130 } 131 132 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 133 // select the highest number of ISA/Rev/Ext. 134 flags.isa_level = std::max(flags.isa_level, s->isa_level); 135 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 136 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 137 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 138 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 139 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 140 flags.ases |= s->ases; 141 flags.flags1 |= s->flags1; 142 flags.flags2 |= s->flags2; 143 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 144 }; 145 146 if (create) 147 return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags); 148 return nullptr; 149 } 150 151 // .MIPS.options section. 152 template <class ELFT> 153 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 154 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 155 reginfo(reginfo) { 156 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 157 } 158 159 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 160 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 161 options->kind = ODK_REGINFO; 162 options->size = getSize(); 163 164 if (!config->relocatable) 165 reginfo.ri_gp_value = in.mipsGot->getGp(); 166 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 167 } 168 169 template <class ELFT> 170 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() { 171 // N64 ABI only. 172 if (!ELFT::Is64Bits) 173 return nullptr; 174 175 SmallVector<InputSectionBase *, 0> sections; 176 for (InputSectionBase *sec : inputSections) 177 if (sec->type == SHT_MIPS_OPTIONS) 178 sections.push_back(sec); 179 180 if (sections.empty()) 181 return nullptr; 182 183 Elf_Mips_RegInfo reginfo = {}; 184 for (InputSectionBase *sec : sections) { 185 sec->markDead(); 186 187 std::string filename = toString(sec->file); 188 ArrayRef<uint8_t> d = sec->rawData; 189 190 while (!d.empty()) { 191 if (d.size() < sizeof(Elf_Mips_Options)) { 192 error(filename + ": invalid size of .MIPS.options section"); 193 break; 194 } 195 196 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 197 if (opt->kind == ODK_REGINFO) { 198 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 199 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 200 break; 201 } 202 203 if (!opt->size) 204 fatal(filename + ": zero option descriptor size"); 205 d = d.slice(opt->size); 206 } 207 }; 208 209 return std::make_unique<MipsOptionsSection<ELFT>>(reginfo); 210 } 211 212 // MIPS .reginfo section. 213 template <class ELFT> 214 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 215 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 216 reginfo(reginfo) { 217 this->entsize = sizeof(Elf_Mips_RegInfo); 218 } 219 220 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 221 if (!config->relocatable) 222 reginfo.ri_gp_value = in.mipsGot->getGp(); 223 memcpy(buf, ®info, sizeof(reginfo)); 224 } 225 226 template <class ELFT> 227 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() { 228 // Section should be alive for O32 and N32 ABIs only. 229 if (ELFT::Is64Bits) 230 return nullptr; 231 232 SmallVector<InputSectionBase *, 0> sections; 233 for (InputSectionBase *sec : inputSections) 234 if (sec->type == SHT_MIPS_REGINFO) 235 sections.push_back(sec); 236 237 if (sections.empty()) 238 return nullptr; 239 240 Elf_Mips_RegInfo reginfo = {}; 241 for (InputSectionBase *sec : sections) { 242 sec->markDead(); 243 244 if (sec->rawData.size() != sizeof(Elf_Mips_RegInfo)) { 245 error(toString(sec->file) + ": invalid size of .reginfo section"); 246 return nullptr; 247 } 248 249 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->rawData.data()); 250 reginfo.ri_gprmask |= r->ri_gprmask; 251 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 252 }; 253 254 return std::make_unique<MipsReginfoSection<ELFT>>(reginfo); 255 } 256 257 InputSection *elf::createInterpSection() { 258 // StringSaver guarantees that the returned string ends with '\0'. 259 StringRef s = saver().save(config->dynamicLinker); 260 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 261 262 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 263 ".interp"); 264 } 265 266 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 267 uint64_t size, InputSectionBase §ion) { 268 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type, 269 value, size, §ion); 270 if (in.symTab) 271 in.symTab->addSymbol(s); 272 return s; 273 } 274 275 static size_t getHashSize() { 276 switch (config->buildId) { 277 case BuildIdKind::Fast: 278 return 8; 279 case BuildIdKind::Md5: 280 case BuildIdKind::Uuid: 281 return 16; 282 case BuildIdKind::Sha1: 283 return 20; 284 case BuildIdKind::Hexstring: 285 return config->buildIdVector.size(); 286 default: 287 llvm_unreachable("unknown BuildIdKind"); 288 } 289 } 290 291 // This class represents a linker-synthesized .note.gnu.property section. 292 // 293 // In x86 and AArch64, object files may contain feature flags indicating the 294 // features that they have used. The flags are stored in a .note.gnu.property 295 // section. 296 // 297 // lld reads the sections from input files and merges them by computing AND of 298 // the flags. The result is written as a new .note.gnu.property section. 299 // 300 // If the flag is zero (which indicates that the intersection of the feature 301 // sets is empty, or some input files didn't have .note.gnu.property sections), 302 // we don't create this section. 303 GnuPropertySection::GnuPropertySection() 304 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 305 config->wordsize, ".note.gnu.property") {} 306 307 void GnuPropertySection::writeTo(uint8_t *buf) { 308 uint32_t featureAndType = config->emachine == EM_AARCH64 309 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 310 : GNU_PROPERTY_X86_FEATURE_1_AND; 311 312 write32(buf, 4); // Name size 313 write32(buf + 4, config->is64 ? 16 : 12); // Content size 314 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 315 memcpy(buf + 12, "GNU", 4); // Name string 316 write32(buf + 16, featureAndType); // Feature type 317 write32(buf + 20, 4); // Feature size 318 write32(buf + 24, config->andFeatures); // Feature flags 319 if (config->is64) 320 write32(buf + 28, 0); // Padding 321 } 322 323 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 324 325 BuildIdSection::BuildIdSection() 326 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 327 hashSize(getHashSize()) {} 328 329 void BuildIdSection::writeTo(uint8_t *buf) { 330 write32(buf, 4); // Name size 331 write32(buf + 4, hashSize); // Content size 332 write32(buf + 8, NT_GNU_BUILD_ID); // Type 333 memcpy(buf + 12, "GNU", 4); // Name string 334 hashBuf = buf + 16; 335 } 336 337 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 338 assert(buf.size() == hashSize); 339 memcpy(hashBuf, buf.data(), hashSize); 340 } 341 342 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 343 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 344 this->bss = true; 345 this->size = size; 346 } 347 348 EhFrameSection::EhFrameSection() 349 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 350 351 // Search for an existing CIE record or create a new one. 352 // CIE records from input object files are uniquified by their contents 353 // and where their relocations point to. 354 template <class ELFT, class RelTy> 355 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 356 Symbol *personality = nullptr; 357 unsigned firstRelI = cie.firstRelocation; 358 if (firstRelI != (unsigned)-1) 359 personality = 360 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 361 362 // Search for an existing CIE by CIE contents/relocation target pair. 363 CieRecord *&rec = cieMap[{cie.data(), personality}]; 364 365 // If not found, create a new one. 366 if (!rec) { 367 rec = make<CieRecord>(); 368 rec->cie = &cie; 369 cieRecords.push_back(rec); 370 } 371 return rec; 372 } 373 374 // There is one FDE per function. Returns a non-null pointer to the function 375 // symbol if the given FDE points to a live function. 376 template <class ELFT, class RelTy> 377 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 378 auto *sec = cast<EhInputSection>(fde.sec); 379 unsigned firstRelI = fde.firstRelocation; 380 381 // An FDE should point to some function because FDEs are to describe 382 // functions. That's however not always the case due to an issue of 383 // ld.gold with -r. ld.gold may discard only functions and leave their 384 // corresponding FDEs, which results in creating bad .eh_frame sections. 385 // To deal with that, we ignore such FDEs. 386 if (firstRelI == (unsigned)-1) 387 return nullptr; 388 389 const RelTy &rel = rels[firstRelI]; 390 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 391 392 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 393 // another partition, are dead. 394 if (auto *d = dyn_cast<Defined>(&b)) 395 if (!d->folded && d->section && d->section->partition == partition) 396 return d; 397 return nullptr; 398 } 399 400 // .eh_frame is a sequence of CIE or FDE records. In general, there 401 // is one CIE record per input object file which is followed by 402 // a list of FDEs. This function searches an existing CIE or create a new 403 // one and associates FDEs to the CIE. 404 template <class ELFT, class RelTy> 405 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 406 offsetToCie.clear(); 407 for (EhSectionPiece &piece : sec->pieces) { 408 // The empty record is the end marker. 409 if (piece.size == 4) 410 return; 411 412 size_t offset = piece.inputOff; 413 const uint32_t id = 414 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 415 if (id == 0) { 416 offsetToCie[offset] = addCie<ELFT>(piece, rels); 417 continue; 418 } 419 420 uint32_t cieOffset = offset + 4 - id; 421 CieRecord *rec = offsetToCie[cieOffset]; 422 if (!rec) 423 fatal(toString(sec) + ": invalid CIE reference"); 424 425 if (!isFdeLive<ELFT>(piece, rels)) 426 continue; 427 rec->fdes.push_back(&piece); 428 numFdes++; 429 } 430 } 431 432 template <class ELFT> 433 void EhFrameSection::addSectionAux(EhInputSection *sec) { 434 if (!sec->isLive()) 435 return; 436 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 437 if (rels.areRelocsRel()) 438 addRecords<ELFT>(sec, rels.rels); 439 else 440 addRecords<ELFT>(sec, rels.relas); 441 } 442 443 void EhFrameSection::addSection(EhInputSection *sec) { 444 sec->parent = this; 445 446 alignment = std::max(alignment, sec->alignment); 447 sections.push_back(sec); 448 449 for (auto *ds : sec->dependentSections) 450 dependentSections.push_back(ds); 451 } 452 453 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 454 // EhFrameSection::addRecords(). 455 template <class ELFT, class RelTy> 456 void EhFrameSection::iterateFDEWithLSDAAux( 457 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 458 llvm::function_ref<void(InputSection &)> fn) { 459 for (EhSectionPiece &piece : sec.pieces) { 460 // Skip ZERO terminator. 461 if (piece.size == 4) 462 continue; 463 464 size_t offset = piece.inputOff; 465 uint32_t id = 466 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 467 if (id == 0) { 468 if (hasLSDA(piece)) 469 ciesWithLSDA.insert(offset); 470 continue; 471 } 472 uint32_t cieOffset = offset + 4 - id; 473 if (ciesWithLSDA.count(cieOffset) == 0) 474 continue; 475 476 // The CIE has a LSDA argument. Call fn with d's section. 477 if (Defined *d = isFdeLive<ELFT>(piece, rels)) 478 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 479 fn(*s); 480 } 481 } 482 483 template <class ELFT> 484 void EhFrameSection::iterateFDEWithLSDA( 485 llvm::function_ref<void(InputSection &)> fn) { 486 DenseSet<size_t> ciesWithLSDA; 487 for (EhInputSection *sec : sections) { 488 ciesWithLSDA.clear(); 489 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 490 if (rels.areRelocsRel()) 491 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); 492 else 493 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); 494 } 495 } 496 497 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 498 memcpy(buf, d.data(), d.size()); 499 500 size_t aligned = alignTo(d.size(), config->wordsize); 501 assert(std::all_of(buf + d.size(), buf + aligned, 502 [](uint8_t c) { return c == 0; })); 503 504 // Fix the size field. -4 since size does not include the size field itself. 505 write32(buf, aligned - 4); 506 } 507 508 void EhFrameSection::finalizeContents() { 509 assert(!this->size); // Not finalized. 510 511 switch (config->ekind) { 512 case ELFNoneKind: 513 llvm_unreachable("invalid ekind"); 514 case ELF32LEKind: 515 for (EhInputSection *sec : sections) 516 addSectionAux<ELF32LE>(sec); 517 break; 518 case ELF32BEKind: 519 for (EhInputSection *sec : sections) 520 addSectionAux<ELF32BE>(sec); 521 break; 522 case ELF64LEKind: 523 for (EhInputSection *sec : sections) 524 addSectionAux<ELF64LE>(sec); 525 break; 526 case ELF64BEKind: 527 for (EhInputSection *sec : sections) 528 addSectionAux<ELF64BE>(sec); 529 break; 530 } 531 532 size_t off = 0; 533 for (CieRecord *rec : cieRecords) { 534 rec->cie->outputOff = off; 535 off += alignTo(rec->cie->size, config->wordsize); 536 537 for (EhSectionPiece *fde : rec->fdes) { 538 fde->outputOff = off; 539 off += alignTo(fde->size, config->wordsize); 540 } 541 } 542 543 // The LSB standard does not allow a .eh_frame section with zero 544 // Call Frame Information records. glibc unwind-dw2-fde.c 545 // classify_object_over_fdes expects there is a CIE record length 0 as a 546 // terminator. Thus we add one unconditionally. 547 off += 4; 548 549 this->size = off; 550 } 551 552 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 553 // to get an FDE from an address to which FDE is applied. This function 554 // returns a list of such pairs. 555 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { 556 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 557 SmallVector<FdeData, 0> ret; 558 559 uint64_t va = getPartition().ehFrameHdr->getVA(); 560 for (CieRecord *rec : cieRecords) { 561 uint8_t enc = getFdeEncoding(rec->cie); 562 for (EhSectionPiece *fde : rec->fdes) { 563 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 564 uint64_t fdeVA = getParent()->addr + fde->outputOff; 565 if (!isInt<32>(pc - va)) 566 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 567 Twine::utohexstr(pc - va)); 568 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 569 } 570 } 571 572 // Sort the FDE list by their PC and uniqueify. Usually there is only 573 // one FDE for a PC (i.e. function), but if ICF merges two functions 574 // into one, there can be more than one FDEs pointing to the address. 575 auto less = [](const FdeData &a, const FdeData &b) { 576 return a.pcRel < b.pcRel; 577 }; 578 llvm::stable_sort(ret, less); 579 auto eq = [](const FdeData &a, const FdeData &b) { 580 return a.pcRel == b.pcRel; 581 }; 582 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 583 584 return ret; 585 } 586 587 static uint64_t readFdeAddr(uint8_t *buf, int size) { 588 switch (size) { 589 case DW_EH_PE_udata2: 590 return read16(buf); 591 case DW_EH_PE_sdata2: 592 return (int16_t)read16(buf); 593 case DW_EH_PE_udata4: 594 return read32(buf); 595 case DW_EH_PE_sdata4: 596 return (int32_t)read32(buf); 597 case DW_EH_PE_udata8: 598 case DW_EH_PE_sdata8: 599 return read64(buf); 600 case DW_EH_PE_absptr: 601 return readUint(buf); 602 } 603 fatal("unknown FDE size encoding"); 604 } 605 606 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 607 // We need it to create .eh_frame_hdr section. 608 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 609 uint8_t enc) const { 610 // The starting address to which this FDE applies is 611 // stored at FDE + 8 byte. 612 size_t off = fdeOff + 8; 613 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 614 if ((enc & 0x70) == DW_EH_PE_absptr) 615 return addr; 616 if ((enc & 0x70) == DW_EH_PE_pcrel) 617 return addr + getParent()->addr + off; 618 fatal("unknown FDE size relative encoding"); 619 } 620 621 void EhFrameSection::writeTo(uint8_t *buf) { 622 // Write CIE and FDE records. 623 for (CieRecord *rec : cieRecords) { 624 size_t cieOffset = rec->cie->outputOff; 625 writeCieFde(buf + cieOffset, rec->cie->data()); 626 627 for (EhSectionPiece *fde : rec->fdes) { 628 size_t off = fde->outputOff; 629 writeCieFde(buf + off, fde->data()); 630 631 // FDE's second word should have the offset to an associated CIE. 632 // Write it. 633 write32(buf + off + 4, off + 4 - cieOffset); 634 } 635 } 636 637 // Apply relocations. .eh_frame section contents are not contiguous 638 // in the output buffer, but relocateAlloc() still works because 639 // getOffset() takes care of discontiguous section pieces. 640 for (EhInputSection *s : sections) 641 s->relocateAlloc(buf, nullptr); 642 643 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 644 getPartition().ehFrameHdr->write(); 645 } 646 647 GotSection::GotSection() 648 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 649 target->gotEntrySize, ".got") { 650 numEntries = target->gotHeaderEntriesNum; 651 } 652 653 void GotSection::addEntry(Symbol &sym) { 654 assert(sym.auxIdx == symAux.size() - 1); 655 symAux.back().gotIdx = numEntries++; 656 } 657 658 bool GotSection::addTlsDescEntry(Symbol &sym) { 659 assert(sym.auxIdx == symAux.size() - 1); 660 symAux.back().tlsDescIdx = numEntries; 661 numEntries += 2; 662 return true; 663 } 664 665 bool GotSection::addDynTlsEntry(Symbol &sym) { 666 assert(sym.auxIdx == symAux.size() - 1); 667 symAux.back().tlsGdIdx = numEntries; 668 // Global Dynamic TLS entries take two GOT slots. 669 numEntries += 2; 670 return true; 671 } 672 673 // Reserves TLS entries for a TLS module ID and a TLS block offset. 674 // In total it takes two GOT slots. 675 bool GotSection::addTlsIndex() { 676 if (tlsIndexOff != uint32_t(-1)) 677 return false; 678 tlsIndexOff = numEntries * config->wordsize; 679 numEntries += 2; 680 return true; 681 } 682 683 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { 684 return sym.getTlsDescIdx() * config->wordsize; 685 } 686 687 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { 688 return getVA() + getTlsDescOffset(sym); 689 } 690 691 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 692 return this->getVA() + b.getTlsGdIdx() * config->wordsize; 693 } 694 695 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 696 return b.getTlsGdIdx() * config->wordsize; 697 } 698 699 void GotSection::finalizeContents() { 700 if (config->emachine == EM_PPC64 && 701 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable) 702 size = 0; 703 else 704 size = numEntries * config->wordsize; 705 } 706 707 bool GotSection::isNeeded() const { 708 // Needed if the GOT symbol is used or the number of entries is more than just 709 // the header. A GOT with just the header may not be needed. 710 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum; 711 } 712 713 void GotSection::writeTo(uint8_t *buf) { 714 target->writeGotHeader(buf); 715 relocateAlloc(buf, buf + size); 716 } 717 718 static uint64_t getMipsPageAddr(uint64_t addr) { 719 return (addr + 0x8000) & ~0xffff; 720 } 721 722 static uint64_t getMipsPageCount(uint64_t size) { 723 return (size + 0xfffe) / 0xffff + 1; 724 } 725 726 MipsGotSection::MipsGotSection() 727 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 728 ".got") {} 729 730 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 731 RelExpr expr) { 732 FileGot &g = getGot(file); 733 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 734 if (const OutputSection *os = sym.getOutputSection()) 735 g.pagesMap.insert({os, {}}); 736 else 737 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 738 } else if (sym.isTls()) 739 g.tls.insert({&sym, 0}); 740 else if (sym.isPreemptible && expr == R_ABS) 741 g.relocs.insert({&sym, 0}); 742 else if (sym.isPreemptible) 743 g.global.insert({&sym, 0}); 744 else if (expr == R_MIPS_GOT_OFF32) 745 g.local32.insert({{&sym, addend}, 0}); 746 else 747 g.local16.insert({{&sym, addend}, 0}); 748 } 749 750 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 751 getGot(file).dynTlsSymbols.insert({&sym, 0}); 752 } 753 754 void MipsGotSection::addTlsIndex(InputFile &file) { 755 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 756 } 757 758 size_t MipsGotSection::FileGot::getEntriesNum() const { 759 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 760 tls.size() + dynTlsSymbols.size() * 2; 761 } 762 763 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 764 size_t num = 0; 765 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 766 num += p.second.count; 767 return num; 768 } 769 770 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 771 size_t count = getPageEntriesNum() + local16.size() + global.size(); 772 // If there are relocation-only entries in the GOT, TLS entries 773 // are allocated after them. TLS entries should be addressable 774 // by 16-bit index so count both reloc-only and TLS entries. 775 if (!tls.empty() || !dynTlsSymbols.empty()) 776 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 777 return count; 778 } 779 780 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 781 if (f.mipsGotIndex == uint32_t(-1)) { 782 gots.emplace_back(); 783 gots.back().file = &f; 784 f.mipsGotIndex = gots.size() - 1; 785 } 786 return gots[f.mipsGotIndex]; 787 } 788 789 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 790 const Symbol &sym, 791 int64_t addend) const { 792 const FileGot &g = gots[f->mipsGotIndex]; 793 uint64_t index = 0; 794 if (const OutputSection *outSec = sym.getOutputSection()) { 795 uint64_t secAddr = getMipsPageAddr(outSec->addr); 796 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 797 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 798 } else { 799 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 800 } 801 return index * config->wordsize; 802 } 803 804 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 805 int64_t addend) const { 806 const FileGot &g = gots[f->mipsGotIndex]; 807 Symbol *sym = const_cast<Symbol *>(&s); 808 if (sym->isTls()) 809 return g.tls.lookup(sym) * config->wordsize; 810 if (sym->isPreemptible) 811 return g.global.lookup(sym) * config->wordsize; 812 return g.local16.lookup({sym, addend}) * config->wordsize; 813 } 814 815 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 816 const FileGot &g = gots[f->mipsGotIndex]; 817 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 818 } 819 820 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 821 const Symbol &s) const { 822 const FileGot &g = gots[f->mipsGotIndex]; 823 Symbol *sym = const_cast<Symbol *>(&s); 824 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 825 } 826 827 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 828 if (gots.empty()) 829 return nullptr; 830 const FileGot &primGot = gots.front(); 831 if (!primGot.global.empty()) 832 return primGot.global.front().first; 833 if (!primGot.relocs.empty()) 834 return primGot.relocs.front().first; 835 return nullptr; 836 } 837 838 unsigned MipsGotSection::getLocalEntriesNum() const { 839 if (gots.empty()) 840 return headerEntriesNum; 841 return headerEntriesNum + gots.front().getPageEntriesNum() + 842 gots.front().local16.size(); 843 } 844 845 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 846 FileGot tmp = dst; 847 set_union(tmp.pagesMap, src.pagesMap); 848 set_union(tmp.local16, src.local16); 849 set_union(tmp.global, src.global); 850 set_union(tmp.relocs, src.relocs); 851 set_union(tmp.tls, src.tls); 852 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 853 854 size_t count = isPrimary ? headerEntriesNum : 0; 855 count += tmp.getIndexedEntriesNum(); 856 857 if (count * config->wordsize > config->mipsGotSize) 858 return false; 859 860 std::swap(tmp, dst); 861 return true; 862 } 863 864 void MipsGotSection::finalizeContents() { updateAllocSize(); } 865 866 bool MipsGotSection::updateAllocSize() { 867 size = headerEntriesNum * config->wordsize; 868 for (const FileGot &g : gots) 869 size += g.getEntriesNum() * config->wordsize; 870 return false; 871 } 872 873 void MipsGotSection::build() { 874 if (gots.empty()) 875 return; 876 877 std::vector<FileGot> mergedGots(1); 878 879 // For each GOT move non-preemptible symbols from the `Global` 880 // to `Local16` list. Preemptible symbol might become non-preemptible 881 // one if, for example, it gets a related copy relocation. 882 for (FileGot &got : gots) { 883 for (auto &p: got.global) 884 if (!p.first->isPreemptible) 885 got.local16.insert({{p.first, 0}, 0}); 886 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 887 return !p.first->isPreemptible; 888 }); 889 } 890 891 // For each GOT remove "reloc-only" entry if there is "global" 892 // entry for the same symbol. And add local entries which indexed 893 // using 32-bit value at the end of 16-bit entries. 894 for (FileGot &got : gots) { 895 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 896 return got.global.count(p.first); 897 }); 898 set_union(got.local16, got.local32); 899 got.local32.clear(); 900 } 901 902 // Evaluate number of "reloc-only" entries in the resulting GOT. 903 // To do that put all unique "reloc-only" and "global" entries 904 // from all GOTs to the future primary GOT. 905 FileGot *primGot = &mergedGots.front(); 906 for (FileGot &got : gots) { 907 set_union(primGot->relocs, got.global); 908 set_union(primGot->relocs, got.relocs); 909 got.relocs.clear(); 910 } 911 912 // Evaluate number of "page" entries in each GOT. 913 for (FileGot &got : gots) { 914 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 915 got.pagesMap) { 916 const OutputSection *os = p.first; 917 uint64_t secSize = 0; 918 for (SectionCommand *cmd : os->commands) { 919 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 920 for (InputSection *isec : isd->sections) { 921 uint64_t off = alignTo(secSize, isec->alignment); 922 secSize = off + isec->getSize(); 923 } 924 } 925 p.second.count = getMipsPageCount(secSize); 926 } 927 } 928 929 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 930 // maximum GOT size. At first, try to fill the primary GOT because 931 // the primary GOT can be accessed in the most effective way. If it 932 // is not possible, try to fill the last GOT in the list, and finally 933 // create a new GOT if both attempts failed. 934 for (FileGot &srcGot : gots) { 935 InputFile *file = srcGot.file; 936 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 937 file->mipsGotIndex = 0; 938 } else { 939 // If this is the first time we failed to merge with the primary GOT, 940 // MergedGots.back() will also be the primary GOT. We must make sure not 941 // to try to merge again with isPrimary=false, as otherwise, if the 942 // inputs are just right, we could allow the primary GOT to become 1 or 2 943 // words bigger due to ignoring the header size. 944 if (mergedGots.size() == 1 || 945 !tryMergeGots(mergedGots.back(), srcGot, false)) { 946 mergedGots.emplace_back(); 947 std::swap(mergedGots.back(), srcGot); 948 } 949 file->mipsGotIndex = mergedGots.size() - 1; 950 } 951 } 952 std::swap(gots, mergedGots); 953 954 // Reduce number of "reloc-only" entries in the primary GOT 955 // by subtracting "global" entries in the primary GOT. 956 primGot = &gots.front(); 957 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 958 return primGot->global.count(p.first); 959 }); 960 961 // Calculate indexes for each GOT entry. 962 size_t index = headerEntriesNum; 963 for (FileGot &got : gots) { 964 got.startIndex = &got == primGot ? 0 : index; 965 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 966 got.pagesMap) { 967 // For each output section referenced by GOT page relocations calculate 968 // and save into pagesMap an upper bound of MIPS GOT entries required 969 // to store page addresses of local symbols. We assume the worst case - 970 // each 64kb page of the output section has at least one GOT relocation 971 // against it. And take in account the case when the section intersects 972 // page boundaries. 973 p.second.firstIndex = index; 974 index += p.second.count; 975 } 976 for (auto &p: got.local16) 977 p.second = index++; 978 for (auto &p: got.global) 979 p.second = index++; 980 for (auto &p: got.relocs) 981 p.second = index++; 982 for (auto &p: got.tls) 983 p.second = index++; 984 for (auto &p: got.dynTlsSymbols) { 985 p.second = index; 986 index += 2; 987 } 988 } 989 990 // Update SymbolAux::gotIdx field to use this 991 // value later in the `sortMipsSymbols` function. 992 for (auto &p : primGot->global) { 993 if (p.first->auxIdx == uint32_t(-1)) 994 p.first->allocateAux(); 995 symAux.back().gotIdx = p.second; 996 } 997 for (auto &p : primGot->relocs) { 998 if (p.first->auxIdx == uint32_t(-1)) 999 p.first->allocateAux(); 1000 symAux.back().gotIdx = p.second; 1001 } 1002 1003 // Create dynamic relocations. 1004 for (FileGot &got : gots) { 1005 // Create dynamic relocations for TLS entries. 1006 for (std::pair<Symbol *, size_t> &p : got.tls) { 1007 Symbol *s = p.first; 1008 uint64_t offset = p.second * config->wordsize; 1009 // When building a shared library we still need a dynamic relocation 1010 // for the TP-relative offset as we don't know how much other data will 1011 // be allocated before us in the static TLS block. 1012 if (s->isPreemptible || config->shared) 1013 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset, 1014 DynamicReloc::AgainstSymbolWithTargetVA, 1015 *s, 0, R_ABS}); 1016 } 1017 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 1018 Symbol *s = p.first; 1019 uint64_t offset = p.second * config->wordsize; 1020 if (s == nullptr) { 1021 if (!config->shared) 1022 continue; 1023 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset}); 1024 } else { 1025 // When building a shared library we still need a dynamic relocation 1026 // for the module index. Therefore only checking for 1027 // S->isPreemptible is not sufficient (this happens e.g. for 1028 // thread-locals that have been marked as local through a linker script) 1029 if (!s->isPreemptible && !config->shared) 1030 continue; 1031 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this, 1032 offset, *s); 1033 // However, we can skip writing the TLS offset reloc for non-preemptible 1034 // symbols since it is known even in shared libraries 1035 if (!s->isPreemptible) 1036 continue; 1037 offset += config->wordsize; 1038 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset, 1039 *s); 1040 } 1041 } 1042 1043 // Do not create dynamic relocations for non-TLS 1044 // entries in the primary GOT. 1045 if (&got == primGot) 1046 continue; 1047 1048 // Dynamic relocations for "global" entries. 1049 for (const std::pair<Symbol *, size_t> &p : got.global) { 1050 uint64_t offset = p.second * config->wordsize; 1051 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset, 1052 *p.first); 1053 } 1054 if (!config->isPic) 1055 continue; 1056 // Dynamic relocations for "local" entries in case of PIC. 1057 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1058 got.pagesMap) { 1059 size_t pageCount = l.second.count; 1060 for (size_t pi = 0; pi < pageCount; ++pi) { 1061 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1062 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1063 int64_t(pi * 0x10000)}); 1064 } 1065 } 1066 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1067 uint64_t offset = p.second * config->wordsize; 1068 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, 1069 DynamicReloc::AddendOnlyWithTargetVA, 1070 *p.first.first, p.first.second, R_ABS}); 1071 } 1072 } 1073 } 1074 1075 bool MipsGotSection::isNeeded() const { 1076 // We add the .got section to the result for dynamic MIPS target because 1077 // its address and properties are mentioned in the .dynamic section. 1078 return !config->relocatable; 1079 } 1080 1081 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1082 // For files without related GOT or files refer a primary GOT 1083 // returns "common" _gp value. For secondary GOTs calculate 1084 // individual _gp values. 1085 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) 1086 return ElfSym::mipsGp->getVA(0); 1087 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0; 1088 } 1089 1090 void MipsGotSection::writeTo(uint8_t *buf) { 1091 // Set the MSB of the second GOT slot. This is not required by any 1092 // MIPS ABI documentation, though. 1093 // 1094 // There is a comment in glibc saying that "The MSB of got[1] of a 1095 // gnu object is set to identify gnu objects," and in GNU gold it 1096 // says "the second entry will be used by some runtime loaders". 1097 // But how this field is being used is unclear. 1098 // 1099 // We are not really willing to mimic other linkers behaviors 1100 // without understanding why they do that, but because all files 1101 // generated by GNU tools have this special GOT value, and because 1102 // we've been doing this for years, it is probably a safe bet to 1103 // keep doing this for now. We really need to revisit this to see 1104 // if we had to do this. 1105 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1106 for (const FileGot &g : gots) { 1107 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1108 uint64_t va = a; 1109 if (s) 1110 va = s->getVA(a); 1111 writeUint(buf + i * config->wordsize, va); 1112 }; 1113 // Write 'page address' entries to the local part of the GOT. 1114 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1115 g.pagesMap) { 1116 size_t pageCount = l.second.count; 1117 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1118 for (size_t pi = 0; pi < pageCount; ++pi) 1119 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1120 } 1121 // Local, global, TLS, reloc-only entries. 1122 // If TLS entry has a corresponding dynamic relocations, leave it 1123 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1124 // To calculate the adjustments use offsets for thread-local storage. 1125 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL 1126 for (const std::pair<GotEntry, size_t> &p : g.local16) 1127 write(p.second, p.first.first, p.first.second); 1128 // Write VA to the primary GOT only. For secondary GOTs that 1129 // will be done by REL32 dynamic relocations. 1130 if (&g == &gots.front()) 1131 for (const std::pair<Symbol *, size_t> &p : g.global) 1132 write(p.second, p.first, 0); 1133 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1134 write(p.second, p.first, 0); 1135 for (const std::pair<Symbol *, size_t> &p : g.tls) 1136 write(p.second, p.first, 1137 p.first->isPreemptible || config->shared ? 0 : -0x7000); 1138 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1139 if (p.first == nullptr && !config->shared) 1140 write(p.second, nullptr, 1); 1141 else if (p.first && !p.first->isPreemptible) { 1142 // If we are emitting a shared library with relocations we mustn't write 1143 // anything to the GOT here. When using Elf_Rel relocations the value 1144 // one will be treated as an addend and will cause crashes at runtime 1145 if (!config->shared) 1146 write(p.second, nullptr, 1); 1147 write(p.second + 1, p.first, -0x8000); 1148 } 1149 } 1150 } 1151 } 1152 1153 // On PowerPC the .plt section is used to hold the table of function addresses 1154 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1155 // section. I don't know why we have a BSS style type for the section but it is 1156 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1157 GotPltSection::GotPltSection() 1158 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1159 ".got.plt") { 1160 if (config->emachine == EM_PPC) { 1161 name = ".plt"; 1162 } else if (config->emachine == EM_PPC64) { 1163 type = SHT_NOBITS; 1164 name = ".plt"; 1165 } 1166 } 1167 1168 void GotPltSection::addEntry(Symbol &sym) { 1169 assert(sym.auxIdx == symAux.size() - 1 && 1170 symAux.back().pltIdx == entries.size()); 1171 entries.push_back(&sym); 1172 } 1173 1174 size_t GotPltSection::getSize() const { 1175 return (target->gotPltHeaderEntriesNum + entries.size()) * 1176 target->gotEntrySize; 1177 } 1178 1179 void GotPltSection::writeTo(uint8_t *buf) { 1180 target->writeGotPltHeader(buf); 1181 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize; 1182 for (const Symbol *b : entries) { 1183 target->writeGotPlt(buf, *b); 1184 buf += target->gotEntrySize; 1185 } 1186 } 1187 1188 bool GotPltSection::isNeeded() const { 1189 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1190 // to it. 1191 return !entries.empty() || hasGotPltOffRel; 1192 } 1193 1194 static StringRef getIgotPltName() { 1195 // On ARM the IgotPltSection is part of the GotSection. 1196 if (config->emachine == EM_ARM) 1197 return ".got"; 1198 1199 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1200 // needs to be named the same. 1201 if (config->emachine == EM_PPC64) 1202 return ".plt"; 1203 1204 return ".got.plt"; 1205 } 1206 1207 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1208 // with the IgotPltSection. 1209 IgotPltSection::IgotPltSection() 1210 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1211 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1212 target->gotEntrySize, getIgotPltName()) {} 1213 1214 void IgotPltSection::addEntry(Symbol &sym) { 1215 assert(symAux.back().pltIdx == entries.size()); 1216 entries.push_back(&sym); 1217 } 1218 1219 size_t IgotPltSection::getSize() const { 1220 return entries.size() * target->gotEntrySize; 1221 } 1222 1223 void IgotPltSection::writeTo(uint8_t *buf) { 1224 for (const Symbol *b : entries) { 1225 target->writeIgotPlt(buf, *b); 1226 buf += target->gotEntrySize; 1227 } 1228 } 1229 1230 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1231 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1232 dynamic(dynamic) { 1233 // ELF string tables start with a NUL byte. 1234 strings.push_back(""); 1235 stringMap.try_emplace(CachedHashStringRef(""), 0); 1236 size = 1; 1237 } 1238 1239 // Adds a string to the string table. If `hashIt` is true we hash and check for 1240 // duplicates. It is optional because the name of global symbols are already 1241 // uniqued and hashing them again has a big cost for a small value: uniquing 1242 // them with some other string that happens to be the same. 1243 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1244 if (hashIt) { 1245 auto r = stringMap.try_emplace(CachedHashStringRef(s), size); 1246 if (!r.second) 1247 return r.first->second; 1248 } 1249 if (s.empty()) 1250 return 0; 1251 unsigned ret = this->size; 1252 this->size = this->size + s.size() + 1; 1253 strings.push_back(s); 1254 return ret; 1255 } 1256 1257 void StringTableSection::writeTo(uint8_t *buf) { 1258 for (StringRef s : strings) { 1259 memcpy(buf, s.data(), s.size()); 1260 buf[s.size()] = '\0'; 1261 buf += s.size() + 1; 1262 } 1263 } 1264 1265 // Returns the number of entries in .gnu.version_d: the number of 1266 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1267 // Note that we don't support vd_cnt > 1 yet. 1268 static unsigned getVerDefNum() { 1269 return namedVersionDefs().size() + 1; 1270 } 1271 1272 template <class ELFT> 1273 DynamicSection<ELFT>::DynamicSection() 1274 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1275 ".dynamic") { 1276 this->entsize = ELFT::Is64Bits ? 16 : 8; 1277 1278 // .dynamic section is not writable on MIPS and on Fuchsia OS 1279 // which passes -z rodynamic. 1280 // See "Special Section" in Chapter 4 in the following document: 1281 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1282 if (config->emachine == EM_MIPS || config->zRodynamic) 1283 this->flags = SHF_ALLOC; 1284 } 1285 1286 // The output section .rela.dyn may include these synthetic sections: 1287 // 1288 // - part.relaDyn 1289 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1290 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1291 // .rela.dyn 1292 // 1293 // DT_RELASZ is the total size of the included sections. 1294 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) { 1295 size_t size = relaDyn.getSize(); 1296 if (in.relaIplt->getParent() == relaDyn.getParent()) 1297 size += in.relaIplt->getSize(); 1298 if (in.relaPlt->getParent() == relaDyn.getParent()) 1299 size += in.relaPlt->getSize(); 1300 return size; 1301 } 1302 1303 // A Linker script may assign the RELA relocation sections to the same 1304 // output section. When this occurs we cannot just use the OutputSection 1305 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1306 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1307 static uint64_t addPltRelSz() { 1308 size_t size = in.relaPlt->getSize(); 1309 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1310 in.relaIplt->name == in.relaPlt->name) 1311 size += in.relaIplt->getSize(); 1312 return size; 1313 } 1314 1315 // Add remaining entries to complete .dynamic contents. 1316 template <class ELFT> 1317 std::vector<std::pair<int32_t, uint64_t>> 1318 DynamicSection<ELFT>::computeContents() { 1319 elf::Partition &part = getPartition(); 1320 bool isMain = part.name.empty(); 1321 std::vector<std::pair<int32_t, uint64_t>> entries; 1322 1323 auto addInt = [&](int32_t tag, uint64_t val) { 1324 entries.emplace_back(tag, val); 1325 }; 1326 auto addInSec = [&](int32_t tag, const InputSection &sec) { 1327 entries.emplace_back(tag, sec.getVA()); 1328 }; 1329 1330 for (StringRef s : config->filterList) 1331 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1332 for (StringRef s : config->auxiliaryList) 1333 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1334 1335 if (!config->rpath.empty()) 1336 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1337 part.dynStrTab->addString(config->rpath)); 1338 1339 for (SharedFile *file : sharedFiles) 1340 if (file->isNeeded) 1341 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1342 1343 if (isMain) { 1344 if (!config->soName.empty()) 1345 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1346 } else { 1347 if (!config->soName.empty()) 1348 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1349 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1350 } 1351 1352 // Set DT_FLAGS and DT_FLAGS_1. 1353 uint32_t dtFlags = 0; 1354 uint32_t dtFlags1 = 0; 1355 if (config->bsymbolic == BsymbolicKind::All) 1356 dtFlags |= DF_SYMBOLIC; 1357 if (config->zGlobal) 1358 dtFlags1 |= DF_1_GLOBAL; 1359 if (config->zInitfirst) 1360 dtFlags1 |= DF_1_INITFIRST; 1361 if (config->zInterpose) 1362 dtFlags1 |= DF_1_INTERPOSE; 1363 if (config->zNodefaultlib) 1364 dtFlags1 |= DF_1_NODEFLIB; 1365 if (config->zNodelete) 1366 dtFlags1 |= DF_1_NODELETE; 1367 if (config->zNodlopen) 1368 dtFlags1 |= DF_1_NOOPEN; 1369 if (config->pie) 1370 dtFlags1 |= DF_1_PIE; 1371 if (config->zNow) { 1372 dtFlags |= DF_BIND_NOW; 1373 dtFlags1 |= DF_1_NOW; 1374 } 1375 if (config->zOrigin) { 1376 dtFlags |= DF_ORIGIN; 1377 dtFlags1 |= DF_1_ORIGIN; 1378 } 1379 if (!config->zText) 1380 dtFlags |= DF_TEXTREL; 1381 if (config->hasTlsIe && config->shared) 1382 dtFlags |= DF_STATIC_TLS; 1383 1384 if (dtFlags) 1385 addInt(DT_FLAGS, dtFlags); 1386 if (dtFlags1) 1387 addInt(DT_FLAGS_1, dtFlags1); 1388 1389 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1390 // need it for each process, so we don't write it for DSOs. The loader writes 1391 // the pointer into this entry. 1392 // 1393 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1394 // systems (currently only Fuchsia OS) provide other means to give the 1395 // debugger this information. Such systems may choose make .dynamic read-only. 1396 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1397 if (!config->shared && !config->relocatable && !config->zRodynamic) 1398 addInt(DT_DEBUG, 0); 1399 1400 if (part.relaDyn->isNeeded() || 1401 (in.relaIplt->isNeeded() && 1402 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1403 addInSec(part.relaDyn->dynamicTag, *part.relaDyn); 1404 entries.emplace_back(part.relaDyn->sizeDynamicTag, 1405 addRelaSz(*part.relaDyn)); 1406 1407 bool isRela = config->isRela; 1408 addInt(isRela ? DT_RELAENT : DT_RELENT, 1409 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1410 1411 // MIPS dynamic loader does not support RELCOUNT tag. 1412 // The problem is in the tight relation between dynamic 1413 // relocations and GOT. So do not emit this tag on MIPS. 1414 if (config->emachine != EM_MIPS) { 1415 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1416 if (config->zCombreloc && numRelativeRels) 1417 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1418 } 1419 } 1420 if (part.relrDyn && part.relrDyn->getParent() && 1421 !part.relrDyn->relocs.empty()) { 1422 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1423 *part.relrDyn); 1424 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1425 part.relrDyn->getParent()->size); 1426 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1427 sizeof(Elf_Relr)); 1428 } 1429 // .rel[a].plt section usually consists of two parts, containing plt and 1430 // iplt relocations. It is possible to have only iplt relocations in the 1431 // output. In that case relaPlt is empty and have zero offset, the same offset 1432 // as relaIplt has. And we still want to emit proper dynamic tags for that 1433 // case, so here we always use relaPlt as marker for the beginning of 1434 // .rel[a].plt section. 1435 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1436 addInSec(DT_JMPREL, *in.relaPlt); 1437 entries.emplace_back(DT_PLTRELSZ, addPltRelSz()); 1438 switch (config->emachine) { 1439 case EM_MIPS: 1440 addInSec(DT_MIPS_PLTGOT, *in.gotPlt); 1441 break; 1442 case EM_SPARCV9: 1443 addInSec(DT_PLTGOT, *in.plt); 1444 break; 1445 case EM_AARCH64: 1446 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1447 return r.type == target->pltRel && 1448 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1449 }) != in.relaPlt->relocs.end()) 1450 addInt(DT_AARCH64_VARIANT_PCS, 0); 1451 LLVM_FALLTHROUGH; 1452 default: 1453 addInSec(DT_PLTGOT, *in.gotPlt); 1454 break; 1455 } 1456 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1457 } 1458 1459 if (config->emachine == EM_AARCH64) { 1460 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1461 addInt(DT_AARCH64_BTI_PLT, 0); 1462 if (config->zPacPlt) 1463 addInt(DT_AARCH64_PAC_PLT, 0); 1464 } 1465 1466 addInSec(DT_SYMTAB, *part.dynSymTab); 1467 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1468 addInSec(DT_STRTAB, *part.dynStrTab); 1469 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1470 if (!config->zText) 1471 addInt(DT_TEXTREL, 0); 1472 if (part.gnuHashTab && part.gnuHashTab->getParent()) 1473 addInSec(DT_GNU_HASH, *part.gnuHashTab); 1474 if (part.hashTab && part.hashTab->getParent()) 1475 addInSec(DT_HASH, *part.hashTab); 1476 1477 if (isMain) { 1478 if (Out::preinitArray) { 1479 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr); 1480 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size); 1481 } 1482 if (Out::initArray) { 1483 addInt(DT_INIT_ARRAY, Out::initArray->addr); 1484 addInt(DT_INIT_ARRAYSZ, Out::initArray->size); 1485 } 1486 if (Out::finiArray) { 1487 addInt(DT_FINI_ARRAY, Out::finiArray->addr); 1488 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size); 1489 } 1490 1491 if (Symbol *b = symtab->find(config->init)) 1492 if (b->isDefined()) 1493 addInt(DT_INIT, b->getVA()); 1494 if (Symbol *b = symtab->find(config->fini)) 1495 if (b->isDefined()) 1496 addInt(DT_FINI, b->getVA()); 1497 } 1498 1499 if (part.verSym && part.verSym->isNeeded()) 1500 addInSec(DT_VERSYM, *part.verSym); 1501 if (part.verDef && part.verDef->isLive()) { 1502 addInSec(DT_VERDEF, *part.verDef); 1503 addInt(DT_VERDEFNUM, getVerDefNum()); 1504 } 1505 if (part.verNeed && part.verNeed->isNeeded()) { 1506 addInSec(DT_VERNEED, *part.verNeed); 1507 unsigned needNum = 0; 1508 for (SharedFile *f : sharedFiles) 1509 if (!f->vernauxs.empty()) 1510 ++needNum; 1511 addInt(DT_VERNEEDNUM, needNum); 1512 } 1513 1514 if (config->emachine == EM_MIPS) { 1515 addInt(DT_MIPS_RLD_VERSION, 1); 1516 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1517 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1518 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1519 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum()); 1520 1521 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1522 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1523 else 1524 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1525 addInSec(DT_PLTGOT, *in.mipsGot); 1526 if (in.mipsRldMap) { 1527 if (!config->pie) 1528 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap); 1529 // Store the offset to the .rld_map section 1530 // relative to the address of the tag. 1531 addInt(DT_MIPS_RLD_MAP_REL, 1532 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); 1533 } 1534 } 1535 1536 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1537 // glibc assumes the old-style BSS PLT layout which we don't support. 1538 if (config->emachine == EM_PPC) 1539 addInSec(DT_PPC_GOT, *in.got); 1540 1541 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1542 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1543 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1544 // stub, which starts directly after the header. 1545 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32); 1546 } 1547 1548 addInt(DT_NULL, 0); 1549 return entries; 1550 } 1551 1552 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1553 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 1554 getParent()->link = sec->sectionIndex; 1555 this->size = computeContents().size() * this->entsize; 1556 } 1557 1558 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1559 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1560 1561 for (std::pair<int32_t, uint64_t> kv : computeContents()) { 1562 p->d_tag = kv.first; 1563 p->d_un.d_val = kv.second; 1564 ++p; 1565 } 1566 } 1567 1568 uint64_t DynamicReloc::getOffset() const { 1569 return inputSec->getVA(offsetInSec); 1570 } 1571 1572 int64_t DynamicReloc::computeAddend() const { 1573 switch (kind) { 1574 case AddendOnly: 1575 assert(sym == nullptr); 1576 return addend; 1577 case AgainstSymbol: 1578 assert(sym != nullptr); 1579 return addend; 1580 case AddendOnlyWithTargetVA: 1581 case AgainstSymbolWithTargetVA: 1582 return InputSection::getRelocTargetVA(inputSec->file, type, addend, 1583 getOffset(), *sym, expr); 1584 case MipsMultiGotPage: 1585 assert(sym == nullptr); 1586 return getMipsPageAddr(outputSec->addr) + addend; 1587 } 1588 llvm_unreachable("Unknown DynamicReloc::Kind enum"); 1589 } 1590 1591 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1592 if (!needsDynSymIndex()) 1593 return 0; 1594 1595 size_t index = symTab->getSymbolIndex(sym); 1596 assert((index != 0 || (type != target->gotRel && type != target->pltRel) || 1597 !mainPart->dynSymTab->getParent()) && 1598 "GOT or PLT relocation must refer to symbol in dynamic symbol table"); 1599 return index; 1600 } 1601 1602 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1603 int32_t dynamicTag, 1604 int32_t sizeDynamicTag, 1605 bool combreloc) 1606 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1607 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), 1608 combreloc(combreloc) {} 1609 1610 void RelocationBaseSection::addSymbolReloc(RelType dynType, 1611 InputSectionBase &isec, 1612 uint64_t offsetInSec, Symbol &sym, 1613 int64_t addend, 1614 Optional<RelType> addendRelType) { 1615 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, 1616 R_ADDEND, addendRelType ? *addendRelType : target->noneRel); 1617 } 1618 1619 void RelocationBaseSection::addRelativeReloc( 1620 RelType dynType, InputSectionBase &inputSec, uint64_t offsetInSec, 1621 Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) { 1622 // This function should only be called for non-preemptible symbols or 1623 // RelExpr values that refer to an address inside the output file (e.g. the 1624 // address of the GOT entry for a potentially preemptible symbol). 1625 assert((!sym.isPreemptible || expr == R_GOT) && 1626 "cannot add relative relocation against preemptible symbol"); 1627 assert(expr != R_ADDEND && "expected non-addend relocation expression"); 1628 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec, 1629 sym, addend, expr, addendRelType); 1630 } 1631 1632 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( 1633 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, 1634 RelType addendRelType) { 1635 // No need to write an addend to the section for preemptible symbols. 1636 if (sym.isPreemptible) 1637 addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, 1638 R_ABS}); 1639 else 1640 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, 1641 sym, 0, R_ABS, addendRelType); 1642 } 1643 1644 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType, 1645 InputSectionBase &inputSec, 1646 uint64_t offsetInSec, Symbol &sym, 1647 int64_t addend, RelExpr expr, 1648 RelType addendRelType) { 1649 // Write the addends to the relocated address if required. We skip 1650 // it if the written value would be zero. 1651 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1652 inputSec.relocations.push_back( 1653 {expr, addendRelType, offsetInSec, addend, &sym}); 1654 addReloc({dynType, &inputSec, offsetInSec, kind, sym, addend, expr}); 1655 } 1656 1657 void RelocationBaseSection::partitionRels() { 1658 if (!combreloc) 1659 return; 1660 const RelType relativeRel = target->relativeRel; 1661 numRelativeRelocs = 1662 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) - 1663 relocs.begin(); 1664 } 1665 1666 void RelocationBaseSection::finalizeContents() { 1667 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1668 1669 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1670 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1671 // case. 1672 if (symTab && symTab->getParent()) 1673 getParent()->link = symTab->getParent()->sectionIndex; 1674 else 1675 getParent()->link = 0; 1676 1677 if (in.relaPlt.get() == this && in.gotPlt->getParent()) { 1678 getParent()->flags |= ELF::SHF_INFO_LINK; 1679 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1680 } 1681 if (in.relaIplt.get() == this && in.igotPlt->getParent()) { 1682 getParent()->flags |= ELF::SHF_INFO_LINK; 1683 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1684 } 1685 } 1686 1687 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) { 1688 r_offset = getOffset(); 1689 r_sym = getSymIndex(symtab); 1690 addend = computeAddend(); 1691 kind = AddendOnly; // Catch errors 1692 } 1693 1694 void RelocationBaseSection::computeRels() { 1695 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1696 parallelForEach(relocs, 1697 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); }); 1698 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1699 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1700 // is to make results easier to read. 1701 if (combreloc) { 1702 auto nonRelative = relocs.begin() + numRelativeRelocs; 1703 parallelSort(relocs.begin(), nonRelative, 1704 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); 1705 // Non-relative relocations are few, so don't bother with parallelSort. 1706 std::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) { 1707 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); 1708 }); 1709 } 1710 } 1711 1712 template <class ELFT> 1713 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc) 1714 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1715 config->isRela ? DT_RELA : DT_REL, 1716 config->isRela ? DT_RELASZ : DT_RELSZ, combreloc) { 1717 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1718 } 1719 1720 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1721 computeRels(); 1722 for (const DynamicReloc &rel : relocs) { 1723 auto *p = reinterpret_cast<Elf_Rela *>(buf); 1724 p->r_offset = rel.r_offset; 1725 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL); 1726 if (config->isRela) 1727 p->r_addend = rel.addend; 1728 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1729 } 1730 } 1731 1732 RelrBaseSection::RelrBaseSection() 1733 : SyntheticSection(SHF_ALLOC, 1734 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1735 config->wordsize, ".relr.dyn") {} 1736 1737 template <class ELFT> 1738 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1739 StringRef name) 1740 : RelocationBaseSection( 1741 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1742 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1743 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, 1744 /*combreloc=*/false) { 1745 this->entsize = 1; 1746 } 1747 1748 template <class ELFT> 1749 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1750 // This function computes the contents of an Android-format packed relocation 1751 // section. 1752 // 1753 // This format compresses relocations by using relocation groups to factor out 1754 // fields that are common between relocations and storing deltas from previous 1755 // relocations in SLEB128 format (which has a short representation for small 1756 // numbers). A good example of a relocation type with common fields is 1757 // R_*_RELATIVE, which is normally used to represent function pointers in 1758 // vtables. In the REL format, each relative relocation has the same r_info 1759 // field, and is only different from other relative relocations in terms of 1760 // the r_offset field. By sorting relocations by offset, grouping them by 1761 // r_info and representing each relocation with only the delta from the 1762 // previous offset, each 8-byte relocation can be compressed to as little as 1 1763 // byte (or less with run-length encoding). This relocation packer was able to 1764 // reduce the size of the relocation section in an Android Chromium DSO from 1765 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1766 // 1767 // A relocation section consists of a header containing the literal bytes 1768 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1769 // elements are the total number of relocations in the section and an initial 1770 // r_offset value. The remaining elements define a sequence of relocation 1771 // groups. Each relocation group starts with a header consisting of the 1772 // following elements: 1773 // 1774 // - the number of relocations in the relocation group 1775 // - flags for the relocation group 1776 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1777 // for each relocation in the group. 1778 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1779 // field for each relocation in the group. 1780 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1781 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1782 // each relocation in the group. 1783 // 1784 // Following the relocation group header are descriptions of each of the 1785 // relocations in the group. They consist of the following elements: 1786 // 1787 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1788 // delta for this relocation. 1789 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1790 // field for this relocation. 1791 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1792 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1793 // this relocation. 1794 1795 size_t oldSize = relocData.size(); 1796 1797 relocData = {'A', 'P', 'S', '2'}; 1798 raw_svector_ostream os(relocData); 1799 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1800 1801 // The format header includes the number of relocations and the initial 1802 // offset (we set this to zero because the first relocation group will 1803 // perform the initial adjustment). 1804 add(relocs.size()); 1805 add(0); 1806 1807 std::vector<Elf_Rela> relatives, nonRelatives; 1808 1809 for (const DynamicReloc &rel : relocs) { 1810 Elf_Rela r; 1811 r.r_offset = rel.getOffset(); 1812 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()), 1813 rel.type, false); 1814 if (config->isRela) 1815 r.r_addend = rel.computeAddend(); 1816 1817 if (r.getType(config->isMips64EL) == target->relativeRel) 1818 relatives.push_back(r); 1819 else 1820 nonRelatives.push_back(r); 1821 } 1822 1823 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1824 return a.r_offset < b.r_offset; 1825 }); 1826 1827 // Try to find groups of relative relocations which are spaced one word 1828 // apart from one another. These generally correspond to vtable entries. The 1829 // format allows these groups to be encoded using a sort of run-length 1830 // encoding, but each group will cost 7 bytes in addition to the offset from 1831 // the previous group, so it is only profitable to do this for groups of 1832 // size 8 or larger. 1833 std::vector<Elf_Rela> ungroupedRelatives; 1834 std::vector<std::vector<Elf_Rela>> relativeGroups; 1835 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1836 std::vector<Elf_Rela> group; 1837 do { 1838 group.push_back(*i++); 1839 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1840 1841 if (group.size() < 8) 1842 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1843 group.end()); 1844 else 1845 relativeGroups.emplace_back(std::move(group)); 1846 } 1847 1848 // For non-relative relocations, we would like to: 1849 // 1. Have relocations with the same symbol offset to be consecutive, so 1850 // that the runtime linker can speed-up symbol lookup by implementing an 1851 // 1-entry cache. 1852 // 2. Group relocations by r_info to reduce the size of the relocation 1853 // section. 1854 // Since the symbol offset is the high bits in r_info, sorting by r_info 1855 // allows us to do both. 1856 // 1857 // For Rela, we also want to sort by r_addend when r_info is the same. This 1858 // enables us to group by r_addend as well. 1859 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1860 if (a.r_info != b.r_info) 1861 return a.r_info < b.r_info; 1862 if (config->isRela) 1863 return a.r_addend < b.r_addend; 1864 return false; 1865 }); 1866 1867 // Group relocations with the same r_info. Note that each group emits a group 1868 // header and that may make the relocation section larger. It is hard to 1869 // estimate the size of a group header as the encoded size of that varies 1870 // based on r_info. However, we can approximate this trade-off by the number 1871 // of values encoded. Each group header contains 3 values, and each relocation 1872 // in a group encodes one less value, as compared to when it is not grouped. 1873 // Therefore, we only group relocations if there are 3 or more of them with 1874 // the same r_info. 1875 // 1876 // For Rela, the addend for most non-relative relocations is zero, and thus we 1877 // can usually get a smaller relocation section if we group relocations with 0 1878 // addend as well. 1879 std::vector<Elf_Rela> ungroupedNonRelatives; 1880 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1881 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1882 auto j = i + 1; 1883 while (j != e && i->r_info == j->r_info && 1884 (!config->isRela || i->r_addend == j->r_addend)) 1885 ++j; 1886 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1887 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1888 else 1889 nonRelativeGroups.emplace_back(i, j); 1890 i = j; 1891 } 1892 1893 // Sort ungrouped relocations by offset to minimize the encoded length. 1894 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1895 return a.r_offset < b.r_offset; 1896 }); 1897 1898 unsigned hasAddendIfRela = 1899 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1900 1901 uint64_t offset = 0; 1902 uint64_t addend = 0; 1903 1904 // Emit the run-length encoding for the groups of adjacent relative 1905 // relocations. Each group is represented using two groups in the packed 1906 // format. The first is used to set the current offset to the start of the 1907 // group (and also encodes the first relocation), and the second encodes the 1908 // remaining relocations. 1909 for (std::vector<Elf_Rela> &g : relativeGroups) { 1910 // The first relocation in the group. 1911 add(1); 1912 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1913 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1914 add(g[0].r_offset - offset); 1915 add(target->relativeRel); 1916 if (config->isRela) { 1917 add(g[0].r_addend - addend); 1918 addend = g[0].r_addend; 1919 } 1920 1921 // The remaining relocations. 1922 add(g.size() - 1); 1923 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1924 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1925 add(config->wordsize); 1926 add(target->relativeRel); 1927 if (config->isRela) { 1928 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1929 add(i->r_addend - addend); 1930 addend = i->r_addend; 1931 } 1932 } 1933 1934 offset = g.back().r_offset; 1935 } 1936 1937 // Now the ungrouped relatives. 1938 if (!ungroupedRelatives.empty()) { 1939 add(ungroupedRelatives.size()); 1940 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1941 add(target->relativeRel); 1942 for (Elf_Rela &r : ungroupedRelatives) { 1943 add(r.r_offset - offset); 1944 offset = r.r_offset; 1945 if (config->isRela) { 1946 add(r.r_addend - addend); 1947 addend = r.r_addend; 1948 } 1949 } 1950 } 1951 1952 // Grouped non-relatives. 1953 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1954 add(g.size()); 1955 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1956 add(g[0].r_info); 1957 for (const Elf_Rela &r : g) { 1958 add(r.r_offset - offset); 1959 offset = r.r_offset; 1960 } 1961 addend = 0; 1962 } 1963 1964 // Finally the ungrouped non-relative relocations. 1965 if (!ungroupedNonRelatives.empty()) { 1966 add(ungroupedNonRelatives.size()); 1967 add(hasAddendIfRela); 1968 for (Elf_Rela &r : ungroupedNonRelatives) { 1969 add(r.r_offset - offset); 1970 offset = r.r_offset; 1971 add(r.r_info); 1972 if (config->isRela) { 1973 add(r.r_addend - addend); 1974 addend = r.r_addend; 1975 } 1976 } 1977 } 1978 1979 // Don't allow the section to shrink; otherwise the size of the section can 1980 // oscillate infinitely. 1981 if (relocData.size() < oldSize) 1982 relocData.append(oldSize - relocData.size(), 0); 1983 1984 // Returns whether the section size changed. We need to keep recomputing both 1985 // section layout and the contents of this section until the size converges 1986 // because changing this section's size can affect section layout, which in 1987 // turn can affect the sizes of the LEB-encoded integers stored in this 1988 // section. 1989 return relocData.size() != oldSize; 1990 } 1991 1992 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1993 this->entsize = config->wordsize; 1994 } 1995 1996 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1997 // This function computes the contents of an SHT_RELR packed relocation 1998 // section. 1999 // 2000 // Proposal for adding SHT_RELR sections to generic-abi is here: 2001 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 2002 // 2003 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 2004 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 2005 // 2006 // i.e. start with an address, followed by any number of bitmaps. The address 2007 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 2008 // relocations each, at subsequent offsets following the last address entry. 2009 // 2010 // The bitmap entries must have 1 in the least significant bit. The assumption 2011 // here is that an address cannot have 1 in lsb. Odd addresses are not 2012 // supported. 2013 // 2014 // Excluding the least significant bit in the bitmap, each non-zero bit in 2015 // the bitmap represents a relocation to be applied to a corresponding machine 2016 // word that follows the base address word. The second least significant bit 2017 // represents the machine word immediately following the initial address, and 2018 // each bit that follows represents the next word, in linear order. As such, 2019 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 2020 // 63 relocations in a 64-bit object. 2021 // 2022 // This encoding has a couple of interesting properties: 2023 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 2024 // even means address, odd means bitmap. 2025 // 2. Just a simple list of addresses is a valid encoding. 2026 2027 size_t oldSize = relrRelocs.size(); 2028 relrRelocs.clear(); 2029 2030 // Same as Config->Wordsize but faster because this is a compile-time 2031 // constant. 2032 const size_t wordsize = sizeof(typename ELFT::uint); 2033 2034 // Number of bits to use for the relocation offsets bitmap. 2035 // Must be either 63 or 31. 2036 const size_t nBits = wordsize * 8 - 1; 2037 2038 // Get offsets for all relative relocations and sort them. 2039 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); 2040 for (auto it : llvm::enumerate(relocs)) 2041 offsets[it.index()] = it.value().getOffset(); 2042 std::sort(offsets.get(), offsets.get() + relocs.size()); 2043 2044 // For each leading relocation, find following ones that can be folded 2045 // as a bitmap and fold them. 2046 for (size_t i = 0, e = relocs.size(); i != e;) { 2047 // Add a leading relocation. 2048 relrRelocs.push_back(Elf_Relr(offsets[i])); 2049 uint64_t base = offsets[i] + wordsize; 2050 ++i; 2051 2052 // Find foldable relocations to construct bitmaps. 2053 for (;;) { 2054 uint64_t bitmap = 0; 2055 for (; i != e; ++i) { 2056 uint64_t d = offsets[i] - base; 2057 if (d >= nBits * wordsize || d % wordsize) 2058 break; 2059 bitmap |= uint64_t(1) << (d / wordsize); 2060 } 2061 if (!bitmap) 2062 break; 2063 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2064 base += nBits * wordsize; 2065 } 2066 } 2067 2068 // Don't allow the section to shrink; otherwise the size of the section can 2069 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2070 if (relrRelocs.size() < oldSize) { 2071 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2072 " padding word(s)"); 2073 relrRelocs.resize(oldSize, Elf_Relr(1)); 2074 } 2075 2076 return relrRelocs.size() != oldSize; 2077 } 2078 2079 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2080 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2081 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2082 config->wordsize, 2083 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2084 strTabSec(strTabSec) {} 2085 2086 // Orders symbols according to their positions in the GOT, 2087 // in compliance with MIPS ABI rules. 2088 // See "Global Offset Table" in Chapter 5 in the following document 2089 // for detailed description: 2090 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2091 static bool sortMipsSymbols(const SymbolTableEntry &l, 2092 const SymbolTableEntry &r) { 2093 // Sort entries related to non-local preemptible symbols by GOT indexes. 2094 // All other entries go to the beginning of a dynsym in arbitrary order. 2095 if (l.sym->isInGot() && r.sym->isInGot()) 2096 return l.sym->getGotIdx() < r.sym->getGotIdx(); 2097 if (!l.sym->isInGot() && !r.sym->isInGot()) 2098 return false; 2099 return !l.sym->isInGot(); 2100 } 2101 2102 void SymbolTableBaseSection::finalizeContents() { 2103 if (OutputSection *sec = strTabSec.getParent()) 2104 getParent()->link = sec->sectionIndex; 2105 2106 if (this->type != SHT_DYNSYM) { 2107 sortSymTabSymbols(); 2108 return; 2109 } 2110 2111 // If it is a .dynsym, there should be no local symbols, but we need 2112 // to do a few things for the dynamic linker. 2113 2114 // Section's Info field has the index of the first non-local symbol. 2115 // Because the first symbol entry is a null entry, 1 is the first. 2116 getParent()->info = 1; 2117 2118 if (getPartition().gnuHashTab) { 2119 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2120 getPartition().gnuHashTab->addSymbols(symbols); 2121 } else if (config->emachine == EM_MIPS) { 2122 llvm::stable_sort(symbols, sortMipsSymbols); 2123 } 2124 2125 // Only the main partition's dynsym indexes are stored in the symbols 2126 // themselves. All other partitions use a lookup table. 2127 if (this == mainPart->dynSymTab.get()) { 2128 size_t i = 0; 2129 for (const SymbolTableEntry &s : symbols) 2130 s.sym->dynsymIndex = ++i; 2131 } 2132 } 2133 2134 // The ELF spec requires that all local symbols precede global symbols, so we 2135 // sort symbol entries in this function. (For .dynsym, we don't do that because 2136 // symbols for dynamic linking are inherently all globals.) 2137 // 2138 // Aside from above, we put local symbols in groups starting with the STT_FILE 2139 // symbol. That is convenient for purpose of identifying where are local symbols 2140 // coming from. 2141 void SymbolTableBaseSection::sortSymTabSymbols() { 2142 // Move all local symbols before global symbols. 2143 auto e = std::stable_partition( 2144 symbols.begin(), symbols.end(), 2145 [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); 2146 size_t numLocals = e - symbols.begin(); 2147 getParent()->info = numLocals + 1; 2148 2149 // We want to group the local symbols by file. For that we rebuild the local 2150 // part of the symbols vector. We do not need to care about the STT_FILE 2151 // symbols, they are already naturally placed first in each group. That 2152 // happens because STT_FILE is always the first symbol in the object and hence 2153 // precede all other local symbols we add for a file. 2154 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; 2155 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2156 arr[s.sym->file].push_back(s); 2157 2158 auto i = symbols.begin(); 2159 for (auto &p : arr) 2160 for (SymbolTableEntry &entry : p.second) 2161 *i++ = entry; 2162 } 2163 2164 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2165 // Adding a local symbol to a .dynsym is a bug. 2166 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2167 symbols.push_back({b, strTabSec.addString(b->getName(), false)}); 2168 } 2169 2170 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2171 if (this == mainPart->dynSymTab.get()) 2172 return sym->dynsymIndex; 2173 2174 // Initializes symbol lookup tables lazily. This is used only for -r, 2175 // --emit-relocs and dynsyms in partitions other than the main one. 2176 llvm::call_once(onceFlag, [&] { 2177 symbolIndexMap.reserve(symbols.size()); 2178 size_t i = 0; 2179 for (const SymbolTableEntry &e : symbols) { 2180 if (e.sym->type == STT_SECTION) 2181 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2182 else 2183 symbolIndexMap[e.sym] = ++i; 2184 } 2185 }); 2186 2187 // Section symbols are mapped based on their output sections 2188 // to maintain their semantics. 2189 if (sym->type == STT_SECTION) 2190 return sectionIndexMap.lookup(sym->getOutputSection()); 2191 return symbolIndexMap.lookup(sym); 2192 } 2193 2194 template <class ELFT> 2195 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2196 : SymbolTableBaseSection(strTabSec) { 2197 this->entsize = sizeof(Elf_Sym); 2198 } 2199 2200 static BssSection *getCommonSec(Symbol *sym) { 2201 if (config->relocatable) 2202 if (auto *d = dyn_cast<Defined>(sym)) 2203 return dyn_cast_or_null<BssSection>(d->section); 2204 return nullptr; 2205 } 2206 2207 static uint32_t getSymSectionIndex(Symbol *sym) { 2208 assert(!(sym->needsCopy && sym->isObject())); 2209 if (!isa<Defined>(sym) || sym->needsCopy) 2210 return SHN_UNDEF; 2211 if (const OutputSection *os = sym->getOutputSection()) 2212 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2213 : os->sectionIndex; 2214 return SHN_ABS; 2215 } 2216 2217 // Write the internal symbol table contents to the output symbol table. 2218 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2219 // The first entry is a null entry as per the ELF spec. 2220 buf += sizeof(Elf_Sym); 2221 2222 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2223 2224 for (SymbolTableEntry &ent : symbols) { 2225 Symbol *sym = ent.sym; 2226 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2227 2228 // Set st_name, st_info and st_other. 2229 eSym->st_name = ent.strTabOffset; 2230 eSym->setBindingAndType(sym->binding, sym->type); 2231 eSym->st_other = sym->visibility; 2232 2233 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2234 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2235 if (config->emachine == EM_PPC64) 2236 eSym->st_other |= sym->stOther & 0xe0; 2237 // The most significant bit of st_other is used by AArch64 ABI for the 2238 // variant PCS. 2239 else if (config->emachine == EM_AARCH64) 2240 eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS; 2241 2242 if (BssSection *commonSec = getCommonSec(sym)) { 2243 // When -r is specified, a COMMON symbol is not allocated. Its st_shndx 2244 // holds SHN_COMMON and st_value holds the alignment. 2245 eSym->st_shndx = SHN_COMMON; 2246 eSym->st_value = commonSec->alignment; 2247 eSym->st_size = cast<Defined>(sym)->size; 2248 } else { 2249 const uint32_t shndx = getSymSectionIndex(sym); 2250 if (isDefinedHere) { 2251 eSym->st_shndx = shndx; 2252 eSym->st_value = sym->getVA(); 2253 // Copy symbol size if it is a defined symbol. st_size is not 2254 // significant for undefined symbols, so whether copying it or not is up 2255 // to us if that's the case. We'll leave it as zero because by not 2256 // setting a value, we can get the exact same outputs for two sets of 2257 // input files that differ only in undefined symbol size in DSOs. 2258 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; 2259 } else { 2260 eSym->st_shndx = 0; 2261 eSym->st_value = 0; 2262 eSym->st_size = 0; 2263 } 2264 } 2265 2266 ++eSym; 2267 } 2268 2269 // On MIPS we need to mark symbol which has a PLT entry and requires 2270 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2271 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2272 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2273 if (config->emachine == EM_MIPS) { 2274 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2275 2276 for (SymbolTableEntry &ent : symbols) { 2277 Symbol *sym = ent.sym; 2278 if (sym->isInPlt() && sym->needsCopy) 2279 eSym->st_other |= STO_MIPS_PLT; 2280 if (isMicroMips()) { 2281 // We already set the less-significant bit for symbols 2282 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2283 // records. That allows us to distinguish such symbols in 2284 // the `MIPS<ELFT>::relocate()` routine. Now we should 2285 // clear that bit for non-dynamic symbol table, so tools 2286 // like `objdump` will be able to deal with a correct 2287 // symbol position. 2288 if (sym->isDefined() && 2289 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsCopy)) { 2290 if (!strTabSec.isDynamic()) 2291 eSym->st_value &= ~1; 2292 eSym->st_other |= STO_MIPS_MICROMIPS; 2293 } 2294 } 2295 if (config->relocatable) 2296 if (auto *d = dyn_cast<Defined>(sym)) 2297 if (isMipsPIC<ELFT>(d)) 2298 eSym->st_other |= STO_MIPS_PIC; 2299 ++eSym; 2300 } 2301 } 2302 } 2303 2304 SymtabShndxSection::SymtabShndxSection() 2305 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2306 this->entsize = 4; 2307 } 2308 2309 void SymtabShndxSection::writeTo(uint8_t *buf) { 2310 // We write an array of 32 bit values, where each value has 1:1 association 2311 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2312 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2313 buf += 4; // Ignore .symtab[0] entry. 2314 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2315 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX) 2316 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2317 buf += 4; 2318 } 2319 } 2320 2321 bool SymtabShndxSection::isNeeded() const { 2322 // SHT_SYMTAB can hold symbols with section indices values up to 2323 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2324 // section. Problem is that we reveal the final section indices a bit too 2325 // late, and we do not know them here. For simplicity, we just always create 2326 // a .symtab_shndx section when the amount of output sections is huge. 2327 size_t size = 0; 2328 for (SectionCommand *cmd : script->sectionCommands) 2329 if (isa<OutputDesc>(cmd)) 2330 ++size; 2331 return size >= SHN_LORESERVE; 2332 } 2333 2334 void SymtabShndxSection::finalizeContents() { 2335 getParent()->link = in.symTab->getParent()->sectionIndex; 2336 } 2337 2338 size_t SymtabShndxSection::getSize() const { 2339 return in.symTab->getNumSymbols() * 4; 2340 } 2341 2342 // .hash and .gnu.hash sections contain on-disk hash tables that map 2343 // symbol names to their dynamic symbol table indices. Their purpose 2344 // is to help the dynamic linker resolve symbols quickly. If ELF files 2345 // don't have them, the dynamic linker has to do linear search on all 2346 // dynamic symbols, which makes programs slower. Therefore, a .hash 2347 // section is added to a DSO by default. 2348 // 2349 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2350 // Each ELF file has a list of DSOs that the ELF file depends on and a 2351 // list of dynamic symbols that need to be resolved from any of the 2352 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2353 // where m is the number of DSOs and n is the number of dynamic 2354 // symbols. For modern large programs, both m and n are large. So 2355 // making each step faster by using hash tables substantially 2356 // improves time to load programs. 2357 // 2358 // (Note that this is not the only way to design the shared library. 2359 // For instance, the Windows DLL takes a different approach. On 2360 // Windows, each dynamic symbol has a name of DLL from which the symbol 2361 // has to be resolved. That makes the cost of symbol resolution O(n). 2362 // This disables some hacky techniques you can use on Unix such as 2363 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2364 // 2365 // Due to historical reasons, we have two different hash tables, .hash 2366 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2367 // and better version of .hash. .hash is just an on-disk hash table, but 2368 // .gnu.hash has a bloom filter in addition to a hash table to skip 2369 // DSOs very quickly. If you are sure that your dynamic linker knows 2370 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a 2371 // safe bet is to specify --hash-style=both for backward compatibility. 2372 GnuHashTableSection::GnuHashTableSection() 2373 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2374 } 2375 2376 void GnuHashTableSection::finalizeContents() { 2377 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2378 getParent()->link = sec->sectionIndex; 2379 2380 // Computes bloom filter size in word size. We want to allocate 12 2381 // bits for each symbol. It must be a power of two. 2382 if (symbols.empty()) { 2383 maskWords = 1; 2384 } else { 2385 uint64_t numBits = symbols.size() * 12; 2386 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2387 } 2388 2389 size = 16; // Header 2390 size += config->wordsize * maskWords; // Bloom filter 2391 size += nBuckets * 4; // Hash buckets 2392 size += symbols.size() * 4; // Hash values 2393 } 2394 2395 void GnuHashTableSection::writeTo(uint8_t *buf) { 2396 // Write a header. 2397 write32(buf, nBuckets); 2398 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2399 write32(buf + 8, maskWords); 2400 write32(buf + 12, Shift2); 2401 buf += 16; 2402 2403 // Write the 2-bit bloom filter. 2404 const unsigned c = config->is64 ? 64 : 32; 2405 for (const Entry &sym : symbols) { 2406 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2407 // the word using bits [0:5] and [26:31]. 2408 size_t i = (sym.hash / c) & (maskWords - 1); 2409 uint64_t val = readUint(buf + i * config->wordsize); 2410 val |= uint64_t(1) << (sym.hash % c); 2411 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2412 writeUint(buf + i * config->wordsize, val); 2413 } 2414 buf += config->wordsize * maskWords; 2415 2416 // Write the hash table. 2417 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2418 uint32_t oldBucket = -1; 2419 uint32_t *values = buckets + nBuckets; 2420 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2421 // Write a hash value. It represents a sequence of chains that share the 2422 // same hash modulo value. The last element of each chain is terminated by 2423 // LSB 1. 2424 uint32_t hash = i->hash; 2425 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2426 hash = isLastInChain ? hash | 1 : hash & ~1; 2427 write32(values++, hash); 2428 2429 if (i->bucketIdx == oldBucket) 2430 continue; 2431 // Write a hash bucket. Hash buckets contain indices in the following hash 2432 // value table. 2433 write32(buckets + i->bucketIdx, 2434 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2435 oldBucket = i->bucketIdx; 2436 } 2437 } 2438 2439 static uint32_t hashGnu(StringRef name) { 2440 uint32_t h = 5381; 2441 for (uint8_t c : name) 2442 h = (h << 5) + h + c; 2443 return h; 2444 } 2445 2446 // Add symbols to this symbol hash table. Note that this function 2447 // destructively sort a given vector -- which is needed because 2448 // GNU-style hash table places some sorting requirements. 2449 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { 2450 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2451 // its type correctly. 2452 auto mid = 2453 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2454 return !s.sym->isDefined() || s.sym->partition != partition; 2455 }); 2456 2457 // We chose load factor 4 for the on-disk hash table. For each hash 2458 // collision, the dynamic linker will compare a uint32_t hash value. 2459 // Since the integer comparison is quite fast, we believe we can 2460 // make the load factor even larger. 4 is just a conservative choice. 2461 // 2462 // Note that we don't want to create a zero-sized hash table because 2463 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2464 // table. If that's the case, we create a hash table with one unused 2465 // dummy slot. 2466 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2467 2468 if (mid == v.end()) 2469 return; 2470 2471 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2472 Symbol *b = ent.sym; 2473 uint32_t hash = hashGnu(b->getName()); 2474 uint32_t bucketIdx = hash % nBuckets; 2475 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2476 } 2477 2478 llvm::sort(symbols, [](const Entry &l, const Entry &r) { 2479 return std::tie(l.bucketIdx, l.strTabOffset) < 2480 std::tie(r.bucketIdx, r.strTabOffset); 2481 }); 2482 2483 v.erase(mid, v.end()); 2484 for (const Entry &ent : symbols) 2485 v.push_back({ent.sym, ent.strTabOffset}); 2486 } 2487 2488 HashTableSection::HashTableSection() 2489 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2490 this->entsize = 4; 2491 } 2492 2493 void HashTableSection::finalizeContents() { 2494 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2495 2496 if (OutputSection *sec = symTab->getParent()) 2497 getParent()->link = sec->sectionIndex; 2498 2499 unsigned numEntries = 2; // nbucket and nchain. 2500 numEntries += symTab->getNumSymbols(); // The chain entries. 2501 2502 // Create as many buckets as there are symbols. 2503 numEntries += symTab->getNumSymbols(); 2504 this->size = numEntries * 4; 2505 } 2506 2507 void HashTableSection::writeTo(uint8_t *buf) { 2508 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2509 unsigned numSymbols = symTab->getNumSymbols(); 2510 2511 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2512 write32(p++, numSymbols); // nbucket 2513 write32(p++, numSymbols); // nchain 2514 2515 uint32_t *buckets = p; 2516 uint32_t *chains = p + numSymbols; 2517 2518 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2519 Symbol *sym = s.sym; 2520 StringRef name = sym->getName(); 2521 unsigned i = sym->dynsymIndex; 2522 uint32_t hash = hashSysV(name) % numSymbols; 2523 chains[i] = buckets[hash]; 2524 write32(buckets + hash, i); 2525 } 2526 } 2527 2528 PltSection::PltSection() 2529 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2530 headerSize(target->pltHeaderSize) { 2531 // On PowerPC, this section contains lazy symbol resolvers. 2532 if (config->emachine == EM_PPC64) { 2533 name = ".glink"; 2534 alignment = 4; 2535 } 2536 2537 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2538 // symbol resolvers). 2539 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2540 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2541 name = ".plt.sec"; 2542 2543 // The PLT needs to be writable on SPARC as the dynamic linker will 2544 // modify the instructions in the PLT entries. 2545 if (config->emachine == EM_SPARCV9) 2546 this->flags |= SHF_WRITE; 2547 } 2548 2549 void PltSection::writeTo(uint8_t *buf) { 2550 // At beginning of PLT, we have code to call the dynamic 2551 // linker to resolve dynsyms at runtime. Write such code. 2552 target->writePltHeader(buf); 2553 size_t off = headerSize; 2554 2555 for (const Symbol *sym : entries) { 2556 target->writePlt(buf + off, *sym, getVA() + off); 2557 off += target->pltEntrySize; 2558 } 2559 } 2560 2561 void PltSection::addEntry(Symbol &sym) { 2562 assert(sym.auxIdx == symAux.size() - 1); 2563 symAux.back().pltIdx = entries.size(); 2564 entries.push_back(&sym); 2565 } 2566 2567 size_t PltSection::getSize() const { 2568 return headerSize + entries.size() * target->pltEntrySize; 2569 } 2570 2571 bool PltSection::isNeeded() const { 2572 // For -z retpolineplt, .iplt needs the .plt header. 2573 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2574 } 2575 2576 // Used by ARM to add mapping symbols in the PLT section, which aid 2577 // disassembly. 2578 void PltSection::addSymbols() { 2579 target->addPltHeaderSymbols(*this); 2580 2581 size_t off = headerSize; 2582 for (size_t i = 0; i < entries.size(); ++i) { 2583 target->addPltSymbols(*this, off); 2584 off += target->pltEntrySize; 2585 } 2586 } 2587 2588 IpltSection::IpltSection() 2589 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2590 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2591 name = ".glink"; 2592 alignment = 4; 2593 } 2594 } 2595 2596 void IpltSection::writeTo(uint8_t *buf) { 2597 uint32_t off = 0; 2598 for (const Symbol *sym : entries) { 2599 target->writeIplt(buf + off, *sym, getVA() + off); 2600 off += target->ipltEntrySize; 2601 } 2602 } 2603 2604 size_t IpltSection::getSize() const { 2605 return entries.size() * target->ipltEntrySize; 2606 } 2607 2608 void IpltSection::addEntry(Symbol &sym) { 2609 assert(sym.auxIdx == symAux.size() - 1); 2610 symAux.back().pltIdx = entries.size(); 2611 entries.push_back(&sym); 2612 } 2613 2614 // ARM uses mapping symbols to aid disassembly. 2615 void IpltSection::addSymbols() { 2616 size_t off = 0; 2617 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2618 target->addPltSymbols(*this, off); 2619 off += target->pltEntrySize; 2620 } 2621 } 2622 2623 PPC32GlinkSection::PPC32GlinkSection() { 2624 name = ".glink"; 2625 alignment = 4; 2626 } 2627 2628 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2629 writePPC32GlinkSection(buf, entries.size()); 2630 } 2631 2632 size_t PPC32GlinkSection::getSize() const { 2633 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2634 } 2635 2636 // This is an x86-only extra PLT section and used only when a security 2637 // enhancement feature called CET is enabled. In this comment, I'll explain what 2638 // the feature is and why we have two PLT sections if CET is enabled. 2639 // 2640 // So, what does CET do? CET introduces a new restriction to indirect jump 2641 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2642 // execute an indirect jump instruction, the processor verifies that a special 2643 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2644 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2645 // does not start with that instruction, the processor raises an exception 2646 // instead of continuing executing code. 2647 // 2648 // If CET is enabled, the compiler emits endbr to all locations where indirect 2649 // jumps may jump to. 2650 // 2651 // This mechanism makes it extremely hard to transfer the control to a middle of 2652 // a function that is not supporsed to be a indirect jump target, preventing 2653 // certain types of attacks such as ROP or JOP. 2654 // 2655 // Note that the processors in the market as of 2019 don't actually support the 2656 // feature. Only the spec is available at the moment. 2657 // 2658 // Now, I'll explain why we have this extra PLT section for CET. 2659 // 2660 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2661 // start with endbr. The problem is there's no extra space for endbr (which is 4 2662 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2663 // used. 2664 // 2665 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2666 // Remember that each PLT entry contains code to jump to an address read from 2667 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2668 // the former code is written to .plt.sec, and the latter code is written to 2669 // .plt. 2670 // 2671 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2672 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2673 // contain only code for lazy symbol resolution. 2674 // 2675 // In other words, this is how the 2-PLT scheme works. Application code is 2676 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2677 // entry contains code to read an address from a corresponding .got.plt entry 2678 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2679 // when an application calls an external function for the first time, the 2680 // control is transferred to a function that resolves a symbol name from 2681 // external shared object files. That function then rewrites a .got.plt entry 2682 // with a resolved address, so that the subsequent function calls directly jump 2683 // to a desired location from .plt.sec. 2684 // 2685 // There is an open question as to whether the 2-PLT scheme was desirable or 2686 // not. We could have simply extended the PLT entry size to 32-bytes to 2687 // accommodate endbr, and that scheme would have been much simpler than the 2688 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2689 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2690 // that the optimization actually makes a difference. 2691 // 2692 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2693 // depend on it, so we implement the ABI. 2694 IBTPltSection::IBTPltSection() 2695 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2696 2697 void IBTPltSection::writeTo(uint8_t *buf) { 2698 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2699 } 2700 2701 size_t IBTPltSection::getSize() const { 2702 // 16 is the header size of .plt. 2703 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2704 } 2705 2706 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; } 2707 2708 // The string hash function for .gdb_index. 2709 static uint32_t computeGdbHash(StringRef s) { 2710 uint32_t h = 0; 2711 for (uint8_t c : s) 2712 h = h * 67 + toLower(c) - 113; 2713 return h; 2714 } 2715 2716 GdbIndexSection::GdbIndexSection() 2717 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2718 2719 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2720 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2721 size_t GdbIndexSection::computeSymtabSize() const { 2722 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2723 } 2724 2725 // Compute the output section size. 2726 void GdbIndexSection::initOutputSize() { 2727 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2728 2729 for (GdbChunk &chunk : chunks) 2730 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2731 2732 // Add the constant pool size if exists. 2733 if (!symbols.empty()) { 2734 GdbSymbol &sym = symbols.back(); 2735 size += sym.nameOff + sym.name.size() + 1; 2736 } 2737 } 2738 2739 static SmallVector<GdbIndexSection::CuEntry, 0> 2740 readCuList(DWARFContext &dwarf) { 2741 SmallVector<GdbIndexSection::CuEntry, 0> ret; 2742 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2743 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2744 return ret; 2745 } 2746 2747 static SmallVector<GdbIndexSection::AddressEntry, 0> 2748 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2749 SmallVector<GdbIndexSection::AddressEntry, 0> ret; 2750 2751 uint32_t cuIdx = 0; 2752 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2753 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2754 warn(toString(sec) + ": " + toString(std::move(e))); 2755 return {}; 2756 } 2757 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2758 if (!ranges) { 2759 warn(toString(sec) + ": " + toString(ranges.takeError())); 2760 return {}; 2761 } 2762 2763 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2764 for (DWARFAddressRange &r : *ranges) { 2765 if (r.SectionIndex == -1ULL) 2766 continue; 2767 // Range list with zero size has no effect. 2768 InputSectionBase *s = sections[r.SectionIndex]; 2769 if (s && s != &InputSection::discarded && s->isLive()) 2770 if (r.LowPC != r.HighPC) 2771 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2772 } 2773 ++cuIdx; 2774 } 2775 2776 return ret; 2777 } 2778 2779 template <class ELFT> 2780 static SmallVector<GdbIndexSection::NameAttrEntry, 0> 2781 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2782 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { 2783 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2784 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2785 2786 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret; 2787 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2788 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2789 DWARFDebugPubTable table; 2790 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2791 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2792 }); 2793 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2794 // The value written into the constant pool is kind << 24 | cuIndex. As we 2795 // don't know how many compilation units precede this object to compute 2796 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2797 // the number of preceding compilation units later. 2798 uint32_t i = llvm::partition_point(cus, 2799 [&](GdbIndexSection::CuEntry cu) { 2800 return cu.cuOffset < set.Offset; 2801 }) - 2802 cus.begin(); 2803 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2804 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2805 (ent.Descriptor.toBits() << 24) | i}); 2806 } 2807 } 2808 return ret; 2809 } 2810 2811 // Create a list of symbols from a given list of symbol names and types 2812 // by uniquifying them by name. 2813 static SmallVector<GdbIndexSection::GdbSymbol, 0> createSymbols( 2814 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs, 2815 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) { 2816 using GdbSymbol = GdbIndexSection::GdbSymbol; 2817 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2818 2819 // For each chunk, compute the number of compilation units preceding it. 2820 uint32_t cuIdx = 0; 2821 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); 2822 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2823 cuIdxs[i] = cuIdx; 2824 cuIdx += chunks[i].compilationUnits.size(); 2825 } 2826 2827 // The number of symbols we will handle in this function is of the order 2828 // of millions for very large executables, so we use multi-threading to 2829 // speed it up. 2830 constexpr size_t numShards = 32; 2831 size_t concurrency = PowerOf2Floor( 2832 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 2833 .compute_thread_count(), 2834 numShards)); 2835 2836 // A sharded map to uniquify symbols by name. 2837 auto map = 2838 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards); 2839 size_t shift = 32 - countTrailingZeros(numShards); 2840 2841 // Instantiate GdbSymbols while uniqufying them by name. 2842 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards); 2843 2844 parallelForEachN(0, concurrency, [&](size_t threadId) { 2845 uint32_t i = 0; 2846 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2847 for (const NameAttrEntry &ent : entries) { 2848 size_t shardId = ent.name.hash() >> shift; 2849 if ((shardId & (concurrency - 1)) != threadId) 2850 continue; 2851 2852 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2853 size_t &idx = map[shardId][ent.name]; 2854 if (idx) { 2855 symbols[shardId][idx - 1].cuVector.push_back(v); 2856 continue; 2857 } 2858 2859 idx = symbols[shardId].size() + 1; 2860 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2861 } 2862 ++i; 2863 } 2864 }); 2865 2866 size_t numSymbols = 0; 2867 for (ArrayRef<GdbSymbol> v : makeArrayRef(symbols.get(), numShards)) 2868 numSymbols += v.size(); 2869 2870 // The return type is a flattened vector, so we'll copy each vector 2871 // contents to Ret. 2872 SmallVector<GdbSymbol, 0> ret; 2873 ret.reserve(numSymbols); 2874 for (SmallVector<GdbSymbol, 0> &vec : 2875 makeMutableArrayRef(symbols.get(), numShards)) 2876 for (GdbSymbol &sym : vec) 2877 ret.push_back(std::move(sym)); 2878 2879 // CU vectors and symbol names are adjacent in the output file. 2880 // We can compute their offsets in the output file now. 2881 size_t off = 0; 2882 for (GdbSymbol &sym : ret) { 2883 sym.cuVectorOff = off; 2884 off += (sym.cuVector.size() + 1) * 4; 2885 } 2886 for (GdbSymbol &sym : ret) { 2887 sym.nameOff = off; 2888 off += sym.name.size() + 1; 2889 } 2890 2891 return ret; 2892 } 2893 2894 // Returns a newly-created .gdb_index section. 2895 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2896 // Collect InputFiles with .debug_info. See the comment in 2897 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2898 // note that isec->data() may uncompress the full content, which should be 2899 // parallelized. 2900 SetVector<InputFile *> files; 2901 for (InputSectionBase *s : inputSections) { 2902 InputSection *isec = dyn_cast<InputSection>(s); 2903 if (!isec) 2904 continue; 2905 // .debug_gnu_pub{names,types} are useless in executables. 2906 // They are present in input object files solely for creating 2907 // a .gdb_index. So we can remove them from the output. 2908 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2909 s->markDead(); 2910 else if (isec->name == ".debug_info") 2911 files.insert(isec->file); 2912 } 2913 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 2914 llvm::erase_if(inputSections, [](InputSectionBase *s) { 2915 if (auto *isec = dyn_cast<InputSection>(s)) 2916 if (InputSectionBase *rel = isec->getRelocatedSection()) 2917 return !rel->isLive(); 2918 return !s->isLive(); 2919 }); 2920 2921 SmallVector<GdbChunk, 0> chunks(files.size()); 2922 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size()); 2923 2924 parallelForEachN(0, files.size(), [&](size_t i) { 2925 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2926 // avoid getDwarf() here. 2927 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2928 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2929 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2930 2931 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2932 // this only picks the last one. Other address ranges are lost. 2933 chunks[i].sec = dobj.getInfoSection(); 2934 chunks[i].compilationUnits = readCuList(dwarf); 2935 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2936 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2937 }); 2938 2939 auto *ret = make<GdbIndexSection>(); 2940 ret->chunks = std::move(chunks); 2941 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2942 ret->initOutputSize(); 2943 return ret; 2944 } 2945 2946 void GdbIndexSection::writeTo(uint8_t *buf) { 2947 // Write the header. 2948 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2949 uint8_t *start = buf; 2950 hdr->version = 7; 2951 buf += sizeof(*hdr); 2952 2953 // Write the CU list. 2954 hdr->cuListOff = buf - start; 2955 for (GdbChunk &chunk : chunks) { 2956 for (CuEntry &cu : chunk.compilationUnits) { 2957 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2958 write64le(buf + 8, cu.cuLength); 2959 buf += 16; 2960 } 2961 } 2962 2963 // Write the address area. 2964 hdr->cuTypesOff = buf - start; 2965 hdr->addressAreaOff = buf - start; 2966 uint32_t cuOff = 0; 2967 for (GdbChunk &chunk : chunks) { 2968 for (AddressEntry &e : chunk.addressAreas) { 2969 // In the case of ICF there may be duplicate address range entries. 2970 const uint64_t baseAddr = e.section->repl->getVA(0); 2971 write64le(buf, baseAddr + e.lowAddress); 2972 write64le(buf + 8, baseAddr + e.highAddress); 2973 write32le(buf + 16, e.cuIndex + cuOff); 2974 buf += 20; 2975 } 2976 cuOff += chunk.compilationUnits.size(); 2977 } 2978 2979 // Write the on-disk open-addressing hash table containing symbols. 2980 hdr->symtabOff = buf - start; 2981 size_t symtabSize = computeSymtabSize(); 2982 uint32_t mask = symtabSize - 1; 2983 2984 for (GdbSymbol &sym : symbols) { 2985 uint32_t h = sym.name.hash(); 2986 uint32_t i = h & mask; 2987 uint32_t step = ((h * 17) & mask) | 1; 2988 2989 while (read32le(buf + i * 8)) 2990 i = (i + step) & mask; 2991 2992 write32le(buf + i * 8, sym.nameOff); 2993 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2994 } 2995 2996 buf += symtabSize * 8; 2997 2998 // Write the string pool. 2999 hdr->constantPoolOff = buf - start; 3000 parallelForEach(symbols, [&](GdbSymbol &sym) { 3001 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 3002 }); 3003 3004 // Write the CU vectors. 3005 for (GdbSymbol &sym : symbols) { 3006 write32le(buf, sym.cuVector.size()); 3007 buf += 4; 3008 for (uint32_t val : sym.cuVector) { 3009 write32le(buf, val); 3010 buf += 4; 3011 } 3012 } 3013 } 3014 3015 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 3016 3017 EhFrameHeader::EhFrameHeader() 3018 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 3019 3020 void EhFrameHeader::writeTo(uint8_t *buf) { 3021 // Unlike most sections, the EhFrameHeader section is written while writing 3022 // another section, namely EhFrameSection, which calls the write() function 3023 // below from its writeTo() function. This is necessary because the contents 3024 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 3025 // don't know which order the sections will be written in. 3026 } 3027 3028 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 3029 // Each entry of the search table consists of two values, 3030 // the starting PC from where FDEs covers, and the FDE's address. 3031 // It is sorted by PC. 3032 void EhFrameHeader::write() { 3033 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3034 using FdeData = EhFrameSection::FdeData; 3035 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData(); 3036 3037 buf[0] = 1; 3038 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3039 buf[2] = DW_EH_PE_udata4; 3040 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3041 write32(buf + 4, 3042 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3043 write32(buf + 8, fdes.size()); 3044 buf += 12; 3045 3046 for (FdeData &fde : fdes) { 3047 write32(buf, fde.pcRel); 3048 write32(buf + 4, fde.fdeVARel); 3049 buf += 8; 3050 } 3051 } 3052 3053 size_t EhFrameHeader::getSize() const { 3054 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3055 return 12 + getPartition().ehFrame->numFdes * 8; 3056 } 3057 3058 bool EhFrameHeader::isNeeded() const { 3059 return isLive() && getPartition().ehFrame->isNeeded(); 3060 } 3061 3062 VersionDefinitionSection::VersionDefinitionSection() 3063 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3064 ".gnu.version_d") {} 3065 3066 StringRef VersionDefinitionSection::getFileDefName() { 3067 if (!getPartition().name.empty()) 3068 return getPartition().name; 3069 if (!config->soName.empty()) 3070 return config->soName; 3071 return config->outputFile; 3072 } 3073 3074 void VersionDefinitionSection::finalizeContents() { 3075 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3076 for (const VersionDefinition &v : namedVersionDefs()) 3077 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3078 3079 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3080 getParent()->link = sec->sectionIndex; 3081 3082 // sh_info should be set to the number of definitions. This fact is missed in 3083 // documentation, but confirmed by binutils community: 3084 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3085 getParent()->info = getVerDefNum(); 3086 } 3087 3088 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3089 StringRef name, size_t nameOff) { 3090 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3091 3092 // Write a verdef. 3093 write16(buf, 1); // vd_version 3094 write16(buf + 2, flags); // vd_flags 3095 write16(buf + 4, index); // vd_ndx 3096 write16(buf + 6, 1); // vd_cnt 3097 write32(buf + 8, hashSysV(name)); // vd_hash 3098 write32(buf + 12, 20); // vd_aux 3099 write32(buf + 16, 28); // vd_next 3100 3101 // Write a veraux. 3102 write32(buf + 20, nameOff); // vda_name 3103 write32(buf + 24, 0); // vda_next 3104 } 3105 3106 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3107 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3108 3109 auto nameOffIt = verDefNameOffs.begin(); 3110 for (const VersionDefinition &v : namedVersionDefs()) { 3111 buf += EntrySize; 3112 writeOne(buf, v.id, v.name, *nameOffIt++); 3113 } 3114 3115 // Need to terminate the last version definition. 3116 write32(buf + 16, 0); // vd_next 3117 } 3118 3119 size_t VersionDefinitionSection::getSize() const { 3120 return EntrySize * getVerDefNum(); 3121 } 3122 3123 // .gnu.version is a table where each entry is 2 byte long. 3124 VersionTableSection::VersionTableSection() 3125 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3126 ".gnu.version") { 3127 this->entsize = 2; 3128 } 3129 3130 void VersionTableSection::finalizeContents() { 3131 // At the moment of june 2016 GNU docs does not mention that sh_link field 3132 // should be set, but Sun docs do. Also readelf relies on this field. 3133 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3134 } 3135 3136 size_t VersionTableSection::getSize() const { 3137 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3138 } 3139 3140 void VersionTableSection::writeTo(uint8_t *buf) { 3141 buf += 2; 3142 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3143 // For an unextracted lazy symbol (undefined weak), it must have been 3144 // converted to Undefined and have VER_NDX_GLOBAL version here. 3145 assert(!s.sym->isLazy()); 3146 write16(buf, s.sym->versionId); 3147 buf += 2; 3148 } 3149 } 3150 3151 bool VersionTableSection::isNeeded() const { 3152 return isLive() && 3153 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3154 } 3155 3156 void elf::addVerneed(Symbol *ss) { 3157 auto &file = cast<SharedFile>(*ss->file); 3158 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3159 ss->versionId = VER_NDX_GLOBAL; 3160 return; 3161 } 3162 3163 if (file.vernauxs.empty()) 3164 file.vernauxs.resize(file.verdefs.size()); 3165 3166 // Select a version identifier for the vernaux data structure, if we haven't 3167 // already allocated one. The verdef identifiers cover the range 3168 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3169 // getVerDefNum()+1. 3170 if (file.vernauxs[ss->verdefIndex] == 0) 3171 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3172 3173 ss->versionId = file.vernauxs[ss->verdefIndex]; 3174 } 3175 3176 template <class ELFT> 3177 VersionNeedSection<ELFT>::VersionNeedSection() 3178 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3179 ".gnu.version_r") {} 3180 3181 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3182 for (SharedFile *f : sharedFiles) { 3183 if (f->vernauxs.empty()) 3184 continue; 3185 verneeds.emplace_back(); 3186 Verneed &vn = verneeds.back(); 3187 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3188 bool isLibc = config->relrGlibc && f->soName.startswith("libc.so."); 3189 bool isGlibc2 = false; 3190 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3191 if (f->vernauxs[i] == 0) 3192 continue; 3193 auto *verdef = 3194 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3195 StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name); 3196 if (isLibc && ver.startswith("GLIBC_2.")) 3197 isGlibc2 = true; 3198 vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i], 3199 getPartition().dynStrTab->addString(ver)}); 3200 } 3201 if (isGlibc2) { 3202 const char *ver = "GLIBC_ABI_DT_RELR"; 3203 vn.vernauxs.push_back({hashSysV(ver), 3204 ++SharedFile::vernauxNum + getVerDefNum(), 3205 getPartition().dynStrTab->addString(ver)}); 3206 } 3207 } 3208 3209 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3210 getParent()->link = sec->sectionIndex; 3211 getParent()->info = verneeds.size(); 3212 } 3213 3214 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3215 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3216 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3217 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3218 3219 for (auto &vn : verneeds) { 3220 // Create an Elf_Verneed for this DSO. 3221 verneed->vn_version = 1; 3222 verneed->vn_cnt = vn.vernauxs.size(); 3223 verneed->vn_file = vn.nameStrTab; 3224 verneed->vn_aux = 3225 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3226 verneed->vn_next = sizeof(Elf_Verneed); 3227 ++verneed; 3228 3229 // Create the Elf_Vernauxs for this Elf_Verneed. 3230 for (auto &vna : vn.vernauxs) { 3231 vernaux->vna_hash = vna.hash; 3232 vernaux->vna_flags = 0; 3233 vernaux->vna_other = vna.verneedIndex; 3234 vernaux->vna_name = vna.nameStrTab; 3235 vernaux->vna_next = sizeof(Elf_Vernaux); 3236 ++vernaux; 3237 } 3238 3239 vernaux[-1].vna_next = 0; 3240 } 3241 verneed[-1].vn_next = 0; 3242 } 3243 3244 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3245 return verneeds.size() * sizeof(Elf_Verneed) + 3246 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3247 } 3248 3249 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3250 return isLive() && SharedFile::vernauxNum != 0; 3251 } 3252 3253 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3254 ms->parent = this; 3255 sections.push_back(ms); 3256 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3257 alignment = std::max(alignment, ms->alignment); 3258 } 3259 3260 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3261 uint64_t flags, uint32_t alignment) 3262 : MergeSyntheticSection(name, type, flags, alignment), 3263 builder(StringTableBuilder::RAW, alignment) {} 3264 3265 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3266 3267 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3268 3269 void MergeTailSection::finalizeContents() { 3270 // Add all string pieces to the string table builder to create section 3271 // contents. 3272 for (MergeInputSection *sec : sections) 3273 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3274 if (sec->pieces[i].live) 3275 builder.add(sec->getData(i)); 3276 3277 // Fix the string table content. After this, the contents will never change. 3278 builder.finalize(); 3279 3280 // finalize() fixed tail-optimized strings, so we can now get 3281 // offsets of strings. Get an offset for each string and save it 3282 // to a corresponding SectionPiece for easy access. 3283 for (MergeInputSection *sec : sections) 3284 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3285 if (sec->pieces[i].live) 3286 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3287 } 3288 3289 void MergeNoTailSection::writeTo(uint8_t *buf) { 3290 parallelForEachN(0, numShards, 3291 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); 3292 } 3293 3294 // This function is very hot (i.e. it can take several seconds to finish) 3295 // because sometimes the number of inputs is in an order of magnitude of 3296 // millions. So, we use multi-threading. 3297 // 3298 // For any strings S and T, we know S is not mergeable with T if S's hash 3299 // value is different from T's. If that's the case, we can safely put S and 3300 // T into different string builders without worrying about merge misses. 3301 // We do it in parallel. 3302 void MergeNoTailSection::finalizeContents() { 3303 // Initializes string table builders. 3304 for (size_t i = 0; i < numShards; ++i) 3305 shards.emplace_back(StringTableBuilder::RAW, alignment); 3306 3307 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3308 // operations in the following tight loop. 3309 size_t concurrency = PowerOf2Floor( 3310 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 3311 .compute_thread_count(), 3312 numShards)); 3313 3314 // Add section pieces to the builders. 3315 parallelForEachN(0, concurrency, [&](size_t threadId) { 3316 for (MergeInputSection *sec : sections) { 3317 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3318 if (!sec->pieces[i].live) 3319 continue; 3320 size_t shardId = getShardId(sec->pieces[i].hash); 3321 if ((shardId & (concurrency - 1)) == threadId) 3322 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3323 } 3324 } 3325 }); 3326 3327 // Compute an in-section offset for each shard. 3328 size_t off = 0; 3329 for (size_t i = 0; i < numShards; ++i) { 3330 shards[i].finalizeInOrder(); 3331 if (shards[i].getSize() > 0) 3332 off = alignTo(off, alignment); 3333 shardOffsets[i] = off; 3334 off += shards[i].getSize(); 3335 } 3336 size = off; 3337 3338 // So far, section pieces have offsets from beginning of shards, but 3339 // we want offsets from beginning of the whole section. Fix them. 3340 parallelForEach(sections, [&](MergeInputSection *sec) { 3341 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3342 if (sec->pieces[i].live) 3343 sec->pieces[i].outputOff += 3344 shardOffsets[getShardId(sec->pieces[i].hash)]; 3345 }); 3346 } 3347 3348 template <class ELFT> void elf::splitSections() { 3349 llvm::TimeTraceScope timeScope("Split sections"); 3350 // splitIntoPieces needs to be called on each MergeInputSection 3351 // before calling finalizeContents(). 3352 parallelForEach(objectFiles, [](ELFFileBase *file) { 3353 for (InputSectionBase *sec : file->getSections()) { 3354 if (!sec) 3355 continue; 3356 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3357 s->splitIntoPieces(); 3358 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3359 eh->split<ELFT>(); 3360 } 3361 }); 3362 } 3363 3364 MipsRldMapSection::MipsRldMapSection() 3365 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3366 ".rld_map") {} 3367 3368 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3369 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3370 config->wordsize, ".ARM.exidx") {} 3371 3372 static InputSection *findExidxSection(InputSection *isec) { 3373 for (InputSection *d : isec->dependentSections) 3374 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3375 return d; 3376 return nullptr; 3377 } 3378 3379 static bool isValidExidxSectionDep(InputSection *isec) { 3380 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3381 isec->getSize() > 0; 3382 } 3383 3384 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3385 if (isec->type == SHT_ARM_EXIDX) { 3386 if (InputSection *dep = isec->getLinkOrderDep()) 3387 if (isValidExidxSectionDep(dep)) { 3388 exidxSections.push_back(isec); 3389 // Every exidxSection is 8 bytes, we need an estimate of 3390 // size before assignAddresses can be called. Final size 3391 // will only be known after finalize is called. 3392 size += 8; 3393 } 3394 return true; 3395 } 3396 3397 if (isValidExidxSectionDep(isec)) { 3398 executableSections.push_back(isec); 3399 return false; 3400 } 3401 3402 // FIXME: we do not output a relocation section when --emit-relocs is used 3403 // as we do not have relocation sections for linker generated table entries 3404 // and we would have to erase at a late stage relocations from merged entries. 3405 // Given that exception tables are already position independent and a binary 3406 // analyzer could derive the relocations we choose to erase the relocations. 3407 if (config->emitRelocs && isec->type == SHT_REL) 3408 if (InputSectionBase *ex = isec->getRelocatedSection()) 3409 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3410 return true; 3411 3412 return false; 3413 } 3414 3415 // References to .ARM.Extab Sections have bit 31 clear and are not the 3416 // special EXIDX_CANTUNWIND bit-pattern. 3417 static bool isExtabRef(uint32_t unwind) { 3418 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3419 } 3420 3421 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3422 // section Prev, where Cur follows Prev in the table. This can be done if the 3423 // unwinding instructions in Cur are identical to Prev. Linker generated 3424 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3425 // InputSection. 3426 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3427 3428 struct ExidxEntry { 3429 ulittle32_t fn; 3430 ulittle32_t unwind; 3431 }; 3432 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3433 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3434 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3435 if (prev) 3436 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3437 if (isExtabRef(prevEntry.unwind)) 3438 return false; 3439 3440 // We consider the unwind instructions of an .ARM.exidx table entry 3441 // a duplicate if the previous unwind instructions if: 3442 // - Both are the special EXIDX_CANTUNWIND. 3443 // - Both are the same inline unwind instructions. 3444 // We do not attempt to follow and check links into .ARM.extab tables as 3445 // consecutive identical entries are rare and the effort to check that they 3446 // are identical is high. 3447 3448 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3449 if (cur == nullptr) 3450 return prevEntry.unwind == 1; 3451 3452 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3453 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3454 return false; 3455 3456 // All table entries in this .ARM.exidx Section can be merged into the 3457 // previous Section. 3458 return true; 3459 } 3460 3461 // The .ARM.exidx table must be sorted in ascending order of the address of the 3462 // functions the table describes. Optionally duplicate adjacent table entries 3463 // can be removed. At the end of the function the executableSections must be 3464 // sorted in ascending order of address, Sentinel is set to the InputSection 3465 // with the highest address and any InputSections that have mergeable 3466 // .ARM.exidx table entries are removed from it. 3467 void ARMExidxSyntheticSection::finalizeContents() { 3468 // The executableSections and exidxSections that we use to derive the final 3469 // contents of this SyntheticSection are populated before 3470 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3471 // ICF may remove executable InputSections and their dependent .ARM.exidx 3472 // section that we recorded earlier. 3473 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3474 llvm::erase_if(exidxSections, isDiscarded); 3475 // We need to remove discarded InputSections and InputSections without 3476 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3477 // of range. 3478 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3479 if (!isec->isLive()) 3480 return true; 3481 if (findExidxSection(isec)) 3482 return false; 3483 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3484 return off != llvm::SignExtend64(off, 31); 3485 }; 3486 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3487 3488 // Sort the executable sections that may or may not have associated 3489 // .ARM.exidx sections by order of ascending address. This requires the 3490 // relative positions of InputSections and OutputSections to be known. 3491 auto compareByFilePosition = [](const InputSection *a, 3492 const InputSection *b) { 3493 OutputSection *aOut = a->getParent(); 3494 OutputSection *bOut = b->getParent(); 3495 3496 if (aOut != bOut) 3497 return aOut->addr < bOut->addr; 3498 return a->outSecOff < b->outSecOff; 3499 }; 3500 llvm::stable_sort(executableSections, compareByFilePosition); 3501 sentinel = executableSections.back(); 3502 // Optionally merge adjacent duplicate entries. 3503 if (config->mergeArmExidx) { 3504 SmallVector<InputSection *, 0> selectedSections; 3505 selectedSections.reserve(executableSections.size()); 3506 selectedSections.push_back(executableSections[0]); 3507 size_t prev = 0; 3508 for (size_t i = 1; i < executableSections.size(); ++i) { 3509 InputSection *ex1 = findExidxSection(executableSections[prev]); 3510 InputSection *ex2 = findExidxSection(executableSections[i]); 3511 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3512 selectedSections.push_back(executableSections[i]); 3513 prev = i; 3514 } 3515 } 3516 executableSections = std::move(selectedSections); 3517 } 3518 3519 size_t offset = 0; 3520 size = 0; 3521 for (InputSection *isec : executableSections) { 3522 if (InputSection *d = findExidxSection(isec)) { 3523 d->outSecOff = offset; 3524 d->parent = getParent(); 3525 offset += d->getSize(); 3526 } else { 3527 offset += 8; 3528 } 3529 } 3530 // Size includes Sentinel. 3531 size = offset + 8; 3532 } 3533 3534 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3535 return executableSections.front(); 3536 } 3537 3538 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3539 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3540 // We write the .ARM.exidx section contents and apply its relocations. 3541 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3542 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3543 // start of the InputSection as the purpose of the linker generated 3544 // section is to terminate the address range of the previous entry. 3545 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3546 // the table to terminate the address range of the final entry. 3547 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3548 3549 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3550 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3551 3552 uint64_t offset = 0; 3553 for (InputSection *isec : executableSections) { 3554 assert(isec->getParent() != nullptr); 3555 if (InputSection *d = findExidxSection(isec)) { 3556 memcpy(buf + offset, d->rawData.data(), d->rawData.size()); 3557 d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize()); 3558 offset += d->getSize(); 3559 } else { 3560 // A Linker generated CANTUNWIND section. 3561 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3562 uint64_t s = isec->getVA(); 3563 uint64_t p = getVA() + offset; 3564 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3565 offset += 8; 3566 } 3567 } 3568 // Write Sentinel. 3569 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3570 uint64_t s = sentinel->getVA(sentinel->getSize()); 3571 uint64_t p = getVA() + offset; 3572 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3573 assert(size == offset + 8); 3574 } 3575 3576 bool ARMExidxSyntheticSection::isNeeded() const { 3577 return llvm::any_of(exidxSections, 3578 [](InputSection *isec) { return isec->isLive(); }); 3579 } 3580 3581 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3582 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 3583 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 3584 this->parent = os; 3585 this->outSecOff = off; 3586 } 3587 3588 size_t ThunkSection::getSize() const { 3589 if (roundUpSizeForErrata) 3590 return alignTo(size, 4096); 3591 return size; 3592 } 3593 3594 void ThunkSection::addThunk(Thunk *t) { 3595 thunks.push_back(t); 3596 t->addSymbols(*this); 3597 } 3598 3599 void ThunkSection::writeTo(uint8_t *buf) { 3600 for (Thunk *t : thunks) 3601 t->writeTo(buf + t->offset); 3602 } 3603 3604 InputSection *ThunkSection::getTargetInputSection() const { 3605 if (thunks.empty()) 3606 return nullptr; 3607 const Thunk *t = thunks.front(); 3608 return t->getTargetInputSection(); 3609 } 3610 3611 bool ThunkSection::assignOffsets() { 3612 uint64_t off = 0; 3613 for (Thunk *t : thunks) { 3614 off = alignTo(off, t->alignment); 3615 t->setOffset(off); 3616 uint32_t size = t->size(); 3617 t->getThunkTargetSym()->size = size; 3618 off += size; 3619 } 3620 bool changed = off != size; 3621 size = off; 3622 return changed; 3623 } 3624 3625 PPC32Got2Section::PPC32Got2Section() 3626 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3627 3628 bool PPC32Got2Section::isNeeded() const { 3629 // See the comment below. This is not needed if there is no other 3630 // InputSection. 3631 for (SectionCommand *cmd : getParent()->commands) 3632 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 3633 for (InputSection *isec : isd->sections) 3634 if (isec != this) 3635 return true; 3636 return false; 3637 } 3638 3639 void PPC32Got2Section::finalizeContents() { 3640 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3641 // .got2 . This function computes outSecOff of each .got2 to be used in 3642 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3643 // to collect input sections named ".got2". 3644 for (SectionCommand *cmd : getParent()->commands) 3645 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 3646 for (InputSection *isec : isd->sections) { 3647 // isec->file may be nullptr for MergeSyntheticSection. 3648 if (isec != this && isec->file) 3649 isec->file->ppc32Got2 = isec; 3650 } 3651 } 3652 } 3653 3654 // If linking position-dependent code then the table will store the addresses 3655 // directly in the binary so the section has type SHT_PROGBITS. If linking 3656 // position-independent code the section has type SHT_NOBITS since it will be 3657 // allocated and filled in by the dynamic linker. 3658 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3659 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3660 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3661 ".branch_lt") {} 3662 3663 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3664 int64_t addend) { 3665 return getVA() + entry_index.find({sym, addend})->second * 8; 3666 } 3667 3668 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3669 int64_t addend) { 3670 auto res = 3671 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3672 if (!res.second) 3673 return None; 3674 entries.emplace_back(sym, addend); 3675 return res.first->second; 3676 } 3677 3678 size_t PPC64LongBranchTargetSection::getSize() const { 3679 return entries.size() * 8; 3680 } 3681 3682 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3683 // If linking non-pic we have the final addresses of the targets and they get 3684 // written to the table directly. For pic the dynamic linker will allocate 3685 // the section and fill it it. 3686 if (config->isPic) 3687 return; 3688 3689 for (auto entry : entries) { 3690 const Symbol *sym = entry.first; 3691 int64_t addend = entry.second; 3692 assert(sym->getVA()); 3693 // Need calls to branch to the local entry-point since a long-branch 3694 // must be a local-call. 3695 write64(buf, sym->getVA(addend) + 3696 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3697 buf += 8; 3698 } 3699 } 3700 3701 bool PPC64LongBranchTargetSection::isNeeded() const { 3702 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3703 // is too early to determine if this section will be empty or not. We need 3704 // Finalized to keep the section alive until after thunk creation. Finalized 3705 // only gets set to true once `finalizeSections()` is called after thunk 3706 // creation. Because of this, if we don't create any long-branch thunks we end 3707 // up with an empty .branch_lt section in the binary. 3708 return !finalized || !entries.empty(); 3709 } 3710 3711 static uint8_t getAbiVersion() { 3712 // MIPS non-PIC executable gets ABI version 1. 3713 if (config->emachine == EM_MIPS) { 3714 if (!config->isPic && !config->relocatable && 3715 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3716 return 1; 3717 return 0; 3718 } 3719 3720 if (config->emachine == EM_AMDGPU && !objectFiles.empty()) { 3721 uint8_t ver = objectFiles[0]->abiVersion; 3722 for (InputFile *file : makeArrayRef(objectFiles).slice(1)) 3723 if (file->abiVersion != ver) 3724 error("incompatible ABI version: " + toString(file)); 3725 return ver; 3726 } 3727 3728 return 0; 3729 } 3730 3731 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3732 memcpy(buf, "\177ELF", 4); 3733 3734 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3735 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3736 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3737 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3738 eHdr->e_ident[EI_OSABI] = config->osabi; 3739 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3740 eHdr->e_machine = config->emachine; 3741 eHdr->e_version = EV_CURRENT; 3742 eHdr->e_flags = config->eflags; 3743 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3744 eHdr->e_phnum = part.phdrs.size(); 3745 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3746 3747 if (!config->relocatable) { 3748 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3749 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3750 } 3751 } 3752 3753 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3754 // Write the program header table. 3755 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3756 for (PhdrEntry *p : part.phdrs) { 3757 hBuf->p_type = p->p_type; 3758 hBuf->p_flags = p->p_flags; 3759 hBuf->p_offset = p->p_offset; 3760 hBuf->p_vaddr = p->p_vaddr; 3761 hBuf->p_paddr = p->p_paddr; 3762 hBuf->p_filesz = p->p_filesz; 3763 hBuf->p_memsz = p->p_memsz; 3764 hBuf->p_align = p->p_align; 3765 ++hBuf; 3766 } 3767 } 3768 3769 template <typename ELFT> 3770 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3771 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3772 3773 template <typename ELFT> 3774 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3775 return sizeof(typename ELFT::Ehdr); 3776 } 3777 3778 template <typename ELFT> 3779 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3780 writeEhdr<ELFT>(buf, getPartition()); 3781 3782 // Loadable partitions are always ET_DYN. 3783 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3784 eHdr->e_type = ET_DYN; 3785 } 3786 3787 template <typename ELFT> 3788 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3789 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3790 3791 template <typename ELFT> 3792 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3793 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3794 } 3795 3796 template <typename ELFT> 3797 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3798 writePhdrs<ELFT>(buf, getPartition()); 3799 } 3800 3801 PartitionIndexSection::PartitionIndexSection() 3802 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3803 3804 size_t PartitionIndexSection::getSize() const { 3805 return 12 * (partitions.size() - 1); 3806 } 3807 3808 void PartitionIndexSection::finalizeContents() { 3809 for (size_t i = 1; i != partitions.size(); ++i) 3810 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3811 } 3812 3813 void PartitionIndexSection::writeTo(uint8_t *buf) { 3814 uint64_t va = getVA(); 3815 for (size_t i = 1; i != partitions.size(); ++i) { 3816 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3817 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3818 3819 SyntheticSection *next = i == partitions.size() - 1 3820 ? in.partEnd.get() 3821 : partitions[i + 1].elfHeader.get(); 3822 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3823 3824 va += 12; 3825 buf += 12; 3826 } 3827 } 3828 3829 void InStruct::reset() { 3830 attributes.reset(); 3831 bss.reset(); 3832 bssRelRo.reset(); 3833 got.reset(); 3834 gotPlt.reset(); 3835 igotPlt.reset(); 3836 ppc64LongBranchTarget.reset(); 3837 mipsAbiFlags.reset(); 3838 mipsGot.reset(); 3839 mipsOptions.reset(); 3840 mipsReginfo.reset(); 3841 mipsRldMap.reset(); 3842 partEnd.reset(); 3843 partIndex.reset(); 3844 plt.reset(); 3845 iplt.reset(); 3846 ppc32Got2.reset(); 3847 ibtPlt.reset(); 3848 relaPlt.reset(); 3849 relaIplt.reset(); 3850 shStrTab.reset(); 3851 strTab.reset(); 3852 symTab.reset(); 3853 symTabShndx.reset(); 3854 } 3855 3856 constexpr char kMemtagAndroidNoteName[] = "Android"; 3857 void MemtagAndroidNote::writeTo(uint8_t *buf) { 3858 assert(sizeof(kMemtagAndroidNoteName) == 8); // ABI check for Android 11 & 12. 3859 assert((config->androidMemtagStack || config->androidMemtagHeap) && 3860 "Should only be synthesizing a note if heap || stack is enabled."); 3861 3862 write32(buf, sizeof(kMemtagAndroidNoteName)); 3863 write32(buf + 4, sizeof(uint32_t)); 3864 write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG); 3865 memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName)); 3866 buf += 12 + sizeof(kMemtagAndroidNoteName); 3867 3868 uint32_t value = 0; 3869 value |= config->androidMemtagMode; 3870 if (config->androidMemtagHeap) 3871 value |= ELF::NT_MEMTAG_HEAP; 3872 // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled 3873 // binary on Android 11 or 12 will result in a checkfail in the loader. 3874 if (config->androidMemtagStack) 3875 value |= ELF::NT_MEMTAG_STACK; 3876 write32(buf, value); // note value 3877 } 3878 3879 size_t MemtagAndroidNote::getSize() const { 3880 return sizeof(llvm::ELF::Elf64_Nhdr) + 3881 /*namesz=*/sizeof(kMemtagAndroidNoteName) + 3882 /*descsz=*/sizeof(uint32_t); 3883 } 3884 3885 InStruct elf::in; 3886 3887 std::vector<Partition> elf::partitions; 3888 Partition *elf::mainPart; 3889 3890 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3891 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3892 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3893 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3894 3895 template void elf::splitSections<ELF32LE>(); 3896 template void elf::splitSections<ELF32BE>(); 3897 template void elf::splitSections<ELF64LE>(); 3898 template void elf::splitSections<ELF64BE>(); 3899 3900 template class elf::MipsAbiFlagsSection<ELF32LE>; 3901 template class elf::MipsAbiFlagsSection<ELF32BE>; 3902 template class elf::MipsAbiFlagsSection<ELF64LE>; 3903 template class elf::MipsAbiFlagsSection<ELF64BE>; 3904 3905 template class elf::MipsOptionsSection<ELF32LE>; 3906 template class elf::MipsOptionsSection<ELF32BE>; 3907 template class elf::MipsOptionsSection<ELF64LE>; 3908 template class elf::MipsOptionsSection<ELF64BE>; 3909 3910 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 3911 function_ref<void(InputSection &)>); 3912 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 3913 function_ref<void(InputSection &)>); 3914 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 3915 function_ref<void(InputSection &)>); 3916 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 3917 function_ref<void(InputSection &)>); 3918 3919 template class elf::MipsReginfoSection<ELF32LE>; 3920 template class elf::MipsReginfoSection<ELF32BE>; 3921 template class elf::MipsReginfoSection<ELF64LE>; 3922 template class elf::MipsReginfoSection<ELF64BE>; 3923 3924 template class elf::DynamicSection<ELF32LE>; 3925 template class elf::DynamicSection<ELF32BE>; 3926 template class elf::DynamicSection<ELF64LE>; 3927 template class elf::DynamicSection<ELF64BE>; 3928 3929 template class elf::RelocationSection<ELF32LE>; 3930 template class elf::RelocationSection<ELF32BE>; 3931 template class elf::RelocationSection<ELF64LE>; 3932 template class elf::RelocationSection<ELF64BE>; 3933 3934 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3935 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3936 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3937 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3938 3939 template class elf::RelrSection<ELF32LE>; 3940 template class elf::RelrSection<ELF32BE>; 3941 template class elf::RelrSection<ELF64LE>; 3942 template class elf::RelrSection<ELF64BE>; 3943 3944 template class elf::SymbolTableSection<ELF32LE>; 3945 template class elf::SymbolTableSection<ELF32BE>; 3946 template class elf::SymbolTableSection<ELF64LE>; 3947 template class elf::SymbolTableSection<ELF64BE>; 3948 3949 template class elf::VersionNeedSection<ELF32LE>; 3950 template class elf::VersionNeedSection<ELF32BE>; 3951 template class elf::VersionNeedSection<ELF64LE>; 3952 template class elf::VersionNeedSection<ELF64BE>; 3953 3954 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3955 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3956 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3957 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3958 3959 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3960 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3961 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3962 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3963 3964 template class elf::PartitionElfHeaderSection<ELF32LE>; 3965 template class elf::PartitionElfHeaderSection<ELF32BE>; 3966 template class elf::PartitionElfHeaderSection<ELF64LE>; 3967 template class elf::PartitionElfHeaderSection<ELF64BE>; 3968 3969 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3970 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3971 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3972 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3973