1 //===- SyntheticSections.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains linker-synthesized sections. Currently,
10 // synthetic sections are created either output sections or input sections,
11 // but we are rewriting code so that all synthetic sections are created as
12 // input sections.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "SyntheticSections.h"
17 #include "Config.h"
18 #include "DWARF.h"
19 #include "EhFrame.h"
20 #include "InputFiles.h"
21 #include "LinkerScript.h"
22 #include "OutputSections.h"
23 #include "SymbolTable.h"
24 #include "Symbols.h"
25 #include "Target.h"
26 #include "Thunks.h"
27 #include "Writer.h"
28 #include "lld/Common/CommonLinkerContext.h"
29 #include "lld/Common/DWARF.h"
30 #include "lld/Common/Strings.h"
31 #include "lld/Common/Version.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SetOperations.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/LEB128.h"
40 #include "llvm/Support/Parallel.h"
41 #include "llvm/Support/TimeProfiler.h"
42 #include <cstdlib>
43
44 using namespace llvm;
45 using namespace llvm::dwarf;
46 using namespace llvm::ELF;
47 using namespace llvm::object;
48 using namespace llvm::support;
49 using namespace lld;
50 using namespace lld::elf;
51
52 using llvm::support::endian::read32le;
53 using llvm::support::endian::write32le;
54 using llvm::support::endian::write64le;
55
56 constexpr size_t MergeNoTailSection::numShards;
57
readUint(uint8_t * buf)58 static uint64_t readUint(uint8_t *buf) {
59 return config->is64 ? read64(buf) : read32(buf);
60 }
61
writeUint(uint8_t * buf,uint64_t val)62 static void writeUint(uint8_t *buf, uint64_t val) {
63 if (config->is64)
64 write64(buf, val);
65 else
66 write32(buf, val);
67 }
68
69 // Returns an LLD version string.
getVersion()70 static ArrayRef<uint8_t> getVersion() {
71 // Check LLD_VERSION first for ease of testing.
72 // You can get consistent output by using the environment variable.
73 // This is only for testing.
74 StringRef s = getenv("LLD_VERSION");
75 if (s.empty())
76 s = saver().save(Twine("Linker: ") + getLLDVersion());
77
78 // +1 to include the terminating '\0'.
79 return {(const uint8_t *)s.data(), s.size() + 1};
80 }
81
82 // Creates a .comment section containing LLD version info.
83 // With this feature, you can identify LLD-generated binaries easily
84 // by "readelf --string-dump .comment <file>".
85 // The returned object is a mergeable string section.
createCommentSection()86 MergeInputSection *elf::createCommentSection() {
87 auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
88 getVersion(), ".comment");
89 sec->splitIntoPieces();
90 return sec;
91 }
92
93 // .MIPS.abiflags section.
94 template <class ELFT>
MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)95 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
96 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
97 flags(flags) {
98 this->entsize = sizeof(Elf_Mips_ABIFlags);
99 }
100
writeTo(uint8_t * buf)101 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
102 memcpy(buf, &flags, sizeof(flags));
103 }
104
105 template <class ELFT>
create()106 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() {
107 Elf_Mips_ABIFlags flags = {};
108 bool create = false;
109
110 for (InputSectionBase *sec : inputSections) {
111 if (sec->type != SHT_MIPS_ABIFLAGS)
112 continue;
113 sec->markDead();
114 create = true;
115
116 std::string filename = toString(sec->file);
117 const size_t size = sec->rawData.size();
118 // Older version of BFD (such as the default FreeBSD linker) concatenate
119 // .MIPS.abiflags instead of merging. To allow for this case (or potential
120 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
121 if (size < sizeof(Elf_Mips_ABIFlags)) {
122 error(filename + ": invalid size of .MIPS.abiflags section: got " +
123 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
124 return nullptr;
125 }
126 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->rawData.data());
127 if (s->version != 0) {
128 error(filename + ": unexpected .MIPS.abiflags version " +
129 Twine(s->version));
130 return nullptr;
131 }
132
133 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
134 // select the highest number of ISA/Rev/Ext.
135 flags.isa_level = std::max(flags.isa_level, s->isa_level);
136 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
137 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
138 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
139 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
140 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
141 flags.ases |= s->ases;
142 flags.flags1 |= s->flags1;
143 flags.flags2 |= s->flags2;
144 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
145 };
146
147 if (create)
148 return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags);
149 return nullptr;
150 }
151
152 // .MIPS.options section.
153 template <class ELFT>
MipsOptionsSection(Elf_Mips_RegInfo reginfo)154 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
155 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
156 reginfo(reginfo) {
157 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
158 }
159
writeTo(uint8_t * buf)160 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
161 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
162 options->kind = ODK_REGINFO;
163 options->size = getSize();
164
165 if (!config->relocatable)
166 reginfo.ri_gp_value = in.mipsGot->getGp();
167 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo));
168 }
169
170 template <class ELFT>
create()171 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() {
172 // N64 ABI only.
173 if (!ELFT::Is64Bits)
174 return nullptr;
175
176 SmallVector<InputSectionBase *, 0> sections;
177 for (InputSectionBase *sec : inputSections)
178 if (sec->type == SHT_MIPS_OPTIONS)
179 sections.push_back(sec);
180
181 if (sections.empty())
182 return nullptr;
183
184 Elf_Mips_RegInfo reginfo = {};
185 for (InputSectionBase *sec : sections) {
186 sec->markDead();
187
188 std::string filename = toString(sec->file);
189 ArrayRef<uint8_t> d = sec->rawData;
190
191 while (!d.empty()) {
192 if (d.size() < sizeof(Elf_Mips_Options)) {
193 error(filename + ": invalid size of .MIPS.options section");
194 break;
195 }
196
197 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
198 if (opt->kind == ODK_REGINFO) {
199 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
200 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
201 break;
202 }
203
204 if (!opt->size)
205 fatal(filename + ": zero option descriptor size");
206 d = d.slice(opt->size);
207 }
208 };
209
210 return std::make_unique<MipsOptionsSection<ELFT>>(reginfo);
211 }
212
213 // MIPS .reginfo section.
214 template <class ELFT>
MipsReginfoSection(Elf_Mips_RegInfo reginfo)215 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
216 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
217 reginfo(reginfo) {
218 this->entsize = sizeof(Elf_Mips_RegInfo);
219 }
220
writeTo(uint8_t * buf)221 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
222 if (!config->relocatable)
223 reginfo.ri_gp_value = in.mipsGot->getGp();
224 memcpy(buf, ®info, sizeof(reginfo));
225 }
226
227 template <class ELFT>
create()228 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() {
229 // Section should be alive for O32 and N32 ABIs only.
230 if (ELFT::Is64Bits)
231 return nullptr;
232
233 SmallVector<InputSectionBase *, 0> sections;
234 for (InputSectionBase *sec : inputSections)
235 if (sec->type == SHT_MIPS_REGINFO)
236 sections.push_back(sec);
237
238 if (sections.empty())
239 return nullptr;
240
241 Elf_Mips_RegInfo reginfo = {};
242 for (InputSectionBase *sec : sections) {
243 sec->markDead();
244
245 if (sec->rawData.size() != sizeof(Elf_Mips_RegInfo)) {
246 error(toString(sec->file) + ": invalid size of .reginfo section");
247 return nullptr;
248 }
249
250 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->rawData.data());
251 reginfo.ri_gprmask |= r->ri_gprmask;
252 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
253 };
254
255 return std::make_unique<MipsReginfoSection<ELFT>>(reginfo);
256 }
257
createInterpSection()258 InputSection *elf::createInterpSection() {
259 // StringSaver guarantees that the returned string ends with '\0'.
260 StringRef s = saver().save(config->dynamicLinker);
261 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
262
263 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
264 ".interp");
265 }
266
addSyntheticLocal(StringRef name,uint8_t type,uint64_t value,uint64_t size,InputSectionBase & section)267 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
268 uint64_t size, InputSectionBase §ion) {
269 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type,
270 value, size, §ion);
271 if (in.symTab)
272 in.symTab->addSymbol(s);
273 return s;
274 }
275
getHashSize()276 static size_t getHashSize() {
277 switch (config->buildId) {
278 case BuildIdKind::Fast:
279 return 8;
280 case BuildIdKind::Md5:
281 case BuildIdKind::Uuid:
282 return 16;
283 case BuildIdKind::Sha1:
284 return 20;
285 case BuildIdKind::Hexstring:
286 return config->buildIdVector.size();
287 default:
288 llvm_unreachable("unknown BuildIdKind");
289 }
290 }
291
292 // This class represents a linker-synthesized .note.gnu.property section.
293 //
294 // In x86 and AArch64, object files may contain feature flags indicating the
295 // features that they have used. The flags are stored in a .note.gnu.property
296 // section.
297 //
298 // lld reads the sections from input files and merges them by computing AND of
299 // the flags. The result is written as a new .note.gnu.property section.
300 //
301 // If the flag is zero (which indicates that the intersection of the feature
302 // sets is empty, or some input files didn't have .note.gnu.property sections),
303 // we don't create this section.
GnuPropertySection()304 GnuPropertySection::GnuPropertySection()
305 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
306 config->wordsize, ".note.gnu.property") {}
307
writeTo(uint8_t * buf)308 void GnuPropertySection::writeTo(uint8_t *buf) {
309 uint32_t featureAndType = config->emachine == EM_AARCH64
310 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
311 : GNU_PROPERTY_X86_FEATURE_1_AND;
312
313 write32(buf, 4); // Name size
314 write32(buf + 4, config->is64 ? 16 : 12); // Content size
315 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type
316 memcpy(buf + 12, "GNU", 4); // Name string
317 write32(buf + 16, featureAndType); // Feature type
318 write32(buf + 20, 4); // Feature size
319 write32(buf + 24, config->andFeatures); // Feature flags
320 if (config->is64)
321 write32(buf + 28, 0); // Padding
322 }
323
getSize() const324 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
325
BuildIdSection()326 BuildIdSection::BuildIdSection()
327 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
328 hashSize(getHashSize()) {}
329
writeTo(uint8_t * buf)330 void BuildIdSection::writeTo(uint8_t *buf) {
331 write32(buf, 4); // Name size
332 write32(buf + 4, hashSize); // Content size
333 write32(buf + 8, NT_GNU_BUILD_ID); // Type
334 memcpy(buf + 12, "GNU", 4); // Name string
335 hashBuf = buf + 16;
336 }
337
writeBuildId(ArrayRef<uint8_t> buf)338 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
339 assert(buf.size() == hashSize);
340 memcpy(hashBuf, buf.data(), hashSize);
341 }
342
BssSection(StringRef name,uint64_t size,uint32_t alignment)343 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
344 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
345 this->bss = true;
346 this->size = size;
347 }
348
EhFrameSection()349 EhFrameSection::EhFrameSection()
350 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
351
352 // Search for an existing CIE record or create a new one.
353 // CIE records from input object files are uniquified by their contents
354 // and where their relocations point to.
355 template <class ELFT, class RelTy>
addCie(EhSectionPiece & cie,ArrayRef<RelTy> rels)356 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
357 Symbol *personality = nullptr;
358 unsigned firstRelI = cie.firstRelocation;
359 if (firstRelI != (unsigned)-1)
360 personality =
361 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
362
363 // Search for an existing CIE by CIE contents/relocation target pair.
364 CieRecord *&rec = cieMap[{cie.data(), personality}];
365
366 // If not found, create a new one.
367 if (!rec) {
368 rec = make<CieRecord>();
369 rec->cie = &cie;
370 cieRecords.push_back(rec);
371 }
372 return rec;
373 }
374
375 // There is one FDE per function. Returns a non-null pointer to the function
376 // symbol if the given FDE points to a live function.
377 template <class ELFT, class RelTy>
isFdeLive(EhSectionPiece & fde,ArrayRef<RelTy> rels)378 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
379 auto *sec = cast<EhInputSection>(fde.sec);
380 unsigned firstRelI = fde.firstRelocation;
381
382 // An FDE should point to some function because FDEs are to describe
383 // functions. That's however not always the case due to an issue of
384 // ld.gold with -r. ld.gold may discard only functions and leave their
385 // corresponding FDEs, which results in creating bad .eh_frame sections.
386 // To deal with that, we ignore such FDEs.
387 if (firstRelI == (unsigned)-1)
388 return nullptr;
389
390 const RelTy &rel = rels[firstRelI];
391 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
392
393 // FDEs for garbage-collected or merged-by-ICF sections, or sections in
394 // another partition, are dead.
395 if (auto *d = dyn_cast<Defined>(&b))
396 if (!d->folded && d->section && d->section->partition == partition)
397 return d;
398 return nullptr;
399 }
400
401 // .eh_frame is a sequence of CIE or FDE records. In general, there
402 // is one CIE record per input object file which is followed by
403 // a list of FDEs. This function searches an existing CIE or create a new
404 // one and associates FDEs to the CIE.
405 template <class ELFT, class RelTy>
addRecords(EhInputSection * sec,ArrayRef<RelTy> rels)406 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
407 offsetToCie.clear();
408 for (EhSectionPiece &piece : sec->pieces) {
409 // The empty record is the end marker.
410 if (piece.size == 4)
411 return;
412
413 size_t offset = piece.inputOff;
414 const uint32_t id =
415 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4);
416 if (id == 0) {
417 offsetToCie[offset] = addCie<ELFT>(piece, rels);
418 continue;
419 }
420
421 uint32_t cieOffset = offset + 4 - id;
422 CieRecord *rec = offsetToCie[cieOffset];
423 if (!rec)
424 fatal(toString(sec) + ": invalid CIE reference");
425
426 if (!isFdeLive<ELFT>(piece, rels))
427 continue;
428 rec->fdes.push_back(&piece);
429 numFdes++;
430 }
431 }
432
433 template <class ELFT>
addSectionAux(EhInputSection * sec)434 void EhFrameSection::addSectionAux(EhInputSection *sec) {
435 if (!sec->isLive())
436 return;
437 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
438 if (rels.areRelocsRel())
439 addRecords<ELFT>(sec, rels.rels);
440 else
441 addRecords<ELFT>(sec, rels.relas);
442 }
443
addSection(EhInputSection * sec)444 void EhFrameSection::addSection(EhInputSection *sec) {
445 sec->parent = this;
446
447 alignment = std::max(alignment, sec->alignment);
448 sections.push_back(sec);
449
450 for (auto *ds : sec->dependentSections)
451 dependentSections.push_back(ds);
452 }
453
454 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to
455 // EhFrameSection::addRecords().
456 template <class ELFT, class RelTy>
iterateFDEWithLSDAAux(EhInputSection & sec,ArrayRef<RelTy> rels,DenseSet<size_t> & ciesWithLSDA,llvm::function_ref<void (InputSection &)> fn)457 void EhFrameSection::iterateFDEWithLSDAAux(
458 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
459 llvm::function_ref<void(InputSection &)> fn) {
460 for (EhSectionPiece &piece : sec.pieces) {
461 // Skip ZERO terminator.
462 if (piece.size == 4)
463 continue;
464
465 size_t offset = piece.inputOff;
466 uint32_t id =
467 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4);
468 if (id == 0) {
469 if (hasLSDA(piece))
470 ciesWithLSDA.insert(offset);
471 continue;
472 }
473 uint32_t cieOffset = offset + 4 - id;
474 if (ciesWithLSDA.count(cieOffset) == 0)
475 continue;
476
477 // The CIE has a LSDA argument. Call fn with d's section.
478 if (Defined *d = isFdeLive<ELFT>(piece, rels))
479 if (auto *s = dyn_cast_or_null<InputSection>(d->section))
480 fn(*s);
481 }
482 }
483
484 template <class ELFT>
iterateFDEWithLSDA(llvm::function_ref<void (InputSection &)> fn)485 void EhFrameSection::iterateFDEWithLSDA(
486 llvm::function_ref<void(InputSection &)> fn) {
487 DenseSet<size_t> ciesWithLSDA;
488 for (EhInputSection *sec : sections) {
489 ciesWithLSDA.clear();
490 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
491 if (rels.areRelocsRel())
492 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
493 else
494 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
495 }
496 }
497
writeCieFde(uint8_t * buf,ArrayRef<uint8_t> d)498 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
499 memcpy(buf, d.data(), d.size());
500
501 size_t aligned = alignToPowerOf2(d.size(), config->wordsize);
502 assert(std::all_of(buf + d.size(), buf + aligned,
503 [](uint8_t c) { return c == 0; }));
504
505 // Fix the size field. -4 since size does not include the size field itself.
506 write32(buf, aligned - 4);
507 }
508
finalizeContents()509 void EhFrameSection::finalizeContents() {
510 assert(!this->size); // Not finalized.
511
512 switch (config->ekind) {
513 case ELFNoneKind:
514 llvm_unreachable("invalid ekind");
515 case ELF32LEKind:
516 for (EhInputSection *sec : sections)
517 addSectionAux<ELF32LE>(sec);
518 break;
519 case ELF32BEKind:
520 for (EhInputSection *sec : sections)
521 addSectionAux<ELF32BE>(sec);
522 break;
523 case ELF64LEKind:
524 for (EhInputSection *sec : sections)
525 addSectionAux<ELF64LE>(sec);
526 break;
527 case ELF64BEKind:
528 for (EhInputSection *sec : sections)
529 addSectionAux<ELF64BE>(sec);
530 break;
531 }
532
533 size_t off = 0;
534 for (CieRecord *rec : cieRecords) {
535 rec->cie->outputOff = off;
536 off += alignToPowerOf2(rec->cie->size, config->wordsize);
537
538 for (EhSectionPiece *fde : rec->fdes) {
539 fde->outputOff = off;
540 off += alignToPowerOf2(fde->size, config->wordsize);
541 }
542 }
543
544 // The LSB standard does not allow a .eh_frame section with zero
545 // Call Frame Information records. glibc unwind-dw2-fde.c
546 // classify_object_over_fdes expects there is a CIE record length 0 as a
547 // terminator. Thus we add one unconditionally.
548 off += 4;
549
550 this->size = off;
551 }
552
553 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
554 // to get an FDE from an address to which FDE is applied. This function
555 // returns a list of such pairs.
getFdeData() const556 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
557 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
558 SmallVector<FdeData, 0> ret;
559
560 uint64_t va = getPartition().ehFrameHdr->getVA();
561 for (CieRecord *rec : cieRecords) {
562 uint8_t enc = getFdeEncoding(rec->cie);
563 for (EhSectionPiece *fde : rec->fdes) {
564 uint64_t pc = getFdePc(buf, fde->outputOff, enc);
565 uint64_t fdeVA = getParent()->addr + fde->outputOff;
566 if (!isInt<32>(pc - va))
567 fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
568 Twine::utohexstr(pc - va));
569 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
570 }
571 }
572
573 // Sort the FDE list by their PC and uniqueify. Usually there is only
574 // one FDE for a PC (i.e. function), but if ICF merges two functions
575 // into one, there can be more than one FDEs pointing to the address.
576 auto less = [](const FdeData &a, const FdeData &b) {
577 return a.pcRel < b.pcRel;
578 };
579 llvm::stable_sort(ret, less);
580 auto eq = [](const FdeData &a, const FdeData &b) {
581 return a.pcRel == b.pcRel;
582 };
583 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
584
585 return ret;
586 }
587
readFdeAddr(uint8_t * buf,int size)588 static uint64_t readFdeAddr(uint8_t *buf, int size) {
589 switch (size) {
590 case DW_EH_PE_udata2:
591 return read16(buf);
592 case DW_EH_PE_sdata2:
593 return (int16_t)read16(buf);
594 case DW_EH_PE_udata4:
595 return read32(buf);
596 case DW_EH_PE_sdata4:
597 return (int32_t)read32(buf);
598 case DW_EH_PE_udata8:
599 case DW_EH_PE_sdata8:
600 return read64(buf);
601 case DW_EH_PE_absptr:
602 return readUint(buf);
603 }
604 fatal("unknown FDE size encoding");
605 }
606
607 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
608 // We need it to create .eh_frame_hdr section.
getFdePc(uint8_t * buf,size_t fdeOff,uint8_t enc) const609 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
610 uint8_t enc) const {
611 // The starting address to which this FDE applies is
612 // stored at FDE + 8 byte.
613 size_t off = fdeOff + 8;
614 uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
615 if ((enc & 0x70) == DW_EH_PE_absptr)
616 return addr;
617 if ((enc & 0x70) == DW_EH_PE_pcrel)
618 return addr + getParent()->addr + off;
619 fatal("unknown FDE size relative encoding");
620 }
621
writeTo(uint8_t * buf)622 void EhFrameSection::writeTo(uint8_t *buf) {
623 // Write CIE and FDE records.
624 for (CieRecord *rec : cieRecords) {
625 size_t cieOffset = rec->cie->outputOff;
626 writeCieFde(buf + cieOffset, rec->cie->data());
627
628 for (EhSectionPiece *fde : rec->fdes) {
629 size_t off = fde->outputOff;
630 writeCieFde(buf + off, fde->data());
631
632 // FDE's second word should have the offset to an associated CIE.
633 // Write it.
634 write32(buf + off + 4, off + 4 - cieOffset);
635 }
636 }
637
638 // Apply relocations. .eh_frame section contents are not contiguous
639 // in the output buffer, but relocateAlloc() still works because
640 // getOffset() takes care of discontiguous section pieces.
641 for (EhInputSection *s : sections)
642 s->relocateAlloc(buf, nullptr);
643
644 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
645 getPartition().ehFrameHdr->write();
646 }
647
GotSection()648 GotSection::GotSection()
649 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
650 target->gotEntrySize, ".got") {
651 numEntries = target->gotHeaderEntriesNum;
652 }
653
addEntry(Symbol & sym)654 void GotSection::addEntry(Symbol &sym) {
655 assert(sym.auxIdx == symAux.size() - 1);
656 symAux.back().gotIdx = numEntries++;
657 }
658
addTlsDescEntry(Symbol & sym)659 bool GotSection::addTlsDescEntry(Symbol &sym) {
660 assert(sym.auxIdx == symAux.size() - 1);
661 symAux.back().tlsDescIdx = numEntries;
662 numEntries += 2;
663 return true;
664 }
665
addDynTlsEntry(Symbol & sym)666 bool GotSection::addDynTlsEntry(Symbol &sym) {
667 assert(sym.auxIdx == symAux.size() - 1);
668 symAux.back().tlsGdIdx = numEntries;
669 // Global Dynamic TLS entries take two GOT slots.
670 numEntries += 2;
671 return true;
672 }
673
674 // Reserves TLS entries for a TLS module ID and a TLS block offset.
675 // In total it takes two GOT slots.
addTlsIndex()676 bool GotSection::addTlsIndex() {
677 if (tlsIndexOff != uint32_t(-1))
678 return false;
679 tlsIndexOff = numEntries * config->wordsize;
680 numEntries += 2;
681 return true;
682 }
683
getTlsDescOffset(const Symbol & sym) const684 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
685 return sym.getTlsDescIdx() * config->wordsize;
686 }
687
getTlsDescAddr(const Symbol & sym) const688 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
689 return getVA() + getTlsDescOffset(sym);
690 }
691
getGlobalDynAddr(const Symbol & b) const692 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
693 return this->getVA() + b.getTlsGdIdx() * config->wordsize;
694 }
695
getGlobalDynOffset(const Symbol & b) const696 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
697 return b.getTlsGdIdx() * config->wordsize;
698 }
699
finalizeContents()700 void GotSection::finalizeContents() {
701 if (config->emachine == EM_PPC64 &&
702 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable)
703 size = 0;
704 else
705 size = numEntries * config->wordsize;
706 }
707
isNeeded() const708 bool GotSection::isNeeded() const {
709 // Needed if the GOT symbol is used or the number of entries is more than just
710 // the header. A GOT with just the header may not be needed.
711 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum;
712 }
713
writeTo(uint8_t * buf)714 void GotSection::writeTo(uint8_t *buf) {
715 // On PPC64 .got may be needed but empty. Skip the write.
716 if (size == 0)
717 return;
718 target->writeGotHeader(buf);
719 relocateAlloc(buf, buf + size);
720 }
721
getMipsPageAddr(uint64_t addr)722 static uint64_t getMipsPageAddr(uint64_t addr) {
723 return (addr + 0x8000) & ~0xffff;
724 }
725
getMipsPageCount(uint64_t size)726 static uint64_t getMipsPageCount(uint64_t size) {
727 return (size + 0xfffe) / 0xffff + 1;
728 }
729
MipsGotSection()730 MipsGotSection::MipsGotSection()
731 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
732 ".got") {}
733
addEntry(InputFile & file,Symbol & sym,int64_t addend,RelExpr expr)734 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
735 RelExpr expr) {
736 FileGot &g = getGot(file);
737 if (expr == R_MIPS_GOT_LOCAL_PAGE) {
738 if (const OutputSection *os = sym.getOutputSection())
739 g.pagesMap.insert({os, {}});
740 else
741 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
742 } else if (sym.isTls())
743 g.tls.insert({&sym, 0});
744 else if (sym.isPreemptible && expr == R_ABS)
745 g.relocs.insert({&sym, 0});
746 else if (sym.isPreemptible)
747 g.global.insert({&sym, 0});
748 else if (expr == R_MIPS_GOT_OFF32)
749 g.local32.insert({{&sym, addend}, 0});
750 else
751 g.local16.insert({{&sym, addend}, 0});
752 }
753
addDynTlsEntry(InputFile & file,Symbol & sym)754 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
755 getGot(file).dynTlsSymbols.insert({&sym, 0});
756 }
757
addTlsIndex(InputFile & file)758 void MipsGotSection::addTlsIndex(InputFile &file) {
759 getGot(file).dynTlsSymbols.insert({nullptr, 0});
760 }
761
getEntriesNum() const762 size_t MipsGotSection::FileGot::getEntriesNum() const {
763 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
764 tls.size() + dynTlsSymbols.size() * 2;
765 }
766
getPageEntriesNum() const767 size_t MipsGotSection::FileGot::getPageEntriesNum() const {
768 size_t num = 0;
769 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
770 num += p.second.count;
771 return num;
772 }
773
getIndexedEntriesNum() const774 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
775 size_t count = getPageEntriesNum() + local16.size() + global.size();
776 // If there are relocation-only entries in the GOT, TLS entries
777 // are allocated after them. TLS entries should be addressable
778 // by 16-bit index so count both reloc-only and TLS entries.
779 if (!tls.empty() || !dynTlsSymbols.empty())
780 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
781 return count;
782 }
783
getGot(InputFile & f)784 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
785 if (f.mipsGotIndex == uint32_t(-1)) {
786 gots.emplace_back();
787 gots.back().file = &f;
788 f.mipsGotIndex = gots.size() - 1;
789 }
790 return gots[f.mipsGotIndex];
791 }
792
getPageEntryOffset(const InputFile * f,const Symbol & sym,int64_t addend) const793 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
794 const Symbol &sym,
795 int64_t addend) const {
796 const FileGot &g = gots[f->mipsGotIndex];
797 uint64_t index = 0;
798 if (const OutputSection *outSec = sym.getOutputSection()) {
799 uint64_t secAddr = getMipsPageAddr(outSec->addr);
800 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
801 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
802 } else {
803 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
804 }
805 return index * config->wordsize;
806 }
807
getSymEntryOffset(const InputFile * f,const Symbol & s,int64_t addend) const808 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
809 int64_t addend) const {
810 const FileGot &g = gots[f->mipsGotIndex];
811 Symbol *sym = const_cast<Symbol *>(&s);
812 if (sym->isTls())
813 return g.tls.lookup(sym) * config->wordsize;
814 if (sym->isPreemptible)
815 return g.global.lookup(sym) * config->wordsize;
816 return g.local16.lookup({sym, addend}) * config->wordsize;
817 }
818
getTlsIndexOffset(const InputFile * f) const819 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
820 const FileGot &g = gots[f->mipsGotIndex];
821 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
822 }
823
getGlobalDynOffset(const InputFile * f,const Symbol & s) const824 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
825 const Symbol &s) const {
826 const FileGot &g = gots[f->mipsGotIndex];
827 Symbol *sym = const_cast<Symbol *>(&s);
828 return g.dynTlsSymbols.lookup(sym) * config->wordsize;
829 }
830
getFirstGlobalEntry() const831 const Symbol *MipsGotSection::getFirstGlobalEntry() const {
832 if (gots.empty())
833 return nullptr;
834 const FileGot &primGot = gots.front();
835 if (!primGot.global.empty())
836 return primGot.global.front().first;
837 if (!primGot.relocs.empty())
838 return primGot.relocs.front().first;
839 return nullptr;
840 }
841
getLocalEntriesNum() const842 unsigned MipsGotSection::getLocalEntriesNum() const {
843 if (gots.empty())
844 return headerEntriesNum;
845 return headerEntriesNum + gots.front().getPageEntriesNum() +
846 gots.front().local16.size();
847 }
848
tryMergeGots(FileGot & dst,FileGot & src,bool isPrimary)849 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
850 FileGot tmp = dst;
851 set_union(tmp.pagesMap, src.pagesMap);
852 set_union(tmp.local16, src.local16);
853 set_union(tmp.global, src.global);
854 set_union(tmp.relocs, src.relocs);
855 set_union(tmp.tls, src.tls);
856 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
857
858 size_t count = isPrimary ? headerEntriesNum : 0;
859 count += tmp.getIndexedEntriesNum();
860
861 if (count * config->wordsize > config->mipsGotSize)
862 return false;
863
864 std::swap(tmp, dst);
865 return true;
866 }
867
finalizeContents()868 void MipsGotSection::finalizeContents() { updateAllocSize(); }
869
updateAllocSize()870 bool MipsGotSection::updateAllocSize() {
871 size = headerEntriesNum * config->wordsize;
872 for (const FileGot &g : gots)
873 size += g.getEntriesNum() * config->wordsize;
874 return false;
875 }
876
build()877 void MipsGotSection::build() {
878 if (gots.empty())
879 return;
880
881 std::vector<FileGot> mergedGots(1);
882
883 // For each GOT move non-preemptible symbols from the `Global`
884 // to `Local16` list. Preemptible symbol might become non-preemptible
885 // one if, for example, it gets a related copy relocation.
886 for (FileGot &got : gots) {
887 for (auto &p: got.global)
888 if (!p.first->isPreemptible)
889 got.local16.insert({{p.first, 0}, 0});
890 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
891 return !p.first->isPreemptible;
892 });
893 }
894
895 // For each GOT remove "reloc-only" entry if there is "global"
896 // entry for the same symbol. And add local entries which indexed
897 // using 32-bit value at the end of 16-bit entries.
898 for (FileGot &got : gots) {
899 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
900 return got.global.count(p.first);
901 });
902 set_union(got.local16, got.local32);
903 got.local32.clear();
904 }
905
906 // Evaluate number of "reloc-only" entries in the resulting GOT.
907 // To do that put all unique "reloc-only" and "global" entries
908 // from all GOTs to the future primary GOT.
909 FileGot *primGot = &mergedGots.front();
910 for (FileGot &got : gots) {
911 set_union(primGot->relocs, got.global);
912 set_union(primGot->relocs, got.relocs);
913 got.relocs.clear();
914 }
915
916 // Evaluate number of "page" entries in each GOT.
917 for (FileGot &got : gots) {
918 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
919 got.pagesMap) {
920 const OutputSection *os = p.first;
921 uint64_t secSize = 0;
922 for (SectionCommand *cmd : os->commands) {
923 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
924 for (InputSection *isec : isd->sections) {
925 uint64_t off = alignToPowerOf2(secSize, isec->alignment);
926 secSize = off + isec->getSize();
927 }
928 }
929 p.second.count = getMipsPageCount(secSize);
930 }
931 }
932
933 // Merge GOTs. Try to join as much as possible GOTs but do not exceed
934 // maximum GOT size. At first, try to fill the primary GOT because
935 // the primary GOT can be accessed in the most effective way. If it
936 // is not possible, try to fill the last GOT in the list, and finally
937 // create a new GOT if both attempts failed.
938 for (FileGot &srcGot : gots) {
939 InputFile *file = srcGot.file;
940 if (tryMergeGots(mergedGots.front(), srcGot, true)) {
941 file->mipsGotIndex = 0;
942 } else {
943 // If this is the first time we failed to merge with the primary GOT,
944 // MergedGots.back() will also be the primary GOT. We must make sure not
945 // to try to merge again with isPrimary=false, as otherwise, if the
946 // inputs are just right, we could allow the primary GOT to become 1 or 2
947 // words bigger due to ignoring the header size.
948 if (mergedGots.size() == 1 ||
949 !tryMergeGots(mergedGots.back(), srcGot, false)) {
950 mergedGots.emplace_back();
951 std::swap(mergedGots.back(), srcGot);
952 }
953 file->mipsGotIndex = mergedGots.size() - 1;
954 }
955 }
956 std::swap(gots, mergedGots);
957
958 // Reduce number of "reloc-only" entries in the primary GOT
959 // by subtracting "global" entries in the primary GOT.
960 primGot = &gots.front();
961 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
962 return primGot->global.count(p.first);
963 });
964
965 // Calculate indexes for each GOT entry.
966 size_t index = headerEntriesNum;
967 for (FileGot &got : gots) {
968 got.startIndex = &got == primGot ? 0 : index;
969 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
970 got.pagesMap) {
971 // For each output section referenced by GOT page relocations calculate
972 // and save into pagesMap an upper bound of MIPS GOT entries required
973 // to store page addresses of local symbols. We assume the worst case -
974 // each 64kb page of the output section has at least one GOT relocation
975 // against it. And take in account the case when the section intersects
976 // page boundaries.
977 p.second.firstIndex = index;
978 index += p.second.count;
979 }
980 for (auto &p: got.local16)
981 p.second = index++;
982 for (auto &p: got.global)
983 p.second = index++;
984 for (auto &p: got.relocs)
985 p.second = index++;
986 for (auto &p: got.tls)
987 p.second = index++;
988 for (auto &p: got.dynTlsSymbols) {
989 p.second = index;
990 index += 2;
991 }
992 }
993
994 // Update SymbolAux::gotIdx field to use this
995 // value later in the `sortMipsSymbols` function.
996 for (auto &p : primGot->global) {
997 if (p.first->auxIdx == uint32_t(-1))
998 p.first->allocateAux();
999 symAux.back().gotIdx = p.second;
1000 }
1001 for (auto &p : primGot->relocs) {
1002 if (p.first->auxIdx == uint32_t(-1))
1003 p.first->allocateAux();
1004 symAux.back().gotIdx = p.second;
1005 }
1006
1007 // Create dynamic relocations.
1008 for (FileGot &got : gots) {
1009 // Create dynamic relocations for TLS entries.
1010 for (std::pair<Symbol *, size_t> &p : got.tls) {
1011 Symbol *s = p.first;
1012 uint64_t offset = p.second * config->wordsize;
1013 // When building a shared library we still need a dynamic relocation
1014 // for the TP-relative offset as we don't know how much other data will
1015 // be allocated before us in the static TLS block.
1016 if (s->isPreemptible || config->shared)
1017 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset,
1018 DynamicReloc::AgainstSymbolWithTargetVA,
1019 *s, 0, R_ABS});
1020 }
1021 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
1022 Symbol *s = p.first;
1023 uint64_t offset = p.second * config->wordsize;
1024 if (s == nullptr) {
1025 if (!config->shared)
1026 continue;
1027 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset});
1028 } else {
1029 // When building a shared library we still need a dynamic relocation
1030 // for the module index. Therefore only checking for
1031 // S->isPreemptible is not sufficient (this happens e.g. for
1032 // thread-locals that have been marked as local through a linker script)
1033 if (!s->isPreemptible && !config->shared)
1034 continue;
1035 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this,
1036 offset, *s);
1037 // However, we can skip writing the TLS offset reloc for non-preemptible
1038 // symbols since it is known even in shared libraries
1039 if (!s->isPreemptible)
1040 continue;
1041 offset += config->wordsize;
1042 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset,
1043 *s);
1044 }
1045 }
1046
1047 // Do not create dynamic relocations for non-TLS
1048 // entries in the primary GOT.
1049 if (&got == primGot)
1050 continue;
1051
1052 // Dynamic relocations for "global" entries.
1053 for (const std::pair<Symbol *, size_t> &p : got.global) {
1054 uint64_t offset = p.second * config->wordsize;
1055 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset,
1056 *p.first);
1057 }
1058 if (!config->isPic)
1059 continue;
1060 // Dynamic relocations for "local" entries in case of PIC.
1061 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1062 got.pagesMap) {
1063 size_t pageCount = l.second.count;
1064 for (size_t pi = 0; pi < pageCount; ++pi) {
1065 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
1066 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
1067 int64_t(pi * 0x10000)});
1068 }
1069 }
1070 for (const std::pair<GotEntry, size_t> &p : got.local16) {
1071 uint64_t offset = p.second * config->wordsize;
1072 mainPart->relaDyn->addReloc({target->relativeRel, this, offset,
1073 DynamicReloc::AddendOnlyWithTargetVA,
1074 *p.first.first, p.first.second, R_ABS});
1075 }
1076 }
1077 }
1078
isNeeded() const1079 bool MipsGotSection::isNeeded() const {
1080 // We add the .got section to the result for dynamic MIPS target because
1081 // its address and properties are mentioned in the .dynamic section.
1082 return !config->relocatable;
1083 }
1084
getGp(const InputFile * f) const1085 uint64_t MipsGotSection::getGp(const InputFile *f) const {
1086 // For files without related GOT or files refer a primary GOT
1087 // returns "common" _gp value. For secondary GOTs calculate
1088 // individual _gp values.
1089 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
1090 return ElfSym::mipsGp->getVA(0);
1091 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0;
1092 }
1093
writeTo(uint8_t * buf)1094 void MipsGotSection::writeTo(uint8_t *buf) {
1095 // Set the MSB of the second GOT slot. This is not required by any
1096 // MIPS ABI documentation, though.
1097 //
1098 // There is a comment in glibc saying that "The MSB of got[1] of a
1099 // gnu object is set to identify gnu objects," and in GNU gold it
1100 // says "the second entry will be used by some runtime loaders".
1101 // But how this field is being used is unclear.
1102 //
1103 // We are not really willing to mimic other linkers behaviors
1104 // without understanding why they do that, but because all files
1105 // generated by GNU tools have this special GOT value, and because
1106 // we've been doing this for years, it is probably a safe bet to
1107 // keep doing this for now. We really need to revisit this to see
1108 // if we had to do this.
1109 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1110 for (const FileGot &g : gots) {
1111 auto write = [&](size_t i, const Symbol *s, int64_t a) {
1112 uint64_t va = a;
1113 if (s)
1114 va = s->getVA(a);
1115 writeUint(buf + i * config->wordsize, va);
1116 };
1117 // Write 'page address' entries to the local part of the GOT.
1118 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1119 g.pagesMap) {
1120 size_t pageCount = l.second.count;
1121 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1122 for (size_t pi = 0; pi < pageCount; ++pi)
1123 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1124 }
1125 // Local, global, TLS, reloc-only entries.
1126 // If TLS entry has a corresponding dynamic relocations, leave it
1127 // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1128 // To calculate the adjustments use offsets for thread-local storage.
1129 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1130 for (const std::pair<GotEntry, size_t> &p : g.local16)
1131 write(p.second, p.first.first, p.first.second);
1132 // Write VA to the primary GOT only. For secondary GOTs that
1133 // will be done by REL32 dynamic relocations.
1134 if (&g == &gots.front())
1135 for (const std::pair<Symbol *, size_t> &p : g.global)
1136 write(p.second, p.first, 0);
1137 for (const std::pair<Symbol *, size_t> &p : g.relocs)
1138 write(p.second, p.first, 0);
1139 for (const std::pair<Symbol *, size_t> &p : g.tls)
1140 write(p.second, p.first,
1141 p.first->isPreemptible || config->shared ? 0 : -0x7000);
1142 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1143 if (p.first == nullptr && !config->shared)
1144 write(p.second, nullptr, 1);
1145 else if (p.first && !p.first->isPreemptible) {
1146 // If we are emitting a shared library with relocations we mustn't write
1147 // anything to the GOT here. When using Elf_Rel relocations the value
1148 // one will be treated as an addend and will cause crashes at runtime
1149 if (!config->shared)
1150 write(p.second, nullptr, 1);
1151 write(p.second + 1, p.first, -0x8000);
1152 }
1153 }
1154 }
1155 }
1156
1157 // On PowerPC the .plt section is used to hold the table of function addresses
1158 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1159 // section. I don't know why we have a BSS style type for the section but it is
1160 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
GotPltSection()1161 GotPltSection::GotPltSection()
1162 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1163 ".got.plt") {
1164 if (config->emachine == EM_PPC) {
1165 name = ".plt";
1166 } else if (config->emachine == EM_PPC64) {
1167 type = SHT_NOBITS;
1168 name = ".plt";
1169 }
1170 }
1171
addEntry(Symbol & sym)1172 void GotPltSection::addEntry(Symbol &sym) {
1173 assert(sym.auxIdx == symAux.size() - 1 &&
1174 symAux.back().pltIdx == entries.size());
1175 entries.push_back(&sym);
1176 }
1177
getSize() const1178 size_t GotPltSection::getSize() const {
1179 return (target->gotPltHeaderEntriesNum + entries.size()) *
1180 target->gotEntrySize;
1181 }
1182
writeTo(uint8_t * buf)1183 void GotPltSection::writeTo(uint8_t *buf) {
1184 target->writeGotPltHeader(buf);
1185 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize;
1186 for (const Symbol *b : entries) {
1187 target->writeGotPlt(buf, *b);
1188 buf += target->gotEntrySize;
1189 }
1190 }
1191
isNeeded() const1192 bool GotPltSection::isNeeded() const {
1193 // We need to emit GOTPLT even if it's empty if there's a relocation relative
1194 // to it.
1195 return !entries.empty() || hasGotPltOffRel;
1196 }
1197
getIgotPltName()1198 static StringRef getIgotPltName() {
1199 // On ARM the IgotPltSection is part of the GotSection.
1200 if (config->emachine == EM_ARM)
1201 return ".got";
1202
1203 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1204 // needs to be named the same.
1205 if (config->emachine == EM_PPC64)
1206 return ".plt";
1207
1208 return ".got.plt";
1209 }
1210
1211 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1212 // with the IgotPltSection.
IgotPltSection()1213 IgotPltSection::IgotPltSection()
1214 : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1215 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1216 target->gotEntrySize, getIgotPltName()) {}
1217
addEntry(Symbol & sym)1218 void IgotPltSection::addEntry(Symbol &sym) {
1219 assert(symAux.back().pltIdx == entries.size());
1220 entries.push_back(&sym);
1221 }
1222
getSize() const1223 size_t IgotPltSection::getSize() const {
1224 return entries.size() * target->gotEntrySize;
1225 }
1226
writeTo(uint8_t * buf)1227 void IgotPltSection::writeTo(uint8_t *buf) {
1228 for (const Symbol *b : entries) {
1229 target->writeIgotPlt(buf, *b);
1230 buf += target->gotEntrySize;
1231 }
1232 }
1233
StringTableSection(StringRef name,bool dynamic)1234 StringTableSection::StringTableSection(StringRef name, bool dynamic)
1235 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1236 dynamic(dynamic) {
1237 // ELF string tables start with a NUL byte.
1238 strings.push_back("");
1239 stringMap.try_emplace(CachedHashStringRef(""), 0);
1240 size = 1;
1241 }
1242
1243 // Adds a string to the string table. If `hashIt` is true we hash and check for
1244 // duplicates. It is optional because the name of global symbols are already
1245 // uniqued and hashing them again has a big cost for a small value: uniquing
1246 // them with some other string that happens to be the same.
addString(StringRef s,bool hashIt)1247 unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1248 if (hashIt) {
1249 auto r = stringMap.try_emplace(CachedHashStringRef(s), size);
1250 if (!r.second)
1251 return r.first->second;
1252 }
1253 if (s.empty())
1254 return 0;
1255 unsigned ret = this->size;
1256 this->size = this->size + s.size() + 1;
1257 strings.push_back(s);
1258 return ret;
1259 }
1260
writeTo(uint8_t * buf)1261 void StringTableSection::writeTo(uint8_t *buf) {
1262 for (StringRef s : strings) {
1263 memcpy(buf, s.data(), s.size());
1264 buf[s.size()] = '\0';
1265 buf += s.size() + 1;
1266 }
1267 }
1268
1269 // Returns the number of entries in .gnu.version_d: the number of
1270 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1271 // Note that we don't support vd_cnt > 1 yet.
getVerDefNum()1272 static unsigned getVerDefNum() {
1273 return namedVersionDefs().size() + 1;
1274 }
1275
1276 template <class ELFT>
DynamicSection()1277 DynamicSection<ELFT>::DynamicSection()
1278 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1279 ".dynamic") {
1280 this->entsize = ELFT::Is64Bits ? 16 : 8;
1281
1282 // .dynamic section is not writable on MIPS and on Fuchsia OS
1283 // which passes -z rodynamic.
1284 // See "Special Section" in Chapter 4 in the following document:
1285 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1286 if (config->emachine == EM_MIPS || config->zRodynamic)
1287 this->flags = SHF_ALLOC;
1288 }
1289
1290 // The output section .rela.dyn may include these synthetic sections:
1291 //
1292 // - part.relaDyn
1293 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1294 // - in.relaPlt: this is included if a linker script places .rela.plt inside
1295 // .rela.dyn
1296 //
1297 // DT_RELASZ is the total size of the included sections.
addRelaSz(const RelocationBaseSection & relaDyn)1298 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) {
1299 size_t size = relaDyn.getSize();
1300 if (in.relaIplt->getParent() == relaDyn.getParent())
1301 size += in.relaIplt->getSize();
1302 if (in.relaPlt->getParent() == relaDyn.getParent())
1303 size += in.relaPlt->getSize();
1304 return size;
1305 }
1306
1307 // A Linker script may assign the RELA relocation sections to the same
1308 // output section. When this occurs we cannot just use the OutputSection
1309 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1310 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
addPltRelSz()1311 static uint64_t addPltRelSz() {
1312 size_t size = in.relaPlt->getSize();
1313 if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1314 in.relaIplt->name == in.relaPlt->name)
1315 size += in.relaIplt->getSize();
1316 return size;
1317 }
1318
1319 // Add remaining entries to complete .dynamic contents.
1320 template <class ELFT>
1321 std::vector<std::pair<int32_t, uint64_t>>
computeContents()1322 DynamicSection<ELFT>::computeContents() {
1323 elf::Partition &part = getPartition();
1324 bool isMain = part.name.empty();
1325 std::vector<std::pair<int32_t, uint64_t>> entries;
1326
1327 auto addInt = [&](int32_t tag, uint64_t val) {
1328 entries.emplace_back(tag, val);
1329 };
1330 auto addInSec = [&](int32_t tag, const InputSection &sec) {
1331 entries.emplace_back(tag, sec.getVA());
1332 };
1333
1334 for (StringRef s : config->filterList)
1335 addInt(DT_FILTER, part.dynStrTab->addString(s));
1336 for (StringRef s : config->auxiliaryList)
1337 addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1338
1339 if (!config->rpath.empty())
1340 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1341 part.dynStrTab->addString(config->rpath));
1342
1343 for (SharedFile *file : ctx->sharedFiles)
1344 if (file->isNeeded)
1345 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1346
1347 if (isMain) {
1348 if (!config->soName.empty())
1349 addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1350 } else {
1351 if (!config->soName.empty())
1352 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1353 addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1354 }
1355
1356 // Set DT_FLAGS and DT_FLAGS_1.
1357 uint32_t dtFlags = 0;
1358 uint32_t dtFlags1 = 0;
1359 if (config->bsymbolic == BsymbolicKind::All)
1360 dtFlags |= DF_SYMBOLIC;
1361 if (config->zGlobal)
1362 dtFlags1 |= DF_1_GLOBAL;
1363 if (config->zInitfirst)
1364 dtFlags1 |= DF_1_INITFIRST;
1365 if (config->zInterpose)
1366 dtFlags1 |= DF_1_INTERPOSE;
1367 if (config->zNodefaultlib)
1368 dtFlags1 |= DF_1_NODEFLIB;
1369 if (config->zNodelete)
1370 dtFlags1 |= DF_1_NODELETE;
1371 if (config->zNodlopen)
1372 dtFlags1 |= DF_1_NOOPEN;
1373 if (config->pie)
1374 dtFlags1 |= DF_1_PIE;
1375 if (config->zNow) {
1376 dtFlags |= DF_BIND_NOW;
1377 dtFlags1 |= DF_1_NOW;
1378 }
1379 if (config->zOrigin) {
1380 dtFlags |= DF_ORIGIN;
1381 dtFlags1 |= DF_1_ORIGIN;
1382 }
1383 if (!config->zText)
1384 dtFlags |= DF_TEXTREL;
1385 if (config->hasTlsIe && config->shared)
1386 dtFlags |= DF_STATIC_TLS;
1387
1388 if (dtFlags)
1389 addInt(DT_FLAGS, dtFlags);
1390 if (dtFlags1)
1391 addInt(DT_FLAGS_1, dtFlags1);
1392
1393 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1394 // need it for each process, so we don't write it for DSOs. The loader writes
1395 // the pointer into this entry.
1396 //
1397 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1398 // systems (currently only Fuchsia OS) provide other means to give the
1399 // debugger this information. Such systems may choose make .dynamic read-only.
1400 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1401 if (!config->shared && !config->relocatable && !config->zRodynamic)
1402 addInt(DT_DEBUG, 0);
1403
1404 if (part.relaDyn->isNeeded() ||
1405 (in.relaIplt->isNeeded() &&
1406 part.relaDyn->getParent() == in.relaIplt->getParent())) {
1407 addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
1408 entries.emplace_back(part.relaDyn->sizeDynamicTag,
1409 addRelaSz(*part.relaDyn));
1410
1411 bool isRela = config->isRela;
1412 addInt(isRela ? DT_RELAENT : DT_RELENT,
1413 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1414
1415 // MIPS dynamic loader does not support RELCOUNT tag.
1416 // The problem is in the tight relation between dynamic
1417 // relocations and GOT. So do not emit this tag on MIPS.
1418 if (config->emachine != EM_MIPS) {
1419 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1420 if (config->zCombreloc && numRelativeRels)
1421 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1422 }
1423 }
1424 if (part.relrDyn && part.relrDyn->getParent() &&
1425 !part.relrDyn->relocs.empty()) {
1426 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1427 *part.relrDyn);
1428 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1429 part.relrDyn->getParent()->size);
1430 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1431 sizeof(Elf_Relr));
1432 }
1433 // .rel[a].plt section usually consists of two parts, containing plt and
1434 // iplt relocations. It is possible to have only iplt relocations in the
1435 // output. In that case relaPlt is empty and have zero offset, the same offset
1436 // as relaIplt has. And we still want to emit proper dynamic tags for that
1437 // case, so here we always use relaPlt as marker for the beginning of
1438 // .rel[a].plt section.
1439 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1440 addInSec(DT_JMPREL, *in.relaPlt);
1441 entries.emplace_back(DT_PLTRELSZ, addPltRelSz());
1442 switch (config->emachine) {
1443 case EM_MIPS:
1444 addInSec(DT_MIPS_PLTGOT, *in.gotPlt);
1445 break;
1446 case EM_SPARCV9:
1447 addInSec(DT_PLTGOT, *in.plt);
1448 break;
1449 case EM_AARCH64:
1450 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) {
1451 return r.type == target->pltRel &&
1452 r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1453 }) != in.relaPlt->relocs.end())
1454 addInt(DT_AARCH64_VARIANT_PCS, 0);
1455 LLVM_FALLTHROUGH;
1456 default:
1457 addInSec(DT_PLTGOT, *in.gotPlt);
1458 break;
1459 }
1460 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1461 }
1462
1463 if (config->emachine == EM_AARCH64) {
1464 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1465 addInt(DT_AARCH64_BTI_PLT, 0);
1466 if (config->zPacPlt)
1467 addInt(DT_AARCH64_PAC_PLT, 0);
1468 }
1469
1470 addInSec(DT_SYMTAB, *part.dynSymTab);
1471 addInt(DT_SYMENT, sizeof(Elf_Sym));
1472 addInSec(DT_STRTAB, *part.dynStrTab);
1473 addInt(DT_STRSZ, part.dynStrTab->getSize());
1474 if (!config->zText)
1475 addInt(DT_TEXTREL, 0);
1476 if (part.gnuHashTab && part.gnuHashTab->getParent())
1477 addInSec(DT_GNU_HASH, *part.gnuHashTab);
1478 if (part.hashTab && part.hashTab->getParent())
1479 addInSec(DT_HASH, *part.hashTab);
1480
1481 if (isMain) {
1482 if (Out::preinitArray) {
1483 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr);
1484 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size);
1485 }
1486 if (Out::initArray) {
1487 addInt(DT_INIT_ARRAY, Out::initArray->addr);
1488 addInt(DT_INIT_ARRAYSZ, Out::initArray->size);
1489 }
1490 if (Out::finiArray) {
1491 addInt(DT_FINI_ARRAY, Out::finiArray->addr);
1492 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size);
1493 }
1494
1495 if (Symbol *b = symtab->find(config->init))
1496 if (b->isDefined())
1497 addInt(DT_INIT, b->getVA());
1498 if (Symbol *b = symtab->find(config->fini))
1499 if (b->isDefined())
1500 addInt(DT_FINI, b->getVA());
1501 }
1502
1503 if (part.verSym && part.verSym->isNeeded())
1504 addInSec(DT_VERSYM, *part.verSym);
1505 if (part.verDef && part.verDef->isLive()) {
1506 addInSec(DT_VERDEF, *part.verDef);
1507 addInt(DT_VERDEFNUM, getVerDefNum());
1508 }
1509 if (part.verNeed && part.verNeed->isNeeded()) {
1510 addInSec(DT_VERNEED, *part.verNeed);
1511 unsigned needNum = 0;
1512 for (SharedFile *f : ctx->sharedFiles)
1513 if (!f->vernauxs.empty())
1514 ++needNum;
1515 addInt(DT_VERNEEDNUM, needNum);
1516 }
1517
1518 if (config->emachine == EM_MIPS) {
1519 addInt(DT_MIPS_RLD_VERSION, 1);
1520 addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1521 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1522 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1523 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum());
1524
1525 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1526 addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1527 else
1528 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1529 addInSec(DT_PLTGOT, *in.mipsGot);
1530 if (in.mipsRldMap) {
1531 if (!config->pie)
1532 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap);
1533 // Store the offset to the .rld_map section
1534 // relative to the address of the tag.
1535 addInt(DT_MIPS_RLD_MAP_REL,
1536 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
1537 }
1538 }
1539
1540 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1541 // glibc assumes the old-style BSS PLT layout which we don't support.
1542 if (config->emachine == EM_PPC)
1543 addInSec(DT_PPC_GOT, *in.got);
1544
1545 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1546 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1547 // The Glink tag points to 32 bytes before the first lazy symbol resolution
1548 // stub, which starts directly after the header.
1549 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32);
1550 }
1551
1552 addInt(DT_NULL, 0);
1553 return entries;
1554 }
1555
finalizeContents()1556 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1557 if (OutputSection *sec = getPartition().dynStrTab->getParent())
1558 getParent()->link = sec->sectionIndex;
1559 this->size = computeContents().size() * this->entsize;
1560 }
1561
writeTo(uint8_t * buf)1562 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1563 auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1564
1565 for (std::pair<int32_t, uint64_t> kv : computeContents()) {
1566 p->d_tag = kv.first;
1567 p->d_un.d_val = kv.second;
1568 ++p;
1569 }
1570 }
1571
getOffset() const1572 uint64_t DynamicReloc::getOffset() const {
1573 return inputSec->getVA(offsetInSec);
1574 }
1575
computeAddend() const1576 int64_t DynamicReloc::computeAddend() const {
1577 switch (kind) {
1578 case AddendOnly:
1579 assert(sym == nullptr);
1580 return addend;
1581 case AgainstSymbol:
1582 assert(sym != nullptr);
1583 return addend;
1584 case AddendOnlyWithTargetVA:
1585 case AgainstSymbolWithTargetVA:
1586 return InputSection::getRelocTargetVA(inputSec->file, type, addend,
1587 getOffset(), *sym, expr);
1588 case MipsMultiGotPage:
1589 assert(sym == nullptr);
1590 return getMipsPageAddr(outputSec->addr) + addend;
1591 }
1592 llvm_unreachable("Unknown DynamicReloc::Kind enum");
1593 }
1594
getSymIndex(SymbolTableBaseSection * symTab) const1595 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1596 if (!needsDynSymIndex())
1597 return 0;
1598
1599 size_t index = symTab->getSymbolIndex(sym);
1600 assert((index != 0 || (type != target->gotRel && type != target->pltRel) ||
1601 !mainPart->dynSymTab->getParent()) &&
1602 "GOT or PLT relocation must refer to symbol in dynamic symbol table");
1603 return index;
1604 }
1605
RelocationBaseSection(StringRef name,uint32_t type,int32_t dynamicTag,int32_t sizeDynamicTag,bool combreloc)1606 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1607 int32_t dynamicTag,
1608 int32_t sizeDynamicTag,
1609 bool combreloc)
1610 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1611 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
1612 combreloc(combreloc) {}
1613
addSymbolReloc(RelType dynType,InputSectionBase & isec,uint64_t offsetInSec,Symbol & sym,int64_t addend,Optional<RelType> addendRelType)1614 void RelocationBaseSection::addSymbolReloc(RelType dynType,
1615 InputSectionBase &isec,
1616 uint64_t offsetInSec, Symbol &sym,
1617 int64_t addend,
1618 Optional<RelType> addendRelType) {
1619 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
1620 R_ADDEND, addendRelType ? *addendRelType : target->noneRel);
1621 }
1622
addRelativeReloc(RelType dynType,InputSectionBase & inputSec,uint64_t offsetInSec,Symbol & sym,int64_t addend,RelType addendRelType,RelExpr expr)1623 void RelocationBaseSection::addRelativeReloc(
1624 RelType dynType, InputSectionBase &inputSec, uint64_t offsetInSec,
1625 Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) {
1626 // This function should only be called for non-preemptible symbols or
1627 // RelExpr values that refer to an address inside the output file (e.g. the
1628 // address of the GOT entry for a potentially preemptible symbol).
1629 assert((!sym.isPreemptible || expr == R_GOT) &&
1630 "cannot add relative relocation against preemptible symbol");
1631 assert(expr != R_ADDEND && "expected non-addend relocation expression");
1632 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec,
1633 sym, addend, expr, addendRelType);
1634 }
1635
addAddendOnlyRelocIfNonPreemptible(RelType dynType,InputSectionBase & isec,uint64_t offsetInSec,Symbol & sym,RelType addendRelType)1636 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1637 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1638 RelType addendRelType) {
1639 // No need to write an addend to the section for preemptible symbols.
1640 if (sym.isPreemptible)
1641 addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1642 R_ABS});
1643 else
1644 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec,
1645 sym, 0, R_ABS, addendRelType);
1646 }
1647
addReloc(DynamicReloc::Kind kind,RelType dynType,InputSectionBase & inputSec,uint64_t offsetInSec,Symbol & sym,int64_t addend,RelExpr expr,RelType addendRelType)1648 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType,
1649 InputSectionBase &inputSec,
1650 uint64_t offsetInSec, Symbol &sym,
1651 int64_t addend, RelExpr expr,
1652 RelType addendRelType) {
1653 // Write the addends to the relocated address if required. We skip
1654 // it if the written value would be zero.
1655 if (config->writeAddends && (expr != R_ADDEND || addend != 0))
1656 inputSec.relocations.push_back(
1657 {expr, addendRelType, offsetInSec, addend, &sym});
1658 addReloc({dynType, &inputSec, offsetInSec, kind, sym, addend, expr});
1659 }
1660
partitionRels()1661 void RelocationBaseSection::partitionRels() {
1662 if (!combreloc)
1663 return;
1664 const RelType relativeRel = target->relativeRel;
1665 numRelativeRelocs =
1666 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) -
1667 relocs.begin();
1668 }
1669
finalizeContents()1670 void RelocationBaseSection::finalizeContents() {
1671 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1672
1673 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1674 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1675 // case.
1676 if (symTab && symTab->getParent())
1677 getParent()->link = symTab->getParent()->sectionIndex;
1678 else
1679 getParent()->link = 0;
1680
1681 if (in.relaPlt.get() == this && in.gotPlt->getParent()) {
1682 getParent()->flags |= ELF::SHF_INFO_LINK;
1683 getParent()->info = in.gotPlt->getParent()->sectionIndex;
1684 }
1685 if (in.relaIplt.get() == this && in.igotPlt->getParent()) {
1686 getParent()->flags |= ELF::SHF_INFO_LINK;
1687 getParent()->info = in.igotPlt->getParent()->sectionIndex;
1688 }
1689 }
1690
computeRaw(SymbolTableBaseSection * symtab)1691 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) {
1692 r_offset = getOffset();
1693 r_sym = getSymIndex(symtab);
1694 addend = computeAddend();
1695 kind = AddendOnly; // Catch errors
1696 }
1697
computeRels()1698 void RelocationBaseSection::computeRels() {
1699 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1700 parallelForEach(relocs,
1701 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); });
1702 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1703 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1704 // is to make results easier to read.
1705 if (combreloc) {
1706 auto nonRelative = relocs.begin() + numRelativeRelocs;
1707 parallelSort(relocs.begin(), nonRelative,
1708 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
1709 // Non-relative relocations are few, so don't bother with parallelSort.
1710 llvm::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) {
1711 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
1712 });
1713 }
1714 }
1715
1716 template <class ELFT>
RelocationSection(StringRef name,bool combreloc)1717 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc)
1718 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1719 config->isRela ? DT_RELA : DT_REL,
1720 config->isRela ? DT_RELASZ : DT_RELSZ, combreloc) {
1721 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1722 }
1723
writeTo(uint8_t * buf)1724 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1725 computeRels();
1726 for (const DynamicReloc &rel : relocs) {
1727 auto *p = reinterpret_cast<Elf_Rela *>(buf);
1728 p->r_offset = rel.r_offset;
1729 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL);
1730 if (config->isRela)
1731 p->r_addend = rel.addend;
1732 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1733 }
1734 }
1735
RelrBaseSection()1736 RelrBaseSection::RelrBaseSection()
1737 : SyntheticSection(SHF_ALLOC,
1738 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1739 config->wordsize, ".relr.dyn") {}
1740
1741 template <class ELFT>
AndroidPackedRelocationSection(StringRef name)1742 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1743 StringRef name)
1744 : RelocationBaseSection(
1745 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1746 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1747 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
1748 /*combreloc=*/false) {
1749 this->entsize = 1;
1750 }
1751
1752 template <class ELFT>
updateAllocSize()1753 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1754 // This function computes the contents of an Android-format packed relocation
1755 // section.
1756 //
1757 // This format compresses relocations by using relocation groups to factor out
1758 // fields that are common between relocations and storing deltas from previous
1759 // relocations in SLEB128 format (which has a short representation for small
1760 // numbers). A good example of a relocation type with common fields is
1761 // R_*_RELATIVE, which is normally used to represent function pointers in
1762 // vtables. In the REL format, each relative relocation has the same r_info
1763 // field, and is only different from other relative relocations in terms of
1764 // the r_offset field. By sorting relocations by offset, grouping them by
1765 // r_info and representing each relocation with only the delta from the
1766 // previous offset, each 8-byte relocation can be compressed to as little as 1
1767 // byte (or less with run-length encoding). This relocation packer was able to
1768 // reduce the size of the relocation section in an Android Chromium DSO from
1769 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1770 //
1771 // A relocation section consists of a header containing the literal bytes
1772 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1773 // elements are the total number of relocations in the section and an initial
1774 // r_offset value. The remaining elements define a sequence of relocation
1775 // groups. Each relocation group starts with a header consisting of the
1776 // following elements:
1777 //
1778 // - the number of relocations in the relocation group
1779 // - flags for the relocation group
1780 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1781 // for each relocation in the group.
1782 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1783 // field for each relocation in the group.
1784 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1785 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1786 // each relocation in the group.
1787 //
1788 // Following the relocation group header are descriptions of each of the
1789 // relocations in the group. They consist of the following elements:
1790 //
1791 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1792 // delta for this relocation.
1793 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1794 // field for this relocation.
1795 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1796 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1797 // this relocation.
1798
1799 size_t oldSize = relocData.size();
1800
1801 relocData = {'A', 'P', 'S', '2'};
1802 raw_svector_ostream os(relocData);
1803 auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1804
1805 // The format header includes the number of relocations and the initial
1806 // offset (we set this to zero because the first relocation group will
1807 // perform the initial adjustment).
1808 add(relocs.size());
1809 add(0);
1810
1811 std::vector<Elf_Rela> relatives, nonRelatives;
1812
1813 for (const DynamicReloc &rel : relocs) {
1814 Elf_Rela r;
1815 r.r_offset = rel.getOffset();
1816 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()),
1817 rel.type, false);
1818 if (config->isRela)
1819 r.r_addend = rel.computeAddend();
1820
1821 if (r.getType(config->isMips64EL) == target->relativeRel)
1822 relatives.push_back(r);
1823 else
1824 nonRelatives.push_back(r);
1825 }
1826
1827 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1828 return a.r_offset < b.r_offset;
1829 });
1830
1831 // Try to find groups of relative relocations which are spaced one word
1832 // apart from one another. These generally correspond to vtable entries. The
1833 // format allows these groups to be encoded using a sort of run-length
1834 // encoding, but each group will cost 7 bytes in addition to the offset from
1835 // the previous group, so it is only profitable to do this for groups of
1836 // size 8 or larger.
1837 std::vector<Elf_Rela> ungroupedRelatives;
1838 std::vector<std::vector<Elf_Rela>> relativeGroups;
1839 for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1840 std::vector<Elf_Rela> group;
1841 do {
1842 group.push_back(*i++);
1843 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1844
1845 if (group.size() < 8)
1846 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1847 group.end());
1848 else
1849 relativeGroups.emplace_back(std::move(group));
1850 }
1851
1852 // For non-relative relocations, we would like to:
1853 // 1. Have relocations with the same symbol offset to be consecutive, so
1854 // that the runtime linker can speed-up symbol lookup by implementing an
1855 // 1-entry cache.
1856 // 2. Group relocations by r_info to reduce the size of the relocation
1857 // section.
1858 // Since the symbol offset is the high bits in r_info, sorting by r_info
1859 // allows us to do both.
1860 //
1861 // For Rela, we also want to sort by r_addend when r_info is the same. This
1862 // enables us to group by r_addend as well.
1863 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1864 if (a.r_info != b.r_info)
1865 return a.r_info < b.r_info;
1866 if (config->isRela)
1867 return a.r_addend < b.r_addend;
1868 return false;
1869 });
1870
1871 // Group relocations with the same r_info. Note that each group emits a group
1872 // header and that may make the relocation section larger. It is hard to
1873 // estimate the size of a group header as the encoded size of that varies
1874 // based on r_info. However, we can approximate this trade-off by the number
1875 // of values encoded. Each group header contains 3 values, and each relocation
1876 // in a group encodes one less value, as compared to when it is not grouped.
1877 // Therefore, we only group relocations if there are 3 or more of them with
1878 // the same r_info.
1879 //
1880 // For Rela, the addend for most non-relative relocations is zero, and thus we
1881 // can usually get a smaller relocation section if we group relocations with 0
1882 // addend as well.
1883 std::vector<Elf_Rela> ungroupedNonRelatives;
1884 std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1885 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1886 auto j = i + 1;
1887 while (j != e && i->r_info == j->r_info &&
1888 (!config->isRela || i->r_addend == j->r_addend))
1889 ++j;
1890 if (j - i < 3 || (config->isRela && i->r_addend != 0))
1891 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1892 else
1893 nonRelativeGroups.emplace_back(i, j);
1894 i = j;
1895 }
1896
1897 // Sort ungrouped relocations by offset to minimize the encoded length.
1898 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1899 return a.r_offset < b.r_offset;
1900 });
1901
1902 unsigned hasAddendIfRela =
1903 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1904
1905 uint64_t offset = 0;
1906 uint64_t addend = 0;
1907
1908 // Emit the run-length encoding for the groups of adjacent relative
1909 // relocations. Each group is represented using two groups in the packed
1910 // format. The first is used to set the current offset to the start of the
1911 // group (and also encodes the first relocation), and the second encodes the
1912 // remaining relocations.
1913 for (std::vector<Elf_Rela> &g : relativeGroups) {
1914 // The first relocation in the group.
1915 add(1);
1916 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1917 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1918 add(g[0].r_offset - offset);
1919 add(target->relativeRel);
1920 if (config->isRela) {
1921 add(g[0].r_addend - addend);
1922 addend = g[0].r_addend;
1923 }
1924
1925 // The remaining relocations.
1926 add(g.size() - 1);
1927 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1928 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1929 add(config->wordsize);
1930 add(target->relativeRel);
1931 if (config->isRela) {
1932 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) {
1933 add(i->r_addend - addend);
1934 addend = i->r_addend;
1935 }
1936 }
1937
1938 offset = g.back().r_offset;
1939 }
1940
1941 // Now the ungrouped relatives.
1942 if (!ungroupedRelatives.empty()) {
1943 add(ungroupedRelatives.size());
1944 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1945 add(target->relativeRel);
1946 for (Elf_Rela &r : ungroupedRelatives) {
1947 add(r.r_offset - offset);
1948 offset = r.r_offset;
1949 if (config->isRela) {
1950 add(r.r_addend - addend);
1951 addend = r.r_addend;
1952 }
1953 }
1954 }
1955
1956 // Grouped non-relatives.
1957 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1958 add(g.size());
1959 add(RELOCATION_GROUPED_BY_INFO_FLAG);
1960 add(g[0].r_info);
1961 for (const Elf_Rela &r : g) {
1962 add(r.r_offset - offset);
1963 offset = r.r_offset;
1964 }
1965 addend = 0;
1966 }
1967
1968 // Finally the ungrouped non-relative relocations.
1969 if (!ungroupedNonRelatives.empty()) {
1970 add(ungroupedNonRelatives.size());
1971 add(hasAddendIfRela);
1972 for (Elf_Rela &r : ungroupedNonRelatives) {
1973 add(r.r_offset - offset);
1974 offset = r.r_offset;
1975 add(r.r_info);
1976 if (config->isRela) {
1977 add(r.r_addend - addend);
1978 addend = r.r_addend;
1979 }
1980 }
1981 }
1982
1983 // Don't allow the section to shrink; otherwise the size of the section can
1984 // oscillate infinitely.
1985 if (relocData.size() < oldSize)
1986 relocData.append(oldSize - relocData.size(), 0);
1987
1988 // Returns whether the section size changed. We need to keep recomputing both
1989 // section layout and the contents of this section until the size converges
1990 // because changing this section's size can affect section layout, which in
1991 // turn can affect the sizes of the LEB-encoded integers stored in this
1992 // section.
1993 return relocData.size() != oldSize;
1994 }
1995
RelrSection()1996 template <class ELFT> RelrSection<ELFT>::RelrSection() {
1997 this->entsize = config->wordsize;
1998 }
1999
updateAllocSize()2000 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
2001 // This function computes the contents of an SHT_RELR packed relocation
2002 // section.
2003 //
2004 // Proposal for adding SHT_RELR sections to generic-abi is here:
2005 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
2006 //
2007 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
2008 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
2009 //
2010 // i.e. start with an address, followed by any number of bitmaps. The address
2011 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
2012 // relocations each, at subsequent offsets following the last address entry.
2013 //
2014 // The bitmap entries must have 1 in the least significant bit. The assumption
2015 // here is that an address cannot have 1 in lsb. Odd addresses are not
2016 // supported.
2017 //
2018 // Excluding the least significant bit in the bitmap, each non-zero bit in
2019 // the bitmap represents a relocation to be applied to a corresponding machine
2020 // word that follows the base address word. The second least significant bit
2021 // represents the machine word immediately following the initial address, and
2022 // each bit that follows represents the next word, in linear order. As such,
2023 // a single bitmap can encode up to 31 relocations in a 32-bit object, and
2024 // 63 relocations in a 64-bit object.
2025 //
2026 // This encoding has a couple of interesting properties:
2027 // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2028 // even means address, odd means bitmap.
2029 // 2. Just a simple list of addresses is a valid encoding.
2030
2031 size_t oldSize = relrRelocs.size();
2032 relrRelocs.clear();
2033
2034 // Same as Config->Wordsize but faster because this is a compile-time
2035 // constant.
2036 const size_t wordsize = sizeof(typename ELFT::uint);
2037
2038 // Number of bits to use for the relocation offsets bitmap.
2039 // Must be either 63 or 31.
2040 const size_t nBits = wordsize * 8 - 1;
2041
2042 // Get offsets for all relative relocations and sort them.
2043 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
2044 for (auto it : llvm::enumerate(relocs))
2045 offsets[it.index()] = it.value().getOffset();
2046 llvm::sort(offsets.get(), offsets.get() + relocs.size());
2047
2048 // For each leading relocation, find following ones that can be folded
2049 // as a bitmap and fold them.
2050 for (size_t i = 0, e = relocs.size(); i != e;) {
2051 // Add a leading relocation.
2052 relrRelocs.push_back(Elf_Relr(offsets[i]));
2053 uint64_t base = offsets[i] + wordsize;
2054 ++i;
2055
2056 // Find foldable relocations to construct bitmaps.
2057 for (;;) {
2058 uint64_t bitmap = 0;
2059 for (; i != e; ++i) {
2060 uint64_t d = offsets[i] - base;
2061 if (d >= nBits * wordsize || d % wordsize)
2062 break;
2063 bitmap |= uint64_t(1) << (d / wordsize);
2064 }
2065 if (!bitmap)
2066 break;
2067 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2068 base += nBits * wordsize;
2069 }
2070 }
2071
2072 // Don't allow the section to shrink; otherwise the size of the section can
2073 // oscillate infinitely. Trailing 1s do not decode to more relocations.
2074 if (relrRelocs.size() < oldSize) {
2075 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
2076 " padding word(s)");
2077 relrRelocs.resize(oldSize, Elf_Relr(1));
2078 }
2079
2080 return relrRelocs.size() != oldSize;
2081 }
2082
SymbolTableBaseSection(StringTableSection & strTabSec)2083 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
2084 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2085 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2086 config->wordsize,
2087 strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
2088 strTabSec(strTabSec) {}
2089
2090 // Orders symbols according to their positions in the GOT,
2091 // in compliance with MIPS ABI rules.
2092 // See "Global Offset Table" in Chapter 5 in the following document
2093 // for detailed description:
2094 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
sortMipsSymbols(const SymbolTableEntry & l,const SymbolTableEntry & r)2095 static bool sortMipsSymbols(const SymbolTableEntry &l,
2096 const SymbolTableEntry &r) {
2097 // Sort entries related to non-local preemptible symbols by GOT indexes.
2098 // All other entries go to the beginning of a dynsym in arbitrary order.
2099 if (l.sym->isInGot() && r.sym->isInGot())
2100 return l.sym->getGotIdx() < r.sym->getGotIdx();
2101 if (!l.sym->isInGot() && !r.sym->isInGot())
2102 return false;
2103 return !l.sym->isInGot();
2104 }
2105
finalizeContents()2106 void SymbolTableBaseSection::finalizeContents() {
2107 if (OutputSection *sec = strTabSec.getParent())
2108 getParent()->link = sec->sectionIndex;
2109
2110 if (this->type != SHT_DYNSYM) {
2111 sortSymTabSymbols();
2112 return;
2113 }
2114
2115 // If it is a .dynsym, there should be no local symbols, but we need
2116 // to do a few things for the dynamic linker.
2117
2118 // Section's Info field has the index of the first non-local symbol.
2119 // Because the first symbol entry is a null entry, 1 is the first.
2120 getParent()->info = 1;
2121
2122 if (getPartition().gnuHashTab) {
2123 // NB: It also sorts Symbols to meet the GNU hash table requirements.
2124 getPartition().gnuHashTab->addSymbols(symbols);
2125 } else if (config->emachine == EM_MIPS) {
2126 llvm::stable_sort(symbols, sortMipsSymbols);
2127 }
2128
2129 // Only the main partition's dynsym indexes are stored in the symbols
2130 // themselves. All other partitions use a lookup table.
2131 if (this == mainPart->dynSymTab.get()) {
2132 size_t i = 0;
2133 for (const SymbolTableEntry &s : symbols)
2134 s.sym->dynsymIndex = ++i;
2135 }
2136 }
2137
2138 // The ELF spec requires that all local symbols precede global symbols, so we
2139 // sort symbol entries in this function. (For .dynsym, we don't do that because
2140 // symbols for dynamic linking are inherently all globals.)
2141 //
2142 // Aside from above, we put local symbols in groups starting with the STT_FILE
2143 // symbol. That is convenient for purpose of identifying where are local symbols
2144 // coming from.
sortSymTabSymbols()2145 void SymbolTableBaseSection::sortSymTabSymbols() {
2146 // Move all local symbols before global symbols.
2147 auto e = std::stable_partition(
2148 symbols.begin(), symbols.end(),
2149 [](const SymbolTableEntry &s) { return s.sym->isLocal(); });
2150 size_t numLocals = e - symbols.begin();
2151 getParent()->info = numLocals + 1;
2152
2153 // We want to group the local symbols by file. For that we rebuild the local
2154 // part of the symbols vector. We do not need to care about the STT_FILE
2155 // symbols, they are already naturally placed first in each group. That
2156 // happens because STT_FILE is always the first symbol in the object and hence
2157 // precede all other local symbols we add for a file.
2158 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
2159 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2160 arr[s.sym->file].push_back(s);
2161
2162 auto i = symbols.begin();
2163 for (auto &p : arr)
2164 for (SymbolTableEntry &entry : p.second)
2165 *i++ = entry;
2166 }
2167
addSymbol(Symbol * b)2168 void SymbolTableBaseSection::addSymbol(Symbol *b) {
2169 // Adding a local symbol to a .dynsym is a bug.
2170 assert(this->type != SHT_DYNSYM || !b->isLocal());
2171 symbols.push_back({b, strTabSec.addString(b->getName(), false)});
2172 }
2173
getSymbolIndex(Symbol * sym)2174 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2175 if (this == mainPart->dynSymTab.get())
2176 return sym->dynsymIndex;
2177
2178 // Initializes symbol lookup tables lazily. This is used only for -r,
2179 // --emit-relocs and dynsyms in partitions other than the main one.
2180 llvm::call_once(onceFlag, [&] {
2181 symbolIndexMap.reserve(symbols.size());
2182 size_t i = 0;
2183 for (const SymbolTableEntry &e : symbols) {
2184 if (e.sym->type == STT_SECTION)
2185 sectionIndexMap[e.sym->getOutputSection()] = ++i;
2186 else
2187 symbolIndexMap[e.sym] = ++i;
2188 }
2189 });
2190
2191 // Section symbols are mapped based on their output sections
2192 // to maintain their semantics.
2193 if (sym->type == STT_SECTION)
2194 return sectionIndexMap.lookup(sym->getOutputSection());
2195 return symbolIndexMap.lookup(sym);
2196 }
2197
2198 template <class ELFT>
SymbolTableSection(StringTableSection & strTabSec)2199 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2200 : SymbolTableBaseSection(strTabSec) {
2201 this->entsize = sizeof(Elf_Sym);
2202 }
2203
getCommonSec(Symbol * sym)2204 static BssSection *getCommonSec(Symbol *sym) {
2205 if (config->relocatable)
2206 if (auto *d = dyn_cast<Defined>(sym))
2207 return dyn_cast_or_null<BssSection>(d->section);
2208 return nullptr;
2209 }
2210
getSymSectionIndex(Symbol * sym)2211 static uint32_t getSymSectionIndex(Symbol *sym) {
2212 assert(!(sym->needsCopy && sym->isObject()));
2213 if (!isa<Defined>(sym) || sym->needsCopy)
2214 return SHN_UNDEF;
2215 if (const OutputSection *os = sym->getOutputSection())
2216 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2217 : os->sectionIndex;
2218 return SHN_ABS;
2219 }
2220
2221 // Write the internal symbol table contents to the output symbol table.
writeTo(uint8_t * buf)2222 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2223 // The first entry is a null entry as per the ELF spec.
2224 buf += sizeof(Elf_Sym);
2225
2226 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2227
2228 for (SymbolTableEntry &ent : symbols) {
2229 Symbol *sym = ent.sym;
2230 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2231
2232 // Set st_name, st_info and st_other.
2233 eSym->st_name = ent.strTabOffset;
2234 eSym->setBindingAndType(sym->binding, sym->type);
2235 eSym->st_other = sym->visibility;
2236
2237 // The 3 most significant bits of st_other are used by OpenPOWER ABI.
2238 // See getPPC64GlobalEntryToLocalEntryOffset() for more details.
2239 if (config->emachine == EM_PPC64)
2240 eSym->st_other |= sym->stOther & 0xe0;
2241 // The most significant bit of st_other is used by AArch64 ABI for the
2242 // variant PCS.
2243 else if (config->emachine == EM_AARCH64)
2244 eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS;
2245
2246 if (BssSection *commonSec = getCommonSec(sym)) {
2247 // When -r is specified, a COMMON symbol is not allocated. Its st_shndx
2248 // holds SHN_COMMON and st_value holds the alignment.
2249 eSym->st_shndx = SHN_COMMON;
2250 eSym->st_value = commonSec->alignment;
2251 eSym->st_size = cast<Defined>(sym)->size;
2252 } else {
2253 const uint32_t shndx = getSymSectionIndex(sym);
2254 if (isDefinedHere) {
2255 eSym->st_shndx = shndx;
2256 eSym->st_value = sym->getVA();
2257 // Copy symbol size if it is a defined symbol. st_size is not
2258 // significant for undefined symbols, so whether copying it or not is up
2259 // to us if that's the case. We'll leave it as zero because by not
2260 // setting a value, we can get the exact same outputs for two sets of
2261 // input files that differ only in undefined symbol size in DSOs.
2262 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0;
2263 } else {
2264 eSym->st_shndx = 0;
2265 eSym->st_value = 0;
2266 eSym->st_size = 0;
2267 }
2268 }
2269
2270 ++eSym;
2271 }
2272
2273 // On MIPS we need to mark symbol which has a PLT entry and requires
2274 // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2275 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2276 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2277 if (config->emachine == EM_MIPS) {
2278 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2279
2280 for (SymbolTableEntry &ent : symbols) {
2281 Symbol *sym = ent.sym;
2282 if (sym->isInPlt() && sym->needsCopy)
2283 eSym->st_other |= STO_MIPS_PLT;
2284 if (isMicroMips()) {
2285 // We already set the less-significant bit for symbols
2286 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2287 // records. That allows us to distinguish such symbols in
2288 // the `MIPS<ELFT>::relocate()` routine. Now we should
2289 // clear that bit for non-dynamic symbol table, so tools
2290 // like `objdump` will be able to deal with a correct
2291 // symbol position.
2292 if (sym->isDefined() &&
2293 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsCopy)) {
2294 if (!strTabSec.isDynamic())
2295 eSym->st_value &= ~1;
2296 eSym->st_other |= STO_MIPS_MICROMIPS;
2297 }
2298 }
2299 if (config->relocatable)
2300 if (auto *d = dyn_cast<Defined>(sym))
2301 if (isMipsPIC<ELFT>(d))
2302 eSym->st_other |= STO_MIPS_PIC;
2303 ++eSym;
2304 }
2305 }
2306 }
2307
SymtabShndxSection()2308 SymtabShndxSection::SymtabShndxSection()
2309 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2310 this->entsize = 4;
2311 }
2312
writeTo(uint8_t * buf)2313 void SymtabShndxSection::writeTo(uint8_t *buf) {
2314 // We write an array of 32 bit values, where each value has 1:1 association
2315 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2316 // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2317 buf += 4; // Ignore .symtab[0] entry.
2318 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2319 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX)
2320 write32(buf, entry.sym->getOutputSection()->sectionIndex);
2321 buf += 4;
2322 }
2323 }
2324
isNeeded() const2325 bool SymtabShndxSection::isNeeded() const {
2326 // SHT_SYMTAB can hold symbols with section indices values up to
2327 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2328 // section. Problem is that we reveal the final section indices a bit too
2329 // late, and we do not know them here. For simplicity, we just always create
2330 // a .symtab_shndx section when the amount of output sections is huge.
2331 size_t size = 0;
2332 for (SectionCommand *cmd : script->sectionCommands)
2333 if (isa<OutputDesc>(cmd))
2334 ++size;
2335 return size >= SHN_LORESERVE;
2336 }
2337
finalizeContents()2338 void SymtabShndxSection::finalizeContents() {
2339 getParent()->link = in.symTab->getParent()->sectionIndex;
2340 }
2341
getSize() const2342 size_t SymtabShndxSection::getSize() const {
2343 return in.symTab->getNumSymbols() * 4;
2344 }
2345
2346 // .hash and .gnu.hash sections contain on-disk hash tables that map
2347 // symbol names to their dynamic symbol table indices. Their purpose
2348 // is to help the dynamic linker resolve symbols quickly. If ELF files
2349 // don't have them, the dynamic linker has to do linear search on all
2350 // dynamic symbols, which makes programs slower. Therefore, a .hash
2351 // section is added to a DSO by default.
2352 //
2353 // The Unix semantics of resolving dynamic symbols is somewhat expensive.
2354 // Each ELF file has a list of DSOs that the ELF file depends on and a
2355 // list of dynamic symbols that need to be resolved from any of the
2356 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2357 // where m is the number of DSOs and n is the number of dynamic
2358 // symbols. For modern large programs, both m and n are large. So
2359 // making each step faster by using hash tables substantially
2360 // improves time to load programs.
2361 //
2362 // (Note that this is not the only way to design the shared library.
2363 // For instance, the Windows DLL takes a different approach. On
2364 // Windows, each dynamic symbol has a name of DLL from which the symbol
2365 // has to be resolved. That makes the cost of symbol resolution O(n).
2366 // This disables some hacky techniques you can use on Unix such as
2367 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2368 //
2369 // Due to historical reasons, we have two different hash tables, .hash
2370 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2371 // and better version of .hash. .hash is just an on-disk hash table, but
2372 // .gnu.hash has a bloom filter in addition to a hash table to skip
2373 // DSOs very quickly. If you are sure that your dynamic linker knows
2374 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2375 // safe bet is to specify --hash-style=both for backward compatibility.
GnuHashTableSection()2376 GnuHashTableSection::GnuHashTableSection()
2377 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2378 }
2379
finalizeContents()2380 void GnuHashTableSection::finalizeContents() {
2381 if (OutputSection *sec = getPartition().dynSymTab->getParent())
2382 getParent()->link = sec->sectionIndex;
2383
2384 // Computes bloom filter size in word size. We want to allocate 12
2385 // bits for each symbol. It must be a power of two.
2386 if (symbols.empty()) {
2387 maskWords = 1;
2388 } else {
2389 uint64_t numBits = symbols.size() * 12;
2390 maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2391 }
2392
2393 size = 16; // Header
2394 size += config->wordsize * maskWords; // Bloom filter
2395 size += nBuckets * 4; // Hash buckets
2396 size += symbols.size() * 4; // Hash values
2397 }
2398
writeTo(uint8_t * buf)2399 void GnuHashTableSection::writeTo(uint8_t *buf) {
2400 // Write a header.
2401 write32(buf, nBuckets);
2402 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2403 write32(buf + 8, maskWords);
2404 write32(buf + 12, Shift2);
2405 buf += 16;
2406
2407 // Write the 2-bit bloom filter.
2408 const unsigned c = config->is64 ? 64 : 32;
2409 for (const Entry &sym : symbols) {
2410 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2411 // the word using bits [0:5] and [26:31].
2412 size_t i = (sym.hash / c) & (maskWords - 1);
2413 uint64_t val = readUint(buf + i * config->wordsize);
2414 val |= uint64_t(1) << (sym.hash % c);
2415 val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2416 writeUint(buf + i * config->wordsize, val);
2417 }
2418 buf += config->wordsize * maskWords;
2419
2420 // Write the hash table.
2421 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2422 uint32_t oldBucket = -1;
2423 uint32_t *values = buckets + nBuckets;
2424 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2425 // Write a hash value. It represents a sequence of chains that share the
2426 // same hash modulo value. The last element of each chain is terminated by
2427 // LSB 1.
2428 uint32_t hash = i->hash;
2429 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2430 hash = isLastInChain ? hash | 1 : hash & ~1;
2431 write32(values++, hash);
2432
2433 if (i->bucketIdx == oldBucket)
2434 continue;
2435 // Write a hash bucket. Hash buckets contain indices in the following hash
2436 // value table.
2437 write32(buckets + i->bucketIdx,
2438 getPartition().dynSymTab->getSymbolIndex(i->sym));
2439 oldBucket = i->bucketIdx;
2440 }
2441 }
2442
hashGnu(StringRef name)2443 static uint32_t hashGnu(StringRef name) {
2444 uint32_t h = 5381;
2445 for (uint8_t c : name)
2446 h = (h << 5) + h + c;
2447 return h;
2448 }
2449
2450 // Add symbols to this symbol hash table. Note that this function
2451 // destructively sort a given vector -- which is needed because
2452 // GNU-style hash table places some sorting requirements.
addSymbols(SmallVectorImpl<SymbolTableEntry> & v)2453 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
2454 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2455 // its type correctly.
2456 auto mid =
2457 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2458 return !s.sym->isDefined() || s.sym->partition != partition;
2459 });
2460
2461 // We chose load factor 4 for the on-disk hash table. For each hash
2462 // collision, the dynamic linker will compare a uint32_t hash value.
2463 // Since the integer comparison is quite fast, we believe we can
2464 // make the load factor even larger. 4 is just a conservative choice.
2465 //
2466 // Note that we don't want to create a zero-sized hash table because
2467 // Android loader as of 2018 doesn't like a .gnu.hash containing such
2468 // table. If that's the case, we create a hash table with one unused
2469 // dummy slot.
2470 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2471
2472 if (mid == v.end())
2473 return;
2474
2475 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2476 Symbol *b = ent.sym;
2477 uint32_t hash = hashGnu(b->getName());
2478 uint32_t bucketIdx = hash % nBuckets;
2479 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2480 }
2481
2482 llvm::sort(symbols, [](const Entry &l, const Entry &r) {
2483 return std::tie(l.bucketIdx, l.strTabOffset) <
2484 std::tie(r.bucketIdx, r.strTabOffset);
2485 });
2486
2487 v.erase(mid, v.end());
2488 for (const Entry &ent : symbols)
2489 v.push_back({ent.sym, ent.strTabOffset});
2490 }
2491
HashTableSection()2492 HashTableSection::HashTableSection()
2493 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2494 this->entsize = 4;
2495 }
2496
finalizeContents()2497 void HashTableSection::finalizeContents() {
2498 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2499
2500 if (OutputSection *sec = symTab->getParent())
2501 getParent()->link = sec->sectionIndex;
2502
2503 unsigned numEntries = 2; // nbucket and nchain.
2504 numEntries += symTab->getNumSymbols(); // The chain entries.
2505
2506 // Create as many buckets as there are symbols.
2507 numEntries += symTab->getNumSymbols();
2508 this->size = numEntries * 4;
2509 }
2510
writeTo(uint8_t * buf)2511 void HashTableSection::writeTo(uint8_t *buf) {
2512 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2513 unsigned numSymbols = symTab->getNumSymbols();
2514
2515 uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2516 write32(p++, numSymbols); // nbucket
2517 write32(p++, numSymbols); // nchain
2518
2519 uint32_t *buckets = p;
2520 uint32_t *chains = p + numSymbols;
2521
2522 for (const SymbolTableEntry &s : symTab->getSymbols()) {
2523 Symbol *sym = s.sym;
2524 StringRef name = sym->getName();
2525 unsigned i = sym->dynsymIndex;
2526 uint32_t hash = hashSysV(name) % numSymbols;
2527 chains[i] = buckets[hash];
2528 write32(buckets + hash, i);
2529 }
2530 }
2531
PltSection()2532 PltSection::PltSection()
2533 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2534 headerSize(target->pltHeaderSize) {
2535 // On PowerPC, this section contains lazy symbol resolvers.
2536 if (config->emachine == EM_PPC64) {
2537 name = ".glink";
2538 alignment = 4;
2539 }
2540
2541 // On x86 when IBT is enabled, this section contains the second PLT (lazy
2542 // symbol resolvers).
2543 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2544 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2545 name = ".plt.sec";
2546
2547 // The PLT needs to be writable on SPARC as the dynamic linker will
2548 // modify the instructions in the PLT entries.
2549 if (config->emachine == EM_SPARCV9)
2550 this->flags |= SHF_WRITE;
2551 }
2552
writeTo(uint8_t * buf)2553 void PltSection::writeTo(uint8_t *buf) {
2554 // At beginning of PLT, we have code to call the dynamic
2555 // linker to resolve dynsyms at runtime. Write such code.
2556 target->writePltHeader(buf);
2557 size_t off = headerSize;
2558
2559 for (const Symbol *sym : entries) {
2560 target->writePlt(buf + off, *sym, getVA() + off);
2561 off += target->pltEntrySize;
2562 }
2563 }
2564
addEntry(Symbol & sym)2565 void PltSection::addEntry(Symbol &sym) {
2566 assert(sym.auxIdx == symAux.size() - 1);
2567 symAux.back().pltIdx = entries.size();
2568 entries.push_back(&sym);
2569 }
2570
getSize() const2571 size_t PltSection::getSize() const {
2572 return headerSize + entries.size() * target->pltEntrySize;
2573 }
2574
isNeeded() const2575 bool PltSection::isNeeded() const {
2576 // For -z retpolineplt, .iplt needs the .plt header.
2577 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2578 }
2579
2580 // Used by ARM to add mapping symbols in the PLT section, which aid
2581 // disassembly.
addSymbols()2582 void PltSection::addSymbols() {
2583 target->addPltHeaderSymbols(*this);
2584
2585 size_t off = headerSize;
2586 for (size_t i = 0; i < entries.size(); ++i) {
2587 target->addPltSymbols(*this, off);
2588 off += target->pltEntrySize;
2589 }
2590 }
2591
IpltSection()2592 IpltSection::IpltSection()
2593 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2594 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2595 name = ".glink";
2596 alignment = 4;
2597 }
2598 }
2599
writeTo(uint8_t * buf)2600 void IpltSection::writeTo(uint8_t *buf) {
2601 uint32_t off = 0;
2602 for (const Symbol *sym : entries) {
2603 target->writeIplt(buf + off, *sym, getVA() + off);
2604 off += target->ipltEntrySize;
2605 }
2606 }
2607
getSize() const2608 size_t IpltSection::getSize() const {
2609 return entries.size() * target->ipltEntrySize;
2610 }
2611
addEntry(Symbol & sym)2612 void IpltSection::addEntry(Symbol &sym) {
2613 assert(sym.auxIdx == symAux.size() - 1);
2614 symAux.back().pltIdx = entries.size();
2615 entries.push_back(&sym);
2616 }
2617
2618 // ARM uses mapping symbols to aid disassembly.
addSymbols()2619 void IpltSection::addSymbols() {
2620 size_t off = 0;
2621 for (size_t i = 0, e = entries.size(); i != e; ++i) {
2622 target->addPltSymbols(*this, off);
2623 off += target->pltEntrySize;
2624 }
2625 }
2626
PPC32GlinkSection()2627 PPC32GlinkSection::PPC32GlinkSection() {
2628 name = ".glink";
2629 alignment = 4;
2630 }
2631
writeTo(uint8_t * buf)2632 void PPC32GlinkSection::writeTo(uint8_t *buf) {
2633 writePPC32GlinkSection(buf, entries.size());
2634 }
2635
getSize() const2636 size_t PPC32GlinkSection::getSize() const {
2637 return headerSize + entries.size() * target->pltEntrySize + footerSize;
2638 }
2639
2640 // This is an x86-only extra PLT section and used only when a security
2641 // enhancement feature called CET is enabled. In this comment, I'll explain what
2642 // the feature is and why we have two PLT sections if CET is enabled.
2643 //
2644 // So, what does CET do? CET introduces a new restriction to indirect jump
2645 // instructions. CET works this way. Assume that CET is enabled. Then, if you
2646 // execute an indirect jump instruction, the processor verifies that a special
2647 // "landing pad" instruction (which is actually a repurposed NOP instruction and
2648 // now called "endbr32" or "endbr64") is at the jump target. If the jump target
2649 // does not start with that instruction, the processor raises an exception
2650 // instead of continuing executing code.
2651 //
2652 // If CET is enabled, the compiler emits endbr to all locations where indirect
2653 // jumps may jump to.
2654 //
2655 // This mechanism makes it extremely hard to transfer the control to a middle of
2656 // a function that is not supporsed to be a indirect jump target, preventing
2657 // certain types of attacks such as ROP or JOP.
2658 //
2659 // Note that the processors in the market as of 2019 don't actually support the
2660 // feature. Only the spec is available at the moment.
2661 //
2662 // Now, I'll explain why we have this extra PLT section for CET.
2663 //
2664 // Since you can indirectly jump to a PLT entry, we have to make PLT entries
2665 // start with endbr. The problem is there's no extra space for endbr (which is 4
2666 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2667 // used.
2668 //
2669 // In order to deal with the issue, we split a PLT entry into two PLT entries.
2670 // Remember that each PLT entry contains code to jump to an address read from
2671 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2672 // the former code is written to .plt.sec, and the latter code is written to
2673 // .plt.
2674 //
2675 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2676 // that the regular .plt is now called .plt.sec and .plt is repurposed to
2677 // contain only code for lazy symbol resolution.
2678 //
2679 // In other words, this is how the 2-PLT scheme works. Application code is
2680 // supposed to jump to .plt.sec to call an external function. Each .plt.sec
2681 // entry contains code to read an address from a corresponding .got.plt entry
2682 // and jump to that address. Addresses in .got.plt initially point to .plt, so
2683 // when an application calls an external function for the first time, the
2684 // control is transferred to a function that resolves a symbol name from
2685 // external shared object files. That function then rewrites a .got.plt entry
2686 // with a resolved address, so that the subsequent function calls directly jump
2687 // to a desired location from .plt.sec.
2688 //
2689 // There is an open question as to whether the 2-PLT scheme was desirable or
2690 // not. We could have simply extended the PLT entry size to 32-bytes to
2691 // accommodate endbr, and that scheme would have been much simpler than the
2692 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2693 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2694 // that the optimization actually makes a difference.
2695 //
2696 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2697 // depend on it, so we implement the ABI.
IBTPltSection()2698 IBTPltSection::IBTPltSection()
2699 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2700
writeTo(uint8_t * buf)2701 void IBTPltSection::writeTo(uint8_t *buf) {
2702 target->writeIBTPlt(buf, in.plt->getNumEntries());
2703 }
2704
getSize() const2705 size_t IBTPltSection::getSize() const {
2706 // 16 is the header size of .plt.
2707 return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2708 }
2709
isNeeded() const2710 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; }
2711
2712 // The string hash function for .gdb_index.
computeGdbHash(StringRef s)2713 static uint32_t computeGdbHash(StringRef s) {
2714 uint32_t h = 0;
2715 for (uint8_t c : s)
2716 h = h * 67 + toLower(c) - 113;
2717 return h;
2718 }
2719
GdbIndexSection()2720 GdbIndexSection::GdbIndexSection()
2721 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2722
2723 // Returns the desired size of an on-disk hash table for a .gdb_index section.
2724 // There's a tradeoff between size and collision rate. We aim 75% utilization.
computeSymtabSize() const2725 size_t GdbIndexSection::computeSymtabSize() const {
2726 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2727 }
2728
2729 // Compute the output section size.
initOutputSize()2730 void GdbIndexSection::initOutputSize() {
2731 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8;
2732
2733 for (GdbChunk &chunk : chunks)
2734 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2735
2736 // Add the constant pool size if exists.
2737 if (!symbols.empty()) {
2738 GdbSymbol &sym = symbols.back();
2739 size += sym.nameOff + sym.name.size() + 1;
2740 }
2741 }
2742
2743 static SmallVector<GdbIndexSection::CuEntry, 0>
readCuList(DWARFContext & dwarf)2744 readCuList(DWARFContext &dwarf) {
2745 SmallVector<GdbIndexSection::CuEntry, 0> ret;
2746 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2747 ret.push_back({cu->getOffset(), cu->getLength() + 4});
2748 return ret;
2749 }
2750
2751 static SmallVector<GdbIndexSection::AddressEntry, 0>
readAddressAreas(DWARFContext & dwarf,InputSection * sec)2752 readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2753 SmallVector<GdbIndexSection::AddressEntry, 0> ret;
2754
2755 uint32_t cuIdx = 0;
2756 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2757 if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2758 warn(toString(sec) + ": " + toString(std::move(e)));
2759 return {};
2760 }
2761 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2762 if (!ranges) {
2763 warn(toString(sec) + ": " + toString(ranges.takeError()));
2764 return {};
2765 }
2766
2767 ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2768 for (DWARFAddressRange &r : *ranges) {
2769 if (r.SectionIndex == -1ULL)
2770 continue;
2771 // Range list with zero size has no effect.
2772 InputSectionBase *s = sections[r.SectionIndex];
2773 if (s && s != &InputSection::discarded && s->isLive())
2774 if (r.LowPC != r.HighPC)
2775 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2776 }
2777 ++cuIdx;
2778 }
2779
2780 return ret;
2781 }
2782
2783 template <class ELFT>
2784 static SmallVector<GdbIndexSection::NameAttrEntry, 0>
readPubNamesAndTypes(const LLDDwarfObj<ELFT> & obj,const SmallVectorImpl<GdbIndexSection::CuEntry> & cus)2785 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2786 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
2787 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2788 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2789
2790 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
2791 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2792 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2793 DWARFDebugPubTable table;
2794 table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2795 warn(toString(pub->sec) + ": " + toString(std::move(e)));
2796 });
2797 for (const DWARFDebugPubTable::Set &set : table.getData()) {
2798 // The value written into the constant pool is kind << 24 | cuIndex. As we
2799 // don't know how many compilation units precede this object to compute
2800 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2801 // the number of preceding compilation units later.
2802 uint32_t i = llvm::partition_point(cus,
2803 [&](GdbIndexSection::CuEntry cu) {
2804 return cu.cuOffset < set.Offset;
2805 }) -
2806 cus.begin();
2807 for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2808 ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2809 (ent.Descriptor.toBits() << 24) | i});
2810 }
2811 }
2812 return ret;
2813 }
2814
2815 // Create a list of symbols from a given list of symbol names and types
2816 // by uniquifying them by name.
createSymbols(ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry,0>> nameAttrs,const SmallVector<GdbIndexSection::GdbChunk,0> & chunks)2817 static SmallVector<GdbIndexSection::GdbSymbol, 0> createSymbols(
2818 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
2819 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
2820 using GdbSymbol = GdbIndexSection::GdbSymbol;
2821 using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2822
2823 // For each chunk, compute the number of compilation units preceding it.
2824 uint32_t cuIdx = 0;
2825 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
2826 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2827 cuIdxs[i] = cuIdx;
2828 cuIdx += chunks[i].compilationUnits.size();
2829 }
2830
2831 // The number of symbols we will handle in this function is of the order
2832 // of millions for very large executables, so we use multi-threading to
2833 // speed it up.
2834 constexpr size_t numShards = 32;
2835 size_t concurrency = PowerOf2Floor(
2836 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
2837 .compute_thread_count(),
2838 numShards));
2839
2840 // A sharded map to uniquify symbols by name.
2841 auto map =
2842 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards);
2843 size_t shift = 32 - countTrailingZeros(numShards);
2844
2845 // Instantiate GdbSymbols while uniqufying them by name.
2846 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards);
2847
2848 parallelFor(0, concurrency, [&](size_t threadId) {
2849 uint32_t i = 0;
2850 for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2851 for (const NameAttrEntry &ent : entries) {
2852 size_t shardId = ent.name.hash() >> shift;
2853 if ((shardId & (concurrency - 1)) != threadId)
2854 continue;
2855
2856 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2857 size_t &idx = map[shardId][ent.name];
2858 if (idx) {
2859 symbols[shardId][idx - 1].cuVector.push_back(v);
2860 continue;
2861 }
2862
2863 idx = symbols[shardId].size() + 1;
2864 symbols[shardId].push_back({ent.name, {v}, 0, 0});
2865 }
2866 ++i;
2867 }
2868 });
2869
2870 size_t numSymbols = 0;
2871 for (ArrayRef<GdbSymbol> v : makeArrayRef(symbols.get(), numShards))
2872 numSymbols += v.size();
2873
2874 // The return type is a flattened vector, so we'll copy each vector
2875 // contents to Ret.
2876 SmallVector<GdbSymbol, 0> ret;
2877 ret.reserve(numSymbols);
2878 for (SmallVector<GdbSymbol, 0> &vec :
2879 makeMutableArrayRef(symbols.get(), numShards))
2880 for (GdbSymbol &sym : vec)
2881 ret.push_back(std::move(sym));
2882
2883 // CU vectors and symbol names are adjacent in the output file.
2884 // We can compute their offsets in the output file now.
2885 size_t off = 0;
2886 for (GdbSymbol &sym : ret) {
2887 sym.cuVectorOff = off;
2888 off += (sym.cuVector.size() + 1) * 4;
2889 }
2890 for (GdbSymbol &sym : ret) {
2891 sym.nameOff = off;
2892 off += sym.name.size() + 1;
2893 }
2894
2895 return ret;
2896 }
2897
2898 // Returns a newly-created .gdb_index section.
create()2899 template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2900 // Collect InputFiles with .debug_info. See the comment in
2901 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2902 // note that isec->data() may uncompress the full content, which should be
2903 // parallelized.
2904 SetVector<InputFile *> files;
2905 for (InputSectionBase *s : inputSections) {
2906 InputSection *isec = dyn_cast<InputSection>(s);
2907 if (!isec)
2908 continue;
2909 // .debug_gnu_pub{names,types} are useless in executables.
2910 // They are present in input object files solely for creating
2911 // a .gdb_index. So we can remove them from the output.
2912 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2913 s->markDead();
2914 else if (isec->name == ".debug_info")
2915 files.insert(isec->file);
2916 }
2917 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
2918 llvm::erase_if(inputSections, [](InputSectionBase *s) {
2919 if (auto *isec = dyn_cast<InputSection>(s))
2920 if (InputSectionBase *rel = isec->getRelocatedSection())
2921 return !rel->isLive();
2922 return !s->isLive();
2923 });
2924
2925 SmallVector<GdbChunk, 0> chunks(files.size());
2926 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
2927
2928 parallelFor(0, files.size(), [&](size_t i) {
2929 // To keep memory usage low, we don't want to keep cached DWARFContext, so
2930 // avoid getDwarf() here.
2931 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2932 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2933 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2934
2935 // If the are multiple compile units .debug_info (very rare ld -r --unique),
2936 // this only picks the last one. Other address ranges are lost.
2937 chunks[i].sec = dobj.getInfoSection();
2938 chunks[i].compilationUnits = readCuList(dwarf);
2939 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2940 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2941 });
2942
2943 auto *ret = make<GdbIndexSection>();
2944 ret->chunks = std::move(chunks);
2945 ret->symbols = createSymbols(nameAttrs, ret->chunks);
2946 ret->initOutputSize();
2947 return ret;
2948 }
2949
writeTo(uint8_t * buf)2950 void GdbIndexSection::writeTo(uint8_t *buf) {
2951 // Write the header.
2952 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2953 uint8_t *start = buf;
2954 hdr->version = 7;
2955 buf += sizeof(*hdr);
2956
2957 // Write the CU list.
2958 hdr->cuListOff = buf - start;
2959 for (GdbChunk &chunk : chunks) {
2960 for (CuEntry &cu : chunk.compilationUnits) {
2961 write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2962 write64le(buf + 8, cu.cuLength);
2963 buf += 16;
2964 }
2965 }
2966
2967 // Write the address area.
2968 hdr->cuTypesOff = buf - start;
2969 hdr->addressAreaOff = buf - start;
2970 uint32_t cuOff = 0;
2971 for (GdbChunk &chunk : chunks) {
2972 for (AddressEntry &e : chunk.addressAreas) {
2973 // In the case of ICF there may be duplicate address range entries.
2974 const uint64_t baseAddr = e.section->repl->getVA(0);
2975 write64le(buf, baseAddr + e.lowAddress);
2976 write64le(buf + 8, baseAddr + e.highAddress);
2977 write32le(buf + 16, e.cuIndex + cuOff);
2978 buf += 20;
2979 }
2980 cuOff += chunk.compilationUnits.size();
2981 }
2982
2983 // Write the on-disk open-addressing hash table containing symbols.
2984 hdr->symtabOff = buf - start;
2985 size_t symtabSize = computeSymtabSize();
2986 uint32_t mask = symtabSize - 1;
2987
2988 for (GdbSymbol &sym : symbols) {
2989 uint32_t h = sym.name.hash();
2990 uint32_t i = h & mask;
2991 uint32_t step = ((h * 17) & mask) | 1;
2992
2993 while (read32le(buf + i * 8))
2994 i = (i + step) & mask;
2995
2996 write32le(buf + i * 8, sym.nameOff);
2997 write32le(buf + i * 8 + 4, sym.cuVectorOff);
2998 }
2999
3000 buf += symtabSize * 8;
3001
3002 // Write the string pool.
3003 hdr->constantPoolOff = buf - start;
3004 parallelForEach(symbols, [&](GdbSymbol &sym) {
3005 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
3006 });
3007
3008 // Write the CU vectors.
3009 for (GdbSymbol &sym : symbols) {
3010 write32le(buf, sym.cuVector.size());
3011 buf += 4;
3012 for (uint32_t val : sym.cuVector) {
3013 write32le(buf, val);
3014 buf += 4;
3015 }
3016 }
3017 }
3018
isNeeded() const3019 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
3020
EhFrameHeader()3021 EhFrameHeader::EhFrameHeader()
3022 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
3023
writeTo(uint8_t * buf)3024 void EhFrameHeader::writeTo(uint8_t *buf) {
3025 // Unlike most sections, the EhFrameHeader section is written while writing
3026 // another section, namely EhFrameSection, which calls the write() function
3027 // below from its writeTo() function. This is necessary because the contents
3028 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
3029 // don't know which order the sections will be written in.
3030 }
3031
3032 // .eh_frame_hdr contains a binary search table of pointers to FDEs.
3033 // Each entry of the search table consists of two values,
3034 // the starting PC from where FDEs covers, and the FDE's address.
3035 // It is sorted by PC.
write()3036 void EhFrameHeader::write() {
3037 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
3038 using FdeData = EhFrameSection::FdeData;
3039 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData();
3040
3041 buf[0] = 1;
3042 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3043 buf[2] = DW_EH_PE_udata4;
3044 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3045 write32(buf + 4,
3046 getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
3047 write32(buf + 8, fdes.size());
3048 buf += 12;
3049
3050 for (FdeData &fde : fdes) {
3051 write32(buf, fde.pcRel);
3052 write32(buf + 4, fde.fdeVARel);
3053 buf += 8;
3054 }
3055 }
3056
getSize() const3057 size_t EhFrameHeader::getSize() const {
3058 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3059 return 12 + getPartition().ehFrame->numFdes * 8;
3060 }
3061
isNeeded() const3062 bool EhFrameHeader::isNeeded() const {
3063 return isLive() && getPartition().ehFrame->isNeeded();
3064 }
3065
VersionDefinitionSection()3066 VersionDefinitionSection::VersionDefinitionSection()
3067 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
3068 ".gnu.version_d") {}
3069
getFileDefName()3070 StringRef VersionDefinitionSection::getFileDefName() {
3071 if (!getPartition().name.empty())
3072 return getPartition().name;
3073 if (!config->soName.empty())
3074 return config->soName;
3075 return config->outputFile;
3076 }
3077
finalizeContents()3078 void VersionDefinitionSection::finalizeContents() {
3079 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
3080 for (const VersionDefinition &v : namedVersionDefs())
3081 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
3082
3083 if (OutputSection *sec = getPartition().dynStrTab->getParent())
3084 getParent()->link = sec->sectionIndex;
3085
3086 // sh_info should be set to the number of definitions. This fact is missed in
3087 // documentation, but confirmed by binutils community:
3088 // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3089 getParent()->info = getVerDefNum();
3090 }
3091
writeOne(uint8_t * buf,uint32_t index,StringRef name,size_t nameOff)3092 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3093 StringRef name, size_t nameOff) {
3094 uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3095
3096 // Write a verdef.
3097 write16(buf, 1); // vd_version
3098 write16(buf + 2, flags); // vd_flags
3099 write16(buf + 4, index); // vd_ndx
3100 write16(buf + 6, 1); // vd_cnt
3101 write32(buf + 8, hashSysV(name)); // vd_hash
3102 write32(buf + 12, 20); // vd_aux
3103 write32(buf + 16, 28); // vd_next
3104
3105 // Write a veraux.
3106 write32(buf + 20, nameOff); // vda_name
3107 write32(buf + 24, 0); // vda_next
3108 }
3109
writeTo(uint8_t * buf)3110 void VersionDefinitionSection::writeTo(uint8_t *buf) {
3111 writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3112
3113 auto nameOffIt = verDefNameOffs.begin();
3114 for (const VersionDefinition &v : namedVersionDefs()) {
3115 buf += EntrySize;
3116 writeOne(buf, v.id, v.name, *nameOffIt++);
3117 }
3118
3119 // Need to terminate the last version definition.
3120 write32(buf + 16, 0); // vd_next
3121 }
3122
getSize() const3123 size_t VersionDefinitionSection::getSize() const {
3124 return EntrySize * getVerDefNum();
3125 }
3126
3127 // .gnu.version is a table where each entry is 2 byte long.
VersionTableSection()3128 VersionTableSection::VersionTableSection()
3129 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3130 ".gnu.version") {
3131 this->entsize = 2;
3132 }
3133
finalizeContents()3134 void VersionTableSection::finalizeContents() {
3135 // At the moment of june 2016 GNU docs does not mention that sh_link field
3136 // should be set, but Sun docs do. Also readelf relies on this field.
3137 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3138 }
3139
getSize() const3140 size_t VersionTableSection::getSize() const {
3141 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3142 }
3143
writeTo(uint8_t * buf)3144 void VersionTableSection::writeTo(uint8_t *buf) {
3145 buf += 2;
3146 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3147 // For an unextracted lazy symbol (undefined weak), it must have been
3148 // converted to Undefined and have VER_NDX_GLOBAL version here.
3149 assert(!s.sym->isLazy());
3150 write16(buf, s.sym->versionId);
3151 buf += 2;
3152 }
3153 }
3154
isNeeded() const3155 bool VersionTableSection::isNeeded() const {
3156 return isLive() &&
3157 (getPartition().verDef || getPartition().verNeed->isNeeded());
3158 }
3159
addVerneed(Symbol * ss)3160 void elf::addVerneed(Symbol *ss) {
3161 auto &file = cast<SharedFile>(*ss->file);
3162 if (ss->verdefIndex == VER_NDX_GLOBAL) {
3163 ss->versionId = VER_NDX_GLOBAL;
3164 return;
3165 }
3166
3167 if (file.vernauxs.empty())
3168 file.vernauxs.resize(file.verdefs.size());
3169
3170 // Select a version identifier for the vernaux data structure, if we haven't
3171 // already allocated one. The verdef identifiers cover the range
3172 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3173 // getVerDefNum()+1.
3174 if (file.vernauxs[ss->verdefIndex] == 0)
3175 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3176
3177 ss->versionId = file.vernauxs[ss->verdefIndex];
3178 }
3179
3180 template <class ELFT>
VersionNeedSection()3181 VersionNeedSection<ELFT>::VersionNeedSection()
3182 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3183 ".gnu.version_r") {}
3184
finalizeContents()3185 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3186 for (SharedFile *f : ctx->sharedFiles) {
3187 if (f->vernauxs.empty())
3188 continue;
3189 verneeds.emplace_back();
3190 Verneed &vn = verneeds.back();
3191 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3192 bool isLibc = config->relrGlibc && f->soName.startswith("libc.so.");
3193 bool isGlibc2 = false;
3194 for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3195 if (f->vernauxs[i] == 0)
3196 continue;
3197 auto *verdef =
3198 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3199 StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
3200 if (isLibc && ver.startswith("GLIBC_2."))
3201 isGlibc2 = true;
3202 vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
3203 getPartition().dynStrTab->addString(ver)});
3204 }
3205 if (isGlibc2) {
3206 const char *ver = "GLIBC_ABI_DT_RELR";
3207 vn.vernauxs.push_back({hashSysV(ver),
3208 ++SharedFile::vernauxNum + getVerDefNum(),
3209 getPartition().dynStrTab->addString(ver)});
3210 }
3211 }
3212
3213 if (OutputSection *sec = getPartition().dynStrTab->getParent())
3214 getParent()->link = sec->sectionIndex;
3215 getParent()->info = verneeds.size();
3216 }
3217
writeTo(uint8_t * buf)3218 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3219 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3220 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3221 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3222
3223 for (auto &vn : verneeds) {
3224 // Create an Elf_Verneed for this DSO.
3225 verneed->vn_version = 1;
3226 verneed->vn_cnt = vn.vernauxs.size();
3227 verneed->vn_file = vn.nameStrTab;
3228 verneed->vn_aux =
3229 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3230 verneed->vn_next = sizeof(Elf_Verneed);
3231 ++verneed;
3232
3233 // Create the Elf_Vernauxs for this Elf_Verneed.
3234 for (auto &vna : vn.vernauxs) {
3235 vernaux->vna_hash = vna.hash;
3236 vernaux->vna_flags = 0;
3237 vernaux->vna_other = vna.verneedIndex;
3238 vernaux->vna_name = vna.nameStrTab;
3239 vernaux->vna_next = sizeof(Elf_Vernaux);
3240 ++vernaux;
3241 }
3242
3243 vernaux[-1].vna_next = 0;
3244 }
3245 verneed[-1].vn_next = 0;
3246 }
3247
getSize() const3248 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3249 return verneeds.size() * sizeof(Elf_Verneed) +
3250 SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3251 }
3252
isNeeded() const3253 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3254 return isLive() && SharedFile::vernauxNum != 0;
3255 }
3256
addSection(MergeInputSection * ms)3257 void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3258 ms->parent = this;
3259 sections.push_back(ms);
3260 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS));
3261 alignment = std::max(alignment, ms->alignment);
3262 }
3263
MergeTailSection(StringRef name,uint32_t type,uint64_t flags,uint32_t alignment)3264 MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3265 uint64_t flags, uint32_t alignment)
3266 : MergeSyntheticSection(name, type, flags, alignment),
3267 builder(StringTableBuilder::RAW, alignment) {}
3268
getSize() const3269 size_t MergeTailSection::getSize() const { return builder.getSize(); }
3270
writeTo(uint8_t * buf)3271 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3272
finalizeContents()3273 void MergeTailSection::finalizeContents() {
3274 // Add all string pieces to the string table builder to create section
3275 // contents.
3276 for (MergeInputSection *sec : sections)
3277 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3278 if (sec->pieces[i].live)
3279 builder.add(sec->getData(i));
3280
3281 // Fix the string table content. After this, the contents will never change.
3282 builder.finalize();
3283
3284 // finalize() fixed tail-optimized strings, so we can now get
3285 // offsets of strings. Get an offset for each string and save it
3286 // to a corresponding SectionPiece for easy access.
3287 for (MergeInputSection *sec : sections)
3288 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3289 if (sec->pieces[i].live)
3290 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3291 }
3292
writeTo(uint8_t * buf)3293 void MergeNoTailSection::writeTo(uint8_t *buf) {
3294 parallelFor(0, numShards,
3295 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); });
3296 }
3297
3298 // This function is very hot (i.e. it can take several seconds to finish)
3299 // because sometimes the number of inputs is in an order of magnitude of
3300 // millions. So, we use multi-threading.
3301 //
3302 // For any strings S and T, we know S is not mergeable with T if S's hash
3303 // value is different from T's. If that's the case, we can safely put S and
3304 // T into different string builders without worrying about merge misses.
3305 // We do it in parallel.
finalizeContents()3306 void MergeNoTailSection::finalizeContents() {
3307 // Initializes string table builders.
3308 for (size_t i = 0; i < numShards; ++i)
3309 shards.emplace_back(StringTableBuilder::RAW, alignment);
3310
3311 // Concurrency level. Must be a power of 2 to avoid expensive modulo
3312 // operations in the following tight loop.
3313 size_t concurrency = PowerOf2Floor(
3314 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
3315 .compute_thread_count(),
3316 numShards));
3317
3318 // Add section pieces to the builders.
3319 parallelFor(0, concurrency, [&](size_t threadId) {
3320 for (MergeInputSection *sec : sections) {
3321 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3322 if (!sec->pieces[i].live)
3323 continue;
3324 size_t shardId = getShardId(sec->pieces[i].hash);
3325 if ((shardId & (concurrency - 1)) == threadId)
3326 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3327 }
3328 }
3329 });
3330
3331 // Compute an in-section offset for each shard.
3332 size_t off = 0;
3333 for (size_t i = 0; i < numShards; ++i) {
3334 shards[i].finalizeInOrder();
3335 if (shards[i].getSize() > 0)
3336 off = alignToPowerOf2(off, alignment);
3337 shardOffsets[i] = off;
3338 off += shards[i].getSize();
3339 }
3340 size = off;
3341
3342 // So far, section pieces have offsets from beginning of shards, but
3343 // we want offsets from beginning of the whole section. Fix them.
3344 parallelForEach(sections, [&](MergeInputSection *sec) {
3345 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3346 if (sec->pieces[i].live)
3347 sec->pieces[i].outputOff +=
3348 shardOffsets[getShardId(sec->pieces[i].hash)];
3349 });
3350 }
3351
splitSections()3352 template <class ELFT> void elf::splitSections() {
3353 llvm::TimeTraceScope timeScope("Split sections");
3354 // splitIntoPieces needs to be called on each MergeInputSection
3355 // before calling finalizeContents().
3356 parallelForEach(ctx->objectFiles, [](ELFFileBase *file) {
3357 for (InputSectionBase *sec : file->getSections()) {
3358 if (!sec)
3359 continue;
3360 if (auto *s = dyn_cast<MergeInputSection>(sec))
3361 s->splitIntoPieces();
3362 else if (auto *eh = dyn_cast<EhInputSection>(sec))
3363 eh->split<ELFT>();
3364 }
3365 });
3366 }
3367
MipsRldMapSection()3368 MipsRldMapSection::MipsRldMapSection()
3369 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3370 ".rld_map") {}
3371
ARMExidxSyntheticSection()3372 ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3373 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3374 config->wordsize, ".ARM.exidx") {}
3375
findExidxSection(InputSection * isec)3376 static InputSection *findExidxSection(InputSection *isec) {
3377 for (InputSection *d : isec->dependentSections)
3378 if (d->type == SHT_ARM_EXIDX && d->isLive())
3379 return d;
3380 return nullptr;
3381 }
3382
isValidExidxSectionDep(InputSection * isec)3383 static bool isValidExidxSectionDep(InputSection *isec) {
3384 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3385 isec->getSize() > 0;
3386 }
3387
addSection(InputSection * isec)3388 bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3389 if (isec->type == SHT_ARM_EXIDX) {
3390 if (InputSection *dep = isec->getLinkOrderDep())
3391 if (isValidExidxSectionDep(dep)) {
3392 exidxSections.push_back(isec);
3393 // Every exidxSection is 8 bytes, we need an estimate of
3394 // size before assignAddresses can be called. Final size
3395 // will only be known after finalize is called.
3396 size += 8;
3397 }
3398 return true;
3399 }
3400
3401 if (isValidExidxSectionDep(isec)) {
3402 executableSections.push_back(isec);
3403 return false;
3404 }
3405
3406 // FIXME: we do not output a relocation section when --emit-relocs is used
3407 // as we do not have relocation sections for linker generated table entries
3408 // and we would have to erase at a late stage relocations from merged entries.
3409 // Given that exception tables are already position independent and a binary
3410 // analyzer could derive the relocations we choose to erase the relocations.
3411 if (config->emitRelocs && isec->type == SHT_REL)
3412 if (InputSectionBase *ex = isec->getRelocatedSection())
3413 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3414 return true;
3415
3416 return false;
3417 }
3418
3419 // References to .ARM.Extab Sections have bit 31 clear and are not the
3420 // special EXIDX_CANTUNWIND bit-pattern.
isExtabRef(uint32_t unwind)3421 static bool isExtabRef(uint32_t unwind) {
3422 return (unwind & 0x80000000) == 0 && unwind != 0x1;
3423 }
3424
3425 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3426 // section Prev, where Cur follows Prev in the table. This can be done if the
3427 // unwinding instructions in Cur are identical to Prev. Linker generated
3428 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3429 // InputSection.
isDuplicateArmExidxSec(InputSection * prev,InputSection * cur)3430 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3431
3432 struct ExidxEntry {
3433 ulittle32_t fn;
3434 ulittle32_t unwind;
3435 };
3436 // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3437 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3438 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
3439 if (prev)
3440 prevEntry = prev->getDataAs<ExidxEntry>().back();
3441 if (isExtabRef(prevEntry.unwind))
3442 return false;
3443
3444 // We consider the unwind instructions of an .ARM.exidx table entry
3445 // a duplicate if the previous unwind instructions if:
3446 // - Both are the special EXIDX_CANTUNWIND.
3447 // - Both are the same inline unwind instructions.
3448 // We do not attempt to follow and check links into .ARM.extab tables as
3449 // consecutive identical entries are rare and the effort to check that they
3450 // are identical is high.
3451
3452 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3453 if (cur == nullptr)
3454 return prevEntry.unwind == 1;
3455
3456 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
3457 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
3458 return false;
3459
3460 // All table entries in this .ARM.exidx Section can be merged into the
3461 // previous Section.
3462 return true;
3463 }
3464
3465 // The .ARM.exidx table must be sorted in ascending order of the address of the
3466 // functions the table describes. Optionally duplicate adjacent table entries
3467 // can be removed. At the end of the function the executableSections must be
3468 // sorted in ascending order of address, Sentinel is set to the InputSection
3469 // with the highest address and any InputSections that have mergeable
3470 // .ARM.exidx table entries are removed from it.
finalizeContents()3471 void ARMExidxSyntheticSection::finalizeContents() {
3472 // The executableSections and exidxSections that we use to derive the final
3473 // contents of this SyntheticSection are populated before
3474 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3475 // ICF may remove executable InputSections and their dependent .ARM.exidx
3476 // section that we recorded earlier.
3477 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3478 llvm::erase_if(exidxSections, isDiscarded);
3479 // We need to remove discarded InputSections and InputSections without
3480 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3481 // of range.
3482 auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3483 if (!isec->isLive())
3484 return true;
3485 if (findExidxSection(isec))
3486 return false;
3487 int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3488 return off != llvm::SignExtend64(off, 31);
3489 };
3490 llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3491
3492 // Sort the executable sections that may or may not have associated
3493 // .ARM.exidx sections by order of ascending address. This requires the
3494 // relative positions of InputSections and OutputSections to be known.
3495 auto compareByFilePosition = [](const InputSection *a,
3496 const InputSection *b) {
3497 OutputSection *aOut = a->getParent();
3498 OutputSection *bOut = b->getParent();
3499
3500 if (aOut != bOut)
3501 return aOut->addr < bOut->addr;
3502 return a->outSecOff < b->outSecOff;
3503 };
3504 llvm::stable_sort(executableSections, compareByFilePosition);
3505 sentinel = executableSections.back();
3506 // Optionally merge adjacent duplicate entries.
3507 if (config->mergeArmExidx) {
3508 SmallVector<InputSection *, 0> selectedSections;
3509 selectedSections.reserve(executableSections.size());
3510 selectedSections.push_back(executableSections[0]);
3511 size_t prev = 0;
3512 for (size_t i = 1; i < executableSections.size(); ++i) {
3513 InputSection *ex1 = findExidxSection(executableSections[prev]);
3514 InputSection *ex2 = findExidxSection(executableSections[i]);
3515 if (!isDuplicateArmExidxSec(ex1, ex2)) {
3516 selectedSections.push_back(executableSections[i]);
3517 prev = i;
3518 }
3519 }
3520 executableSections = std::move(selectedSections);
3521 }
3522
3523 size_t offset = 0;
3524 size = 0;
3525 for (InputSection *isec : executableSections) {
3526 if (InputSection *d = findExidxSection(isec)) {
3527 d->outSecOff = offset;
3528 d->parent = getParent();
3529 offset += d->getSize();
3530 } else {
3531 offset += 8;
3532 }
3533 }
3534 // Size includes Sentinel.
3535 size = offset + 8;
3536 }
3537
getLinkOrderDep() const3538 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3539 return executableSections.front();
3540 }
3541
3542 // To write the .ARM.exidx table from the ExecutableSections we have three cases
3543 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3544 // We write the .ARM.exidx section contents and apply its relocations.
3545 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3546 // must write the contents of an EXIDX_CANTUNWIND directly. We use the
3547 // start of the InputSection as the purpose of the linker generated
3548 // section is to terminate the address range of the previous entry.
3549 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3550 // the table to terminate the address range of the final entry.
writeTo(uint8_t * buf)3551 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3552
3553 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target
3554 1, 0, 0, 0}; // EXIDX_CANTUNWIND
3555
3556 uint64_t offset = 0;
3557 for (InputSection *isec : executableSections) {
3558 assert(isec->getParent() != nullptr);
3559 if (InputSection *d = findExidxSection(isec)) {
3560 memcpy(buf + offset, d->rawData.data(), d->rawData.size());
3561 d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize());
3562 offset += d->getSize();
3563 } else {
3564 // A Linker generated CANTUNWIND section.
3565 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3566 uint64_t s = isec->getVA();
3567 uint64_t p = getVA() + offset;
3568 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3569 offset += 8;
3570 }
3571 }
3572 // Write Sentinel.
3573 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3574 uint64_t s = sentinel->getVA(sentinel->getSize());
3575 uint64_t p = getVA() + offset;
3576 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3577 assert(size == offset + 8);
3578 }
3579
isNeeded() const3580 bool ARMExidxSyntheticSection::isNeeded() const {
3581 return llvm::any_of(exidxSections,
3582 [](InputSection *isec) { return isec->isLive(); });
3583 }
3584
ThunkSection(OutputSection * os,uint64_t off)3585 ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3586 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
3587 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") {
3588 this->parent = os;
3589 this->outSecOff = off;
3590 }
3591
getSize() const3592 size_t ThunkSection::getSize() const {
3593 if (roundUpSizeForErrata)
3594 return alignTo(size, 4096);
3595 return size;
3596 }
3597
addThunk(Thunk * t)3598 void ThunkSection::addThunk(Thunk *t) {
3599 thunks.push_back(t);
3600 t->addSymbols(*this);
3601 }
3602
writeTo(uint8_t * buf)3603 void ThunkSection::writeTo(uint8_t *buf) {
3604 for (Thunk *t : thunks)
3605 t->writeTo(buf + t->offset);
3606 }
3607
getTargetInputSection() const3608 InputSection *ThunkSection::getTargetInputSection() const {
3609 if (thunks.empty())
3610 return nullptr;
3611 const Thunk *t = thunks.front();
3612 return t->getTargetInputSection();
3613 }
3614
assignOffsets()3615 bool ThunkSection::assignOffsets() {
3616 uint64_t off = 0;
3617 for (Thunk *t : thunks) {
3618 off = alignToPowerOf2(off, t->alignment);
3619 t->setOffset(off);
3620 uint32_t size = t->size();
3621 t->getThunkTargetSym()->size = size;
3622 off += size;
3623 }
3624 bool changed = off != size;
3625 size = off;
3626 return changed;
3627 }
3628
PPC32Got2Section()3629 PPC32Got2Section::PPC32Got2Section()
3630 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3631
isNeeded() const3632 bool PPC32Got2Section::isNeeded() const {
3633 // See the comment below. This is not needed if there is no other
3634 // InputSection.
3635 for (SectionCommand *cmd : getParent()->commands)
3636 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
3637 for (InputSection *isec : isd->sections)
3638 if (isec != this)
3639 return true;
3640 return false;
3641 }
3642
finalizeContents()3643 void PPC32Got2Section::finalizeContents() {
3644 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3645 // .got2 . This function computes outSecOff of each .got2 to be used in
3646 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3647 // to collect input sections named ".got2".
3648 for (SectionCommand *cmd : getParent()->commands)
3649 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
3650 for (InputSection *isec : isd->sections) {
3651 // isec->file may be nullptr for MergeSyntheticSection.
3652 if (isec != this && isec->file)
3653 isec->file->ppc32Got2 = isec;
3654 }
3655 }
3656 }
3657
3658 // If linking position-dependent code then the table will store the addresses
3659 // directly in the binary so the section has type SHT_PROGBITS. If linking
3660 // position-independent code the section has type SHT_NOBITS since it will be
3661 // allocated and filled in by the dynamic linker.
PPC64LongBranchTargetSection()3662 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3663 : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3664 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3665 ".branch_lt") {}
3666
getEntryVA(const Symbol * sym,int64_t addend)3667 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3668 int64_t addend) {
3669 return getVA() + entry_index.find({sym, addend})->second * 8;
3670 }
3671
addEntry(const Symbol * sym,int64_t addend)3672 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym,
3673 int64_t addend) {
3674 auto res =
3675 entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3676 if (!res.second)
3677 return None;
3678 entries.emplace_back(sym, addend);
3679 return res.first->second;
3680 }
3681
getSize() const3682 size_t PPC64LongBranchTargetSection::getSize() const {
3683 return entries.size() * 8;
3684 }
3685
writeTo(uint8_t * buf)3686 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3687 // If linking non-pic we have the final addresses of the targets and they get
3688 // written to the table directly. For pic the dynamic linker will allocate
3689 // the section and fill it it.
3690 if (config->isPic)
3691 return;
3692
3693 for (auto entry : entries) {
3694 const Symbol *sym = entry.first;
3695 int64_t addend = entry.second;
3696 assert(sym->getVA());
3697 // Need calls to branch to the local entry-point since a long-branch
3698 // must be a local-call.
3699 write64(buf, sym->getVA(addend) +
3700 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3701 buf += 8;
3702 }
3703 }
3704
isNeeded() const3705 bool PPC64LongBranchTargetSection::isNeeded() const {
3706 // `removeUnusedSyntheticSections()` is called before thunk allocation which
3707 // is too early to determine if this section will be empty or not. We need
3708 // Finalized to keep the section alive until after thunk creation. Finalized
3709 // only gets set to true once `finalizeSections()` is called after thunk
3710 // creation. Because of this, if we don't create any long-branch thunks we end
3711 // up with an empty .branch_lt section in the binary.
3712 return !finalized || !entries.empty();
3713 }
3714
getAbiVersion()3715 static uint8_t getAbiVersion() {
3716 // MIPS non-PIC executable gets ABI version 1.
3717 if (config->emachine == EM_MIPS) {
3718 if (!config->isPic && !config->relocatable &&
3719 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3720 return 1;
3721 return 0;
3722 }
3723
3724 if (config->emachine == EM_AMDGPU && !ctx->objectFiles.empty()) {
3725 uint8_t ver = ctx->objectFiles[0]->abiVersion;
3726 for (InputFile *file : makeArrayRef(ctx->objectFiles).slice(1))
3727 if (file->abiVersion != ver)
3728 error("incompatible ABI version: " + toString(file));
3729 return ver;
3730 }
3731
3732 return 0;
3733 }
3734
writeEhdr(uint8_t * buf,Partition & part)3735 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3736 memcpy(buf, "\177ELF", 4);
3737
3738 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3739 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3740 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3741 eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3742 eHdr->e_ident[EI_OSABI] = config->osabi;
3743 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3744 eHdr->e_machine = config->emachine;
3745 eHdr->e_version = EV_CURRENT;
3746 eHdr->e_flags = config->eflags;
3747 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3748 eHdr->e_phnum = part.phdrs.size();
3749 eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3750
3751 if (!config->relocatable) {
3752 eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3753 eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3754 }
3755 }
3756
writePhdrs(uint8_t * buf,Partition & part)3757 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3758 // Write the program header table.
3759 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3760 for (PhdrEntry *p : part.phdrs) {
3761 hBuf->p_type = p->p_type;
3762 hBuf->p_flags = p->p_flags;
3763 hBuf->p_offset = p->p_offset;
3764 hBuf->p_vaddr = p->p_vaddr;
3765 hBuf->p_paddr = p->p_paddr;
3766 hBuf->p_filesz = p->p_filesz;
3767 hBuf->p_memsz = p->p_memsz;
3768 hBuf->p_align = p->p_align;
3769 ++hBuf;
3770 }
3771 }
3772
3773 template <typename ELFT>
PartitionElfHeaderSection()3774 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3775 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3776
3777 template <typename ELFT>
getSize() const3778 size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3779 return sizeof(typename ELFT::Ehdr);
3780 }
3781
3782 template <typename ELFT>
writeTo(uint8_t * buf)3783 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3784 writeEhdr<ELFT>(buf, getPartition());
3785
3786 // Loadable partitions are always ET_DYN.
3787 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3788 eHdr->e_type = ET_DYN;
3789 }
3790
3791 template <typename ELFT>
PartitionProgramHeadersSection()3792 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3793 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3794
3795 template <typename ELFT>
getSize() const3796 size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3797 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3798 }
3799
3800 template <typename ELFT>
writeTo(uint8_t * buf)3801 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3802 writePhdrs<ELFT>(buf, getPartition());
3803 }
3804
PartitionIndexSection()3805 PartitionIndexSection::PartitionIndexSection()
3806 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3807
getSize() const3808 size_t PartitionIndexSection::getSize() const {
3809 return 12 * (partitions.size() - 1);
3810 }
3811
finalizeContents()3812 void PartitionIndexSection::finalizeContents() {
3813 for (size_t i = 1; i != partitions.size(); ++i)
3814 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3815 }
3816
writeTo(uint8_t * buf)3817 void PartitionIndexSection::writeTo(uint8_t *buf) {
3818 uint64_t va = getVA();
3819 for (size_t i = 1; i != partitions.size(); ++i) {
3820 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3821 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3822
3823 SyntheticSection *next = i == partitions.size() - 1
3824 ? in.partEnd.get()
3825 : partitions[i + 1].elfHeader.get();
3826 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3827
3828 va += 12;
3829 buf += 12;
3830 }
3831 }
3832
reset()3833 void InStruct::reset() {
3834 attributes.reset();
3835 bss.reset();
3836 bssRelRo.reset();
3837 got.reset();
3838 gotPlt.reset();
3839 igotPlt.reset();
3840 ppc64LongBranchTarget.reset();
3841 mipsAbiFlags.reset();
3842 mipsGot.reset();
3843 mipsOptions.reset();
3844 mipsReginfo.reset();
3845 mipsRldMap.reset();
3846 partEnd.reset();
3847 partIndex.reset();
3848 plt.reset();
3849 iplt.reset();
3850 ppc32Got2.reset();
3851 ibtPlt.reset();
3852 relaPlt.reset();
3853 relaIplt.reset();
3854 shStrTab.reset();
3855 strTab.reset();
3856 symTab.reset();
3857 symTabShndx.reset();
3858 }
3859
3860 constexpr char kMemtagAndroidNoteName[] = "Android";
writeTo(uint8_t * buf)3861 void MemtagAndroidNote::writeTo(uint8_t *buf) {
3862 static_assert(sizeof(kMemtagAndroidNoteName) == 8,
3863 "ABI check for Android 11 & 12.");
3864 assert((config->androidMemtagStack || config->androidMemtagHeap) &&
3865 "Should only be synthesizing a note if heap || stack is enabled.");
3866
3867 write32(buf, sizeof(kMemtagAndroidNoteName));
3868 write32(buf + 4, sizeof(uint32_t));
3869 write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG);
3870 memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName));
3871 buf += 12 + sizeof(kMemtagAndroidNoteName);
3872
3873 uint32_t value = 0;
3874 value |= config->androidMemtagMode;
3875 if (config->androidMemtagHeap)
3876 value |= ELF::NT_MEMTAG_HEAP;
3877 // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
3878 // binary on Android 11 or 12 will result in a checkfail in the loader.
3879 if (config->androidMemtagStack)
3880 value |= ELF::NT_MEMTAG_STACK;
3881 write32(buf, value); // note value
3882 }
3883
getSize() const3884 size_t MemtagAndroidNote::getSize() const {
3885 return sizeof(llvm::ELF::Elf64_Nhdr) +
3886 /*namesz=*/sizeof(kMemtagAndroidNoteName) +
3887 /*descsz=*/sizeof(uint32_t);
3888 }
3889
writeTo(uint8_t * buf)3890 void PackageMetadataNote::writeTo(uint8_t *buf) {
3891 write32(buf, 4);
3892 write32(buf + 4, config->packageMetadata.size() + 1);
3893 write32(buf + 8, FDO_PACKAGING_METADATA);
3894 memcpy(buf + 12, "FDO", 4);
3895 memcpy(buf + 16, config->packageMetadata.data(),
3896 config->packageMetadata.size());
3897 }
3898
getSize() const3899 size_t PackageMetadataNote::getSize() const {
3900 return sizeof(llvm::ELF::Elf64_Nhdr) + 4 +
3901 alignTo(config->packageMetadata.size() + 1, 4);
3902 }
3903
3904 InStruct elf::in;
3905
3906 std::vector<Partition> elf::partitions;
3907 Partition *elf::mainPart;
3908
3909 template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3910 template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3911 template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3912 template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3913
3914 template void elf::splitSections<ELF32LE>();
3915 template void elf::splitSections<ELF32BE>();
3916 template void elf::splitSections<ELF64LE>();
3917 template void elf::splitSections<ELF64BE>();
3918
3919 template class elf::MipsAbiFlagsSection<ELF32LE>;
3920 template class elf::MipsAbiFlagsSection<ELF32BE>;
3921 template class elf::MipsAbiFlagsSection<ELF64LE>;
3922 template class elf::MipsAbiFlagsSection<ELF64BE>;
3923
3924 template class elf::MipsOptionsSection<ELF32LE>;
3925 template class elf::MipsOptionsSection<ELF32BE>;
3926 template class elf::MipsOptionsSection<ELF64LE>;
3927 template class elf::MipsOptionsSection<ELF64BE>;
3928
3929 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
3930 function_ref<void(InputSection &)>);
3931 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
3932 function_ref<void(InputSection &)>);
3933 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
3934 function_ref<void(InputSection &)>);
3935 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
3936 function_ref<void(InputSection &)>);
3937
3938 template class elf::MipsReginfoSection<ELF32LE>;
3939 template class elf::MipsReginfoSection<ELF32BE>;
3940 template class elf::MipsReginfoSection<ELF64LE>;
3941 template class elf::MipsReginfoSection<ELF64BE>;
3942
3943 template class elf::DynamicSection<ELF32LE>;
3944 template class elf::DynamicSection<ELF32BE>;
3945 template class elf::DynamicSection<ELF64LE>;
3946 template class elf::DynamicSection<ELF64BE>;
3947
3948 template class elf::RelocationSection<ELF32LE>;
3949 template class elf::RelocationSection<ELF32BE>;
3950 template class elf::RelocationSection<ELF64LE>;
3951 template class elf::RelocationSection<ELF64BE>;
3952
3953 template class elf::AndroidPackedRelocationSection<ELF32LE>;
3954 template class elf::AndroidPackedRelocationSection<ELF32BE>;
3955 template class elf::AndroidPackedRelocationSection<ELF64LE>;
3956 template class elf::AndroidPackedRelocationSection<ELF64BE>;
3957
3958 template class elf::RelrSection<ELF32LE>;
3959 template class elf::RelrSection<ELF32BE>;
3960 template class elf::RelrSection<ELF64LE>;
3961 template class elf::RelrSection<ELF64BE>;
3962
3963 template class elf::SymbolTableSection<ELF32LE>;
3964 template class elf::SymbolTableSection<ELF32BE>;
3965 template class elf::SymbolTableSection<ELF64LE>;
3966 template class elf::SymbolTableSection<ELF64BE>;
3967
3968 template class elf::VersionNeedSection<ELF32LE>;
3969 template class elf::VersionNeedSection<ELF32BE>;
3970 template class elf::VersionNeedSection<ELF64LE>;
3971 template class elf::VersionNeedSection<ELF64BE>;
3972
3973 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
3974 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
3975 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
3976 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
3977
3978 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
3979 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
3980 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
3981 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
3982
3983 template class elf::PartitionElfHeaderSection<ELF32LE>;
3984 template class elf::PartitionElfHeaderSection<ELF32BE>;
3985 template class elf::PartitionElfHeaderSection<ELF64LE>;
3986 template class elf::PartitionElfHeaderSection<ELF64BE>;
3987
3988 template class elf::PartitionProgramHeadersSection<ELF32LE>;
3989 template class elf::PartitionProgramHeadersSection<ELF32BE>;
3990 template class elf::PartitionProgramHeadersSection<ELF64LE>;
3991 template class elf::PartitionProgramHeadersSection<ELF64BE>;
3992