1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "InputFiles.h" 19 #include "LinkerScript.h" 20 #include "OutputSections.h" 21 #include "SymbolTable.h" 22 #include "Symbols.h" 23 #include "Target.h" 24 #include "Writer.h" 25 #include "lld/Common/DWARF.h" 26 #include "lld/Common/ErrorHandler.h" 27 #include "lld/Common/Memory.h" 28 #include "lld/Common/Strings.h" 29 #include "lld/Common/Version.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 34 #include "llvm/Object/ELFObjectFile.h" 35 #include "llvm/Support/Compression.h" 36 #include "llvm/Support/Endian.h" 37 #include "llvm/Support/LEB128.h" 38 #include "llvm/Support/MD5.h" 39 #include "llvm/Support/Parallel.h" 40 #include "llvm/Support/TimeProfiler.h" 41 #include <cstdlib> 42 #include <thread> 43 44 using namespace llvm; 45 using namespace llvm::dwarf; 46 using namespace llvm::ELF; 47 using namespace llvm::object; 48 using namespace llvm::support; 49 using namespace lld; 50 using namespace lld::elf; 51 52 using llvm::support::endian::read32le; 53 using llvm::support::endian::write32le; 54 using llvm::support::endian::write64le; 55 56 constexpr size_t MergeNoTailSection::numShards; 57 58 static uint64_t readUint(uint8_t *buf) { 59 return config->is64 ? read64(buf) : read32(buf); 60 } 61 62 static void writeUint(uint8_t *buf, uint64_t val) { 63 if (config->is64) 64 write64(buf, val); 65 else 66 write32(buf, val); 67 } 68 69 // Returns an LLD version string. 70 static ArrayRef<uint8_t> getVersion() { 71 // Check LLD_VERSION first for ease of testing. 72 // You can get consistent output by using the environment variable. 73 // This is only for testing. 74 StringRef s = getenv("LLD_VERSION"); 75 if (s.empty()) 76 s = saver.save(Twine("Linker: ") + getLLDVersion()); 77 78 // +1 to include the terminating '\0'. 79 return {(const uint8_t *)s.data(), s.size() + 1}; 80 } 81 82 // Creates a .comment section containing LLD version info. 83 // With this feature, you can identify LLD-generated binaries easily 84 // by "readelf --string-dump .comment <file>". 85 // The returned object is a mergeable string section. 86 MergeInputSection *elf::createCommentSection() { 87 return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 88 getVersion(), ".comment"); 89 } 90 91 // .MIPS.abiflags section. 92 template <class ELFT> 93 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 94 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 95 flags(flags) { 96 this->entsize = sizeof(Elf_Mips_ABIFlags); 97 } 98 99 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 100 memcpy(buf, &flags, sizeof(flags)); 101 } 102 103 template <class ELFT> 104 MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() { 105 Elf_Mips_ABIFlags flags = {}; 106 bool create = false; 107 108 for (InputSectionBase *sec : inputSections) { 109 if (sec->type != SHT_MIPS_ABIFLAGS) 110 continue; 111 sec->markDead(); 112 create = true; 113 114 std::string filename = toString(sec->file); 115 const size_t size = sec->data().size(); 116 // Older version of BFD (such as the default FreeBSD linker) concatenate 117 // .MIPS.abiflags instead of merging. To allow for this case (or potential 118 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 119 if (size < sizeof(Elf_Mips_ABIFlags)) { 120 error(filename + ": invalid size of .MIPS.abiflags section: got " + 121 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 122 return nullptr; 123 } 124 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data()); 125 if (s->version != 0) { 126 error(filename + ": unexpected .MIPS.abiflags version " + 127 Twine(s->version)); 128 return nullptr; 129 } 130 131 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 132 // select the highest number of ISA/Rev/Ext. 133 flags.isa_level = std::max(flags.isa_level, s->isa_level); 134 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 135 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 136 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 137 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 138 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 139 flags.ases |= s->ases; 140 flags.flags1 |= s->flags1; 141 flags.flags2 |= s->flags2; 142 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 143 }; 144 145 if (create) 146 return make<MipsAbiFlagsSection<ELFT>>(flags); 147 return nullptr; 148 } 149 150 // .MIPS.options section. 151 template <class ELFT> 152 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 153 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 154 reginfo(reginfo) { 155 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 156 } 157 158 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 159 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 160 options->kind = ODK_REGINFO; 161 options->size = getSize(); 162 163 if (!config->relocatable) 164 reginfo.ri_gp_value = in.mipsGot->getGp(); 165 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 166 } 167 168 template <class ELFT> 169 MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() { 170 // N64 ABI only. 171 if (!ELFT::Is64Bits) 172 return nullptr; 173 174 SmallVector<InputSectionBase *, 0> sections; 175 for (InputSectionBase *sec : inputSections) 176 if (sec->type == SHT_MIPS_OPTIONS) 177 sections.push_back(sec); 178 179 if (sections.empty()) 180 return nullptr; 181 182 Elf_Mips_RegInfo reginfo = {}; 183 for (InputSectionBase *sec : sections) { 184 sec->markDead(); 185 186 std::string filename = toString(sec->file); 187 ArrayRef<uint8_t> d = sec->data(); 188 189 while (!d.empty()) { 190 if (d.size() < sizeof(Elf_Mips_Options)) { 191 error(filename + ": invalid size of .MIPS.options section"); 192 break; 193 } 194 195 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 196 if (opt->kind == ODK_REGINFO) { 197 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 198 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 199 break; 200 } 201 202 if (!opt->size) 203 fatal(filename + ": zero option descriptor size"); 204 d = d.slice(opt->size); 205 } 206 }; 207 208 return make<MipsOptionsSection<ELFT>>(reginfo); 209 } 210 211 // MIPS .reginfo section. 212 template <class ELFT> 213 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 214 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 215 reginfo(reginfo) { 216 this->entsize = sizeof(Elf_Mips_RegInfo); 217 } 218 219 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 220 if (!config->relocatable) 221 reginfo.ri_gp_value = in.mipsGot->getGp(); 222 memcpy(buf, ®info, sizeof(reginfo)); 223 } 224 225 template <class ELFT> 226 MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() { 227 // Section should be alive for O32 and N32 ABIs only. 228 if (ELFT::Is64Bits) 229 return nullptr; 230 231 SmallVector<InputSectionBase *, 0> sections; 232 for (InputSectionBase *sec : inputSections) 233 if (sec->type == SHT_MIPS_REGINFO) 234 sections.push_back(sec); 235 236 if (sections.empty()) 237 return nullptr; 238 239 Elf_Mips_RegInfo reginfo = {}; 240 for (InputSectionBase *sec : sections) { 241 sec->markDead(); 242 243 if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) { 244 error(toString(sec->file) + ": invalid size of .reginfo section"); 245 return nullptr; 246 } 247 248 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data()); 249 reginfo.ri_gprmask |= r->ri_gprmask; 250 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 251 }; 252 253 return make<MipsReginfoSection<ELFT>>(reginfo); 254 } 255 256 InputSection *elf::createInterpSection() { 257 // StringSaver guarantees that the returned string ends with '\0'. 258 StringRef s = saver.save(config->dynamicLinker); 259 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 260 261 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 262 ".interp"); 263 } 264 265 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 266 uint64_t size, InputSectionBase §ion) { 267 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type, 268 value, size, §ion); 269 if (in.symTab) 270 in.symTab->addSymbol(s); 271 return s; 272 } 273 274 static size_t getHashSize() { 275 switch (config->buildId) { 276 case BuildIdKind::Fast: 277 return 8; 278 case BuildIdKind::Md5: 279 case BuildIdKind::Uuid: 280 return 16; 281 case BuildIdKind::Sha1: 282 return 20; 283 case BuildIdKind::Hexstring: 284 return config->buildIdVector.size(); 285 default: 286 llvm_unreachable("unknown BuildIdKind"); 287 } 288 } 289 290 // This class represents a linker-synthesized .note.gnu.property section. 291 // 292 // In x86 and AArch64, object files may contain feature flags indicating the 293 // features that they have used. The flags are stored in a .note.gnu.property 294 // section. 295 // 296 // lld reads the sections from input files and merges them by computing AND of 297 // the flags. The result is written as a new .note.gnu.property section. 298 // 299 // If the flag is zero (which indicates that the intersection of the feature 300 // sets is empty, or some input files didn't have .note.gnu.property sections), 301 // we don't create this section. 302 GnuPropertySection::GnuPropertySection() 303 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 304 config->wordsize, ".note.gnu.property") {} 305 306 void GnuPropertySection::writeTo(uint8_t *buf) { 307 uint32_t featureAndType = config->emachine == EM_AARCH64 308 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 309 : GNU_PROPERTY_X86_FEATURE_1_AND; 310 311 write32(buf, 4); // Name size 312 write32(buf + 4, config->is64 ? 16 : 12); // Content size 313 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 314 memcpy(buf + 12, "GNU", 4); // Name string 315 write32(buf + 16, featureAndType); // Feature type 316 write32(buf + 20, 4); // Feature size 317 write32(buf + 24, config->andFeatures); // Feature flags 318 if (config->is64) 319 write32(buf + 28, 0); // Padding 320 } 321 322 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 323 324 BuildIdSection::BuildIdSection() 325 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 326 hashSize(getHashSize()) {} 327 328 void BuildIdSection::writeTo(uint8_t *buf) { 329 write32(buf, 4); // Name size 330 write32(buf + 4, hashSize); // Content size 331 write32(buf + 8, NT_GNU_BUILD_ID); // Type 332 memcpy(buf + 12, "GNU", 4); // Name string 333 hashBuf = buf + 16; 334 } 335 336 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 337 assert(buf.size() == hashSize); 338 memcpy(hashBuf, buf.data(), hashSize); 339 } 340 341 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 342 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 343 this->bss = true; 344 this->size = size; 345 } 346 347 EhFrameSection::EhFrameSection() 348 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 349 350 // Search for an existing CIE record or create a new one. 351 // CIE records from input object files are uniquified by their contents 352 // and where their relocations point to. 353 template <class ELFT, class RelTy> 354 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 355 Symbol *personality = nullptr; 356 unsigned firstRelI = cie.firstRelocation; 357 if (firstRelI != (unsigned)-1) 358 personality = 359 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 360 361 // Search for an existing CIE by CIE contents/relocation target pair. 362 CieRecord *&rec = cieMap[{cie.data(), personality}]; 363 364 // If not found, create a new one. 365 if (!rec) { 366 rec = make<CieRecord>(); 367 rec->cie = &cie; 368 cieRecords.push_back(rec); 369 } 370 return rec; 371 } 372 373 // There is one FDE per function. Returns a non-null pointer to the function 374 // symbol if the given FDE points to a live function. 375 template <class ELFT, class RelTy> 376 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 377 auto *sec = cast<EhInputSection>(fde.sec); 378 unsigned firstRelI = fde.firstRelocation; 379 380 // An FDE should point to some function because FDEs are to describe 381 // functions. That's however not always the case due to an issue of 382 // ld.gold with -r. ld.gold may discard only functions and leave their 383 // corresponding FDEs, which results in creating bad .eh_frame sections. 384 // To deal with that, we ignore such FDEs. 385 if (firstRelI == (unsigned)-1) 386 return nullptr; 387 388 const RelTy &rel = rels[firstRelI]; 389 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 390 391 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 392 // another partition, are dead. 393 if (auto *d = dyn_cast<Defined>(&b)) 394 if (!d->folded && d->section && d->section->partition == partition) 395 return d; 396 return nullptr; 397 } 398 399 // .eh_frame is a sequence of CIE or FDE records. In general, there 400 // is one CIE record per input object file which is followed by 401 // a list of FDEs. This function searches an existing CIE or create a new 402 // one and associates FDEs to the CIE. 403 template <class ELFT, class RelTy> 404 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 405 offsetToCie.clear(); 406 for (EhSectionPiece &piece : sec->pieces) { 407 // The empty record is the end marker. 408 if (piece.size == 4) 409 return; 410 411 size_t offset = piece.inputOff; 412 uint32_t id = read32(piece.data().data() + 4); 413 if (id == 0) { 414 offsetToCie[offset] = addCie<ELFT>(piece, rels); 415 continue; 416 } 417 418 uint32_t cieOffset = offset + 4 - id; 419 CieRecord *rec = offsetToCie[cieOffset]; 420 if (!rec) 421 fatal(toString(sec) + ": invalid CIE reference"); 422 423 if (!isFdeLive<ELFT>(piece, rels)) 424 continue; 425 rec->fdes.push_back(&piece); 426 numFdes++; 427 } 428 } 429 430 template <class ELFT> 431 void EhFrameSection::addSectionAux(EhInputSection *sec) { 432 if (!sec->isLive()) 433 return; 434 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 435 if (rels.areRelocsRel()) 436 addRecords<ELFT>(sec, rels.rels); 437 else 438 addRecords<ELFT>(sec, rels.relas); 439 } 440 441 void EhFrameSection::addSection(EhInputSection *sec) { 442 sec->parent = this; 443 444 alignment = std::max(alignment, sec->alignment); 445 sections.push_back(sec); 446 447 for (auto *ds : sec->dependentSections) 448 dependentSections.push_back(ds); 449 } 450 451 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 452 // EhFrameSection::addRecords(). 453 template <class ELFT, class RelTy> 454 void EhFrameSection::iterateFDEWithLSDAAux( 455 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 456 llvm::function_ref<void(InputSection &)> fn) { 457 for (EhSectionPiece &piece : sec.pieces) { 458 // Skip ZERO terminator. 459 if (piece.size == 4) 460 continue; 461 462 size_t offset = piece.inputOff; 463 uint32_t id = 464 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 465 if (id == 0) { 466 if (hasLSDA(piece)) 467 ciesWithLSDA.insert(offset); 468 continue; 469 } 470 uint32_t cieOffset = offset + 4 - id; 471 if (ciesWithLSDA.count(cieOffset) == 0) 472 continue; 473 474 // The CIE has a LSDA argument. Call fn with d's section. 475 if (Defined *d = isFdeLive<ELFT>(piece, rels)) 476 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 477 fn(*s); 478 } 479 } 480 481 template <class ELFT> 482 void EhFrameSection::iterateFDEWithLSDA( 483 llvm::function_ref<void(InputSection &)> fn) { 484 DenseSet<size_t> ciesWithLSDA; 485 for (EhInputSection *sec : sections) { 486 ciesWithLSDA.clear(); 487 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 488 if (rels.areRelocsRel()) 489 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); 490 else 491 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); 492 } 493 } 494 495 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 496 memcpy(buf, d.data(), d.size()); 497 498 size_t aligned = alignTo(d.size(), config->wordsize); 499 assert(std::all_of(buf + d.size(), buf + aligned, 500 [](uint8_t c) { return c == 0; })); 501 502 // Fix the size field. -4 since size does not include the size field itself. 503 write32(buf, aligned - 4); 504 } 505 506 void EhFrameSection::finalizeContents() { 507 assert(!this->size); // Not finalized. 508 509 switch (config->ekind) { 510 case ELFNoneKind: 511 llvm_unreachable("invalid ekind"); 512 case ELF32LEKind: 513 for (EhInputSection *sec : sections) 514 addSectionAux<ELF32LE>(sec); 515 break; 516 case ELF32BEKind: 517 for (EhInputSection *sec : sections) 518 addSectionAux<ELF32BE>(sec); 519 break; 520 case ELF64LEKind: 521 for (EhInputSection *sec : sections) 522 addSectionAux<ELF64LE>(sec); 523 break; 524 case ELF64BEKind: 525 for (EhInputSection *sec : sections) 526 addSectionAux<ELF64BE>(sec); 527 break; 528 } 529 530 size_t off = 0; 531 for (CieRecord *rec : cieRecords) { 532 rec->cie->outputOff = off; 533 off += alignTo(rec->cie->size, config->wordsize); 534 535 for (EhSectionPiece *fde : rec->fdes) { 536 fde->outputOff = off; 537 off += alignTo(fde->size, config->wordsize); 538 } 539 } 540 541 // The LSB standard does not allow a .eh_frame section with zero 542 // Call Frame Information records. glibc unwind-dw2-fde.c 543 // classify_object_over_fdes expects there is a CIE record length 0 as a 544 // terminator. Thus we add one unconditionally. 545 off += 4; 546 547 this->size = off; 548 } 549 550 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 551 // to get an FDE from an address to which FDE is applied. This function 552 // returns a list of such pairs. 553 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { 554 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 555 SmallVector<FdeData, 0> ret; 556 557 uint64_t va = getPartition().ehFrameHdr->getVA(); 558 for (CieRecord *rec : cieRecords) { 559 uint8_t enc = getFdeEncoding(rec->cie); 560 for (EhSectionPiece *fde : rec->fdes) { 561 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 562 uint64_t fdeVA = getParent()->addr + fde->outputOff; 563 if (!isInt<32>(pc - va)) 564 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 565 Twine::utohexstr(pc - va)); 566 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 567 } 568 } 569 570 // Sort the FDE list by their PC and uniqueify. Usually there is only 571 // one FDE for a PC (i.e. function), but if ICF merges two functions 572 // into one, there can be more than one FDEs pointing to the address. 573 auto less = [](const FdeData &a, const FdeData &b) { 574 return a.pcRel < b.pcRel; 575 }; 576 llvm::stable_sort(ret, less); 577 auto eq = [](const FdeData &a, const FdeData &b) { 578 return a.pcRel == b.pcRel; 579 }; 580 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 581 582 return ret; 583 } 584 585 static uint64_t readFdeAddr(uint8_t *buf, int size) { 586 switch (size) { 587 case DW_EH_PE_udata2: 588 return read16(buf); 589 case DW_EH_PE_sdata2: 590 return (int16_t)read16(buf); 591 case DW_EH_PE_udata4: 592 return read32(buf); 593 case DW_EH_PE_sdata4: 594 return (int32_t)read32(buf); 595 case DW_EH_PE_udata8: 596 case DW_EH_PE_sdata8: 597 return read64(buf); 598 case DW_EH_PE_absptr: 599 return readUint(buf); 600 } 601 fatal("unknown FDE size encoding"); 602 } 603 604 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 605 // We need it to create .eh_frame_hdr section. 606 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 607 uint8_t enc) const { 608 // The starting address to which this FDE applies is 609 // stored at FDE + 8 byte. 610 size_t off = fdeOff + 8; 611 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 612 if ((enc & 0x70) == DW_EH_PE_absptr) 613 return addr; 614 if ((enc & 0x70) == DW_EH_PE_pcrel) 615 return addr + getParent()->addr + off; 616 fatal("unknown FDE size relative encoding"); 617 } 618 619 void EhFrameSection::writeTo(uint8_t *buf) { 620 // Write CIE and FDE records. 621 for (CieRecord *rec : cieRecords) { 622 size_t cieOffset = rec->cie->outputOff; 623 writeCieFde(buf + cieOffset, rec->cie->data()); 624 625 for (EhSectionPiece *fde : rec->fdes) { 626 size_t off = fde->outputOff; 627 writeCieFde(buf + off, fde->data()); 628 629 // FDE's second word should have the offset to an associated CIE. 630 // Write it. 631 write32(buf + off + 4, off + 4 - cieOffset); 632 } 633 } 634 635 // Apply relocations. .eh_frame section contents are not contiguous 636 // in the output buffer, but relocateAlloc() still works because 637 // getOffset() takes care of discontiguous section pieces. 638 for (EhInputSection *s : sections) 639 s->relocateAlloc(buf, nullptr); 640 641 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 642 getPartition().ehFrameHdr->write(); 643 } 644 645 GotSection::GotSection() 646 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 647 target->gotEntrySize, ".got") { 648 numEntries = target->gotHeaderEntriesNum; 649 } 650 651 void GotSection::addEntry(Symbol &sym) { 652 assert(sym.auxIdx == symAux.size() - 1); 653 symAux.back().gotIdx = numEntries++; 654 } 655 656 bool GotSection::addTlsDescEntry(Symbol &sym) { 657 assert(sym.auxIdx == symAux.size() - 1); 658 symAux.back().tlsDescIdx = numEntries; 659 numEntries += 2; 660 return true; 661 } 662 663 bool GotSection::addDynTlsEntry(Symbol &sym) { 664 assert(sym.auxIdx == symAux.size() - 1); 665 symAux.back().tlsGdIdx = numEntries; 666 // Global Dynamic TLS entries take two GOT slots. 667 numEntries += 2; 668 return true; 669 } 670 671 // Reserves TLS entries for a TLS module ID and a TLS block offset. 672 // In total it takes two GOT slots. 673 bool GotSection::addTlsIndex() { 674 if (tlsIndexOff != uint32_t(-1)) 675 return false; 676 tlsIndexOff = numEntries * config->wordsize; 677 numEntries += 2; 678 return true; 679 } 680 681 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { 682 return sym.getTlsDescIdx() * config->wordsize; 683 } 684 685 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { 686 return getVA() + getTlsDescOffset(sym); 687 } 688 689 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 690 return this->getVA() + b.getTlsGdIdx() * config->wordsize; 691 } 692 693 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 694 return b.getTlsGdIdx() * config->wordsize; 695 } 696 697 void GotSection::finalizeContents() { 698 if (config->emachine == EM_PPC64 && 699 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable) 700 size = 0; 701 else 702 size = numEntries * config->wordsize; 703 } 704 705 bool GotSection::isNeeded() const { 706 // Needed if the GOT symbol is used or the number of entries is more than just 707 // the header. A GOT with just the header may not be needed. 708 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum; 709 } 710 711 void GotSection::writeTo(uint8_t *buf) { 712 target->writeGotHeader(buf); 713 relocateAlloc(buf, buf + size); 714 } 715 716 static uint64_t getMipsPageAddr(uint64_t addr) { 717 return (addr + 0x8000) & ~0xffff; 718 } 719 720 static uint64_t getMipsPageCount(uint64_t size) { 721 return (size + 0xfffe) / 0xffff + 1; 722 } 723 724 MipsGotSection::MipsGotSection() 725 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 726 ".got") {} 727 728 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 729 RelExpr expr) { 730 FileGot &g = getGot(file); 731 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 732 if (const OutputSection *os = sym.getOutputSection()) 733 g.pagesMap.insert({os, {}}); 734 else 735 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 736 } else if (sym.isTls()) 737 g.tls.insert({&sym, 0}); 738 else if (sym.isPreemptible && expr == R_ABS) 739 g.relocs.insert({&sym, 0}); 740 else if (sym.isPreemptible) 741 g.global.insert({&sym, 0}); 742 else if (expr == R_MIPS_GOT_OFF32) 743 g.local32.insert({{&sym, addend}, 0}); 744 else 745 g.local16.insert({{&sym, addend}, 0}); 746 } 747 748 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 749 getGot(file).dynTlsSymbols.insert({&sym, 0}); 750 } 751 752 void MipsGotSection::addTlsIndex(InputFile &file) { 753 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 754 } 755 756 size_t MipsGotSection::FileGot::getEntriesNum() const { 757 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 758 tls.size() + dynTlsSymbols.size() * 2; 759 } 760 761 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 762 size_t num = 0; 763 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 764 num += p.second.count; 765 return num; 766 } 767 768 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 769 size_t count = getPageEntriesNum() + local16.size() + global.size(); 770 // If there are relocation-only entries in the GOT, TLS entries 771 // are allocated after them. TLS entries should be addressable 772 // by 16-bit index so count both reloc-only and TLS entries. 773 if (!tls.empty() || !dynTlsSymbols.empty()) 774 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 775 return count; 776 } 777 778 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 779 if (f.mipsGotIndex == uint32_t(-1)) { 780 gots.emplace_back(); 781 gots.back().file = &f; 782 f.mipsGotIndex = gots.size() - 1; 783 } 784 return gots[f.mipsGotIndex]; 785 } 786 787 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 788 const Symbol &sym, 789 int64_t addend) const { 790 const FileGot &g = gots[f->mipsGotIndex]; 791 uint64_t index = 0; 792 if (const OutputSection *outSec = sym.getOutputSection()) { 793 uint64_t secAddr = getMipsPageAddr(outSec->addr); 794 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 795 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 796 } else { 797 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 798 } 799 return index * config->wordsize; 800 } 801 802 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 803 int64_t addend) const { 804 const FileGot &g = gots[f->mipsGotIndex]; 805 Symbol *sym = const_cast<Symbol *>(&s); 806 if (sym->isTls()) 807 return g.tls.lookup(sym) * config->wordsize; 808 if (sym->isPreemptible) 809 return g.global.lookup(sym) * config->wordsize; 810 return g.local16.lookup({sym, addend}) * config->wordsize; 811 } 812 813 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 814 const FileGot &g = gots[f->mipsGotIndex]; 815 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 816 } 817 818 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 819 const Symbol &s) const { 820 const FileGot &g = gots[f->mipsGotIndex]; 821 Symbol *sym = const_cast<Symbol *>(&s); 822 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 823 } 824 825 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 826 if (gots.empty()) 827 return nullptr; 828 const FileGot &primGot = gots.front(); 829 if (!primGot.global.empty()) 830 return primGot.global.front().first; 831 if (!primGot.relocs.empty()) 832 return primGot.relocs.front().first; 833 return nullptr; 834 } 835 836 unsigned MipsGotSection::getLocalEntriesNum() const { 837 if (gots.empty()) 838 return headerEntriesNum; 839 return headerEntriesNum + gots.front().getPageEntriesNum() + 840 gots.front().local16.size(); 841 } 842 843 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 844 FileGot tmp = dst; 845 set_union(tmp.pagesMap, src.pagesMap); 846 set_union(tmp.local16, src.local16); 847 set_union(tmp.global, src.global); 848 set_union(tmp.relocs, src.relocs); 849 set_union(tmp.tls, src.tls); 850 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 851 852 size_t count = isPrimary ? headerEntriesNum : 0; 853 count += tmp.getIndexedEntriesNum(); 854 855 if (count * config->wordsize > config->mipsGotSize) 856 return false; 857 858 std::swap(tmp, dst); 859 return true; 860 } 861 862 void MipsGotSection::finalizeContents() { updateAllocSize(); } 863 864 bool MipsGotSection::updateAllocSize() { 865 size = headerEntriesNum * config->wordsize; 866 for (const FileGot &g : gots) 867 size += g.getEntriesNum() * config->wordsize; 868 return false; 869 } 870 871 void MipsGotSection::build() { 872 if (gots.empty()) 873 return; 874 875 std::vector<FileGot> mergedGots(1); 876 877 // For each GOT move non-preemptible symbols from the `Global` 878 // to `Local16` list. Preemptible symbol might become non-preemptible 879 // one if, for example, it gets a related copy relocation. 880 for (FileGot &got : gots) { 881 for (auto &p: got.global) 882 if (!p.first->isPreemptible) 883 got.local16.insert({{p.first, 0}, 0}); 884 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 885 return !p.first->isPreemptible; 886 }); 887 } 888 889 // For each GOT remove "reloc-only" entry if there is "global" 890 // entry for the same symbol. And add local entries which indexed 891 // using 32-bit value at the end of 16-bit entries. 892 for (FileGot &got : gots) { 893 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 894 return got.global.count(p.first); 895 }); 896 set_union(got.local16, got.local32); 897 got.local32.clear(); 898 } 899 900 // Evaluate number of "reloc-only" entries in the resulting GOT. 901 // To do that put all unique "reloc-only" and "global" entries 902 // from all GOTs to the future primary GOT. 903 FileGot *primGot = &mergedGots.front(); 904 for (FileGot &got : gots) { 905 set_union(primGot->relocs, got.global); 906 set_union(primGot->relocs, got.relocs); 907 got.relocs.clear(); 908 } 909 910 // Evaluate number of "page" entries in each GOT. 911 for (FileGot &got : gots) { 912 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 913 got.pagesMap) { 914 const OutputSection *os = p.first; 915 uint64_t secSize = 0; 916 for (SectionCommand *cmd : os->commands) { 917 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 918 for (InputSection *isec : isd->sections) { 919 uint64_t off = alignTo(secSize, isec->alignment); 920 secSize = off + isec->getSize(); 921 } 922 } 923 p.second.count = getMipsPageCount(secSize); 924 } 925 } 926 927 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 928 // maximum GOT size. At first, try to fill the primary GOT because 929 // the primary GOT can be accessed in the most effective way. If it 930 // is not possible, try to fill the last GOT in the list, and finally 931 // create a new GOT if both attempts failed. 932 for (FileGot &srcGot : gots) { 933 InputFile *file = srcGot.file; 934 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 935 file->mipsGotIndex = 0; 936 } else { 937 // If this is the first time we failed to merge with the primary GOT, 938 // MergedGots.back() will also be the primary GOT. We must make sure not 939 // to try to merge again with isPrimary=false, as otherwise, if the 940 // inputs are just right, we could allow the primary GOT to become 1 or 2 941 // words bigger due to ignoring the header size. 942 if (mergedGots.size() == 1 || 943 !tryMergeGots(mergedGots.back(), srcGot, false)) { 944 mergedGots.emplace_back(); 945 std::swap(mergedGots.back(), srcGot); 946 } 947 file->mipsGotIndex = mergedGots.size() - 1; 948 } 949 } 950 std::swap(gots, mergedGots); 951 952 // Reduce number of "reloc-only" entries in the primary GOT 953 // by subtracting "global" entries in the primary GOT. 954 primGot = &gots.front(); 955 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 956 return primGot->global.count(p.first); 957 }); 958 959 // Calculate indexes for each GOT entry. 960 size_t index = headerEntriesNum; 961 for (FileGot &got : gots) { 962 got.startIndex = &got == primGot ? 0 : index; 963 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 964 got.pagesMap) { 965 // For each output section referenced by GOT page relocations calculate 966 // and save into pagesMap an upper bound of MIPS GOT entries required 967 // to store page addresses of local symbols. We assume the worst case - 968 // each 64kb page of the output section has at least one GOT relocation 969 // against it. And take in account the case when the section intersects 970 // page boundaries. 971 p.second.firstIndex = index; 972 index += p.second.count; 973 } 974 for (auto &p: got.local16) 975 p.second = index++; 976 for (auto &p: got.global) 977 p.second = index++; 978 for (auto &p: got.relocs) 979 p.second = index++; 980 for (auto &p: got.tls) 981 p.second = index++; 982 for (auto &p: got.dynTlsSymbols) { 983 p.second = index; 984 index += 2; 985 } 986 } 987 988 // Update SymbolAux::gotIdx field to use this 989 // value later in the `sortMipsSymbols` function. 990 for (auto &p : primGot->global) { 991 if (p.first->auxIdx == uint32_t(-1)) 992 p.first->allocateAux(); 993 symAux.back().gotIdx = p.second; 994 } 995 for (auto &p : primGot->relocs) { 996 if (p.first->auxIdx == uint32_t(-1)) 997 p.first->allocateAux(); 998 symAux.back().gotIdx = p.second; 999 } 1000 1001 // Create dynamic relocations. 1002 for (FileGot &got : gots) { 1003 // Create dynamic relocations for TLS entries. 1004 for (std::pair<Symbol *, size_t> &p : got.tls) { 1005 Symbol *s = p.first; 1006 uint64_t offset = p.second * config->wordsize; 1007 // When building a shared library we still need a dynamic relocation 1008 // for the TP-relative offset as we don't know how much other data will 1009 // be allocated before us in the static TLS block. 1010 if (s->isPreemptible || config->shared) 1011 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset, 1012 DynamicReloc::AgainstSymbolWithTargetVA, 1013 *s, 0, R_ABS}); 1014 } 1015 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 1016 Symbol *s = p.first; 1017 uint64_t offset = p.second * config->wordsize; 1018 if (s == nullptr) { 1019 if (!config->shared) 1020 continue; 1021 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset}); 1022 } else { 1023 // When building a shared library we still need a dynamic relocation 1024 // for the module index. Therefore only checking for 1025 // S->isPreemptible is not sufficient (this happens e.g. for 1026 // thread-locals that have been marked as local through a linker script) 1027 if (!s->isPreemptible && !config->shared) 1028 continue; 1029 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this, 1030 offset, *s); 1031 // However, we can skip writing the TLS offset reloc for non-preemptible 1032 // symbols since it is known even in shared libraries 1033 if (!s->isPreemptible) 1034 continue; 1035 offset += config->wordsize; 1036 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset, 1037 *s); 1038 } 1039 } 1040 1041 // Do not create dynamic relocations for non-TLS 1042 // entries in the primary GOT. 1043 if (&got == primGot) 1044 continue; 1045 1046 // Dynamic relocations for "global" entries. 1047 for (const std::pair<Symbol *, size_t> &p : got.global) { 1048 uint64_t offset = p.second * config->wordsize; 1049 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset, 1050 *p.first); 1051 } 1052 if (!config->isPic) 1053 continue; 1054 // Dynamic relocations for "local" entries in case of PIC. 1055 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1056 got.pagesMap) { 1057 size_t pageCount = l.second.count; 1058 for (size_t pi = 0; pi < pageCount; ++pi) { 1059 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1060 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1061 int64_t(pi * 0x10000)}); 1062 } 1063 } 1064 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1065 uint64_t offset = p.second * config->wordsize; 1066 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, 1067 DynamicReloc::AddendOnlyWithTargetVA, 1068 *p.first.first, p.first.second, R_ABS}); 1069 } 1070 } 1071 } 1072 1073 bool MipsGotSection::isNeeded() const { 1074 // We add the .got section to the result for dynamic MIPS target because 1075 // its address and properties are mentioned in the .dynamic section. 1076 return !config->relocatable; 1077 } 1078 1079 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1080 // For files without related GOT or files refer a primary GOT 1081 // returns "common" _gp value. For secondary GOTs calculate 1082 // individual _gp values. 1083 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) 1084 return ElfSym::mipsGp->getVA(0); 1085 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0; 1086 } 1087 1088 void MipsGotSection::writeTo(uint8_t *buf) { 1089 // Set the MSB of the second GOT slot. This is not required by any 1090 // MIPS ABI documentation, though. 1091 // 1092 // There is a comment in glibc saying that "The MSB of got[1] of a 1093 // gnu object is set to identify gnu objects," and in GNU gold it 1094 // says "the second entry will be used by some runtime loaders". 1095 // But how this field is being used is unclear. 1096 // 1097 // We are not really willing to mimic other linkers behaviors 1098 // without understanding why they do that, but because all files 1099 // generated by GNU tools have this special GOT value, and because 1100 // we've been doing this for years, it is probably a safe bet to 1101 // keep doing this for now. We really need to revisit this to see 1102 // if we had to do this. 1103 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1104 for (const FileGot &g : gots) { 1105 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1106 uint64_t va = a; 1107 if (s) 1108 va = s->getVA(a); 1109 writeUint(buf + i * config->wordsize, va); 1110 }; 1111 // Write 'page address' entries to the local part of the GOT. 1112 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1113 g.pagesMap) { 1114 size_t pageCount = l.second.count; 1115 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1116 for (size_t pi = 0; pi < pageCount; ++pi) 1117 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1118 } 1119 // Local, global, TLS, reloc-only entries. 1120 // If TLS entry has a corresponding dynamic relocations, leave it 1121 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1122 // To calculate the adjustments use offsets for thread-local storage. 1123 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL 1124 for (const std::pair<GotEntry, size_t> &p : g.local16) 1125 write(p.second, p.first.first, p.first.second); 1126 // Write VA to the primary GOT only. For secondary GOTs that 1127 // will be done by REL32 dynamic relocations. 1128 if (&g == &gots.front()) 1129 for (const std::pair<Symbol *, size_t> &p : g.global) 1130 write(p.second, p.first, 0); 1131 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1132 write(p.second, p.first, 0); 1133 for (const std::pair<Symbol *, size_t> &p : g.tls) 1134 write(p.second, p.first, 1135 p.first->isPreemptible || config->shared ? 0 : -0x7000); 1136 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1137 if (p.first == nullptr && !config->shared) 1138 write(p.second, nullptr, 1); 1139 else if (p.first && !p.first->isPreemptible) { 1140 // If we are emitting a shared library with relocations we mustn't write 1141 // anything to the GOT here. When using Elf_Rel relocations the value 1142 // one will be treated as an addend and will cause crashes at runtime 1143 if (!config->shared) 1144 write(p.second, nullptr, 1); 1145 write(p.second + 1, p.first, -0x8000); 1146 } 1147 } 1148 } 1149 } 1150 1151 // On PowerPC the .plt section is used to hold the table of function addresses 1152 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1153 // section. I don't know why we have a BSS style type for the section but it is 1154 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1155 GotPltSection::GotPltSection() 1156 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1157 ".got.plt") { 1158 if (config->emachine == EM_PPC) { 1159 name = ".plt"; 1160 } else if (config->emachine == EM_PPC64) { 1161 type = SHT_NOBITS; 1162 name = ".plt"; 1163 } 1164 } 1165 1166 void GotPltSection::addEntry(Symbol &sym) { 1167 assert(sym.auxIdx == symAux.size() - 1 && 1168 symAux.back().pltIdx == entries.size()); 1169 entries.push_back(&sym); 1170 } 1171 1172 size_t GotPltSection::getSize() const { 1173 return (target->gotPltHeaderEntriesNum + entries.size()) * 1174 target->gotEntrySize; 1175 } 1176 1177 void GotPltSection::writeTo(uint8_t *buf) { 1178 target->writeGotPltHeader(buf); 1179 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize; 1180 for (const Symbol *b : entries) { 1181 target->writeGotPlt(buf, *b); 1182 buf += target->gotEntrySize; 1183 } 1184 } 1185 1186 bool GotPltSection::isNeeded() const { 1187 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1188 // to it. 1189 return !entries.empty() || hasGotPltOffRel; 1190 } 1191 1192 static StringRef getIgotPltName() { 1193 // On ARM the IgotPltSection is part of the GotSection. 1194 if (config->emachine == EM_ARM) 1195 return ".got"; 1196 1197 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1198 // needs to be named the same. 1199 if (config->emachine == EM_PPC64) 1200 return ".plt"; 1201 1202 return ".got.plt"; 1203 } 1204 1205 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1206 // with the IgotPltSection. 1207 IgotPltSection::IgotPltSection() 1208 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1209 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1210 target->gotEntrySize, getIgotPltName()) {} 1211 1212 void IgotPltSection::addEntry(Symbol &sym) { 1213 assert(symAux.back().pltIdx == entries.size()); 1214 entries.push_back(&sym); 1215 } 1216 1217 size_t IgotPltSection::getSize() const { 1218 return entries.size() * target->gotEntrySize; 1219 } 1220 1221 void IgotPltSection::writeTo(uint8_t *buf) { 1222 for (const Symbol *b : entries) { 1223 target->writeIgotPlt(buf, *b); 1224 buf += target->gotEntrySize; 1225 } 1226 } 1227 1228 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1229 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1230 dynamic(dynamic) { 1231 // ELF string tables start with a NUL byte. 1232 addString(""); 1233 } 1234 1235 // Adds a string to the string table. If `hashIt` is true we hash and check for 1236 // duplicates. It is optional because the name of global symbols are already 1237 // uniqued and hashing them again has a big cost for a small value: uniquing 1238 // them with some other string that happens to be the same. 1239 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1240 if (hashIt) { 1241 auto r = stringMap.try_emplace(CachedHashStringRef(s), size); 1242 if (!r.second) 1243 return r.first->second; 1244 } 1245 unsigned ret = this->size; 1246 this->size = this->size + s.size() + 1; 1247 strings.push_back(s); 1248 return ret; 1249 } 1250 1251 void StringTableSection::writeTo(uint8_t *buf) { 1252 for (StringRef s : strings) { 1253 memcpy(buf, s.data(), s.size()); 1254 buf[s.size()] = '\0'; 1255 buf += s.size() + 1; 1256 } 1257 } 1258 1259 // Returns the number of entries in .gnu.version_d: the number of 1260 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1261 // Note that we don't support vd_cnt > 1 yet. 1262 static unsigned getVerDefNum() { 1263 return namedVersionDefs().size() + 1; 1264 } 1265 1266 template <class ELFT> 1267 DynamicSection<ELFT>::DynamicSection() 1268 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1269 ".dynamic") { 1270 this->entsize = ELFT::Is64Bits ? 16 : 8; 1271 1272 // .dynamic section is not writable on MIPS and on Fuchsia OS 1273 // which passes -z rodynamic. 1274 // See "Special Section" in Chapter 4 in the following document: 1275 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1276 if (config->emachine == EM_MIPS || config->zRodynamic) 1277 this->flags = SHF_ALLOC; 1278 } 1279 1280 // The output section .rela.dyn may include these synthetic sections: 1281 // 1282 // - part.relaDyn 1283 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1284 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1285 // .rela.dyn 1286 // 1287 // DT_RELASZ is the total size of the included sections. 1288 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) { 1289 size_t size = relaDyn.getSize(); 1290 if (in.relaIplt->getParent() == relaDyn.getParent()) 1291 size += in.relaIplt->getSize(); 1292 if (in.relaPlt->getParent() == relaDyn.getParent()) 1293 size += in.relaPlt->getSize(); 1294 return size; 1295 } 1296 1297 // A Linker script may assign the RELA relocation sections to the same 1298 // output section. When this occurs we cannot just use the OutputSection 1299 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1300 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1301 static uint64_t addPltRelSz() { 1302 size_t size = in.relaPlt->getSize(); 1303 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1304 in.relaIplt->name == in.relaPlt->name) 1305 size += in.relaIplt->getSize(); 1306 return size; 1307 } 1308 1309 // Add remaining entries to complete .dynamic contents. 1310 template <class ELFT> 1311 std::vector<std::pair<int32_t, uint64_t>> 1312 DynamicSection<ELFT>::computeContents() { 1313 elf::Partition &part = getPartition(); 1314 bool isMain = part.name.empty(); 1315 std::vector<std::pair<int32_t, uint64_t>> entries; 1316 1317 auto addInt = [&](int32_t tag, uint64_t val) { 1318 entries.emplace_back(tag, val); 1319 }; 1320 auto addInSec = [&](int32_t tag, const InputSection &sec) { 1321 entries.emplace_back(tag, sec.getVA()); 1322 }; 1323 1324 for (StringRef s : config->filterList) 1325 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1326 for (StringRef s : config->auxiliaryList) 1327 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1328 1329 if (!config->rpath.empty()) 1330 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1331 part.dynStrTab->addString(config->rpath)); 1332 1333 for (SharedFile *file : sharedFiles) 1334 if (file->isNeeded) 1335 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1336 1337 if (isMain) { 1338 if (!config->soName.empty()) 1339 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1340 } else { 1341 if (!config->soName.empty()) 1342 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1343 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1344 } 1345 1346 // Set DT_FLAGS and DT_FLAGS_1. 1347 uint32_t dtFlags = 0; 1348 uint32_t dtFlags1 = 0; 1349 if (config->bsymbolic == BsymbolicKind::All) 1350 dtFlags |= DF_SYMBOLIC; 1351 if (config->zGlobal) 1352 dtFlags1 |= DF_1_GLOBAL; 1353 if (config->zInitfirst) 1354 dtFlags1 |= DF_1_INITFIRST; 1355 if (config->zInterpose) 1356 dtFlags1 |= DF_1_INTERPOSE; 1357 if (config->zNodefaultlib) 1358 dtFlags1 |= DF_1_NODEFLIB; 1359 if (config->zNodelete) 1360 dtFlags1 |= DF_1_NODELETE; 1361 if (config->zNodlopen) 1362 dtFlags1 |= DF_1_NOOPEN; 1363 if (config->pie) 1364 dtFlags1 |= DF_1_PIE; 1365 if (config->zNow) { 1366 dtFlags |= DF_BIND_NOW; 1367 dtFlags1 |= DF_1_NOW; 1368 } 1369 if (config->zOrigin) { 1370 dtFlags |= DF_ORIGIN; 1371 dtFlags1 |= DF_1_ORIGIN; 1372 } 1373 if (!config->zText) 1374 dtFlags |= DF_TEXTREL; 1375 if (config->hasTlsIe && config->shared) 1376 dtFlags |= DF_STATIC_TLS; 1377 1378 if (dtFlags) 1379 addInt(DT_FLAGS, dtFlags); 1380 if (dtFlags1) 1381 addInt(DT_FLAGS_1, dtFlags1); 1382 1383 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1384 // need it for each process, so we don't write it for DSOs. The loader writes 1385 // the pointer into this entry. 1386 // 1387 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1388 // systems (currently only Fuchsia OS) provide other means to give the 1389 // debugger this information. Such systems may choose make .dynamic read-only. 1390 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1391 if (!config->shared && !config->relocatable && !config->zRodynamic) 1392 addInt(DT_DEBUG, 0); 1393 1394 if (part.relaDyn->isNeeded() || 1395 (in.relaIplt->isNeeded() && 1396 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1397 addInSec(part.relaDyn->dynamicTag, *part.relaDyn); 1398 entries.emplace_back(part.relaDyn->sizeDynamicTag, 1399 addRelaSz(*part.relaDyn)); 1400 1401 bool isRela = config->isRela; 1402 addInt(isRela ? DT_RELAENT : DT_RELENT, 1403 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1404 1405 // MIPS dynamic loader does not support RELCOUNT tag. 1406 // The problem is in the tight relation between dynamic 1407 // relocations and GOT. So do not emit this tag on MIPS. 1408 if (config->emachine != EM_MIPS) { 1409 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1410 if (config->zCombreloc && numRelativeRels) 1411 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1412 } 1413 } 1414 if (part.relrDyn && part.relrDyn->getParent() && 1415 !part.relrDyn->relocs.empty()) { 1416 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1417 *part.relrDyn); 1418 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1419 part.relrDyn->getParent()->size); 1420 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1421 sizeof(Elf_Relr)); 1422 } 1423 // .rel[a].plt section usually consists of two parts, containing plt and 1424 // iplt relocations. It is possible to have only iplt relocations in the 1425 // output. In that case relaPlt is empty and have zero offset, the same offset 1426 // as relaIplt has. And we still want to emit proper dynamic tags for that 1427 // case, so here we always use relaPlt as marker for the beginning of 1428 // .rel[a].plt section. 1429 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1430 addInSec(DT_JMPREL, *in.relaPlt); 1431 entries.emplace_back(DT_PLTRELSZ, addPltRelSz()); 1432 switch (config->emachine) { 1433 case EM_MIPS: 1434 addInSec(DT_MIPS_PLTGOT, *in.gotPlt); 1435 break; 1436 case EM_SPARCV9: 1437 addInSec(DT_PLTGOT, *in.plt); 1438 break; 1439 case EM_AARCH64: 1440 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1441 return r.type == target->pltRel && 1442 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1443 }) != in.relaPlt->relocs.end()) 1444 addInt(DT_AARCH64_VARIANT_PCS, 0); 1445 LLVM_FALLTHROUGH; 1446 default: 1447 addInSec(DT_PLTGOT, *in.gotPlt); 1448 break; 1449 } 1450 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1451 } 1452 1453 if (config->emachine == EM_AARCH64) { 1454 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1455 addInt(DT_AARCH64_BTI_PLT, 0); 1456 if (config->zPacPlt) 1457 addInt(DT_AARCH64_PAC_PLT, 0); 1458 } 1459 1460 addInSec(DT_SYMTAB, *part.dynSymTab); 1461 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1462 addInSec(DT_STRTAB, *part.dynStrTab); 1463 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1464 if (!config->zText) 1465 addInt(DT_TEXTREL, 0); 1466 if (part.gnuHashTab && part.gnuHashTab->getParent()) 1467 addInSec(DT_GNU_HASH, *part.gnuHashTab); 1468 if (part.hashTab && part.hashTab->getParent()) 1469 addInSec(DT_HASH, *part.hashTab); 1470 1471 if (isMain) { 1472 if (Out::preinitArray) { 1473 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr); 1474 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size); 1475 } 1476 if (Out::initArray) { 1477 addInt(DT_INIT_ARRAY, Out::initArray->addr); 1478 addInt(DT_INIT_ARRAYSZ, Out::initArray->size); 1479 } 1480 if (Out::finiArray) { 1481 addInt(DT_FINI_ARRAY, Out::finiArray->addr); 1482 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size); 1483 } 1484 1485 if (Symbol *b = symtab->find(config->init)) 1486 if (b->isDefined()) 1487 addInt(DT_INIT, b->getVA()); 1488 if (Symbol *b = symtab->find(config->fini)) 1489 if (b->isDefined()) 1490 addInt(DT_FINI, b->getVA()); 1491 } 1492 1493 if (part.verSym && part.verSym->isNeeded()) 1494 addInSec(DT_VERSYM, *part.verSym); 1495 if (part.verDef && part.verDef->isLive()) { 1496 addInSec(DT_VERDEF, *part.verDef); 1497 addInt(DT_VERDEFNUM, getVerDefNum()); 1498 } 1499 if (part.verNeed && part.verNeed->isNeeded()) { 1500 addInSec(DT_VERNEED, *part.verNeed); 1501 unsigned needNum = 0; 1502 for (SharedFile *f : sharedFiles) 1503 if (!f->vernauxs.empty()) 1504 ++needNum; 1505 addInt(DT_VERNEEDNUM, needNum); 1506 } 1507 1508 if (config->emachine == EM_MIPS) { 1509 addInt(DT_MIPS_RLD_VERSION, 1); 1510 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1511 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1512 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1513 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum()); 1514 1515 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1516 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1517 else 1518 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1519 addInSec(DT_PLTGOT, *in.mipsGot); 1520 if (in.mipsRldMap) { 1521 if (!config->pie) 1522 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap); 1523 // Store the offset to the .rld_map section 1524 // relative to the address of the tag. 1525 addInt(DT_MIPS_RLD_MAP_REL, 1526 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); 1527 } 1528 } 1529 1530 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1531 // glibc assumes the old-style BSS PLT layout which we don't support. 1532 if (config->emachine == EM_PPC) 1533 addInSec(DT_PPC_GOT, *in.got); 1534 1535 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1536 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1537 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1538 // stub, which starts directly after the header. 1539 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32); 1540 } 1541 1542 addInt(DT_NULL, 0); 1543 return entries; 1544 } 1545 1546 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1547 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 1548 getParent()->link = sec->sectionIndex; 1549 this->size = computeContents().size() * this->entsize; 1550 } 1551 1552 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1553 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1554 1555 for (std::pair<int32_t, uint64_t> kv : computeContents()) { 1556 p->d_tag = kv.first; 1557 p->d_un.d_val = kv.second; 1558 ++p; 1559 } 1560 } 1561 1562 uint64_t DynamicReloc::getOffset() const { 1563 return inputSec->getVA(offsetInSec); 1564 } 1565 1566 int64_t DynamicReloc::computeAddend() const { 1567 switch (kind) { 1568 case AddendOnly: 1569 assert(sym == nullptr); 1570 return addend; 1571 case AgainstSymbol: 1572 assert(sym != nullptr); 1573 return addend; 1574 case AddendOnlyWithTargetVA: 1575 case AgainstSymbolWithTargetVA: 1576 return InputSection::getRelocTargetVA(inputSec->file, type, addend, 1577 getOffset(), *sym, expr); 1578 case MipsMultiGotPage: 1579 assert(sym == nullptr); 1580 return getMipsPageAddr(outputSec->addr) + addend; 1581 } 1582 llvm_unreachable("Unknown DynamicReloc::Kind enum"); 1583 } 1584 1585 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1586 if (needsDynSymIndex()) 1587 return symTab->getSymbolIndex(sym); 1588 return 0; 1589 } 1590 1591 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1592 int32_t dynamicTag, 1593 int32_t sizeDynamicTag) 1594 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1595 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {} 1596 1597 void RelocationBaseSection::addSymbolReloc(RelType dynType, 1598 InputSectionBase &isec, 1599 uint64_t offsetInSec, Symbol &sym, 1600 int64_t addend, 1601 Optional<RelType> addendRelType) { 1602 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, 1603 R_ADDEND, addendRelType ? *addendRelType : target->noneRel); 1604 } 1605 1606 void RelocationBaseSection::addRelativeReloc( 1607 RelType dynType, InputSectionBase &inputSec, uint64_t offsetInSec, 1608 Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) { 1609 // This function should only be called for non-preemptible symbols or 1610 // RelExpr values that refer to an address inside the output file (e.g. the 1611 // address of the GOT entry for a potentially preemptible symbol). 1612 assert((!sym.isPreemptible || expr == R_GOT) && 1613 "cannot add relative relocation against preemptible symbol"); 1614 assert(expr != R_ADDEND && "expected non-addend relocation expression"); 1615 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec, 1616 sym, addend, expr, addendRelType); 1617 } 1618 1619 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( 1620 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, 1621 RelType addendRelType) { 1622 // No need to write an addend to the section for preemptible symbols. 1623 if (sym.isPreemptible) 1624 addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, 1625 R_ABS}); 1626 else 1627 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, 1628 sym, 0, R_ABS, addendRelType); 1629 } 1630 1631 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType, 1632 InputSectionBase &inputSec, 1633 uint64_t offsetInSec, Symbol &sym, 1634 int64_t addend, RelExpr expr, 1635 RelType addendRelType) { 1636 // Write the addends to the relocated address if required. We skip 1637 // it if the written value would be zero. 1638 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1639 inputSec.relocations.push_back( 1640 {expr, addendRelType, offsetInSec, addend, &sym}); 1641 addReloc({dynType, &inputSec, offsetInSec, kind, sym, addend, expr}); 1642 } 1643 1644 void RelocationBaseSection::addReloc(const DynamicReloc &reloc) { 1645 if (reloc.type == target->relativeRel) 1646 ++numRelativeRelocs; 1647 relocs.push_back(reloc); 1648 } 1649 1650 void RelocationBaseSection::finalizeContents() { 1651 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1652 1653 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1654 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1655 // case. 1656 if (symTab && symTab->getParent()) 1657 getParent()->link = symTab->getParent()->sectionIndex; 1658 else 1659 getParent()->link = 0; 1660 1661 if (in.relaPlt.get() == this && in.gotPlt->getParent()) { 1662 getParent()->flags |= ELF::SHF_INFO_LINK; 1663 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1664 } 1665 if (in.relaIplt.get() == this && in.igotPlt->getParent()) { 1666 getParent()->flags |= ELF::SHF_INFO_LINK; 1667 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1668 } 1669 } 1670 1671 RelrBaseSection::RelrBaseSection() 1672 : SyntheticSection(SHF_ALLOC, 1673 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1674 config->wordsize, ".relr.dyn") {} 1675 1676 template <class ELFT> 1677 static void encodeDynamicReloc(typename ELFT::Rela *p, 1678 const DynamicReloc &rel) { 1679 p->r_offset = rel.r_offset; 1680 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL); 1681 if (config->isRela) 1682 p->r_addend = rel.addend; 1683 } 1684 1685 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) { 1686 r_offset = getOffset(); 1687 r_sym = getSymIndex(symtab); 1688 addend = computeAddend(); 1689 kind = AddendOnly; // Catch errors 1690 } 1691 1692 template <class ELFT> 1693 RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort) 1694 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1695 config->isRela ? DT_RELA : DT_REL, 1696 config->isRela ? DT_RELASZ : DT_RELSZ), 1697 sort(sort) { 1698 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1699 } 1700 1701 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1702 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1703 1704 parallelForEach(relocs, 1705 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); }); 1706 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1707 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1708 // is to make results easier to read. 1709 if (sort) { 1710 const RelType relativeRel = target->relativeRel; 1711 auto nonRelative = 1712 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }); 1713 parallelSort(relocs.begin(), nonRelative, 1714 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); 1715 // Non-relative relocations are few, so don't bother with parallelSort. 1716 std::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) { 1717 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); 1718 }); 1719 } 1720 1721 for (const DynamicReloc &rel : relocs) { 1722 encodeDynamicReloc<ELFT>(reinterpret_cast<Elf_Rela *>(buf), rel); 1723 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1724 } 1725 } 1726 1727 template <class ELFT> 1728 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1729 StringRef name) 1730 : RelocationBaseSection( 1731 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1732 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1733 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) { 1734 this->entsize = 1; 1735 } 1736 1737 template <class ELFT> 1738 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1739 // This function computes the contents of an Android-format packed relocation 1740 // section. 1741 // 1742 // This format compresses relocations by using relocation groups to factor out 1743 // fields that are common between relocations and storing deltas from previous 1744 // relocations in SLEB128 format (which has a short representation for small 1745 // numbers). A good example of a relocation type with common fields is 1746 // R_*_RELATIVE, which is normally used to represent function pointers in 1747 // vtables. In the REL format, each relative relocation has the same r_info 1748 // field, and is only different from other relative relocations in terms of 1749 // the r_offset field. By sorting relocations by offset, grouping them by 1750 // r_info and representing each relocation with only the delta from the 1751 // previous offset, each 8-byte relocation can be compressed to as little as 1 1752 // byte (or less with run-length encoding). This relocation packer was able to 1753 // reduce the size of the relocation section in an Android Chromium DSO from 1754 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1755 // 1756 // A relocation section consists of a header containing the literal bytes 1757 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1758 // elements are the total number of relocations in the section and an initial 1759 // r_offset value. The remaining elements define a sequence of relocation 1760 // groups. Each relocation group starts with a header consisting of the 1761 // following elements: 1762 // 1763 // - the number of relocations in the relocation group 1764 // - flags for the relocation group 1765 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1766 // for each relocation in the group. 1767 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1768 // field for each relocation in the group. 1769 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1770 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1771 // each relocation in the group. 1772 // 1773 // Following the relocation group header are descriptions of each of the 1774 // relocations in the group. They consist of the following elements: 1775 // 1776 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1777 // delta for this relocation. 1778 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1779 // field for this relocation. 1780 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1781 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1782 // this relocation. 1783 1784 size_t oldSize = relocData.size(); 1785 1786 relocData = {'A', 'P', 'S', '2'}; 1787 raw_svector_ostream os(relocData); 1788 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1789 1790 // The format header includes the number of relocations and the initial 1791 // offset (we set this to zero because the first relocation group will 1792 // perform the initial adjustment). 1793 add(relocs.size()); 1794 add(0); 1795 1796 std::vector<Elf_Rela> relatives, nonRelatives; 1797 1798 for (const DynamicReloc &rel : relocs) { 1799 Elf_Rela r; 1800 r.r_offset = rel.getOffset(); 1801 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()), 1802 rel.type, false); 1803 if (config->isRela) 1804 r.r_addend = rel.computeAddend(); 1805 1806 if (r.getType(config->isMips64EL) == target->relativeRel) 1807 relatives.push_back(r); 1808 else 1809 nonRelatives.push_back(r); 1810 } 1811 1812 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1813 return a.r_offset < b.r_offset; 1814 }); 1815 1816 // Try to find groups of relative relocations which are spaced one word 1817 // apart from one another. These generally correspond to vtable entries. The 1818 // format allows these groups to be encoded using a sort of run-length 1819 // encoding, but each group will cost 7 bytes in addition to the offset from 1820 // the previous group, so it is only profitable to do this for groups of 1821 // size 8 or larger. 1822 std::vector<Elf_Rela> ungroupedRelatives; 1823 std::vector<std::vector<Elf_Rela>> relativeGroups; 1824 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1825 std::vector<Elf_Rela> group; 1826 do { 1827 group.push_back(*i++); 1828 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1829 1830 if (group.size() < 8) 1831 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1832 group.end()); 1833 else 1834 relativeGroups.emplace_back(std::move(group)); 1835 } 1836 1837 // For non-relative relocations, we would like to: 1838 // 1. Have relocations with the same symbol offset to be consecutive, so 1839 // that the runtime linker can speed-up symbol lookup by implementing an 1840 // 1-entry cache. 1841 // 2. Group relocations by r_info to reduce the size of the relocation 1842 // section. 1843 // Since the symbol offset is the high bits in r_info, sorting by r_info 1844 // allows us to do both. 1845 // 1846 // For Rela, we also want to sort by r_addend when r_info is the same. This 1847 // enables us to group by r_addend as well. 1848 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1849 if (a.r_info != b.r_info) 1850 return a.r_info < b.r_info; 1851 if (config->isRela) 1852 return a.r_addend < b.r_addend; 1853 return false; 1854 }); 1855 1856 // Group relocations with the same r_info. Note that each group emits a group 1857 // header and that may make the relocation section larger. It is hard to 1858 // estimate the size of a group header as the encoded size of that varies 1859 // based on r_info. However, we can approximate this trade-off by the number 1860 // of values encoded. Each group header contains 3 values, and each relocation 1861 // in a group encodes one less value, as compared to when it is not grouped. 1862 // Therefore, we only group relocations if there are 3 or more of them with 1863 // the same r_info. 1864 // 1865 // For Rela, the addend for most non-relative relocations is zero, and thus we 1866 // can usually get a smaller relocation section if we group relocations with 0 1867 // addend as well. 1868 std::vector<Elf_Rela> ungroupedNonRelatives; 1869 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1870 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1871 auto j = i + 1; 1872 while (j != e && i->r_info == j->r_info && 1873 (!config->isRela || i->r_addend == j->r_addend)) 1874 ++j; 1875 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1876 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1877 else 1878 nonRelativeGroups.emplace_back(i, j); 1879 i = j; 1880 } 1881 1882 // Sort ungrouped relocations by offset to minimize the encoded length. 1883 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1884 return a.r_offset < b.r_offset; 1885 }); 1886 1887 unsigned hasAddendIfRela = 1888 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1889 1890 uint64_t offset = 0; 1891 uint64_t addend = 0; 1892 1893 // Emit the run-length encoding for the groups of adjacent relative 1894 // relocations. Each group is represented using two groups in the packed 1895 // format. The first is used to set the current offset to the start of the 1896 // group (and also encodes the first relocation), and the second encodes the 1897 // remaining relocations. 1898 for (std::vector<Elf_Rela> &g : relativeGroups) { 1899 // The first relocation in the group. 1900 add(1); 1901 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1902 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1903 add(g[0].r_offset - offset); 1904 add(target->relativeRel); 1905 if (config->isRela) { 1906 add(g[0].r_addend - addend); 1907 addend = g[0].r_addend; 1908 } 1909 1910 // The remaining relocations. 1911 add(g.size() - 1); 1912 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1913 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1914 add(config->wordsize); 1915 add(target->relativeRel); 1916 if (config->isRela) { 1917 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1918 add(i->r_addend - addend); 1919 addend = i->r_addend; 1920 } 1921 } 1922 1923 offset = g.back().r_offset; 1924 } 1925 1926 // Now the ungrouped relatives. 1927 if (!ungroupedRelatives.empty()) { 1928 add(ungroupedRelatives.size()); 1929 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1930 add(target->relativeRel); 1931 for (Elf_Rela &r : ungroupedRelatives) { 1932 add(r.r_offset - offset); 1933 offset = r.r_offset; 1934 if (config->isRela) { 1935 add(r.r_addend - addend); 1936 addend = r.r_addend; 1937 } 1938 } 1939 } 1940 1941 // Grouped non-relatives. 1942 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1943 add(g.size()); 1944 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1945 add(g[0].r_info); 1946 for (const Elf_Rela &r : g) { 1947 add(r.r_offset - offset); 1948 offset = r.r_offset; 1949 } 1950 addend = 0; 1951 } 1952 1953 // Finally the ungrouped non-relative relocations. 1954 if (!ungroupedNonRelatives.empty()) { 1955 add(ungroupedNonRelatives.size()); 1956 add(hasAddendIfRela); 1957 for (Elf_Rela &r : ungroupedNonRelatives) { 1958 add(r.r_offset - offset); 1959 offset = r.r_offset; 1960 add(r.r_info); 1961 if (config->isRela) { 1962 add(r.r_addend - addend); 1963 addend = r.r_addend; 1964 } 1965 } 1966 } 1967 1968 // Don't allow the section to shrink; otherwise the size of the section can 1969 // oscillate infinitely. 1970 if (relocData.size() < oldSize) 1971 relocData.append(oldSize - relocData.size(), 0); 1972 1973 // Returns whether the section size changed. We need to keep recomputing both 1974 // section layout and the contents of this section until the size converges 1975 // because changing this section's size can affect section layout, which in 1976 // turn can affect the sizes of the LEB-encoded integers stored in this 1977 // section. 1978 return relocData.size() != oldSize; 1979 } 1980 1981 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1982 this->entsize = config->wordsize; 1983 } 1984 1985 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1986 // This function computes the contents of an SHT_RELR packed relocation 1987 // section. 1988 // 1989 // Proposal for adding SHT_RELR sections to generic-abi is here: 1990 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1991 // 1992 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 1993 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 1994 // 1995 // i.e. start with an address, followed by any number of bitmaps. The address 1996 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 1997 // relocations each, at subsequent offsets following the last address entry. 1998 // 1999 // The bitmap entries must have 1 in the least significant bit. The assumption 2000 // here is that an address cannot have 1 in lsb. Odd addresses are not 2001 // supported. 2002 // 2003 // Excluding the least significant bit in the bitmap, each non-zero bit in 2004 // the bitmap represents a relocation to be applied to a corresponding machine 2005 // word that follows the base address word. The second least significant bit 2006 // represents the machine word immediately following the initial address, and 2007 // each bit that follows represents the next word, in linear order. As such, 2008 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 2009 // 63 relocations in a 64-bit object. 2010 // 2011 // This encoding has a couple of interesting properties: 2012 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 2013 // even means address, odd means bitmap. 2014 // 2. Just a simple list of addresses is a valid encoding. 2015 2016 size_t oldSize = relrRelocs.size(); 2017 relrRelocs.clear(); 2018 2019 // Same as Config->Wordsize but faster because this is a compile-time 2020 // constant. 2021 const size_t wordsize = sizeof(typename ELFT::uint); 2022 2023 // Number of bits to use for the relocation offsets bitmap. 2024 // Must be either 63 or 31. 2025 const size_t nBits = wordsize * 8 - 1; 2026 2027 // Get offsets for all relative relocations and sort them. 2028 std::vector<uint64_t> offsets; 2029 for (const RelativeReloc &rel : relocs) 2030 offsets.push_back(rel.getOffset()); 2031 llvm::sort(offsets); 2032 2033 // For each leading relocation, find following ones that can be folded 2034 // as a bitmap and fold them. 2035 for (size_t i = 0, e = offsets.size(); i < e;) { 2036 // Add a leading relocation. 2037 relrRelocs.push_back(Elf_Relr(offsets[i])); 2038 uint64_t base = offsets[i] + wordsize; 2039 ++i; 2040 2041 // Find foldable relocations to construct bitmaps. 2042 while (i < e) { 2043 uint64_t bitmap = 0; 2044 2045 while (i < e) { 2046 uint64_t delta = offsets[i] - base; 2047 2048 // If it is too far, it cannot be folded. 2049 if (delta >= nBits * wordsize) 2050 break; 2051 2052 // If it is not a multiple of wordsize away, it cannot be folded. 2053 if (delta % wordsize) 2054 break; 2055 2056 // Fold it. 2057 bitmap |= 1ULL << (delta / wordsize); 2058 ++i; 2059 } 2060 2061 if (!bitmap) 2062 break; 2063 2064 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2065 base += nBits * wordsize; 2066 } 2067 } 2068 2069 // Don't allow the section to shrink; otherwise the size of the section can 2070 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2071 if (relrRelocs.size() < oldSize) { 2072 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2073 " padding word(s)"); 2074 relrRelocs.resize(oldSize, Elf_Relr(1)); 2075 } 2076 2077 return relrRelocs.size() != oldSize; 2078 } 2079 2080 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2081 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2082 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2083 config->wordsize, 2084 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2085 strTabSec(strTabSec) {} 2086 2087 // Orders symbols according to their positions in the GOT, 2088 // in compliance with MIPS ABI rules. 2089 // See "Global Offset Table" in Chapter 5 in the following document 2090 // for detailed description: 2091 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2092 static bool sortMipsSymbols(const SymbolTableEntry &l, 2093 const SymbolTableEntry &r) { 2094 // Sort entries related to non-local preemptible symbols by GOT indexes. 2095 // All other entries go to the beginning of a dynsym in arbitrary order. 2096 if (l.sym->isInGot() && r.sym->isInGot()) 2097 return l.sym->getGotIdx() < r.sym->getGotIdx(); 2098 if (!l.sym->isInGot() && !r.sym->isInGot()) 2099 return false; 2100 return !l.sym->isInGot(); 2101 } 2102 2103 void SymbolTableBaseSection::finalizeContents() { 2104 if (OutputSection *sec = strTabSec.getParent()) 2105 getParent()->link = sec->sectionIndex; 2106 2107 if (this->type != SHT_DYNSYM) { 2108 sortSymTabSymbols(); 2109 return; 2110 } 2111 2112 // If it is a .dynsym, there should be no local symbols, but we need 2113 // to do a few things for the dynamic linker. 2114 2115 // Section's Info field has the index of the first non-local symbol. 2116 // Because the first symbol entry is a null entry, 1 is the first. 2117 getParent()->info = 1; 2118 2119 if (getPartition().gnuHashTab) { 2120 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2121 getPartition().gnuHashTab->addSymbols(symbols); 2122 } else if (config->emachine == EM_MIPS) { 2123 llvm::stable_sort(symbols, sortMipsSymbols); 2124 } 2125 2126 // Only the main partition's dynsym indexes are stored in the symbols 2127 // themselves. All other partitions use a lookup table. 2128 if (this == mainPart->dynSymTab.get()) { 2129 size_t i = 0; 2130 for (const SymbolTableEntry &s : symbols) 2131 s.sym->dynsymIndex = ++i; 2132 } 2133 } 2134 2135 // The ELF spec requires that all local symbols precede global symbols, so we 2136 // sort symbol entries in this function. (For .dynsym, we don't do that because 2137 // symbols for dynamic linking are inherently all globals.) 2138 // 2139 // Aside from above, we put local symbols in groups starting with the STT_FILE 2140 // symbol. That is convenient for purpose of identifying where are local symbols 2141 // coming from. 2142 void SymbolTableBaseSection::sortSymTabSymbols() { 2143 // Move all local symbols before global symbols. 2144 auto e = std::stable_partition( 2145 symbols.begin(), symbols.end(), 2146 [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); 2147 size_t numLocals = e - symbols.begin(); 2148 getParent()->info = numLocals + 1; 2149 2150 // We want to group the local symbols by file. For that we rebuild the local 2151 // part of the symbols vector. We do not need to care about the STT_FILE 2152 // symbols, they are already naturally placed first in each group. That 2153 // happens because STT_FILE is always the first symbol in the object and hence 2154 // precede all other local symbols we add for a file. 2155 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; 2156 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2157 arr[s.sym->file].push_back(s); 2158 2159 auto i = symbols.begin(); 2160 for (auto &p : arr) 2161 for (SymbolTableEntry &entry : p.second) 2162 *i++ = entry; 2163 } 2164 2165 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2166 // Adding a local symbol to a .dynsym is a bug. 2167 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2168 2169 bool hashIt = b->isLocal(); 2170 symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)}); 2171 } 2172 2173 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2174 if (this == mainPart->dynSymTab.get()) 2175 return sym->dynsymIndex; 2176 2177 // Initializes symbol lookup tables lazily. This is used only for -r, 2178 // --emit-relocs and dynsyms in partitions other than the main one. 2179 llvm::call_once(onceFlag, [&] { 2180 symbolIndexMap.reserve(symbols.size()); 2181 size_t i = 0; 2182 for (const SymbolTableEntry &e : symbols) { 2183 if (e.sym->type == STT_SECTION) 2184 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2185 else 2186 symbolIndexMap[e.sym] = ++i; 2187 } 2188 }); 2189 2190 // Section symbols are mapped based on their output sections 2191 // to maintain their semantics. 2192 if (sym->type == STT_SECTION) 2193 return sectionIndexMap.lookup(sym->getOutputSection()); 2194 return symbolIndexMap.lookup(sym); 2195 } 2196 2197 template <class ELFT> 2198 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2199 : SymbolTableBaseSection(strTabSec) { 2200 this->entsize = sizeof(Elf_Sym); 2201 } 2202 2203 static BssSection *getCommonSec(Symbol *sym) { 2204 if (!config->defineCommon) 2205 if (auto *d = dyn_cast<Defined>(sym)) 2206 return dyn_cast_or_null<BssSection>(d->section); 2207 return nullptr; 2208 } 2209 2210 static uint32_t getSymSectionIndex(Symbol *sym) { 2211 assert(!(sym->needsCopy && sym->isObject())); 2212 if (!isa<Defined>(sym) || sym->needsCopy) 2213 return SHN_UNDEF; 2214 if (const OutputSection *os = sym->getOutputSection()) 2215 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2216 : os->sectionIndex; 2217 return SHN_ABS; 2218 } 2219 2220 // Write the internal symbol table contents to the output symbol table. 2221 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2222 // The first entry is a null entry as per the ELF spec. 2223 buf += sizeof(Elf_Sym); 2224 2225 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2226 2227 for (SymbolTableEntry &ent : symbols) { 2228 Symbol *sym = ent.sym; 2229 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2230 2231 // Set st_name, st_info and st_other. 2232 eSym->st_name = ent.strTabOffset; 2233 eSym->setBindingAndType(sym->binding, sym->type); 2234 eSym->st_other = sym->visibility; 2235 2236 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2237 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2238 if (config->emachine == EM_PPC64) 2239 eSym->st_other |= sym->stOther & 0xe0; 2240 // The most significant bit of st_other is used by AArch64 ABI for the 2241 // variant PCS. 2242 else if (config->emachine == EM_AARCH64) 2243 eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS; 2244 2245 if (BssSection *commonSec = getCommonSec(sym)) { 2246 // st_value is usually an address of a symbol, but that has a special 2247 // meaning for uninstantiated common symbols (--no-define-common). 2248 eSym->st_shndx = SHN_COMMON; 2249 eSym->st_value = commonSec->alignment; 2250 eSym->st_size = cast<Defined>(sym)->size; 2251 } else { 2252 const uint32_t shndx = getSymSectionIndex(sym); 2253 if (isDefinedHere) { 2254 eSym->st_shndx = shndx; 2255 eSym->st_value = sym->getVA(); 2256 // Copy symbol size if it is a defined symbol. st_size is not 2257 // significant for undefined symbols, so whether copying it or not is up 2258 // to us if that's the case. We'll leave it as zero because by not 2259 // setting a value, we can get the exact same outputs for two sets of 2260 // input files that differ only in undefined symbol size in DSOs. 2261 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; 2262 } else { 2263 eSym->st_shndx = 0; 2264 eSym->st_value = 0; 2265 eSym->st_size = 0; 2266 } 2267 } 2268 2269 ++eSym; 2270 } 2271 2272 // On MIPS we need to mark symbol which has a PLT entry and requires 2273 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2274 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2275 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2276 if (config->emachine == EM_MIPS) { 2277 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2278 2279 for (SymbolTableEntry &ent : symbols) { 2280 Symbol *sym = ent.sym; 2281 if (sym->isInPlt() && sym->needsCopy) 2282 eSym->st_other |= STO_MIPS_PLT; 2283 if (isMicroMips()) { 2284 // We already set the less-significant bit for symbols 2285 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2286 // records. That allows us to distinguish such symbols in 2287 // the `MIPS<ELFT>::relocate()` routine. Now we should 2288 // clear that bit for non-dynamic symbol table, so tools 2289 // like `objdump` will be able to deal with a correct 2290 // symbol position. 2291 if (sym->isDefined() && 2292 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsCopy)) { 2293 if (!strTabSec.isDynamic()) 2294 eSym->st_value &= ~1; 2295 eSym->st_other |= STO_MIPS_MICROMIPS; 2296 } 2297 } 2298 if (config->relocatable) 2299 if (auto *d = dyn_cast<Defined>(sym)) 2300 if (isMipsPIC<ELFT>(d)) 2301 eSym->st_other |= STO_MIPS_PIC; 2302 ++eSym; 2303 } 2304 } 2305 } 2306 2307 SymtabShndxSection::SymtabShndxSection() 2308 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2309 this->entsize = 4; 2310 } 2311 2312 void SymtabShndxSection::writeTo(uint8_t *buf) { 2313 // We write an array of 32 bit values, where each value has 1:1 association 2314 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2315 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2316 buf += 4; // Ignore .symtab[0] entry. 2317 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2318 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX) 2319 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2320 buf += 4; 2321 } 2322 } 2323 2324 bool SymtabShndxSection::isNeeded() const { 2325 // SHT_SYMTAB can hold symbols with section indices values up to 2326 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2327 // section. Problem is that we reveal the final section indices a bit too 2328 // late, and we do not know them here. For simplicity, we just always create 2329 // a .symtab_shndx section when the amount of output sections is huge. 2330 size_t size = 0; 2331 for (SectionCommand *cmd : script->sectionCommands) 2332 if (isa<OutputSection>(cmd)) 2333 ++size; 2334 return size >= SHN_LORESERVE; 2335 } 2336 2337 void SymtabShndxSection::finalizeContents() { 2338 getParent()->link = in.symTab->getParent()->sectionIndex; 2339 } 2340 2341 size_t SymtabShndxSection::getSize() const { 2342 return in.symTab->getNumSymbols() * 4; 2343 } 2344 2345 // .hash and .gnu.hash sections contain on-disk hash tables that map 2346 // symbol names to their dynamic symbol table indices. Their purpose 2347 // is to help the dynamic linker resolve symbols quickly. If ELF files 2348 // don't have them, the dynamic linker has to do linear search on all 2349 // dynamic symbols, which makes programs slower. Therefore, a .hash 2350 // section is added to a DSO by default. 2351 // 2352 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2353 // Each ELF file has a list of DSOs that the ELF file depends on and a 2354 // list of dynamic symbols that need to be resolved from any of the 2355 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2356 // where m is the number of DSOs and n is the number of dynamic 2357 // symbols. For modern large programs, both m and n are large. So 2358 // making each step faster by using hash tables substantially 2359 // improves time to load programs. 2360 // 2361 // (Note that this is not the only way to design the shared library. 2362 // For instance, the Windows DLL takes a different approach. On 2363 // Windows, each dynamic symbol has a name of DLL from which the symbol 2364 // has to be resolved. That makes the cost of symbol resolution O(n). 2365 // This disables some hacky techniques you can use on Unix such as 2366 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2367 // 2368 // Due to historical reasons, we have two different hash tables, .hash 2369 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2370 // and better version of .hash. .hash is just an on-disk hash table, but 2371 // .gnu.hash has a bloom filter in addition to a hash table to skip 2372 // DSOs very quickly. If you are sure that your dynamic linker knows 2373 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a 2374 // safe bet is to specify --hash-style=both for backward compatibility. 2375 GnuHashTableSection::GnuHashTableSection() 2376 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2377 } 2378 2379 void GnuHashTableSection::finalizeContents() { 2380 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2381 getParent()->link = sec->sectionIndex; 2382 2383 // Computes bloom filter size in word size. We want to allocate 12 2384 // bits for each symbol. It must be a power of two. 2385 if (symbols.empty()) { 2386 maskWords = 1; 2387 } else { 2388 uint64_t numBits = symbols.size() * 12; 2389 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2390 } 2391 2392 size = 16; // Header 2393 size += config->wordsize * maskWords; // Bloom filter 2394 size += nBuckets * 4; // Hash buckets 2395 size += symbols.size() * 4; // Hash values 2396 } 2397 2398 void GnuHashTableSection::writeTo(uint8_t *buf) { 2399 // Write a header. 2400 write32(buf, nBuckets); 2401 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2402 write32(buf + 8, maskWords); 2403 write32(buf + 12, Shift2); 2404 buf += 16; 2405 2406 // Write the 2-bit bloom filter. 2407 const unsigned c = config->is64 ? 64 : 32; 2408 for (const Entry &sym : symbols) { 2409 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2410 // the word using bits [0:5] and [26:31]. 2411 size_t i = (sym.hash / c) & (maskWords - 1); 2412 uint64_t val = readUint(buf + i * config->wordsize); 2413 val |= uint64_t(1) << (sym.hash % c); 2414 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2415 writeUint(buf + i * config->wordsize, val); 2416 } 2417 buf += config->wordsize * maskWords; 2418 2419 // Write the hash table. 2420 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2421 uint32_t oldBucket = -1; 2422 uint32_t *values = buckets + nBuckets; 2423 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2424 // Write a hash value. It represents a sequence of chains that share the 2425 // same hash modulo value. The last element of each chain is terminated by 2426 // LSB 1. 2427 uint32_t hash = i->hash; 2428 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2429 hash = isLastInChain ? hash | 1 : hash & ~1; 2430 write32(values++, hash); 2431 2432 if (i->bucketIdx == oldBucket) 2433 continue; 2434 // Write a hash bucket. Hash buckets contain indices in the following hash 2435 // value table. 2436 write32(buckets + i->bucketIdx, 2437 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2438 oldBucket = i->bucketIdx; 2439 } 2440 } 2441 2442 static uint32_t hashGnu(StringRef name) { 2443 uint32_t h = 5381; 2444 for (uint8_t c : name) 2445 h = (h << 5) + h + c; 2446 return h; 2447 } 2448 2449 // Add symbols to this symbol hash table. Note that this function 2450 // destructively sort a given vector -- which is needed because 2451 // GNU-style hash table places some sorting requirements. 2452 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { 2453 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2454 // its type correctly. 2455 auto mid = 2456 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2457 return !s.sym->isDefined() || s.sym->partition != partition; 2458 }); 2459 2460 // We chose load factor 4 for the on-disk hash table. For each hash 2461 // collision, the dynamic linker will compare a uint32_t hash value. 2462 // Since the integer comparison is quite fast, we believe we can 2463 // make the load factor even larger. 4 is just a conservative choice. 2464 // 2465 // Note that we don't want to create a zero-sized hash table because 2466 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2467 // table. If that's the case, we create a hash table with one unused 2468 // dummy slot. 2469 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2470 2471 if (mid == v.end()) 2472 return; 2473 2474 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2475 Symbol *b = ent.sym; 2476 uint32_t hash = hashGnu(b->getName()); 2477 uint32_t bucketIdx = hash % nBuckets; 2478 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2479 } 2480 2481 llvm::sort(symbols, [](const Entry &l, const Entry &r) { 2482 return std::tie(l.bucketIdx, l.strTabOffset) < 2483 std::tie(r.bucketIdx, r.strTabOffset); 2484 }); 2485 2486 v.erase(mid, v.end()); 2487 for (const Entry &ent : symbols) 2488 v.push_back({ent.sym, ent.strTabOffset}); 2489 } 2490 2491 HashTableSection::HashTableSection() 2492 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2493 this->entsize = 4; 2494 } 2495 2496 void HashTableSection::finalizeContents() { 2497 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2498 2499 if (OutputSection *sec = symTab->getParent()) 2500 getParent()->link = sec->sectionIndex; 2501 2502 unsigned numEntries = 2; // nbucket and nchain. 2503 numEntries += symTab->getNumSymbols(); // The chain entries. 2504 2505 // Create as many buckets as there are symbols. 2506 numEntries += symTab->getNumSymbols(); 2507 this->size = numEntries * 4; 2508 } 2509 2510 void HashTableSection::writeTo(uint8_t *buf) { 2511 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2512 unsigned numSymbols = symTab->getNumSymbols(); 2513 2514 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2515 write32(p++, numSymbols); // nbucket 2516 write32(p++, numSymbols); // nchain 2517 2518 uint32_t *buckets = p; 2519 uint32_t *chains = p + numSymbols; 2520 2521 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2522 Symbol *sym = s.sym; 2523 StringRef name = sym->getName(); 2524 unsigned i = sym->dynsymIndex; 2525 uint32_t hash = hashSysV(name) % numSymbols; 2526 chains[i] = buckets[hash]; 2527 write32(buckets + hash, i); 2528 } 2529 } 2530 2531 PltSection::PltSection() 2532 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2533 headerSize(target->pltHeaderSize) { 2534 // On PowerPC, this section contains lazy symbol resolvers. 2535 if (config->emachine == EM_PPC64) { 2536 name = ".glink"; 2537 alignment = 4; 2538 } 2539 2540 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2541 // symbol resolvers). 2542 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2543 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2544 name = ".plt.sec"; 2545 2546 // The PLT needs to be writable on SPARC as the dynamic linker will 2547 // modify the instructions in the PLT entries. 2548 if (config->emachine == EM_SPARCV9) 2549 this->flags |= SHF_WRITE; 2550 } 2551 2552 void PltSection::writeTo(uint8_t *buf) { 2553 // At beginning of PLT, we have code to call the dynamic 2554 // linker to resolve dynsyms at runtime. Write such code. 2555 target->writePltHeader(buf); 2556 size_t off = headerSize; 2557 2558 for (const Symbol *sym : entries) { 2559 target->writePlt(buf + off, *sym, getVA() + off); 2560 off += target->pltEntrySize; 2561 } 2562 } 2563 2564 void PltSection::addEntry(Symbol &sym) { 2565 assert(sym.auxIdx == symAux.size() - 1); 2566 symAux.back().pltIdx = entries.size(); 2567 entries.push_back(&sym); 2568 } 2569 2570 size_t PltSection::getSize() const { 2571 return headerSize + entries.size() * target->pltEntrySize; 2572 } 2573 2574 bool PltSection::isNeeded() const { 2575 // For -z retpolineplt, .iplt needs the .plt header. 2576 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2577 } 2578 2579 // Used by ARM to add mapping symbols in the PLT section, which aid 2580 // disassembly. 2581 void PltSection::addSymbols() { 2582 target->addPltHeaderSymbols(*this); 2583 2584 size_t off = headerSize; 2585 for (size_t i = 0; i < entries.size(); ++i) { 2586 target->addPltSymbols(*this, off); 2587 off += target->pltEntrySize; 2588 } 2589 } 2590 2591 IpltSection::IpltSection() 2592 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2593 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2594 name = ".glink"; 2595 alignment = 4; 2596 } 2597 } 2598 2599 void IpltSection::writeTo(uint8_t *buf) { 2600 uint32_t off = 0; 2601 for (const Symbol *sym : entries) { 2602 target->writeIplt(buf + off, *sym, getVA() + off); 2603 off += target->ipltEntrySize; 2604 } 2605 } 2606 2607 size_t IpltSection::getSize() const { 2608 return entries.size() * target->ipltEntrySize; 2609 } 2610 2611 void IpltSection::addEntry(Symbol &sym) { 2612 assert(sym.auxIdx == symAux.size() - 1); 2613 symAux.back().pltIdx = entries.size(); 2614 entries.push_back(&sym); 2615 } 2616 2617 // ARM uses mapping symbols to aid disassembly. 2618 void IpltSection::addSymbols() { 2619 size_t off = 0; 2620 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2621 target->addPltSymbols(*this, off); 2622 off += target->pltEntrySize; 2623 } 2624 } 2625 2626 PPC32GlinkSection::PPC32GlinkSection() { 2627 name = ".glink"; 2628 alignment = 4; 2629 } 2630 2631 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2632 writePPC32GlinkSection(buf, entries.size()); 2633 } 2634 2635 size_t PPC32GlinkSection::getSize() const { 2636 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2637 } 2638 2639 // This is an x86-only extra PLT section and used only when a security 2640 // enhancement feature called CET is enabled. In this comment, I'll explain what 2641 // the feature is and why we have two PLT sections if CET is enabled. 2642 // 2643 // So, what does CET do? CET introduces a new restriction to indirect jump 2644 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2645 // execute an indirect jump instruction, the processor verifies that a special 2646 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2647 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2648 // does not start with that instruction, the processor raises an exception 2649 // instead of continuing executing code. 2650 // 2651 // If CET is enabled, the compiler emits endbr to all locations where indirect 2652 // jumps may jump to. 2653 // 2654 // This mechanism makes it extremely hard to transfer the control to a middle of 2655 // a function that is not supporsed to be a indirect jump target, preventing 2656 // certain types of attacks such as ROP or JOP. 2657 // 2658 // Note that the processors in the market as of 2019 don't actually support the 2659 // feature. Only the spec is available at the moment. 2660 // 2661 // Now, I'll explain why we have this extra PLT section for CET. 2662 // 2663 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2664 // start with endbr. The problem is there's no extra space for endbr (which is 4 2665 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2666 // used. 2667 // 2668 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2669 // Remember that each PLT entry contains code to jump to an address read from 2670 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2671 // the former code is written to .plt.sec, and the latter code is written to 2672 // .plt. 2673 // 2674 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2675 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2676 // contain only code for lazy symbol resolution. 2677 // 2678 // In other words, this is how the 2-PLT scheme works. Application code is 2679 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2680 // entry contains code to read an address from a corresponding .got.plt entry 2681 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2682 // when an application calls an external function for the first time, the 2683 // control is transferred to a function that resolves a symbol name from 2684 // external shared object files. That function then rewrites a .got.plt entry 2685 // with a resolved address, so that the subsequent function calls directly jump 2686 // to a desired location from .plt.sec. 2687 // 2688 // There is an open question as to whether the 2-PLT scheme was desirable or 2689 // not. We could have simply extended the PLT entry size to 32-bytes to 2690 // accommodate endbr, and that scheme would have been much simpler than the 2691 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2692 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2693 // that the optimization actually makes a difference. 2694 // 2695 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2696 // depend on it, so we implement the ABI. 2697 IBTPltSection::IBTPltSection() 2698 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2699 2700 void IBTPltSection::writeTo(uint8_t *buf) { 2701 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2702 } 2703 2704 size_t IBTPltSection::getSize() const { 2705 // 16 is the header size of .plt. 2706 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2707 } 2708 2709 // The string hash function for .gdb_index. 2710 static uint32_t computeGdbHash(StringRef s) { 2711 uint32_t h = 0; 2712 for (uint8_t c : s) 2713 h = h * 67 + toLower(c) - 113; 2714 return h; 2715 } 2716 2717 GdbIndexSection::GdbIndexSection() 2718 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2719 2720 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2721 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2722 size_t GdbIndexSection::computeSymtabSize() const { 2723 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2724 } 2725 2726 // Compute the output section size. 2727 void GdbIndexSection::initOutputSize() { 2728 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2729 2730 for (GdbChunk &chunk : chunks) 2731 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2732 2733 // Add the constant pool size if exists. 2734 if (!symbols.empty()) { 2735 GdbSymbol &sym = symbols.back(); 2736 size += sym.nameOff + sym.name.size() + 1; 2737 } 2738 } 2739 2740 static SmallVector<GdbIndexSection::CuEntry, 0> 2741 readCuList(DWARFContext &dwarf) { 2742 SmallVector<GdbIndexSection::CuEntry, 0> ret; 2743 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2744 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2745 return ret; 2746 } 2747 2748 static SmallVector<GdbIndexSection::AddressEntry, 0> 2749 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2750 SmallVector<GdbIndexSection::AddressEntry, 0> ret; 2751 2752 uint32_t cuIdx = 0; 2753 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2754 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2755 warn(toString(sec) + ": " + toString(std::move(e))); 2756 return {}; 2757 } 2758 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2759 if (!ranges) { 2760 warn(toString(sec) + ": " + toString(ranges.takeError())); 2761 return {}; 2762 } 2763 2764 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2765 for (DWARFAddressRange &r : *ranges) { 2766 if (r.SectionIndex == -1ULL) 2767 continue; 2768 // Range list with zero size has no effect. 2769 InputSectionBase *s = sections[r.SectionIndex]; 2770 if (s && s != &InputSection::discarded && s->isLive()) 2771 if (r.LowPC != r.HighPC) 2772 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2773 } 2774 ++cuIdx; 2775 } 2776 2777 return ret; 2778 } 2779 2780 template <class ELFT> 2781 static std::vector<GdbIndexSection::NameAttrEntry> 2782 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2783 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { 2784 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2785 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2786 2787 std::vector<GdbIndexSection::NameAttrEntry> ret; 2788 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2789 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2790 DWARFDebugPubTable table; 2791 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2792 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2793 }); 2794 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2795 // The value written into the constant pool is kind << 24 | cuIndex. As we 2796 // don't know how many compilation units precede this object to compute 2797 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2798 // the number of preceding compilation units later. 2799 uint32_t i = llvm::partition_point(cus, 2800 [&](GdbIndexSection::CuEntry cu) { 2801 return cu.cuOffset < set.Offset; 2802 }) - 2803 cus.begin(); 2804 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2805 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2806 (ent.Descriptor.toBits() << 24) | i}); 2807 } 2808 } 2809 return ret; 2810 } 2811 2812 // Create a list of symbols from a given list of symbol names and types 2813 // by uniquifying them by name. 2814 static std::vector<GdbIndexSection::GdbSymbol> 2815 createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs, 2816 const std::vector<GdbIndexSection::GdbChunk> &chunks) { 2817 using GdbSymbol = GdbIndexSection::GdbSymbol; 2818 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2819 2820 // For each chunk, compute the number of compilation units preceding it. 2821 uint32_t cuIdx = 0; 2822 std::vector<uint32_t> cuIdxs(chunks.size()); 2823 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2824 cuIdxs[i] = cuIdx; 2825 cuIdx += chunks[i].compilationUnits.size(); 2826 } 2827 2828 // The number of symbols we will handle in this function is of the order 2829 // of millions for very large executables, so we use multi-threading to 2830 // speed it up. 2831 constexpr size_t numShards = 32; 2832 size_t concurrency = PowerOf2Floor( 2833 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 2834 .compute_thread_count(), 2835 numShards)); 2836 2837 // A sharded map to uniquify symbols by name. 2838 std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards); 2839 size_t shift = 32 - countTrailingZeros(numShards); 2840 2841 // Instantiate GdbSymbols while uniqufying them by name. 2842 std::vector<std::vector<GdbSymbol>> symbols(numShards); 2843 parallelForEachN(0, concurrency, [&](size_t threadId) { 2844 uint32_t i = 0; 2845 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2846 for (const NameAttrEntry &ent : entries) { 2847 size_t shardId = ent.name.hash() >> shift; 2848 if ((shardId & (concurrency - 1)) != threadId) 2849 continue; 2850 2851 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2852 size_t &idx = map[shardId][ent.name]; 2853 if (idx) { 2854 symbols[shardId][idx - 1].cuVector.push_back(v); 2855 continue; 2856 } 2857 2858 idx = symbols[shardId].size() + 1; 2859 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2860 } 2861 ++i; 2862 } 2863 }); 2864 2865 size_t numSymbols = 0; 2866 for (ArrayRef<GdbSymbol> v : symbols) 2867 numSymbols += v.size(); 2868 2869 // The return type is a flattened vector, so we'll copy each vector 2870 // contents to Ret. 2871 std::vector<GdbSymbol> ret; 2872 ret.reserve(numSymbols); 2873 for (std::vector<GdbSymbol> &vec : symbols) 2874 for (GdbSymbol &sym : vec) 2875 ret.push_back(std::move(sym)); 2876 2877 // CU vectors and symbol names are adjacent in the output file. 2878 // We can compute their offsets in the output file now. 2879 size_t off = 0; 2880 for (GdbSymbol &sym : ret) { 2881 sym.cuVectorOff = off; 2882 off += (sym.cuVector.size() + 1) * 4; 2883 } 2884 for (GdbSymbol &sym : ret) { 2885 sym.nameOff = off; 2886 off += sym.name.size() + 1; 2887 } 2888 2889 return ret; 2890 } 2891 2892 // Returns a newly-created .gdb_index section. 2893 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2894 // Collect InputFiles with .debug_info. See the comment in 2895 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2896 // note that isec->data() may uncompress the full content, which should be 2897 // parallelized. 2898 SetVector<InputFile *> files; 2899 for (InputSectionBase *s : inputSections) { 2900 InputSection *isec = dyn_cast<InputSection>(s); 2901 if (!isec) 2902 continue; 2903 // .debug_gnu_pub{names,types} are useless in executables. 2904 // They are present in input object files solely for creating 2905 // a .gdb_index. So we can remove them from the output. 2906 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2907 s->markDead(); 2908 else if (isec->name == ".debug_info") 2909 files.insert(isec->file); 2910 } 2911 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 2912 llvm::erase_if(inputSections, [](InputSectionBase *s) { 2913 if (auto *isec = dyn_cast<InputSection>(s)) 2914 if (InputSectionBase *rel = isec->getRelocatedSection()) 2915 return !rel->isLive(); 2916 return !s->isLive(); 2917 }); 2918 2919 std::vector<GdbChunk> chunks(files.size()); 2920 std::vector<std::vector<NameAttrEntry>> nameAttrs(files.size()); 2921 2922 parallelForEachN(0, files.size(), [&](size_t i) { 2923 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2924 // avoid getDwarf() here. 2925 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2926 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2927 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2928 2929 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2930 // this only picks the last one. Other address ranges are lost. 2931 chunks[i].sec = dobj.getInfoSection(); 2932 chunks[i].compilationUnits = readCuList(dwarf); 2933 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2934 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2935 }); 2936 2937 auto *ret = make<GdbIndexSection>(); 2938 ret->chunks = std::move(chunks); 2939 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2940 ret->initOutputSize(); 2941 return ret; 2942 } 2943 2944 void GdbIndexSection::writeTo(uint8_t *buf) { 2945 // Write the header. 2946 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2947 uint8_t *start = buf; 2948 hdr->version = 7; 2949 buf += sizeof(*hdr); 2950 2951 // Write the CU list. 2952 hdr->cuListOff = buf - start; 2953 for (GdbChunk &chunk : chunks) { 2954 for (CuEntry &cu : chunk.compilationUnits) { 2955 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2956 write64le(buf + 8, cu.cuLength); 2957 buf += 16; 2958 } 2959 } 2960 2961 // Write the address area. 2962 hdr->cuTypesOff = buf - start; 2963 hdr->addressAreaOff = buf - start; 2964 uint32_t cuOff = 0; 2965 for (GdbChunk &chunk : chunks) { 2966 for (AddressEntry &e : chunk.addressAreas) { 2967 // In the case of ICF there may be duplicate address range entries. 2968 const uint64_t baseAddr = e.section->repl->getVA(0); 2969 write64le(buf, baseAddr + e.lowAddress); 2970 write64le(buf + 8, baseAddr + e.highAddress); 2971 write32le(buf + 16, e.cuIndex + cuOff); 2972 buf += 20; 2973 } 2974 cuOff += chunk.compilationUnits.size(); 2975 } 2976 2977 // Write the on-disk open-addressing hash table containing symbols. 2978 hdr->symtabOff = buf - start; 2979 size_t symtabSize = computeSymtabSize(); 2980 uint32_t mask = symtabSize - 1; 2981 2982 for (GdbSymbol &sym : symbols) { 2983 uint32_t h = sym.name.hash(); 2984 uint32_t i = h & mask; 2985 uint32_t step = ((h * 17) & mask) | 1; 2986 2987 while (read32le(buf + i * 8)) 2988 i = (i + step) & mask; 2989 2990 write32le(buf + i * 8, sym.nameOff); 2991 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2992 } 2993 2994 buf += symtabSize * 8; 2995 2996 // Write the string pool. 2997 hdr->constantPoolOff = buf - start; 2998 parallelForEach(symbols, [&](GdbSymbol &sym) { 2999 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 3000 }); 3001 3002 // Write the CU vectors. 3003 for (GdbSymbol &sym : symbols) { 3004 write32le(buf, sym.cuVector.size()); 3005 buf += 4; 3006 for (uint32_t val : sym.cuVector) { 3007 write32le(buf, val); 3008 buf += 4; 3009 } 3010 } 3011 } 3012 3013 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 3014 3015 EhFrameHeader::EhFrameHeader() 3016 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 3017 3018 void EhFrameHeader::writeTo(uint8_t *buf) { 3019 // Unlike most sections, the EhFrameHeader section is written while writing 3020 // another section, namely EhFrameSection, which calls the write() function 3021 // below from its writeTo() function. This is necessary because the contents 3022 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 3023 // don't know which order the sections will be written in. 3024 } 3025 3026 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 3027 // Each entry of the search table consists of two values, 3028 // the starting PC from where FDEs covers, and the FDE's address. 3029 // It is sorted by PC. 3030 void EhFrameHeader::write() { 3031 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3032 using FdeData = EhFrameSection::FdeData; 3033 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData(); 3034 3035 buf[0] = 1; 3036 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3037 buf[2] = DW_EH_PE_udata4; 3038 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3039 write32(buf + 4, 3040 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3041 write32(buf + 8, fdes.size()); 3042 buf += 12; 3043 3044 for (FdeData &fde : fdes) { 3045 write32(buf, fde.pcRel); 3046 write32(buf + 4, fde.fdeVARel); 3047 buf += 8; 3048 } 3049 } 3050 3051 size_t EhFrameHeader::getSize() const { 3052 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3053 return 12 + getPartition().ehFrame->numFdes * 8; 3054 } 3055 3056 bool EhFrameHeader::isNeeded() const { 3057 return isLive() && getPartition().ehFrame->isNeeded(); 3058 } 3059 3060 VersionDefinitionSection::VersionDefinitionSection() 3061 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3062 ".gnu.version_d") {} 3063 3064 StringRef VersionDefinitionSection::getFileDefName() { 3065 if (!getPartition().name.empty()) 3066 return getPartition().name; 3067 if (!config->soName.empty()) 3068 return config->soName; 3069 return config->outputFile; 3070 } 3071 3072 void VersionDefinitionSection::finalizeContents() { 3073 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3074 for (const VersionDefinition &v : namedVersionDefs()) 3075 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3076 3077 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3078 getParent()->link = sec->sectionIndex; 3079 3080 // sh_info should be set to the number of definitions. This fact is missed in 3081 // documentation, but confirmed by binutils community: 3082 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3083 getParent()->info = getVerDefNum(); 3084 } 3085 3086 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3087 StringRef name, size_t nameOff) { 3088 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3089 3090 // Write a verdef. 3091 write16(buf, 1); // vd_version 3092 write16(buf + 2, flags); // vd_flags 3093 write16(buf + 4, index); // vd_ndx 3094 write16(buf + 6, 1); // vd_cnt 3095 write32(buf + 8, hashSysV(name)); // vd_hash 3096 write32(buf + 12, 20); // vd_aux 3097 write32(buf + 16, 28); // vd_next 3098 3099 // Write a veraux. 3100 write32(buf + 20, nameOff); // vda_name 3101 write32(buf + 24, 0); // vda_next 3102 } 3103 3104 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3105 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3106 3107 auto nameOffIt = verDefNameOffs.begin(); 3108 for (const VersionDefinition &v : namedVersionDefs()) { 3109 buf += EntrySize; 3110 writeOne(buf, v.id, v.name, *nameOffIt++); 3111 } 3112 3113 // Need to terminate the last version definition. 3114 write32(buf + 16, 0); // vd_next 3115 } 3116 3117 size_t VersionDefinitionSection::getSize() const { 3118 return EntrySize * getVerDefNum(); 3119 } 3120 3121 // .gnu.version is a table where each entry is 2 byte long. 3122 VersionTableSection::VersionTableSection() 3123 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3124 ".gnu.version") { 3125 this->entsize = 2; 3126 } 3127 3128 void VersionTableSection::finalizeContents() { 3129 // At the moment of june 2016 GNU docs does not mention that sh_link field 3130 // should be set, but Sun docs do. Also readelf relies on this field. 3131 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3132 } 3133 3134 size_t VersionTableSection::getSize() const { 3135 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3136 } 3137 3138 void VersionTableSection::writeTo(uint8_t *buf) { 3139 buf += 2; 3140 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3141 // For an unextracted lazy symbol (undefined weak), it must have been 3142 // converted to Undefined and have VER_NDX_GLOBAL version here. 3143 assert(!s.sym->isLazy()); 3144 write16(buf, s.sym->versionId); 3145 buf += 2; 3146 } 3147 } 3148 3149 bool VersionTableSection::isNeeded() const { 3150 return isLive() && 3151 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3152 } 3153 3154 void elf::addVerneed(Symbol *ss) { 3155 auto &file = cast<SharedFile>(*ss->file); 3156 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3157 ss->versionId = VER_NDX_GLOBAL; 3158 return; 3159 } 3160 3161 if (file.vernauxs.empty()) 3162 file.vernauxs.resize(file.verdefs.size()); 3163 3164 // Select a version identifier for the vernaux data structure, if we haven't 3165 // already allocated one. The verdef identifiers cover the range 3166 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3167 // getVerDefNum()+1. 3168 if (file.vernauxs[ss->verdefIndex] == 0) 3169 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3170 3171 ss->versionId = file.vernauxs[ss->verdefIndex]; 3172 } 3173 3174 template <class ELFT> 3175 VersionNeedSection<ELFT>::VersionNeedSection() 3176 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3177 ".gnu.version_r") {} 3178 3179 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3180 for (SharedFile *f : sharedFiles) { 3181 if (f->vernauxs.empty()) 3182 continue; 3183 verneeds.emplace_back(); 3184 Verneed &vn = verneeds.back(); 3185 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3186 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3187 if (f->vernauxs[i] == 0) 3188 continue; 3189 auto *verdef = 3190 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3191 vn.vernauxs.push_back( 3192 {verdef->vd_hash, f->vernauxs[i], 3193 getPartition().dynStrTab->addString(f->getStringTable().data() + 3194 verdef->getAux()->vda_name)}); 3195 } 3196 } 3197 3198 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3199 getParent()->link = sec->sectionIndex; 3200 getParent()->info = verneeds.size(); 3201 } 3202 3203 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3204 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3205 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3206 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3207 3208 for (auto &vn : verneeds) { 3209 // Create an Elf_Verneed for this DSO. 3210 verneed->vn_version = 1; 3211 verneed->vn_cnt = vn.vernauxs.size(); 3212 verneed->vn_file = vn.nameStrTab; 3213 verneed->vn_aux = 3214 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3215 verneed->vn_next = sizeof(Elf_Verneed); 3216 ++verneed; 3217 3218 // Create the Elf_Vernauxs for this Elf_Verneed. 3219 for (auto &vna : vn.vernauxs) { 3220 vernaux->vna_hash = vna.hash; 3221 vernaux->vna_flags = 0; 3222 vernaux->vna_other = vna.verneedIndex; 3223 vernaux->vna_name = vna.nameStrTab; 3224 vernaux->vna_next = sizeof(Elf_Vernaux); 3225 ++vernaux; 3226 } 3227 3228 vernaux[-1].vna_next = 0; 3229 } 3230 verneed[-1].vn_next = 0; 3231 } 3232 3233 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3234 return verneeds.size() * sizeof(Elf_Verneed) + 3235 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3236 } 3237 3238 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3239 return isLive() && SharedFile::vernauxNum != 0; 3240 } 3241 3242 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3243 ms->parent = this; 3244 sections.push_back(ms); 3245 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3246 alignment = std::max(alignment, ms->alignment); 3247 } 3248 3249 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3250 uint64_t flags, uint32_t alignment) 3251 : MergeSyntheticSection(name, type, flags, alignment), 3252 builder(StringTableBuilder::RAW, alignment) {} 3253 3254 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3255 3256 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3257 3258 void MergeTailSection::finalizeContents() { 3259 // Add all string pieces to the string table builder to create section 3260 // contents. 3261 for (MergeInputSection *sec : sections) 3262 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3263 if (sec->pieces[i].live) 3264 builder.add(sec->getData(i)); 3265 3266 // Fix the string table content. After this, the contents will never change. 3267 builder.finalize(); 3268 3269 // finalize() fixed tail-optimized strings, so we can now get 3270 // offsets of strings. Get an offset for each string and save it 3271 // to a corresponding SectionPiece for easy access. 3272 for (MergeInputSection *sec : sections) 3273 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3274 if (sec->pieces[i].live) 3275 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3276 } 3277 3278 void MergeNoTailSection::writeTo(uint8_t *buf) { 3279 parallelForEachN(0, numShards, 3280 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); 3281 } 3282 3283 // This function is very hot (i.e. it can take several seconds to finish) 3284 // because sometimes the number of inputs is in an order of magnitude of 3285 // millions. So, we use multi-threading. 3286 // 3287 // For any strings S and T, we know S is not mergeable with T if S's hash 3288 // value is different from T's. If that's the case, we can safely put S and 3289 // T into different string builders without worrying about merge misses. 3290 // We do it in parallel. 3291 void MergeNoTailSection::finalizeContents() { 3292 // Initializes string table builders. 3293 for (size_t i = 0; i < numShards; ++i) 3294 shards.emplace_back(StringTableBuilder::RAW, alignment); 3295 3296 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3297 // operations in the following tight loop. 3298 size_t concurrency = PowerOf2Floor( 3299 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 3300 .compute_thread_count(), 3301 numShards)); 3302 3303 // Add section pieces to the builders. 3304 parallelForEachN(0, concurrency, [&](size_t threadId) { 3305 for (MergeInputSection *sec : sections) { 3306 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3307 if (!sec->pieces[i].live) 3308 continue; 3309 size_t shardId = getShardId(sec->pieces[i].hash); 3310 if ((shardId & (concurrency - 1)) == threadId) 3311 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3312 } 3313 } 3314 }); 3315 3316 // Compute an in-section offset for each shard. 3317 size_t off = 0; 3318 for (size_t i = 0; i < numShards; ++i) { 3319 shards[i].finalizeInOrder(); 3320 if (shards[i].getSize() > 0) 3321 off = alignTo(off, alignment); 3322 shardOffsets[i] = off; 3323 off += shards[i].getSize(); 3324 } 3325 size = off; 3326 3327 // So far, section pieces have offsets from beginning of shards, but 3328 // we want offsets from beginning of the whole section. Fix them. 3329 parallelForEach(sections, [&](MergeInputSection *sec) { 3330 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3331 if (sec->pieces[i].live) 3332 sec->pieces[i].outputOff += 3333 shardOffsets[getShardId(sec->pieces[i].hash)]; 3334 }); 3335 } 3336 3337 template <class ELFT> void elf::splitSections() { 3338 llvm::TimeTraceScope timeScope("Split sections"); 3339 // splitIntoPieces needs to be called on each MergeInputSection 3340 // before calling finalizeContents(). 3341 parallelForEach(inputSections, [](InputSectionBase *sec) { 3342 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3343 s->splitIntoPieces(); 3344 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3345 eh->split<ELFT>(); 3346 }); 3347 } 3348 3349 MipsRldMapSection::MipsRldMapSection() 3350 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3351 ".rld_map") {} 3352 3353 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3354 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3355 config->wordsize, ".ARM.exidx") {} 3356 3357 static InputSection *findExidxSection(InputSection *isec) { 3358 for (InputSection *d : isec->dependentSections) 3359 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3360 return d; 3361 return nullptr; 3362 } 3363 3364 static bool isValidExidxSectionDep(InputSection *isec) { 3365 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3366 isec->getSize() > 0; 3367 } 3368 3369 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3370 if (isec->type == SHT_ARM_EXIDX) { 3371 if (InputSection *dep = isec->getLinkOrderDep()) 3372 if (isValidExidxSectionDep(dep)) { 3373 exidxSections.push_back(isec); 3374 // Every exidxSection is 8 bytes, we need an estimate of 3375 // size before assignAddresses can be called. Final size 3376 // will only be known after finalize is called. 3377 size += 8; 3378 } 3379 return true; 3380 } 3381 3382 if (isValidExidxSectionDep(isec)) { 3383 executableSections.push_back(isec); 3384 return false; 3385 } 3386 3387 // FIXME: we do not output a relocation section when --emit-relocs is used 3388 // as we do not have relocation sections for linker generated table entries 3389 // and we would have to erase at a late stage relocations from merged entries. 3390 // Given that exception tables are already position independent and a binary 3391 // analyzer could derive the relocations we choose to erase the relocations. 3392 if (config->emitRelocs && isec->type == SHT_REL) 3393 if (InputSectionBase *ex = isec->getRelocatedSection()) 3394 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3395 return true; 3396 3397 return false; 3398 } 3399 3400 // References to .ARM.Extab Sections have bit 31 clear and are not the 3401 // special EXIDX_CANTUNWIND bit-pattern. 3402 static bool isExtabRef(uint32_t unwind) { 3403 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3404 } 3405 3406 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3407 // section Prev, where Cur follows Prev in the table. This can be done if the 3408 // unwinding instructions in Cur are identical to Prev. Linker generated 3409 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3410 // InputSection. 3411 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3412 3413 struct ExidxEntry { 3414 ulittle32_t fn; 3415 ulittle32_t unwind; 3416 }; 3417 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3418 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3419 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3420 if (prev) 3421 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3422 if (isExtabRef(prevEntry.unwind)) 3423 return false; 3424 3425 // We consider the unwind instructions of an .ARM.exidx table entry 3426 // a duplicate if the previous unwind instructions if: 3427 // - Both are the special EXIDX_CANTUNWIND. 3428 // - Both are the same inline unwind instructions. 3429 // We do not attempt to follow and check links into .ARM.extab tables as 3430 // consecutive identical entries are rare and the effort to check that they 3431 // are identical is high. 3432 3433 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3434 if (cur == nullptr) 3435 return prevEntry.unwind == 1; 3436 3437 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3438 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3439 return false; 3440 3441 // All table entries in this .ARM.exidx Section can be merged into the 3442 // previous Section. 3443 return true; 3444 } 3445 3446 // The .ARM.exidx table must be sorted in ascending order of the address of the 3447 // functions the table describes. Optionally duplicate adjacent table entries 3448 // can be removed. At the end of the function the executableSections must be 3449 // sorted in ascending order of address, Sentinel is set to the InputSection 3450 // with the highest address and any InputSections that have mergeable 3451 // .ARM.exidx table entries are removed from it. 3452 void ARMExidxSyntheticSection::finalizeContents() { 3453 // The executableSections and exidxSections that we use to derive the final 3454 // contents of this SyntheticSection are populated before 3455 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3456 // ICF may remove executable InputSections and their dependent .ARM.exidx 3457 // section that we recorded earlier. 3458 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3459 llvm::erase_if(exidxSections, isDiscarded); 3460 // We need to remove discarded InputSections and InputSections without 3461 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3462 // of range. 3463 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3464 if (!isec->isLive()) 3465 return true; 3466 if (findExidxSection(isec)) 3467 return false; 3468 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3469 return off != llvm::SignExtend64(off, 31); 3470 }; 3471 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3472 3473 // Sort the executable sections that may or may not have associated 3474 // .ARM.exidx sections by order of ascending address. This requires the 3475 // relative positions of InputSections and OutputSections to be known. 3476 auto compareByFilePosition = [](const InputSection *a, 3477 const InputSection *b) { 3478 OutputSection *aOut = a->getParent(); 3479 OutputSection *bOut = b->getParent(); 3480 3481 if (aOut != bOut) 3482 return aOut->addr < bOut->addr; 3483 return a->outSecOff < b->outSecOff; 3484 }; 3485 llvm::stable_sort(executableSections, compareByFilePosition); 3486 sentinel = executableSections.back(); 3487 // Optionally merge adjacent duplicate entries. 3488 if (config->mergeArmExidx) { 3489 std::vector<InputSection *> selectedSections; 3490 selectedSections.reserve(executableSections.size()); 3491 selectedSections.push_back(executableSections[0]); 3492 size_t prev = 0; 3493 for (size_t i = 1; i < executableSections.size(); ++i) { 3494 InputSection *ex1 = findExidxSection(executableSections[prev]); 3495 InputSection *ex2 = findExidxSection(executableSections[i]); 3496 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3497 selectedSections.push_back(executableSections[i]); 3498 prev = i; 3499 } 3500 } 3501 executableSections = std::move(selectedSections); 3502 } 3503 3504 size_t offset = 0; 3505 size = 0; 3506 for (InputSection *isec : executableSections) { 3507 if (InputSection *d = findExidxSection(isec)) { 3508 d->outSecOff = offset; 3509 d->parent = getParent(); 3510 offset += d->getSize(); 3511 } else { 3512 offset += 8; 3513 } 3514 } 3515 // Size includes Sentinel. 3516 size = offset + 8; 3517 } 3518 3519 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3520 return executableSections.front(); 3521 } 3522 3523 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3524 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3525 // We write the .ARM.exidx section contents and apply its relocations. 3526 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3527 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3528 // start of the InputSection as the purpose of the linker generated 3529 // section is to terminate the address range of the previous entry. 3530 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3531 // the table to terminate the address range of the final entry. 3532 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3533 3534 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3535 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3536 3537 uint64_t offset = 0; 3538 for (InputSection *isec : executableSections) { 3539 assert(isec->getParent() != nullptr); 3540 if (InputSection *d = findExidxSection(isec)) { 3541 memcpy(buf + offset, d->data().data(), d->data().size()); 3542 d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize()); 3543 offset += d->getSize(); 3544 } else { 3545 // A Linker generated CANTUNWIND section. 3546 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3547 uint64_t s = isec->getVA(); 3548 uint64_t p = getVA() + offset; 3549 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3550 offset += 8; 3551 } 3552 } 3553 // Write Sentinel. 3554 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3555 uint64_t s = sentinel->getVA(sentinel->getSize()); 3556 uint64_t p = getVA() + offset; 3557 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3558 assert(size == offset + 8); 3559 } 3560 3561 bool ARMExidxSyntheticSection::isNeeded() const { 3562 return llvm::any_of(exidxSections, 3563 [](InputSection *isec) { return isec->isLive(); }); 3564 } 3565 3566 bool ARMExidxSyntheticSection::classof(const SectionBase *d) { 3567 return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX; 3568 } 3569 3570 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3571 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 3572 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 3573 this->parent = os; 3574 this->outSecOff = off; 3575 } 3576 3577 size_t ThunkSection::getSize() const { 3578 if (roundUpSizeForErrata) 3579 return alignTo(size, 4096); 3580 return size; 3581 } 3582 3583 void ThunkSection::addThunk(Thunk *t) { 3584 thunks.push_back(t); 3585 t->addSymbols(*this); 3586 } 3587 3588 void ThunkSection::writeTo(uint8_t *buf) { 3589 for (Thunk *t : thunks) 3590 t->writeTo(buf + t->offset); 3591 } 3592 3593 InputSection *ThunkSection::getTargetInputSection() const { 3594 if (thunks.empty()) 3595 return nullptr; 3596 const Thunk *t = thunks.front(); 3597 return t->getTargetInputSection(); 3598 } 3599 3600 bool ThunkSection::assignOffsets() { 3601 uint64_t off = 0; 3602 for (Thunk *t : thunks) { 3603 off = alignTo(off, t->alignment); 3604 t->setOffset(off); 3605 uint32_t size = t->size(); 3606 t->getThunkTargetSym()->size = size; 3607 off += size; 3608 } 3609 bool changed = off != size; 3610 size = off; 3611 return changed; 3612 } 3613 3614 PPC32Got2Section::PPC32Got2Section() 3615 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3616 3617 bool PPC32Got2Section::isNeeded() const { 3618 // See the comment below. This is not needed if there is no other 3619 // InputSection. 3620 for (SectionCommand *cmd : getParent()->commands) 3621 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 3622 for (InputSection *isec : isd->sections) 3623 if (isec != this) 3624 return true; 3625 return false; 3626 } 3627 3628 void PPC32Got2Section::finalizeContents() { 3629 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3630 // .got2 . This function computes outSecOff of each .got2 to be used in 3631 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3632 // to collect input sections named ".got2". 3633 for (SectionCommand *cmd : getParent()->commands) 3634 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 3635 for (InputSection *isec : isd->sections) { 3636 // isec->file may be nullptr for MergeSyntheticSection. 3637 if (isec != this && isec->file) 3638 isec->file->ppc32Got2 = isec; 3639 } 3640 } 3641 } 3642 3643 // If linking position-dependent code then the table will store the addresses 3644 // directly in the binary so the section has type SHT_PROGBITS. If linking 3645 // position-independent code the section has type SHT_NOBITS since it will be 3646 // allocated and filled in by the dynamic linker. 3647 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3648 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3649 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3650 ".branch_lt") {} 3651 3652 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3653 int64_t addend) { 3654 return getVA() + entry_index.find({sym, addend})->second * 8; 3655 } 3656 3657 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3658 int64_t addend) { 3659 auto res = 3660 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3661 if (!res.second) 3662 return None; 3663 entries.emplace_back(sym, addend); 3664 return res.first->second; 3665 } 3666 3667 size_t PPC64LongBranchTargetSection::getSize() const { 3668 return entries.size() * 8; 3669 } 3670 3671 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3672 // If linking non-pic we have the final addresses of the targets and they get 3673 // written to the table directly. For pic the dynamic linker will allocate 3674 // the section and fill it it. 3675 if (config->isPic) 3676 return; 3677 3678 for (auto entry : entries) { 3679 const Symbol *sym = entry.first; 3680 int64_t addend = entry.second; 3681 assert(sym->getVA()); 3682 // Need calls to branch to the local entry-point since a long-branch 3683 // must be a local-call. 3684 write64(buf, sym->getVA(addend) + 3685 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3686 buf += 8; 3687 } 3688 } 3689 3690 bool PPC64LongBranchTargetSection::isNeeded() const { 3691 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3692 // is too early to determine if this section will be empty or not. We need 3693 // Finalized to keep the section alive until after thunk creation. Finalized 3694 // only gets set to true once `finalizeSections()` is called after thunk 3695 // creation. Because of this, if we don't create any long-branch thunks we end 3696 // up with an empty .branch_lt section in the binary. 3697 return !finalized || !entries.empty(); 3698 } 3699 3700 static uint8_t getAbiVersion() { 3701 // MIPS non-PIC executable gets ABI version 1. 3702 if (config->emachine == EM_MIPS) { 3703 if (!config->isPic && !config->relocatable && 3704 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3705 return 1; 3706 return 0; 3707 } 3708 3709 if (config->emachine == EM_AMDGPU) { 3710 uint8_t ver = objectFiles[0]->abiVersion; 3711 for (InputFile *file : makeArrayRef(objectFiles).slice(1)) 3712 if (file->abiVersion != ver) 3713 error("incompatible ABI version: " + toString(file)); 3714 return ver; 3715 } 3716 3717 return 0; 3718 } 3719 3720 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3721 memcpy(buf, "\177ELF", 4); 3722 3723 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3724 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3725 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3726 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3727 eHdr->e_ident[EI_OSABI] = config->osabi; 3728 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3729 eHdr->e_machine = config->emachine; 3730 eHdr->e_version = EV_CURRENT; 3731 eHdr->e_flags = config->eflags; 3732 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3733 eHdr->e_phnum = part.phdrs.size(); 3734 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3735 3736 if (!config->relocatable) { 3737 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3738 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3739 } 3740 } 3741 3742 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3743 // Write the program header table. 3744 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3745 for (PhdrEntry *p : part.phdrs) { 3746 hBuf->p_type = p->p_type; 3747 hBuf->p_flags = p->p_flags; 3748 hBuf->p_offset = p->p_offset; 3749 hBuf->p_vaddr = p->p_vaddr; 3750 hBuf->p_paddr = p->p_paddr; 3751 hBuf->p_filesz = p->p_filesz; 3752 hBuf->p_memsz = p->p_memsz; 3753 hBuf->p_align = p->p_align; 3754 ++hBuf; 3755 } 3756 } 3757 3758 template <typename ELFT> 3759 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3760 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3761 3762 template <typename ELFT> 3763 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3764 return sizeof(typename ELFT::Ehdr); 3765 } 3766 3767 template <typename ELFT> 3768 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3769 writeEhdr<ELFT>(buf, getPartition()); 3770 3771 // Loadable partitions are always ET_DYN. 3772 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3773 eHdr->e_type = ET_DYN; 3774 } 3775 3776 template <typename ELFT> 3777 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3778 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3779 3780 template <typename ELFT> 3781 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3782 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3783 } 3784 3785 template <typename ELFT> 3786 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3787 writePhdrs<ELFT>(buf, getPartition()); 3788 } 3789 3790 PartitionIndexSection::PartitionIndexSection() 3791 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3792 3793 size_t PartitionIndexSection::getSize() const { 3794 return 12 * (partitions.size() - 1); 3795 } 3796 3797 void PartitionIndexSection::finalizeContents() { 3798 for (size_t i = 1; i != partitions.size(); ++i) 3799 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3800 } 3801 3802 void PartitionIndexSection::writeTo(uint8_t *buf) { 3803 uint64_t va = getVA(); 3804 for (size_t i = 1; i != partitions.size(); ++i) { 3805 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3806 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3807 3808 SyntheticSection *next = i == partitions.size() - 1 3809 ? in.partEnd.get() 3810 : partitions[i + 1].elfHeader.get(); 3811 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3812 3813 va += 12; 3814 buf += 12; 3815 } 3816 } 3817 3818 void InStruct::reset() { 3819 attributes.reset(); 3820 bss.reset(); 3821 bssRelRo.reset(); 3822 got.reset(); 3823 gotPlt.reset(); 3824 igotPlt.reset(); 3825 ppc64LongBranchTarget.reset(); 3826 mipsGot.reset(); 3827 mipsRldMap.reset(); 3828 partEnd.reset(); 3829 partIndex.reset(); 3830 plt.reset(); 3831 iplt.reset(); 3832 ppc32Got2.reset(); 3833 ibtPlt.reset(); 3834 relaPlt.reset(); 3835 relaIplt.reset(); 3836 shStrTab.reset(); 3837 strTab.reset(); 3838 symTab.reset(); 3839 symTabShndx.reset(); 3840 } 3841 3842 InStruct elf::in; 3843 3844 std::vector<Partition> elf::partitions; 3845 Partition *elf::mainPart; 3846 3847 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3848 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3849 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3850 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3851 3852 template void elf::splitSections<ELF32LE>(); 3853 template void elf::splitSections<ELF32BE>(); 3854 template void elf::splitSections<ELF64LE>(); 3855 template void elf::splitSections<ELF64BE>(); 3856 3857 template class elf::MipsAbiFlagsSection<ELF32LE>; 3858 template class elf::MipsAbiFlagsSection<ELF32BE>; 3859 template class elf::MipsAbiFlagsSection<ELF64LE>; 3860 template class elf::MipsAbiFlagsSection<ELF64BE>; 3861 3862 template class elf::MipsOptionsSection<ELF32LE>; 3863 template class elf::MipsOptionsSection<ELF32BE>; 3864 template class elf::MipsOptionsSection<ELF64LE>; 3865 template class elf::MipsOptionsSection<ELF64BE>; 3866 3867 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 3868 function_ref<void(InputSection &)>); 3869 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 3870 function_ref<void(InputSection &)>); 3871 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 3872 function_ref<void(InputSection &)>); 3873 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 3874 function_ref<void(InputSection &)>); 3875 3876 template class elf::MipsReginfoSection<ELF32LE>; 3877 template class elf::MipsReginfoSection<ELF32BE>; 3878 template class elf::MipsReginfoSection<ELF64LE>; 3879 template class elf::MipsReginfoSection<ELF64BE>; 3880 3881 template class elf::DynamicSection<ELF32LE>; 3882 template class elf::DynamicSection<ELF32BE>; 3883 template class elf::DynamicSection<ELF64LE>; 3884 template class elf::DynamicSection<ELF64BE>; 3885 3886 template class elf::RelocationSection<ELF32LE>; 3887 template class elf::RelocationSection<ELF32BE>; 3888 template class elf::RelocationSection<ELF64LE>; 3889 template class elf::RelocationSection<ELF64BE>; 3890 3891 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3892 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3893 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3894 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3895 3896 template class elf::RelrSection<ELF32LE>; 3897 template class elf::RelrSection<ELF32BE>; 3898 template class elf::RelrSection<ELF64LE>; 3899 template class elf::RelrSection<ELF64BE>; 3900 3901 template class elf::SymbolTableSection<ELF32LE>; 3902 template class elf::SymbolTableSection<ELF32BE>; 3903 template class elf::SymbolTableSection<ELF64LE>; 3904 template class elf::SymbolTableSection<ELF64BE>; 3905 3906 template class elf::VersionNeedSection<ELF32LE>; 3907 template class elf::VersionNeedSection<ELF32BE>; 3908 template class elf::VersionNeedSection<ELF64LE>; 3909 template class elf::VersionNeedSection<ELF64BE>; 3910 3911 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3912 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3913 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3914 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3915 3916 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3917 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3918 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3919 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3920 3921 template class elf::PartitionElfHeaderSection<ELF32LE>; 3922 template class elf::PartitionElfHeaderSection<ELF32BE>; 3923 template class elf::PartitionElfHeaderSection<ELF64LE>; 3924 template class elf::PartitionElfHeaderSection<ELF64BE>; 3925 3926 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3927 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3928 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3929 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3930