1 //===- Symbols.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Symbols.h"
10 #include "Driver.h"
11 #include "InputFiles.h"
12 #include "InputSection.h"
13 #include "OutputSections.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "Writer.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Strings.h"
19 #include "llvm/Support/Compiler.h"
20 #include <cstring>
21
22 using namespace llvm;
23 using namespace llvm::object;
24 using namespace llvm::ELF;
25 using namespace lld;
26 using namespace lld::elf;
27
28 static_assert(sizeof(SymbolUnion) <= 64, "SymbolUnion too large");
29
30 template <typename T> struct AssertSymbol {
31 static_assert(std::is_trivially_destructible<T>(),
32 "Symbol types must be trivially destructible");
33 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
34 static_assert(alignof(T) <= alignof(SymbolUnion),
35 "SymbolUnion not aligned enough");
36 };
37
assertSymbols()38 LLVM_ATTRIBUTE_UNUSED static inline void assertSymbols() {
39 AssertSymbol<Defined>();
40 AssertSymbol<CommonSymbol>();
41 AssertSymbol<Undefined>();
42 AssertSymbol<SharedSymbol>();
43 AssertSymbol<LazyObject>();
44 }
45
toString(const elf::Symbol & sym)46 std::string lld::toString(const elf::Symbol &sym) {
47 StringRef name = sym.getName();
48 std::string ret = demangle(name, config->demangle);
49
50 const char *suffix = sym.getVersionSuffix();
51 if (*suffix == '@')
52 ret += suffix;
53 return ret;
54 }
55
56 Defined *ElfSym::bss;
57 Defined *ElfSym::etext1;
58 Defined *ElfSym::etext2;
59 Defined *ElfSym::edata1;
60 Defined *ElfSym::edata2;
61 Defined *ElfSym::end1;
62 Defined *ElfSym::end2;
63 Defined *ElfSym::globalOffsetTable;
64 Defined *ElfSym::mipsGp;
65 Defined *ElfSym::mipsGpDisp;
66 Defined *ElfSym::mipsLocalGp;
67 Defined *ElfSym::relaIpltStart;
68 Defined *ElfSym::relaIpltEnd;
69 Defined *ElfSym::riscvGlobalPointer;
70 Defined *ElfSym::tlsModuleBase;
71 SmallVector<SymbolAux, 0> elf::symAux;
72
getSymVA(const Symbol & sym,int64_t addend)73 static uint64_t getSymVA(const Symbol &sym, int64_t addend) {
74 switch (sym.kind()) {
75 case Symbol::DefinedKind: {
76 auto &d = cast<Defined>(sym);
77 SectionBase *isec = d.section;
78
79 // This is an absolute symbol.
80 if (!isec)
81 return d.value;
82
83 assert(isec != &InputSection::discarded);
84
85 uint64_t offset = d.value;
86
87 // An object in an SHF_MERGE section might be referenced via a
88 // section symbol (as a hack for reducing the number of local
89 // symbols).
90 // Depending on the addend, the reference via a section symbol
91 // refers to a different object in the merge section.
92 // Since the objects in the merge section are not necessarily
93 // contiguous in the output, the addend can thus affect the final
94 // VA in a non-linear way.
95 // To make this work, we incorporate the addend into the section
96 // offset (and zero out the addend for later processing) so that
97 // we find the right object in the section.
98 if (d.isSection())
99 offset += addend;
100
101 // In the typical case, this is actually very simple and boils
102 // down to adding together 3 numbers:
103 // 1. The address of the output section.
104 // 2. The offset of the input section within the output section.
105 // 3. The offset within the input section (this addition happens
106 // inside InputSection::getOffset).
107 //
108 // If you understand the data structures involved with this next
109 // line (and how they get built), then you have a pretty good
110 // understanding of the linker.
111 uint64_t va = isec->getVA(offset);
112 if (d.isSection())
113 va -= addend;
114
115 // MIPS relocatable files can mix regular and microMIPS code.
116 // Linker needs to distinguish such code. To do so microMIPS
117 // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other`
118 // field. Unfortunately, the `MIPS::relocate()` method has
119 // a symbol value only. To pass type of the symbol (regular/microMIPS)
120 // to that routine as well as other places where we write
121 // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry`
122 // field etc) do the same trick as compiler uses to mark microMIPS
123 // for CPU - set the less-significant bit.
124 if (config->emachine == EM_MIPS && isMicroMips() &&
125 ((sym.stOther & STO_MIPS_MICROMIPS) || sym.needsCopy))
126 va |= 1;
127
128 if (d.isTls() && !config->relocatable) {
129 // Use the address of the TLS segment's first section rather than the
130 // segment's address, because segment addresses aren't initialized until
131 // after sections are finalized. (e.g. Measuring the size of .rela.dyn
132 // for Android relocation packing requires knowing TLS symbol addresses
133 // during section finalization.)
134 if (!Out::tlsPhdr || !Out::tlsPhdr->firstSec)
135 fatal(toString(d.file) +
136 " has an STT_TLS symbol but doesn't have an SHF_TLS section");
137 return va - Out::tlsPhdr->firstSec->addr;
138 }
139 return va;
140 }
141 case Symbol::SharedKind:
142 case Symbol::UndefinedKind:
143 return 0;
144 case Symbol::LazyObjectKind:
145 llvm_unreachable("lazy symbol reached writer");
146 case Symbol::CommonKind:
147 llvm_unreachable("common symbol reached writer");
148 case Symbol::PlaceholderKind:
149 llvm_unreachable("placeholder symbol reached writer");
150 }
151 llvm_unreachable("invalid symbol kind");
152 }
153
getVA(int64_t addend) const154 uint64_t Symbol::getVA(int64_t addend) const {
155 return getSymVA(*this, addend) + addend;
156 }
157
getGotVA() const158 uint64_t Symbol::getGotVA() const {
159 if (gotInIgot)
160 return in.igotPlt->getVA() + getGotPltOffset();
161 return in.got->getVA() + getGotOffset();
162 }
163
getGotOffset() const164 uint64_t Symbol::getGotOffset() const {
165 return getGotIdx() * target->gotEntrySize;
166 }
167
getGotPltVA() const168 uint64_t Symbol::getGotPltVA() const {
169 if (isInIplt)
170 return in.igotPlt->getVA() + getGotPltOffset();
171 return in.gotPlt->getVA() + getGotPltOffset();
172 }
173
getGotPltOffset() const174 uint64_t Symbol::getGotPltOffset() const {
175 if (isInIplt)
176 return getPltIdx() * target->gotEntrySize;
177 return (getPltIdx() + target->gotPltHeaderEntriesNum) * target->gotEntrySize;
178 }
179
getPltVA() const180 uint64_t Symbol::getPltVA() const {
181 uint64_t outVA = isInIplt
182 ? in.iplt->getVA() + getPltIdx() * target->ipltEntrySize
183 : in.plt->getVA() + in.plt->headerSize +
184 getPltIdx() * target->pltEntrySize;
185
186 // While linking microMIPS code PLT code are always microMIPS
187 // code. Set the less-significant bit to track that fact.
188 // See detailed comment in the `getSymVA` function.
189 if (config->emachine == EM_MIPS && isMicroMips())
190 outVA |= 1;
191 return outVA;
192 }
193
getSize() const194 uint64_t Symbol::getSize() const {
195 if (const auto *dr = dyn_cast<Defined>(this))
196 return dr->size;
197 return cast<SharedSymbol>(this)->size;
198 }
199
getOutputSection() const200 OutputSection *Symbol::getOutputSection() const {
201 if (auto *s = dyn_cast<Defined>(this)) {
202 if (auto *sec = s->section)
203 return sec->getOutputSection();
204 return nullptr;
205 }
206 return nullptr;
207 }
208
209 // If a symbol name contains '@', the characters after that is
210 // a symbol version name. This function parses that.
parseSymbolVersion()211 void Symbol::parseSymbolVersion() {
212 // Return if localized by a local: pattern in a version script.
213 if (versionId == VER_NDX_LOCAL)
214 return;
215 StringRef s = getName();
216 size_t pos = s.find('@');
217 if (pos == StringRef::npos)
218 return;
219 StringRef verstr = s.substr(pos + 1);
220
221 // Truncate the symbol name so that it doesn't include the version string.
222 nameSize = pos;
223
224 if (verstr.empty())
225 return;
226
227 // If this is not in this DSO, it is not a definition.
228 if (!isDefined())
229 return;
230
231 // '@@' in a symbol name means the default version.
232 // It is usually the most recent one.
233 bool isDefault = (verstr[0] == '@');
234 if (isDefault)
235 verstr = verstr.substr(1);
236
237 for (const VersionDefinition &ver : namedVersionDefs()) {
238 if (ver.name != verstr)
239 continue;
240
241 if (isDefault)
242 versionId = ver.id;
243 else
244 versionId = ver.id | VERSYM_HIDDEN;
245 return;
246 }
247
248 // It is an error if the specified version is not defined.
249 // Usually version script is not provided when linking executable,
250 // but we may still want to override a versioned symbol from DSO,
251 // so we do not report error in this case. We also do not error
252 // if the symbol has a local version as it won't be in the dynamic
253 // symbol table.
254 if (config->shared && versionId != VER_NDX_LOCAL)
255 error(toString(file) + ": symbol " + s + " has undefined version " +
256 verstr);
257 }
258
extract() const259 void Symbol::extract() const {
260 if (file->lazy) {
261 file->lazy = false;
262 parseFile(file);
263 }
264 }
265
computeBinding() const266 uint8_t Symbol::computeBinding() const {
267 if ((visibility != STV_DEFAULT && visibility != STV_PROTECTED) ||
268 versionId == VER_NDX_LOCAL)
269 return STB_LOCAL;
270 if (binding == STB_GNU_UNIQUE && !config->gnuUnique)
271 return STB_GLOBAL;
272 return binding;
273 }
274
includeInDynsym() const275 bool Symbol::includeInDynsym() const {
276 if (computeBinding() == STB_LOCAL)
277 return false;
278 if (!isDefined() && !isCommon())
279 // This should unconditionally return true, unfortunately glibc -static-pie
280 // expects undefined weak symbols not to exist in .dynsym, e.g.
281 // __pthread_mutex_lock reference in _dl_add_to_namespace_list,
282 // __pthread_initialize_minimal reference in csu/libc-start.c.
283 return !(isUndefWeak() && config->noDynamicLinker);
284
285 return exportDynamic || inDynamicList;
286 }
287
288 // Print out a log message for --trace-symbol.
printTraceSymbol(const Symbol & sym,StringRef name)289 void elf::printTraceSymbol(const Symbol &sym, StringRef name) {
290 std::string s;
291 if (sym.isUndefined())
292 s = ": reference to ";
293 else if (sym.isLazy())
294 s = ": lazy definition of ";
295 else if (sym.isShared())
296 s = ": shared definition of ";
297 else if (sym.isCommon())
298 s = ": common definition of ";
299 else
300 s = ": definition of ";
301
302 message(toString(sym.file) + s + name);
303 }
304
recordWhyExtract(const InputFile * reference,const InputFile & extracted,const Symbol & sym)305 static void recordWhyExtract(const InputFile *reference,
306 const InputFile &extracted, const Symbol &sym) {
307 ctx->whyExtractRecords.emplace_back(toString(reference), &extracted, sym);
308 }
309
maybeWarnUnorderableSymbol(const Symbol * sym)310 void elf::maybeWarnUnorderableSymbol(const Symbol *sym) {
311 if (!config->warnSymbolOrdering)
312 return;
313
314 // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning
315 // is emitted. It makes sense to not warn on undefined symbols.
316 //
317 // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols,
318 // but we don't have to be compatible here.
319 if (sym->isUndefined() &&
320 config->unresolvedSymbols == UnresolvedPolicy::Ignore)
321 return;
322
323 const InputFile *file = sym->file;
324 auto *d = dyn_cast<Defined>(sym);
325
326 auto report = [&](StringRef s) { warn(toString(file) + s + sym->getName()); };
327
328 if (sym->isUndefined())
329 report(": unable to order undefined symbol: ");
330 else if (sym->isShared())
331 report(": unable to order shared symbol: ");
332 else if (d && !d->section)
333 report(": unable to order absolute symbol: ");
334 else if (d && isa<OutputSection>(d->section))
335 report(": unable to order synthetic symbol: ");
336 else if (d && !d->section->isLive())
337 report(": unable to order discarded symbol: ");
338 }
339
340 // Returns true if a symbol can be replaced at load-time by a symbol
341 // with the same name defined in other ELF executable or DSO.
computeIsPreemptible(const Symbol & sym)342 bool elf::computeIsPreemptible(const Symbol &sym) {
343 assert(!sym.isLocal() || sym.isPlaceholder());
344
345 // Only symbols with default visibility that appear in dynsym can be
346 // preempted. Symbols with protected visibility cannot be preempted.
347 if (!sym.includeInDynsym() || sym.visibility != STV_DEFAULT)
348 return false;
349
350 // At this point copy relocations have not been created yet, so any
351 // symbol that is not defined locally is preemptible.
352 if (!sym.isDefined())
353 return true;
354
355 if (!config->shared)
356 return false;
357
358 // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is
359 // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is
360 // in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of
361 // -Bsymbolic-functions.
362 if (config->symbolic ||
363 (config->bsymbolic == BsymbolicKind::Functions && sym.isFunc()) ||
364 (config->bsymbolic == BsymbolicKind::NonWeakFunctions && sym.isFunc() &&
365 sym.binding != STB_WEAK))
366 return sym.inDynamicList;
367 return true;
368 }
369
getMinVisibility(uint8_t va,uint8_t vb)370 static uint8_t getMinVisibility(uint8_t va, uint8_t vb) {
371 if (va == STV_DEFAULT)
372 return vb;
373 if (vb == STV_DEFAULT)
374 return va;
375 return std::min(va, vb);
376 }
377
378 // Merge symbol properties.
379 //
380 // When we have many symbols of the same name, we choose one of them,
381 // and that's the result of symbol resolution. However, symbols that
382 // were not chosen still affect some symbol properties.
mergeProperties(const Symbol & other)383 void Symbol::mergeProperties(const Symbol &other) {
384 if (other.exportDynamic)
385 exportDynamic = true;
386
387 // DSO symbols do not affect visibility in the output.
388 if (!other.isShared())
389 visibility = getMinVisibility(visibility, other.visibility);
390 }
391
resolve(const Symbol & other)392 void Symbol::resolve(const Symbol &other) {
393 mergeProperties(other);
394
395 if (isPlaceholder()) {
396 replace(other);
397 return;
398 }
399
400 switch (other.kind()) {
401 case Symbol::UndefinedKind:
402 resolveUndefined(cast<Undefined>(other));
403 break;
404 case Symbol::CommonKind:
405 resolveCommon(cast<CommonSymbol>(other));
406 break;
407 case Symbol::DefinedKind:
408 resolveDefined(cast<Defined>(other));
409 break;
410 case Symbol::LazyObjectKind:
411 resolveLazy(cast<LazyObject>(other));
412 break;
413 case Symbol::SharedKind:
414 resolveShared(cast<SharedSymbol>(other));
415 break;
416 case Symbol::PlaceholderKind:
417 llvm_unreachable("bad symbol kind");
418 }
419 }
420
resolveUndefined(const Undefined & other)421 void Symbol::resolveUndefined(const Undefined &other) {
422 // An undefined symbol with non default visibility must be satisfied
423 // in the same DSO.
424 //
425 // If this is a non-weak defined symbol in a discarded section, override the
426 // existing undefined symbol for better error message later.
427 if ((isShared() && other.visibility != STV_DEFAULT) ||
428 (isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) {
429 replace(other);
430 return;
431 }
432
433 if (traced)
434 printTraceSymbol(other, getName());
435
436 if (isLazy()) {
437 // An undefined weak will not extract archive members. See comment on Lazy
438 // in Symbols.h for the details.
439 if (other.binding == STB_WEAK) {
440 binding = STB_WEAK;
441 type = other.type;
442 return;
443 }
444
445 // Do extra check for --warn-backrefs.
446 //
447 // --warn-backrefs is an option to prevent an undefined reference from
448 // extracting an archive member written earlier in the command line. It can
449 // be used to keep compatibility with GNU linkers to some degree. I'll
450 // explain the feature and why you may find it useful in this comment.
451 //
452 // lld's symbol resolution semantics is more relaxed than traditional Unix
453 // linkers. For example,
454 //
455 // ld.lld foo.a bar.o
456 //
457 // succeeds even if bar.o contains an undefined symbol that has to be
458 // resolved by some object file in foo.a. Traditional Unix linkers don't
459 // allow this kind of backward reference, as they visit each file only once
460 // from left to right in the command line while resolving all undefined
461 // symbols at the moment of visiting.
462 //
463 // In the above case, since there's no undefined symbol when a linker visits
464 // foo.a, no files are pulled out from foo.a, and because the linker forgets
465 // about foo.a after visiting, it can't resolve undefined symbols in bar.o
466 // that could have been resolved otherwise.
467 //
468 // That lld accepts more relaxed form means that (besides it'd make more
469 // sense) you can accidentally write a command line or a build file that
470 // works only with lld, even if you have a plan to distribute it to wider
471 // users who may be using GNU linkers. With --warn-backrefs, you can detect
472 // a library order that doesn't work with other Unix linkers.
473 //
474 // The option is also useful to detect cyclic dependencies between static
475 // archives. Again, lld accepts
476 //
477 // ld.lld foo.a bar.a
478 //
479 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
480 // handled as an error.
481 //
482 // Here is how the option works. We assign a group ID to each file. A file
483 // with a smaller group ID can pull out object files from an archive file
484 // with an equal or greater group ID. Otherwise, it is a reverse dependency
485 // and an error.
486 //
487 // A file outside --{start,end}-group gets a fresh ID when instantiated. All
488 // files within the same --{start,end}-group get the same group ID. E.g.
489 //
490 // ld.lld A B --start-group C D --end-group E
491 //
492 // A forms group 0. B form group 1. C and D (including their member object
493 // files) form group 2. E forms group 3. I think that you can see how this
494 // group assignment rule simulates the traditional linker's semantics.
495 bool backref = config->warnBackrefs && other.file &&
496 file->groupId < other.file->groupId;
497 extract();
498
499 if (!config->whyExtract.empty())
500 recordWhyExtract(other.file, *file, *this);
501
502 // We don't report backward references to weak symbols as they can be
503 // overridden later.
504 //
505 // A traditional linker does not error for -ldef1 -lref -ldef2 (linking
506 // sandwich), where def2 may or may not be the same as def1. We don't want
507 // to warn for this case, so dismiss the warning if we see a subsequent lazy
508 // definition. this->file needs to be saved because in the case of LTO it
509 // may be reset to nullptr or be replaced with a file named lto.tmp.
510 if (backref && !isWeak())
511 ctx->backwardReferences.try_emplace(this,
512 std::make_pair(other.file, file));
513 return;
514 }
515
516 // Undefined symbols in a SharedFile do not change the binding.
517 if (isa_and_nonnull<SharedFile>(other.file))
518 return;
519
520 if (isUndefined() || isShared()) {
521 // The binding will be weak if there is at least one reference and all are
522 // weak. The binding has one opportunity to change to weak: if the first
523 // reference is weak.
524 if (other.binding != STB_WEAK || !referenced)
525 binding = other.binding;
526 }
527 }
528
529 // Compare two symbols. Return true if the new symbol should win.
shouldReplace(const Defined & other) const530 bool Symbol::shouldReplace(const Defined &other) const {
531 if (LLVM_UNLIKELY(isCommon())) {
532 if (config->warnCommon)
533 warn("common " + getName() + " is overridden");
534 return !other.isWeak();
535 }
536 if (!isDefined())
537 return true;
538
539 // .symver foo,foo@@VER unfortunately creates two defined symbols: foo and
540 // foo@@VER. In GNU ld, if foo and foo@@VER are in the same file, foo is
541 // ignored. In our implementation, when this is foo, this->getName() may still
542 // contain @@, return true in this case as well.
543 if (LLVM_UNLIKELY(file == other.file)) {
544 if (other.getName().contains("@@"))
545 return true;
546 if (getName().contains("@@"))
547 return false;
548 }
549
550 // Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes
551 // some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat
552 // STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all
553 // STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to
554 // an existing STB_WEAK, there may be discarded section errors because the
555 // selected copy may be in a non-prevailing COMDAT.
556 return !isGlobal() && other.isGlobal();
557 }
558
reportDuplicate(const Symbol & sym,const InputFile * newFile,InputSectionBase * errSec,uint64_t errOffset)559 void elf::reportDuplicate(const Symbol &sym, const InputFile *newFile,
560 InputSectionBase *errSec, uint64_t errOffset) {
561 if (config->allowMultipleDefinition)
562 return;
563 // In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which
564 // is sort of proto-comdat. There is actually no duplicate if we have
565 // full support for .gnu.linkonce.
566 const Defined *d = dyn_cast<Defined>(&sym);
567 if (!d || d->getName() == "__x86.get_pc_thunk.bx")
568 return;
569 // Allow absolute symbols with the same value for GNU ld compatibility.
570 if (!d->section && !errSec && errOffset && d->value == errOffset)
571 return;
572 if (!d->section || !errSec) {
573 error("duplicate symbol: " + toString(sym) + "\n>>> defined in " +
574 toString(sym.file) + "\n>>> defined in " + toString(newFile));
575 return;
576 }
577
578 // Construct and print an error message in the form of:
579 //
580 // ld.lld: error: duplicate symbol: foo
581 // >>> defined at bar.c:30
582 // >>> bar.o (/home/alice/src/bar.o)
583 // >>> defined at baz.c:563
584 // >>> baz.o in archive libbaz.a
585 auto *sec1 = cast<InputSectionBase>(d->section);
586 std::string src1 = sec1->getSrcMsg(sym, d->value);
587 std::string obj1 = sec1->getObjMsg(d->value);
588 std::string src2 = errSec->getSrcMsg(sym, errOffset);
589 std::string obj2 = errSec->getObjMsg(errOffset);
590
591 std::string msg = "duplicate symbol: " + toString(sym) + "\n>>> defined at ";
592 if (!src1.empty())
593 msg += src1 + "\n>>> ";
594 msg += obj1 + "\n>>> defined at ";
595 if (!src2.empty())
596 msg += src2 + "\n>>> ";
597 msg += obj2;
598 error(msg);
599 }
600
checkDuplicate(const Defined & other) const601 void Symbol::checkDuplicate(const Defined &other) const {
602 if (isDefined() && !isWeak() && !other.isWeak())
603 reportDuplicate(*this, other.file,
604 dyn_cast_or_null<InputSectionBase>(other.section),
605 other.value);
606 }
607
resolveCommon(const CommonSymbol & other)608 void Symbol::resolveCommon(const CommonSymbol &other) {
609 if (isDefined() && !isWeak()) {
610 if (config->warnCommon)
611 warn("common " + getName() + " is overridden");
612 return;
613 }
614
615 if (CommonSymbol *oldSym = dyn_cast<CommonSymbol>(this)) {
616 if (config->warnCommon)
617 warn("multiple common of " + getName());
618 oldSym->alignment = std::max(oldSym->alignment, other.alignment);
619 if (oldSym->size < other.size) {
620 oldSym->file = other.file;
621 oldSym->size = other.size;
622 }
623 return;
624 }
625
626 if (auto *s = dyn_cast<SharedSymbol>(this)) {
627 // Increase st_size if the shared symbol has a larger st_size. The shared
628 // symbol may be created from common symbols. The fact that some object
629 // files were linked into a shared object first should not change the
630 // regular rule that picks the largest st_size.
631 uint64_t size = s->size;
632 replace(other);
633 if (size > cast<CommonSymbol>(this)->size)
634 cast<CommonSymbol>(this)->size = size;
635 } else {
636 replace(other);
637 }
638 }
639
resolveDefined(const Defined & other)640 void Symbol::resolveDefined(const Defined &other) {
641 if (shouldReplace(other))
642 replace(other);
643 }
644
resolveLazy(const LazyObject & other)645 void Symbol::resolveLazy(const LazyObject &other) {
646 // For common objects, we want to look for global or weak definitions that
647 // should be extracted as the canonical definition instead.
648 if (LLVM_UNLIKELY(isCommon()) && elf::config->fortranCommon &&
649 other.file->shouldExtractForCommon(getName())) {
650 ctx->backwardReferences.erase(this);
651 replace(other);
652 other.extract();
653 return;
654 }
655
656 if (!isUndefined()) {
657 // See the comment in resolveUndefined().
658 if (isDefined())
659 ctx->backwardReferences.erase(this);
660 return;
661 }
662
663 // An undefined weak will not extract archive members. See comment on Lazy in
664 // Symbols.h for the details.
665 if (isWeak()) {
666 uint8_t ty = type;
667 replace(other);
668 type = ty;
669 binding = STB_WEAK;
670 return;
671 }
672
673 const InputFile *oldFile = file;
674 other.extract();
675 if (!config->whyExtract.empty())
676 recordWhyExtract(oldFile, *file, *this);
677 }
678
resolveShared(const SharedSymbol & other)679 void Symbol::resolveShared(const SharedSymbol &other) {
680 if (isCommon()) {
681 // See the comment in resolveCommon() above.
682 if (other.size > cast<CommonSymbol>(this)->size)
683 cast<CommonSymbol>(this)->size = other.size;
684 return;
685 }
686 if (visibility == STV_DEFAULT && (isUndefined() || isLazy())) {
687 // An undefined symbol with non default visibility must be satisfied
688 // in the same DSO.
689 uint8_t bind = binding;
690 replace(other);
691 binding = bind;
692 } else if (traced)
693 printTraceSymbol(other, getName());
694 }
695