1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Support/Endian.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 60 using namespace llvm; 61 using namespace llvm::ELF; 62 using namespace llvm::object; 63 using namespace llvm::support::endian; 64 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &Sym) { 69 for (BaseCommand *Base : Script->SectionCommands) 70 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) 71 if (Cmd->Sym == &Sym) 72 return Cmd->Location; 73 return None; 74 } 75 76 // Construct a message in the following format. 77 // 78 // >>> defined in /home/alice/src/foo.o 79 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 80 // >>> /home/alice/src/bar.o:(.text+0x1) 81 static std::string getLocation(InputSectionBase &S, const Symbol &Sym, 82 uint64_t Off) { 83 std::string Msg = "\n>>> defined in "; 84 if (Sym.File) 85 Msg += toString(Sym.File); 86 else if (Optional<std::string> Loc = getLinkerScriptLocation(Sym)) 87 Msg += *Loc; 88 89 Msg += "\n>>> referenced by "; 90 std::string Src = S.getSrcMsg(Sym, Off); 91 if (!Src.empty()) 92 Msg += Src + "\n>>> "; 93 return Msg + S.getObjMsg(Off); 94 } 95 96 namespace { 97 // Build a bitmask with one bit set for each RelExpr. 98 // 99 // Constexpr function arguments can't be used in static asserts, so we 100 // use template arguments to build the mask. 101 // But function template partial specializations don't exist (needed 102 // for base case of the recursion), so we need a dummy struct. 103 template <RelExpr... Exprs> struct RelExprMaskBuilder { 104 static inline uint64_t build() { return 0; } 105 }; 106 107 // Specialization for recursive case. 108 template <RelExpr Head, RelExpr... Tail> 109 struct RelExprMaskBuilder<Head, Tail...> { 110 static inline uint64_t build() { 111 static_assert(0 <= Head && Head < 64, 112 "RelExpr is too large for 64-bit mask!"); 113 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 114 } 115 }; 116 } // namespace 117 118 // Return true if `Expr` is one of `Exprs`. 119 // There are fewer than 64 RelExpr's, so we can represent any set of 120 // RelExpr's as a constant bit mask and test for membership with a 121 // couple cheap bitwise operations. 122 template <RelExpr... Exprs> bool oneof(RelExpr Expr) { 123 assert(0 <= Expr && (int)Expr < 64 && 124 "RelExpr is too large for 64-bit mask!"); 125 return (uint64_t(1) << Expr) & RelExprMaskBuilder<Exprs...>::build(); 126 } 127 128 // This function is similar to the `handleTlsRelocation`. MIPS does not 129 // support any relaxations for TLS relocations so by factoring out MIPS 130 // handling in to the separate function we can simplify the code and do not 131 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 132 // Mips has a custom MipsGotSection that handles the writing of GOT entries 133 // without dynamic relocations. 134 static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym, 135 InputSectionBase &C, uint64_t Offset, 136 int64_t Addend, RelExpr Expr) { 137 if (Expr == R_MIPS_TLSLD) { 138 In.MipsGot->addTlsIndex(*C.File); 139 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 140 return 1; 141 } 142 if (Expr == R_MIPS_TLSGD) { 143 In.MipsGot->addDynTlsEntry(*C.File, Sym); 144 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 145 return 1; 146 } 147 return 0; 148 } 149 150 // This function is similar to the `handleMipsTlsRelocation`. ARM also does not 151 // support any relaxations for TLS relocations. ARM is logically similar to Mips 152 // in how it handles TLS, but Mips uses its own custom GOT which handles some 153 // of the cases that ARM uses GOT relocations for. 154 // 155 // We look for TLS global dynamic and local dynamic relocations, these may 156 // require the generation of a pair of GOT entries that have associated 157 // dynamic relocations. When the results of the dynamic relocations can be 158 // resolved at static link time we do so. This is necessary for static linking 159 // as there will be no dynamic loader to resolve them at load-time. 160 // 161 // The pair of GOT entries created are of the form 162 // GOT[e0] Module Index (Used to find pointer to TLS block at run-time) 163 // GOT[e1] Offset of symbol in TLS block 164 static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym, 165 InputSectionBase &C, uint64_t Offset, 166 int64_t Addend, RelExpr Expr) { 167 // The Dynamic TLS Module Index Relocation for a symbol defined in an 168 // executable is always 1. If the target Symbol is not preemptible then 169 // we know the offset into the TLS block at static link time. 170 bool NeedDynId = Sym.IsPreemptible || Config->Shared; 171 bool NeedDynOff = Sym.IsPreemptible; 172 173 auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) { 174 if (Dyn) 175 In.RelaDyn->addReloc(Type, In.Got, Off, Dest); 176 else 177 In.Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest}); 178 }; 179 180 // Local Dynamic is for access to module local TLS variables, while still 181 // being suitable for being dynamically loaded via dlopen. 182 // GOT[e0] is the module index, with a special value of 0 for the current 183 // module. GOT[e1] is unused. There only needs to be one module index entry. 184 if (Expr == R_TLSLD_PC && In.Got->addTlsIndex()) { 185 AddTlsReloc(In.Got->getTlsIndexOff(), Target->TlsModuleIndexRel, 186 NeedDynId ? nullptr : &Sym, NeedDynId); 187 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 188 return 1; 189 } 190 191 // Global Dynamic is the most general purpose access model. When we know 192 // the module index and offset of symbol in TLS block we can fill these in 193 // using static GOT relocations. 194 if (Expr == R_TLSGD_PC) { 195 if (In.Got->addDynTlsEntry(Sym)) { 196 uint64_t Off = In.Got->getGlobalDynOffset(Sym); 197 AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId); 198 AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym, 199 NeedDynOff); 200 } 201 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 202 return 1; 203 } 204 return 0; 205 } 206 207 // Returns the number of relocations processed. 208 template <class ELFT> 209 static unsigned 210 handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C, 211 typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { 212 if (!Sym.isTls()) 213 return 0; 214 215 if (Config->EMachine == EM_ARM) 216 return handleARMTlsRelocation(Type, Sym, C, Offset, Addend, Expr); 217 if (Config->EMachine == EM_MIPS) 218 return handleMipsTlsRelocation(Type, Sym, C, Offset, Addend, Expr); 219 220 if (oneof<R_TLSDESC, R_AARCH64_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) && 221 Config->Shared) { 222 if (In.Got->addDynTlsEntry(Sym)) { 223 uint64_t Off = In.Got->getGlobalDynOffset(Sym); 224 In.RelaDyn->addReloc( 225 {Target->TlsDescRel, In.Got, Off, !Sym.IsPreemptible, &Sym, 0}); 226 } 227 if (Expr != R_TLSDESC_CALL) 228 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 229 return 1; 230 } 231 232 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 233 Expr)) { 234 // Local-Dynamic relocs can be relaxed to Local-Exec. 235 if (!Config->Shared) { 236 C.Relocations.push_back( 237 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type, 238 Offset, Addend, &Sym}); 239 return Target->getTlsGdRelaxSkip(Type); 240 } 241 if (Expr == R_TLSLD_HINT) 242 return 1; 243 if (In.Got->addTlsIndex()) 244 In.RelaDyn->addReloc(Target->TlsModuleIndexRel, In.Got, 245 In.Got->getTlsIndexOff(), nullptr); 246 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 247 return 1; 248 } 249 250 // Local-Dynamic relocs can be relaxed to Local-Exec. 251 if (Expr == R_DTPREL && !Config->Shared) { 252 C.Relocations.push_back( 253 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type, 254 Offset, Addend, &Sym}); 255 return 1; 256 } 257 258 // Local-Dynamic sequence where offset of tls variable relative to dynamic 259 // thread pointer is stored in the got. 260 if (Expr == R_TLSLD_GOT_OFF) { 261 // Local-Dynamic relocs can be relaxed to local-exec 262 if (!Config->Shared) { 263 C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym}); 264 return 1; 265 } 266 if (!Sym.isInGot()) { 267 In.Got->addEntry(Sym); 268 uint64_t Off = Sym.getGotOffset(); 269 In.Got->Relocations.push_back( 270 {R_ABS, Target->TlsOffsetRel, Off, 0, &Sym}); 271 } 272 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 273 return 1; 274 } 275 276 if (oneof<R_TLSDESC, R_AARCH64_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD_GOT, 277 R_TLSGD_GOTPLT, R_TLSGD_PC>(Expr)) { 278 if (Config->Shared) { 279 if (In.Got->addDynTlsEntry(Sym)) { 280 uint64_t Off = In.Got->getGlobalDynOffset(Sym); 281 In.RelaDyn->addReloc(Target->TlsModuleIndexRel, In.Got, Off, &Sym); 282 283 // If the symbol is preemptible we need the dynamic linker to write 284 // the offset too. 285 uint64_t OffsetOff = Off + Config->Wordsize; 286 if (Sym.IsPreemptible) 287 In.RelaDyn->addReloc(Target->TlsOffsetRel, In.Got, OffsetOff, &Sym); 288 else 289 In.Got->Relocations.push_back( 290 {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym}); 291 } 292 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 293 return 1; 294 } 295 296 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 297 // depending on the symbol being locally defined or not. 298 if (Sym.IsPreemptible) { 299 C.Relocations.push_back( 300 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, 301 Offset, Addend, &Sym}); 302 if (!Sym.isInGot()) { 303 In.Got->addEntry(Sym); 304 In.RelaDyn->addReloc(Target->TlsGotRel, In.Got, Sym.getGotOffset(), 305 &Sym); 306 } 307 } else { 308 C.Relocations.push_back( 309 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, 310 Offset, Addend, &Sym}); 311 } 312 return Target->getTlsGdRelaxSkip(Type); 313 } 314 315 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 316 // defined. 317 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 318 R_TLSIE_HINT>(Expr) && 319 !Config->Shared && !Sym.IsPreemptible) { 320 C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym}); 321 return 1; 322 } 323 324 if (Expr == R_TLSIE_HINT) 325 return 1; 326 return 0; 327 } 328 329 static RelType getMipsPairType(RelType Type, bool IsLocal) { 330 switch (Type) { 331 case R_MIPS_HI16: 332 return R_MIPS_LO16; 333 case R_MIPS_GOT16: 334 // In case of global symbol, the R_MIPS_GOT16 relocation does not 335 // have a pair. Each global symbol has a unique entry in the GOT 336 // and a corresponding instruction with help of the R_MIPS_GOT16 337 // relocation loads an address of the symbol. In case of local 338 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 339 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 340 // relocations handle low 16 bits of the address. That allows 341 // to allocate only one GOT entry for every 64 KBytes of local data. 342 return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE; 343 case R_MICROMIPS_GOT16: 344 return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 345 case R_MIPS_PCHI16: 346 return R_MIPS_PCLO16; 347 case R_MICROMIPS_HI16: 348 return R_MICROMIPS_LO16; 349 default: 350 return R_MIPS_NONE; 351 } 352 } 353 354 // True if non-preemptable symbol always has the same value regardless of where 355 // the DSO is loaded. 356 static bool isAbsolute(const Symbol &Sym) { 357 if (Sym.isUndefWeak()) 358 return true; 359 if (const auto *DR = dyn_cast<Defined>(&Sym)) 360 return DR->Section == nullptr; // Absolute symbol. 361 return false; 362 } 363 364 static bool isAbsoluteValue(const Symbol &Sym) { 365 return isAbsolute(Sym) || Sym.isTls(); 366 } 367 368 // Returns true if Expr refers a PLT entry. 369 static bool needsPlt(RelExpr Expr) { 370 return oneof<R_PLT_PC, R_PPC_CALL_PLT, R_PLT>(Expr); 371 } 372 373 // Returns true if Expr refers a GOT entry. Note that this function 374 // returns false for TLS variables even though they need GOT, because 375 // TLS variables uses GOT differently than the regular variables. 376 static bool needsGot(RelExpr Expr) { 377 return oneof<R_GOT, R_GOT_OFF, R_HEXAGON_GOT, R_MIPS_GOT_LOCAL_PAGE, 378 R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, 379 R_GOT_PC, R_GOTPLT>(Expr); 380 } 381 382 // True if this expression is of the form Sym - X, where X is a position in the 383 // file (PC, or GOT for example). 384 static bool isRelExpr(RelExpr Expr) { 385 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC_CALL, 386 R_PPC64_RELAX_TOC, R_PPC_CALL_PLT, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC>(Expr); 387 } 388 389 // Returns true if a given relocation can be computed at link-time. 390 // 391 // For instance, we know the offset from a relocation to its target at 392 // link-time if the relocation is PC-relative and refers a 393 // non-interposable function in the same executable. This function 394 // will return true for such relocation. 395 // 396 // If this function returns false, that means we need to emit a 397 // dynamic relocation so that the relocation will be fixed at load-time. 398 static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym, 399 InputSectionBase &S, uint64_t RelOff) { 400 // These expressions always compute a constant 401 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_HEXAGON_GOT, R_TLSLD_GOT_OFF, 402 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 403 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 404 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 405 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC_CALL_PLT, 406 R_PPC64_RELAX_TOC, R_TLSDESC_CALL, R_AARCH64_TLSDESC_PAGE, R_HINT, R_TLSLD_HINT, 407 R_TLSIE_HINT>(E)) 408 return true; 409 410 // These never do, except if the entire file is position dependent or if 411 // only the low bits are used. 412 if (E == R_GOT || E == R_PLT || E == R_TLSDESC) 413 return Target->usesOnlyLowPageBits(Type) || !Config->Pic; 414 415 if (Sym.IsPreemptible) 416 return false; 417 if (!Config->Pic) 418 return true; 419 420 // The size of a non preemptible symbol is a constant. 421 if (E == R_SIZE) 422 return true; 423 424 // For the target and the relocation, we want to know if they are 425 // absolute or relative. 426 bool AbsVal = isAbsoluteValue(Sym); 427 bool RelE = isRelExpr(E); 428 if (AbsVal && !RelE) 429 return true; 430 if (!AbsVal && RelE) 431 return true; 432 if (!AbsVal && !RelE) 433 return Target->usesOnlyLowPageBits(Type); 434 435 // Relative relocation to an absolute value. This is normally unrepresentable, 436 // but if the relocation refers to a weak undefined symbol, we allow it to 437 // resolve to the image base. This is a little strange, but it allows us to 438 // link function calls to such symbols. Normally such a call will be guarded 439 // with a comparison, which will load a zero from the GOT. 440 // Another special case is MIPS _gp_disp symbol which represents offset 441 // between start of a function and '_gp' value and defined as absolute just 442 // to simplify the code. 443 assert(AbsVal && RelE); 444 if (Sym.isUndefWeak()) 445 return true; 446 447 // We set the final symbols values for linker script defined symbols later. 448 // They always can be computed as a link time constant. 449 if (Sym.ScriptDefined) 450 return true; 451 452 error("relocation " + toString(Type) + " cannot refer to absolute symbol: " + 453 toString(Sym) + getLocation(S, Sym, RelOff)); 454 return true; 455 } 456 457 static RelExpr toPlt(RelExpr Expr) { 458 switch (Expr) { 459 case R_PPC_CALL: 460 return R_PPC_CALL_PLT; 461 case R_PC: 462 return R_PLT_PC; 463 case R_ABS: 464 return R_PLT; 465 default: 466 return Expr; 467 } 468 } 469 470 static RelExpr fromPlt(RelExpr Expr) { 471 // We decided not to use a plt. Optimize a reference to the plt to a 472 // reference to the symbol itself. 473 switch (Expr) { 474 case R_PLT_PC: 475 return R_PC; 476 case R_PPC_CALL_PLT: 477 return R_PPC_CALL; 478 case R_PLT: 479 return R_ABS; 480 default: 481 return Expr; 482 } 483 } 484 485 // Returns true if a given shared symbol is in a read-only segment in a DSO. 486 template <class ELFT> static bool isReadOnly(SharedSymbol &SS) { 487 using Elf_Phdr = typename ELFT::Phdr; 488 489 // Determine if the symbol is read-only by scanning the DSO's program headers. 490 const SharedFile &File = SS.getFile(); 491 for (const Elf_Phdr &Phdr : 492 check(File.template getObj<ELFT>().program_headers())) 493 if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && 494 !(Phdr.p_flags & ELF::PF_W) && SS.Value >= Phdr.p_vaddr && 495 SS.Value < Phdr.p_vaddr + Phdr.p_memsz) 496 return true; 497 return false; 498 } 499 500 // Returns symbols at the same offset as a given symbol, including SS itself. 501 // 502 // If two or more symbols are at the same offset, and at least one of 503 // them are copied by a copy relocation, all of them need to be copied. 504 // Otherwise, they would refer to different places at runtime. 505 template <class ELFT> 506 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &SS) { 507 using Elf_Sym = typename ELFT::Sym; 508 509 SharedFile &File = SS.getFile(); 510 511 SmallSet<SharedSymbol *, 4> Ret; 512 for (const Elf_Sym &S : File.template getGlobalELFSyms<ELFT>()) { 513 if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS || 514 S.getType() == STT_TLS || S.st_value != SS.Value) 515 continue; 516 StringRef Name = check(S.getName(File.getStringTable())); 517 Symbol *Sym = Symtab->find(Name); 518 if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym)) 519 Ret.insert(Alias); 520 } 521 return Ret; 522 } 523 524 // When a symbol is copy relocated or we create a canonical plt entry, it is 525 // effectively a defined symbol. In the case of copy relocation the symbol is 526 // in .bss and in the case of a canonical plt entry it is in .plt. This function 527 // replaces the existing symbol with a Defined pointing to the appropriate 528 // location. 529 static void replaceWithDefined(Symbol &Sym, SectionBase *Sec, uint64_t Value, 530 uint64_t Size) { 531 Symbol Old = Sym; 532 533 Sym.replace(Defined{Sym.File, Sym.getName(), Sym.Binding, Sym.StOther, 534 Sym.Type, Value, Size, Sec}); 535 536 Sym.PltIndex = Old.PltIndex; 537 Sym.GotIndex = Old.GotIndex; 538 Sym.VerdefIndex = Old.VerdefIndex; 539 Sym.PPC64BranchltIndex = Old.PPC64BranchltIndex; 540 Sym.IsPreemptible = true; 541 Sym.ExportDynamic = true; 542 Sym.IsUsedInRegularObj = true; 543 Sym.Used = true; 544 } 545 546 // Reserve space in .bss or .bss.rel.ro for copy relocation. 547 // 548 // The copy relocation is pretty much a hack. If you use a copy relocation 549 // in your program, not only the symbol name but the symbol's size, RW/RO 550 // bit and alignment become part of the ABI. In addition to that, if the 551 // symbol has aliases, the aliases become part of the ABI. That's subtle, 552 // but if you violate that implicit ABI, that can cause very counter- 553 // intuitive consequences. 554 // 555 // So, what is the copy relocation? It's for linking non-position 556 // independent code to DSOs. In an ideal world, all references to data 557 // exported by DSOs should go indirectly through GOT. But if object files 558 // are compiled as non-PIC, all data references are direct. There is no 559 // way for the linker to transform the code to use GOT, as machine 560 // instructions are already set in stone in object files. This is where 561 // the copy relocation takes a role. 562 // 563 // A copy relocation instructs the dynamic linker to copy data from a DSO 564 // to a specified address (which is usually in .bss) at load-time. If the 565 // static linker (that's us) finds a direct data reference to a DSO 566 // symbol, it creates a copy relocation, so that the symbol can be 567 // resolved as if it were in .bss rather than in a DSO. 568 // 569 // As you can see in this function, we create a copy relocation for the 570 // dynamic linker, and the relocation contains not only symbol name but 571 // various other informtion about the symbol. So, such attributes become a 572 // part of the ABI. 573 // 574 // Note for application developers: I can give you a piece of advice if 575 // you are writing a shared library. You probably should export only 576 // functions from your library. You shouldn't export variables. 577 // 578 // As an example what can happen when you export variables without knowing 579 // the semantics of copy relocations, assume that you have an exported 580 // variable of type T. It is an ABI-breaking change to add new members at 581 // end of T even though doing that doesn't change the layout of the 582 // existing members. That's because the space for the new members are not 583 // reserved in .bss unless you recompile the main program. That means they 584 // are likely to overlap with other data that happens to be laid out next 585 // to the variable in .bss. This kind of issue is sometimes very hard to 586 // debug. What's a solution? Instead of exporting a varaible V from a DSO, 587 // define an accessor getV(). 588 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &SS) { 589 // Copy relocation against zero-sized symbol doesn't make sense. 590 uint64_t SymSize = SS.getSize(); 591 if (SymSize == 0 || SS.Alignment == 0) 592 fatal("cannot create a copy relocation for symbol " + toString(SS)); 593 594 // See if this symbol is in a read-only segment. If so, preserve the symbol's 595 // memory protection by reserving space in the .bss.rel.ro section. 596 bool IsReadOnly = isReadOnly<ELFT>(SS); 597 BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss", 598 SymSize, SS.Alignment); 599 if (IsReadOnly) 600 In.BssRelRo->getParent()->addSection(Sec); 601 else 602 In.Bss->getParent()->addSection(Sec); 603 604 // Look through the DSO's dynamic symbol table for aliases and create a 605 // dynamic symbol for each one. This causes the copy relocation to correctly 606 // interpose any aliases. 607 for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) 608 replaceWithDefined(*Sym, Sec, 0, Sym->Size); 609 610 In.RelaDyn->addReloc(Target->CopyRel, Sec, 0, &SS); 611 } 612 613 // MIPS has an odd notion of "paired" relocations to calculate addends. 614 // For example, if a relocation is of R_MIPS_HI16, there must be a 615 // R_MIPS_LO16 relocation after that, and an addend is calculated using 616 // the two relocations. 617 template <class ELFT, class RelTy> 618 static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End, 619 InputSectionBase &Sec, RelExpr Expr, 620 bool IsLocal) { 621 if (Expr == R_MIPS_GOTREL && IsLocal) 622 return Sec.getFile<ELFT>()->MipsGp0; 623 624 // The ABI says that the paired relocation is used only for REL. 625 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 626 if (RelTy::IsRela) 627 return 0; 628 629 RelType Type = Rel.getType(Config->IsMips64EL); 630 uint32_t PairTy = getMipsPairType(Type, IsLocal); 631 if (PairTy == R_MIPS_NONE) 632 return 0; 633 634 const uint8_t *Buf = Sec.data().data(); 635 uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); 636 637 // To make things worse, paired relocations might not be contiguous in 638 // the relocation table, so we need to do linear search. *sigh* 639 for (const RelTy *RI = &Rel; RI != End; ++RI) 640 if (RI->getType(Config->IsMips64EL) == PairTy && 641 RI->getSymbol(Config->IsMips64EL) == SymIndex) 642 return Target->getImplicitAddend(Buf + RI->r_offset, PairTy); 643 644 warn("can't find matching " + toString(PairTy) + " relocation for " + 645 toString(Type)); 646 return 0; 647 } 648 649 // Returns an addend of a given relocation. If it is RELA, an addend 650 // is in a relocation itself. If it is REL, we need to read it from an 651 // input section. 652 template <class ELFT, class RelTy> 653 static int64_t computeAddend(const RelTy &Rel, const RelTy *End, 654 InputSectionBase &Sec, RelExpr Expr, 655 bool IsLocal) { 656 int64_t Addend; 657 RelType Type = Rel.getType(Config->IsMips64EL); 658 659 if (RelTy::IsRela) { 660 Addend = getAddend<ELFT>(Rel); 661 } else { 662 const uint8_t *Buf = Sec.data().data(); 663 Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type); 664 } 665 666 if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC) 667 Addend += getPPC64TocBase(); 668 if (Config->EMachine == EM_MIPS) 669 Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal); 670 671 return Addend; 672 } 673 674 // Custom error message if Sym is defined in a discarded section. 675 template <class ELFT> 676 static std::string maybeReportDiscarded(Undefined &Sym, InputSectionBase &Sec, 677 uint64_t Offset) { 678 auto *File = dyn_cast_or_null<ObjFile<ELFT>>(Sym.File); 679 if (!File || !Sym.DiscardedSecIdx || 680 File->getSections()[Sym.DiscardedSecIdx] != &InputSection::Discarded) 681 return ""; 682 ArrayRef<Elf_Shdr_Impl<ELFT>> ObjSections = 683 CHECK(File->getObj().sections(), File); 684 std::string Msg = 685 "relocation refers to a symbol in a discarded section: " + toString(Sym) + 686 "\n>>> defined in " + toString(File); 687 688 Elf_Shdr_Impl<ELFT> ELFSec = ObjSections[Sym.DiscardedSecIdx - 1]; 689 if (ELFSec.sh_type != SHT_GROUP) 690 return Msg; 691 692 // If the discarded section is a COMDAT. 693 StringRef Signature = File->getShtGroupSignature(ObjSections, ELFSec); 694 if (const InputFile *Prevailing = 695 Symtab->ComdatGroups.lookup(CachedHashStringRef(Signature))) 696 Msg += "\n>>> section group signature: " + Signature.str() + 697 "\n>>> prevailing definition is in " + toString(Prevailing); 698 return Msg; 699 } 700 701 // Report an undefined symbol if necessary. 702 // Returns true if this function printed out an error message. 703 template <class ELFT> 704 static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec, 705 uint64_t Offset) { 706 if (!Sym.isUndefined() || Sym.isWeak()) 707 return false; 708 709 bool CanBeExternal = !Sym.isLocal() && Sym.computeBinding() != STB_LOCAL && 710 Sym.Visibility == STV_DEFAULT; 711 if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal) 712 return false; 713 714 auto Visibility = [&]() -> std::string { 715 switch (Sym.Visibility) { 716 case STV_INTERNAL: 717 return "internal "; 718 case STV_HIDDEN: 719 return "hidden "; 720 case STV_PROTECTED: 721 return "protected "; 722 default: 723 return ""; 724 } 725 }; 726 727 std::string Msg = 728 maybeReportDiscarded<ELFT>(cast<Undefined>(Sym), Sec, Offset); 729 if (Msg.empty()) 730 Msg = "undefined " + Visibility() + "symbol: " + toString(Sym); 731 732 Msg += "\n>>> referenced by "; 733 std::string Src = Sec.getSrcMsg(Sym, Offset); 734 if (!Src.empty()) 735 Msg += Src + "\n>>> "; 736 Msg += Sec.getObjMsg(Offset); 737 738 if (Sym.getName().startswith("_ZTV")) 739 Msg += "\nthe vtable symbol may be undefined because the class is missing " 740 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 741 742 if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) || 743 Config->NoinhibitExec) { 744 warn(Msg); 745 return false; 746 } 747 748 error(Msg); 749 return true; 750 } 751 752 // MIPS N32 ABI treats series of successive relocations with the same offset 753 // as a single relocation. The similar approach used by N64 ABI, but this ABI 754 // packs all relocations into the single relocation record. Here we emulate 755 // this for the N32 ABI. Iterate over relocation with the same offset and put 756 // theirs types into the single bit-set. 757 template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) { 758 RelType Type = 0; 759 uint64_t Offset = Rel->r_offset; 760 761 int N = 0; 762 while (Rel != End && Rel->r_offset == Offset) 763 Type |= (Rel++)->getType(Config->IsMips64EL) << (8 * N++); 764 return Type; 765 } 766 767 // .eh_frame sections are mergeable input sections, so their input 768 // offsets are not linearly mapped to output section. For each input 769 // offset, we need to find a section piece containing the offset and 770 // add the piece's base address to the input offset to compute the 771 // output offset. That isn't cheap. 772 // 773 // This class is to speed up the offset computation. When we process 774 // relocations, we access offsets in the monotonically increasing 775 // order. So we can optimize for that access pattern. 776 // 777 // For sections other than .eh_frame, this class doesn't do anything. 778 namespace { 779 class OffsetGetter { 780 public: 781 explicit OffsetGetter(InputSectionBase &Sec) { 782 if (auto *Eh = dyn_cast<EhInputSection>(&Sec)) 783 Pieces = Eh->Pieces; 784 } 785 786 // Translates offsets in input sections to offsets in output sections. 787 // Given offset must increase monotonically. We assume that Piece is 788 // sorted by InputOff. 789 uint64_t get(uint64_t Off) { 790 if (Pieces.empty()) 791 return Off; 792 793 while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off) 794 ++I; 795 if (I == Pieces.size()) 796 fatal(".eh_frame: relocation is not in any piece"); 797 798 // Pieces must be contiguous, so there must be no holes in between. 799 assert(Pieces[I].InputOff <= Off && "Relocation not in any piece"); 800 801 // Offset -1 means that the piece is dead (i.e. garbage collected). 802 if (Pieces[I].OutputOff == -1) 803 return -1; 804 return Pieces[I].OutputOff + Off - Pieces[I].InputOff; 805 } 806 807 private: 808 ArrayRef<EhSectionPiece> Pieces; 809 size_t I = 0; 810 }; 811 } // namespace 812 813 static void addRelativeReloc(InputSectionBase *IS, uint64_t OffsetInSec, 814 Symbol *Sym, int64_t Addend, RelExpr Expr, 815 RelType Type) { 816 // Add a relative relocation. If RelrDyn section is enabled, and the 817 // relocation offset is guaranteed to be even, add the relocation to 818 // the RelrDyn section, otherwise add it to the RelaDyn section. 819 // RelrDyn sections don't support odd offsets. Also, RelrDyn sections 820 // don't store the addend values, so we must write it to the relocated 821 // address. 822 if (In.RelrDyn && IS->Alignment >= 2 && OffsetInSec % 2 == 0) { 823 IS->Relocations.push_back({Expr, Type, OffsetInSec, Addend, Sym}); 824 In.RelrDyn->Relocs.push_back({IS, OffsetInSec}); 825 return; 826 } 827 In.RelaDyn->addReloc(Target->RelativeRel, IS, OffsetInSec, Sym, Addend, Expr, 828 Type); 829 } 830 831 template <class ELFT, class GotPltSection> 832 static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt, 833 RelocationBaseSection *Rel, RelType Type, Symbol &Sym) { 834 Plt->addEntry<ELFT>(Sym); 835 GotPlt->addEntry(Sym); 836 Rel->addReloc( 837 {Type, GotPlt, Sym.getGotPltOffset(), !Sym.IsPreemptible, &Sym, 0}); 838 } 839 840 static void addGotEntry(Symbol &Sym) { 841 In.Got->addEntry(Sym); 842 843 RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS; 844 uint64_t Off = Sym.getGotOffset(); 845 846 // If a GOT slot value can be calculated at link-time, which is now, 847 // we can just fill that out. 848 // 849 // (We don't actually write a value to a GOT slot right now, but we 850 // add a static relocation to a Relocations vector so that 851 // InputSection::relocate will do the work for us. We may be able 852 // to just write a value now, but it is a TODO.) 853 bool IsLinkTimeConstant = 854 !Sym.IsPreemptible && (!Config->Pic || isAbsolute(Sym)); 855 if (IsLinkTimeConstant) { 856 In.Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym}); 857 return; 858 } 859 860 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 861 // the GOT slot will be fixed at load-time. 862 if (!Sym.isTls() && !Sym.IsPreemptible && Config->Pic && !isAbsolute(Sym)) { 863 addRelativeReloc(In.Got, Off, &Sym, 0, R_ABS, Target->GotRel); 864 return; 865 } 866 In.RelaDyn->addReloc(Sym.isTls() ? Target->TlsGotRel : Target->GotRel, In.Got, 867 Off, &Sym, 0, Sym.IsPreemptible ? R_ADDEND : R_ABS, 868 Target->GotRel); 869 } 870 871 // Return true if we can define a symbol in the executable that 872 // contains the value/function of a symbol defined in a shared 873 // library. 874 static bool canDefineSymbolInExecutable(Symbol &Sym) { 875 // If the symbol has default visibility the symbol defined in the 876 // executable will preempt it. 877 // Note that we want the visibility of the shared symbol itself, not 878 // the visibility of the symbol in the output file we are producing. That is 879 // why we use Sym.StOther. 880 if ((Sym.StOther & 0x3) == STV_DEFAULT) 881 return true; 882 883 // If we are allowed to break address equality of functions, defining 884 // a plt entry will allow the program to call the function in the 885 // .so, but the .so and the executable will no agree on the address 886 // of the function. Similar logic for objects. 887 return ((Sym.isFunc() && Config->IgnoreFunctionAddressEquality) || 888 (Sym.isObject() && Config->IgnoreDataAddressEquality)); 889 } 890 891 // The reason we have to do this early scan is as follows 892 // * To mmap the output file, we need to know the size 893 // * For that, we need to know how many dynamic relocs we will have. 894 // It might be possible to avoid this by outputting the file with write: 895 // * Write the allocated output sections, computing addresses. 896 // * Apply relocations, recording which ones require a dynamic reloc. 897 // * Write the dynamic relocations. 898 // * Write the rest of the file. 899 // This would have some drawbacks. For example, we would only know if .rela.dyn 900 // is needed after applying relocations. If it is, it will go after rw and rx 901 // sections. Given that it is ro, we will need an extra PT_LOAD. This 902 // complicates things for the dynamic linker and means we would have to reserve 903 // space for the extra PT_LOAD even if we end up not using it. 904 template <class ELFT, class RelTy> 905 static void processRelocAux(InputSectionBase &Sec, RelExpr Expr, RelType Type, 906 uint64_t Offset, Symbol &Sym, const RelTy &Rel, 907 int64_t Addend) { 908 if (isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Offset)) { 909 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 910 return; 911 } 912 bool CanWrite = (Sec.Flags & SHF_WRITE) || !Config->ZText; 913 if (CanWrite) { 914 // R_GOT refers to a position in the got, even if the symbol is preemptible. 915 bool IsPreemptibleValue = Sym.IsPreemptible && Expr != R_GOT; 916 917 if (!IsPreemptibleValue) { 918 addRelativeReloc(&Sec, Offset, &Sym, Addend, Expr, Type); 919 return; 920 } else if (RelType Rel = Target->getDynRel(Type)) { 921 In.RelaDyn->addReloc(Rel, &Sec, Offset, &Sym, Addend, R_ADDEND, Type); 922 923 // MIPS ABI turns using of GOT and dynamic relocations inside out. 924 // While regular ABI uses dynamic relocations to fill up GOT entries 925 // MIPS ABI requires dynamic linker to fills up GOT entries using 926 // specially sorted dynamic symbol table. This affects even dynamic 927 // relocations against symbols which do not require GOT entries 928 // creation explicitly, i.e. do not have any GOT-relocations. So if 929 // a preemptible symbol has a dynamic relocation we anyway have 930 // to create a GOT entry for it. 931 // If a non-preemptible symbol has a dynamic relocation against it, 932 // dynamic linker takes it st_value, adds offset and writes down 933 // result of the dynamic relocation. In case of preemptible symbol 934 // dynamic linker performs symbol resolution, writes the symbol value 935 // to the GOT entry and reads the GOT entry when it needs to perform 936 // a dynamic relocation. 937 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 938 if (Config->EMachine == EM_MIPS) 939 In.MipsGot->addEntry(*Sec.File, Sym, Addend, Expr); 940 return; 941 } 942 } 943 944 // If the relocation is to a weak undef, and we are producing 945 // executable, give up on it and produce a non preemptible 0. 946 if (!Config->Shared && Sym.isUndefWeak()) { 947 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 948 return; 949 } 950 951 if (!CanWrite && (Config->Pic && !isRelExpr(Expr))) { 952 error( 953 "can't create dynamic relocation " + toString(Type) + " against " + 954 (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) + 955 " in readonly segment; recompile object files with -fPIC " 956 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 957 getLocation(Sec, Sym, Offset)); 958 return; 959 } 960 961 // Copy relocations are only possible if we are creating an executable. 962 if (Config->Shared) { 963 errorOrWarn("relocation " + toString(Type) + 964 " cannot be used against symbol " + toString(Sym) + 965 "; recompile with -fPIC" + getLocation(Sec, Sym, Offset)); 966 return; 967 } 968 969 // If the symbol is undefined we already reported any relevant errors. 970 if (Sym.isUndefined()) 971 return; 972 973 if (!canDefineSymbolInExecutable(Sym)) { 974 error("cannot preempt symbol: " + toString(Sym) + 975 getLocation(Sec, Sym, Offset)); 976 return; 977 } 978 979 if (Sym.isObject()) { 980 // Produce a copy relocation. 981 if (auto *SS = dyn_cast<SharedSymbol>(&Sym)) { 982 if (!Config->ZCopyreloc) 983 error("unresolvable relocation " + toString(Type) + 984 " against symbol '" + toString(*SS) + 985 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 986 getLocation(Sec, Sym, Offset)); 987 addCopyRelSymbol<ELFT>(*SS); 988 } 989 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 990 return; 991 } 992 993 if (Sym.isFunc()) { 994 // This handles a non PIC program call to function in a shared library. In 995 // an ideal world, we could just report an error saying the relocation can 996 // overflow at runtime. In the real world with glibc, crt1.o has a 997 // R_X86_64_PC32 pointing to libc.so. 998 // 999 // The general idea on how to handle such cases is to create a PLT entry and 1000 // use that as the function value. 1001 // 1002 // For the static linking part, we just return a plt expr and everything 1003 // else will use the PLT entry as the address. 1004 // 1005 // The remaining problem is making sure pointer equality still works. We 1006 // need the help of the dynamic linker for that. We let it know that we have 1007 // a direct reference to a so symbol by creating an undefined symbol with a 1008 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1009 // the value of the symbol we created. This is true even for got entries, so 1010 // pointer equality is maintained. To avoid an infinite loop, the only entry 1011 // that points to the real function is a dedicated got entry used by the 1012 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1013 // R_386_JMP_SLOT, etc). 1014 1015 // For position independent executable on i386, the plt entry requires ebx 1016 // to be set. This causes two problems: 1017 // * If some code has a direct reference to a function, it was probably 1018 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1019 // * If a library definition gets preempted to the executable, it will have 1020 // the wrong ebx value. 1021 if (Config->Pie && Config->EMachine == EM_386) 1022 errorOrWarn("symbol '" + toString(Sym) + 1023 "' cannot be preempted; recompile with -fPIE" + 1024 getLocation(Sec, Sym, Offset)); 1025 if (!Sym.isInPlt()) 1026 addPltEntry<ELFT>(In.Plt, In.GotPlt, In.RelaPlt, Target->PltRel, Sym); 1027 if (!Sym.isDefined()) 1028 replaceWithDefined( 1029 Sym, In.Plt, 1030 Target->PltHeaderSize + Target->PltEntrySize * Sym.PltIndex, 0); 1031 Sym.NeedsPltAddr = true; 1032 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 1033 return; 1034 } 1035 1036 errorOrWarn("symbol '" + toString(Sym) + "' has no type" + 1037 getLocation(Sec, Sym, Offset)); 1038 } 1039 1040 struct IRelativeReloc { 1041 RelType Type; 1042 InputSectionBase *Sec; 1043 uint64_t Offset; 1044 Symbol *Sym; 1045 }; 1046 1047 static std::vector<IRelativeReloc> IRelativeRelocs; 1048 1049 template <class ELFT, class RelTy> 1050 static void scanReloc(InputSectionBase &Sec, OffsetGetter &GetOffset, RelTy *&I, 1051 RelTy *End) { 1052 const RelTy &Rel = *I; 1053 uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); 1054 Symbol &Sym = Sec.getFile<ELFT>()->getSymbol(SymIndex); 1055 RelType Type; 1056 1057 // Deal with MIPS oddity. 1058 if (Config->MipsN32Abi) { 1059 Type = getMipsN32RelType(I, End); 1060 } else { 1061 Type = Rel.getType(Config->IsMips64EL); 1062 ++I; 1063 } 1064 1065 // Get an offset in an output section this relocation is applied to. 1066 uint64_t Offset = GetOffset.get(Rel.r_offset); 1067 if (Offset == uint64_t(-1)) 1068 return; 1069 1070 // Error if the target symbol is undefined. Symbol index 0 may be used by 1071 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1072 if (SymIndex != 0 && maybeReportUndefined<ELFT>(Sym, Sec, Rel.r_offset)) 1073 return; 1074 1075 const uint8_t *RelocatedAddr = Sec.data().begin() + Rel.r_offset; 1076 RelExpr Expr = Target->getRelExpr(Type, Sym, RelocatedAddr); 1077 1078 // Ignore "hint" relocations because they are only markers for relaxation. 1079 if (oneof<R_HINT, R_NONE>(Expr)) 1080 return; 1081 1082 // We can separate the small code model relocations into 2 categories: 1083 // 1) Those that access the compiler generated .toc sections. 1084 // 2) Those that access the linker allocated got entries. 1085 // lld allocates got entries to symbols on demand. Since we don't try to sort 1086 // the got entries in any way, we don't have to track which objects have 1087 // got-based small code model relocs. The .toc sections get placed after the 1088 // end of the linker allocated .got section and we do sort those so sections 1089 // addressed with small code model relocations come first. 1090 if (Config->EMachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(Type)) 1091 Sec.File->PPC64SmallCodeModelTocRelocs = true; 1092 1093 if (Sym.isGnuIFunc() && !Config->ZText && Config->WarnIfuncTextrel) { 1094 warn("using ifunc symbols when text relocations are allowed may produce " 1095 "a binary that will segfault, if the object file is linked with " 1096 "old version of glibc (glibc 2.28 and earlier). If this applies to " 1097 "you, consider recompiling the object files without -fPIC and " 1098 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " 1099 "turn off this warning." + 1100 getLocation(Sec, Sym, Offset)); 1101 } 1102 1103 // Relax relocations. 1104 // 1105 // If we know that a PLT entry will be resolved within the same ELF module, we 1106 // can skip PLT access and directly jump to the destination function. For 1107 // example, if we are linking a main exectuable, all dynamic symbols that can 1108 // be resolved within the executable will actually be resolved that way at 1109 // runtime, because the main exectuable is always at the beginning of a search 1110 // list. We can leverage that fact. 1111 if (!Sym.IsPreemptible && (!Sym.isGnuIFunc() || Config->ZIfuncNoplt)) { 1112 if (Expr == R_GOT_PC && !isAbsoluteValue(Sym)) 1113 Expr = Target->adjustRelaxExpr(Type, RelocatedAddr, Expr); 1114 else 1115 Expr = fromPlt(Expr); 1116 } 1117 1118 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1119 // uses their addresses, we need GOT or GOTPLT to be created. 1120 // 1121 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1122 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(Expr)) { 1123 In.GotPlt->HasGotPltOffRel = true; 1124 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC_TOC, R_PPC64_RELAX_TOC>(Expr)) { 1125 In.Got->HasGotOffRel = true; 1126 } 1127 1128 // Read an addend. 1129 int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal()); 1130 1131 // Process some TLS relocations, including relaxing TLS relocations. 1132 // Note that this function does not handle all TLS relocations. 1133 if (unsigned Processed = 1134 handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) { 1135 I += (Processed - 1); 1136 return; 1137 } 1138 1139 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1140 // direct relocation on through. 1141 if (Sym.isGnuIFunc() && Config->ZIfuncNoplt) { 1142 Sym.ExportDynamic = true; 1143 In.RelaDyn->addReloc(Type, &Sec, Offset, &Sym, Addend, R_ADDEND, Type); 1144 return; 1145 } 1146 1147 // Non-preemptible ifuncs require special handling. First, handle the usual 1148 // case where the symbol isn't one of these. 1149 if (!Sym.isGnuIFunc() || Sym.IsPreemptible) { 1150 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1151 if (needsPlt(Expr) && !Sym.isInPlt()) 1152 addPltEntry<ELFT>(In.Plt, In.GotPlt, In.RelaPlt, Target->PltRel, Sym); 1153 1154 // Create a GOT slot if a relocation needs GOT. 1155 if (needsGot(Expr)) { 1156 if (Config->EMachine == EM_MIPS) { 1157 // MIPS ABI has special rules to process GOT entries and doesn't 1158 // require relocation entries for them. A special case is TLS 1159 // relocations. In that case dynamic loader applies dynamic 1160 // relocations to initialize TLS GOT entries. 1161 // See "Global Offset Table" in Chapter 5 in the following document 1162 // for detailed description: 1163 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1164 In.MipsGot->addEntry(*Sec.File, Sym, Addend, Expr); 1165 } else if (!Sym.isInGot()) { 1166 addGotEntry(Sym); 1167 } 1168 } 1169 } else { 1170 // Handle a reference to a non-preemptible ifunc. These are special in a 1171 // few ways: 1172 // 1173 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1174 // a fixed value. But assuming that all references to the ifunc are 1175 // GOT-generating or PLT-generating, the handling of an ifunc is 1176 // relatively straightforward. We create a PLT entry in Iplt, which is 1177 // usually at the end of .plt, which makes an indirect call using a 1178 // matching GOT entry in IgotPlt, which is usually at the end of .got.plt. 1179 // The GOT entry is relocated using an IRELATIVE relocation in RelaIplt, 1180 // which is usually at the end of .rela.plt. Unlike most relocations in 1181 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1182 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1183 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1184 // .got.plt without requiring a separate GOT entry. 1185 // 1186 // - Despite the fact that an ifunc does not have a fixed value, compilers 1187 // that are not passed -fPIC will assume that they do, and will emit 1188 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1189 // symbol. This means that if a direct relocation to the symbol is 1190 // seen, the linker must set a value for the symbol, and this value must 1191 // be consistent no matter what type of reference is made to the symbol. 1192 // This can be done by creating a PLT entry for the symbol in the way 1193 // described above and making it canonical, that is, making all references 1194 // point to the PLT entry instead of the resolver. In lld we also store 1195 // the address of the PLT entry in the dynamic symbol table, which means 1196 // that the symbol will also have the same value in other modules. 1197 // Because the value loaded from the GOT needs to be consistent with 1198 // the value computed using a direct relocation, a non-preemptible ifunc 1199 // may end up with two GOT entries, one in .got.plt that points to the 1200 // address returned by the resolver and is used only by the PLT entry, 1201 // and another in .got that points to the PLT entry and is used by 1202 // GOT-generating relocations. 1203 // 1204 // - The fact that these symbols do not have a fixed value makes them an 1205 // exception to the general rule that a statically linked executable does 1206 // not require any form of dynamic relocation. To handle these relocations 1207 // correctly, the IRELATIVE relocations are stored in an array which a 1208 // statically linked executable's startup code must enumerate using the 1209 // linker-defined symbols __rela?_iplt_{start,end}. 1210 // 1211 // - An absolute relocation to a non-preemptible ifunc (such as a global 1212 // variable containing a pointer to the ifunc) needs to be relocated in 1213 // the exact same way as a GOT entry, so we can avoid needing to make the 1214 // PLT entry canonical by translating such relocations into IRELATIVE 1215 // relocations in the RelaIplt. 1216 if (!Sym.isInPlt()) { 1217 // Create PLT and GOTPLT slots for the symbol. 1218 Sym.IsInIplt = true; 1219 1220 // Create a copy of the symbol to use as the target of the IRELATIVE 1221 // relocation in the IgotPlt. This is in case we make the PLT canonical 1222 // later, which would overwrite the original symbol. 1223 // 1224 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1225 // that's really needed to create the IRELATIVE is the section and value, 1226 // so ideally we should just need to copy those. 1227 auto *DirectSym = make<Defined>(cast<Defined>(Sym)); 1228 addPltEntry<ELFT>(In.Iplt, In.IgotPlt, In.RelaIplt, Target->IRelativeRel, 1229 *DirectSym); 1230 Sym.PltIndex = DirectSym->PltIndex; 1231 } 1232 if (Expr == R_ABS && Addend == 0 && (Sec.Flags & SHF_WRITE)) { 1233 // We might be able to represent this as an IRELATIVE. But we don't know 1234 // yet whether some later relocation will make the symbol point to a 1235 // canonical PLT, which would make this either a dynamic RELATIVE (PIC) or 1236 // static (non-PIC) relocation. So we keep a record of the information 1237 // required to process the relocation, and after scanRelocs() has been 1238 // called on all relocations, the relocation is resolved by 1239 // addIRelativeRelocs(). 1240 IRelativeRelocs.push_back({Type, &Sec, Offset, &Sym}); 1241 return; 1242 } 1243 if (needsGot(Expr)) { 1244 // Redirect GOT accesses to point to the Igot. 1245 // 1246 // This field is also used to keep track of whether we ever needed a GOT 1247 // entry. If we did and we make the PLT canonical later, we'll need to 1248 // create a GOT entry pointing to the PLT entry for Sym. 1249 Sym.GotInIgot = true; 1250 } else if (!needsPlt(Expr)) { 1251 // Make the ifunc's PLT entry canonical by changing the value of its 1252 // symbol to redirect all references to point to it. 1253 unsigned EntryOffset = Sym.PltIndex * Target->PltEntrySize; 1254 if (Config->ZRetpolineplt) 1255 EntryOffset += Target->PltHeaderSize; 1256 1257 auto &D = cast<Defined>(Sym); 1258 D.Section = In.Iplt; 1259 D.Value = EntryOffset; 1260 D.Size = 0; 1261 // It's important to set the symbol type here so that dynamic loaders 1262 // don't try to call the PLT as if it were an ifunc resolver. 1263 D.Type = STT_FUNC; 1264 1265 if (Sym.GotInIgot) { 1266 // We previously encountered a GOT generating reference that we 1267 // redirected to the Igot. Now that the PLT entry is canonical we must 1268 // clear the redirection to the Igot and add a GOT entry. As we've 1269 // changed the symbol type to STT_FUNC future GOT generating references 1270 // will naturally use this GOT entry. 1271 // 1272 // We don't need to worry about creating a MIPS GOT here because ifuncs 1273 // aren't a thing on MIPS. 1274 Sym.GotInIgot = false; 1275 addGotEntry(Sym); 1276 } 1277 } 1278 } 1279 1280 processRelocAux<ELFT>(Sec, Expr, Type, Offset, Sym, Rel, Addend); 1281 } 1282 1283 template <class ELFT, class RelTy> 1284 static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) { 1285 OffsetGetter GetOffset(Sec); 1286 1287 // Not all relocations end up in Sec.Relocations, but a lot do. 1288 Sec.Relocations.reserve(Rels.size()); 1289 1290 for (auto I = Rels.begin(), End = Rels.end(); I != End;) 1291 scanReloc<ELFT>(Sec, GetOffset, I, End); 1292 1293 // Sort relocations by offset for more efficient searching for 1294 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1295 if (Config->EMachine == EM_RISCV || 1296 (Config->EMachine == EM_PPC64 && Sec.Name == ".toc")) 1297 llvm::stable_sort(Sec.Relocations, 1298 [](const Relocation &LHS, const Relocation &RHS) { 1299 return LHS.Offset < RHS.Offset; 1300 }); 1301 } 1302 1303 template <class ELFT> void elf::scanRelocations(InputSectionBase &S) { 1304 if (S.AreRelocsRela) 1305 scanRelocs<ELFT>(S, S.relas<ELFT>()); 1306 else 1307 scanRelocs<ELFT>(S, S.rels<ELFT>()); 1308 } 1309 1310 // Figure out which representation to use for any absolute relocs to 1311 // non-preemptible ifuncs that we visited during scanRelocs(). 1312 void elf::addIRelativeRelocs() { 1313 for (IRelativeReloc &R : IRelativeRelocs) { 1314 if (R.Sym->Type == STT_GNU_IFUNC) 1315 In.RelaIplt->addReloc( 1316 {Target->IRelativeRel, R.Sec, R.Offset, true, R.Sym, 0}); 1317 else if (Config->Pic) 1318 addRelativeReloc(R.Sec, R.Offset, R.Sym, 0, R_ABS, R.Type); 1319 else 1320 R.Sec->Relocations.push_back({R_ABS, R.Type, R.Offset, 0, R.Sym}); 1321 } 1322 IRelativeRelocs.clear(); 1323 } 1324 1325 static bool mergeCmp(const InputSection *A, const InputSection *B) { 1326 // std::merge requires a strict weak ordering. 1327 if (A->OutSecOff < B->OutSecOff) 1328 return true; 1329 1330 if (A->OutSecOff == B->OutSecOff) { 1331 auto *TA = dyn_cast<ThunkSection>(A); 1332 auto *TB = dyn_cast<ThunkSection>(B); 1333 1334 // Check if Thunk is immediately before any specific Target 1335 // InputSection for example Mips LA25 Thunks. 1336 if (TA && TA->getTargetInputSection() == B) 1337 return true; 1338 1339 // Place Thunk Sections without specific targets before 1340 // non-Thunk Sections. 1341 if (TA && !TB && !TA->getTargetInputSection()) 1342 return true; 1343 } 1344 1345 return false; 1346 } 1347 1348 // Call Fn on every executable InputSection accessed via the linker script 1349 // InputSectionDescription::Sections. 1350 static void forEachInputSectionDescription( 1351 ArrayRef<OutputSection *> OutputSections, 1352 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> Fn) { 1353 for (OutputSection *OS : OutputSections) { 1354 if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) 1355 continue; 1356 for (BaseCommand *BC : OS->SectionCommands) 1357 if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) 1358 Fn(OS, ISD); 1359 } 1360 } 1361 1362 // Thunk Implementation 1363 // 1364 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1365 // of code that the linker inserts inbetween a caller and a callee. The thunks 1366 // are added at link time rather than compile time as the decision on whether 1367 // a thunk is needed, such as the caller and callee being out of range, can only 1368 // be made at link time. 1369 // 1370 // It is straightforward to tell given the current state of the program when a 1371 // thunk is needed for a particular call. The more difficult part is that 1372 // the thunk needs to be placed in the program such that the caller can reach 1373 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1374 // the program alters addresses, which can mean more thunks etc. 1375 // 1376 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1377 // The decision to have a ThunkSection act as a container means that we can 1378 // more easily handle the most common case of a single block of contiguous 1379 // Thunks by inserting just a single ThunkSection. 1380 // 1381 // The implementation of Thunks in lld is split across these areas 1382 // Relocations.cpp : Framework for creating and placing thunks 1383 // Thunks.cpp : The code generated for each supported thunk 1384 // Target.cpp : Target specific hooks that the framework uses to decide when 1385 // a thunk is used 1386 // Synthetic.cpp : Implementation of ThunkSection 1387 // Writer.cpp : Iteratively call framework until no more Thunks added 1388 // 1389 // Thunk placement requirements: 1390 // Mips LA25 thunks. These must be placed immediately before the callee section 1391 // We can assume that the caller is in range of the Thunk. These are modelled 1392 // by Thunks that return the section they must precede with 1393 // getTargetInputSection(). 1394 // 1395 // ARM interworking and range extension thunks. These thunks must be placed 1396 // within range of the caller. All implemented ARM thunks can always reach the 1397 // callee as they use an indirect jump via a register that has no range 1398 // restrictions. 1399 // 1400 // Thunk placement algorithm: 1401 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1402 // getTargetInputSection(). 1403 // 1404 // For thunks that must be placed within range of the caller there are many 1405 // possible choices given that the maximum range from the caller is usually 1406 // much larger than the average InputSection size. Desirable properties include: 1407 // - Maximize reuse of thunks by multiple callers 1408 // - Minimize number of ThunkSections to simplify insertion 1409 // - Handle impact of already added Thunks on addresses 1410 // - Simple to understand and implement 1411 // 1412 // In lld for the first pass, we pre-create one or more ThunkSections per 1413 // InputSectionDescription at Target specific intervals. A ThunkSection is 1414 // placed so that the estimated end of the ThunkSection is within range of the 1415 // start of the InputSectionDescription or the previous ThunkSection. For 1416 // example: 1417 // InputSectionDescription 1418 // Section 0 1419 // ... 1420 // Section N 1421 // ThunkSection 0 1422 // Section N + 1 1423 // ... 1424 // Section N + K 1425 // Thunk Section 1 1426 // 1427 // The intention is that we can add a Thunk to a ThunkSection that is well 1428 // spaced enough to service a number of callers without having to do a lot 1429 // of work. An important principle is that it is not an error if a Thunk cannot 1430 // be placed in a pre-created ThunkSection; when this happens we create a new 1431 // ThunkSection placed next to the caller. This allows us to handle the vast 1432 // majority of thunks simply, but also handle rare cases where the branch range 1433 // is smaller than the target specific spacing. 1434 // 1435 // The algorithm is expected to create all the thunks that are needed in a 1436 // single pass, with a small number of programs needing a second pass due to 1437 // the insertion of thunks in the first pass increasing the offset between 1438 // callers and callees that were only just in range. 1439 // 1440 // A consequence of allowing new ThunkSections to be created outside of the 1441 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1442 // range in pass K, are out of range in some pass > K due to the insertion of 1443 // more Thunks in between the caller and callee. When this happens we retarget 1444 // the relocation back to the original target and create another Thunk. 1445 1446 // Remove ThunkSections that are empty, this should only be the initial set 1447 // precreated on pass 0. 1448 1449 // Insert the Thunks for OutputSection OS into their designated place 1450 // in the Sections vector, and recalculate the InputSection output section 1451 // offsets. 1452 // This may invalidate any output section offsets stored outside of InputSection 1453 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) { 1454 forEachInputSectionDescription( 1455 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1456 if (ISD->ThunkSections.empty()) 1457 return; 1458 1459 // Remove any zero sized precreated Thunks. 1460 llvm::erase_if(ISD->ThunkSections, 1461 [](const std::pair<ThunkSection *, uint32_t> &TS) { 1462 return TS.first->getSize() == 0; 1463 }); 1464 1465 // ISD->ThunkSections contains all created ThunkSections, including 1466 // those inserted in previous passes. Extract the Thunks created this 1467 // pass and order them in ascending OutSecOff. 1468 std::vector<ThunkSection *> NewThunks; 1469 for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections) 1470 if (TS.second == Pass) 1471 NewThunks.push_back(TS.first); 1472 llvm::stable_sort(NewThunks, 1473 [](const ThunkSection *A, const ThunkSection *B) { 1474 return A->OutSecOff < B->OutSecOff; 1475 }); 1476 1477 // Merge sorted vectors of Thunks and InputSections by OutSecOff 1478 std::vector<InputSection *> Tmp; 1479 Tmp.reserve(ISD->Sections.size() + NewThunks.size()); 1480 1481 std::merge(ISD->Sections.begin(), ISD->Sections.end(), 1482 NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp), 1483 mergeCmp); 1484 1485 ISD->Sections = std::move(Tmp); 1486 }); 1487 } 1488 1489 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1490 // is in range of Src. An ISD maps to a range of InputSections described by a 1491 // linker script section pattern such as { .text .text.* }. 1492 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS, 1493 InputSectionDescription *ISD, 1494 uint32_t Type, uint64_t Src) { 1495 for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) { 1496 ThunkSection *TS = TP.first; 1497 uint64_t TSBase = OS->Addr + TS->OutSecOff; 1498 uint64_t TSLimit = TSBase + TS->getSize(); 1499 if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit)) 1500 return TS; 1501 } 1502 1503 // No suitable ThunkSection exists. This can happen when there is a branch 1504 // with lower range than the ThunkSection spacing or when there are too 1505 // many Thunks. Create a new ThunkSection as close to the InputSection as 1506 // possible. Error if InputSection is so large we cannot place ThunkSection 1507 // anywhere in Range. 1508 uint64_t ThunkSecOff = IS->OutSecOff; 1509 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) { 1510 ThunkSecOff = IS->OutSecOff + IS->getSize(); 1511 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) 1512 fatal("InputSection too large for range extension thunk " + 1513 IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff))); 1514 } 1515 return addThunkSection(OS, ISD, ThunkSecOff); 1516 } 1517 1518 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1519 // precedes its Target. 1520 ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) { 1521 ThunkSection *TS = ThunkedSections.lookup(IS); 1522 if (TS) 1523 return TS; 1524 1525 // Find InputSectionRange within Target Output Section (TOS) that the 1526 // InputSection (IS) that we need to precede is in. 1527 OutputSection *TOS = IS->getParent(); 1528 for (BaseCommand *BC : TOS->SectionCommands) { 1529 auto *ISD = dyn_cast<InputSectionDescription>(BC); 1530 if (!ISD || ISD->Sections.empty()) 1531 continue; 1532 1533 InputSection *First = ISD->Sections.front(); 1534 InputSection *Last = ISD->Sections.back(); 1535 1536 if (IS->OutSecOff < First->OutSecOff || Last->OutSecOff < IS->OutSecOff) 1537 continue; 1538 1539 TS = addThunkSection(TOS, ISD, IS->OutSecOff); 1540 ThunkedSections[IS] = TS; 1541 return TS; 1542 } 1543 1544 return nullptr; 1545 } 1546 1547 // Create one or more ThunkSections per OS that can be used to place Thunks. 1548 // We attempt to place the ThunkSections using the following desirable 1549 // properties: 1550 // - Within range of the maximum number of callers 1551 // - Minimise the number of ThunkSections 1552 // 1553 // We follow a simple but conservative heuristic to place ThunkSections at 1554 // offsets that are multiples of a Target specific branch range. 1555 // For an InputSectionDescription that is smaller than the range, a single 1556 // ThunkSection at the end of the range will do. 1557 // 1558 // For an InputSectionDescription that is more than twice the size of the range, 1559 // we place the last ThunkSection at range bytes from the end of the 1560 // InputSectionDescription in order to increase the likelihood that the 1561 // distance from a thunk to its target will be sufficiently small to 1562 // allow for the creation of a short thunk. 1563 void ThunkCreator::createInitialThunkSections( 1564 ArrayRef<OutputSection *> OutputSections) { 1565 uint32_t ThunkSectionSpacing = Target->getThunkSectionSpacing(); 1566 1567 forEachInputSectionDescription( 1568 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1569 if (ISD->Sections.empty()) 1570 return; 1571 1572 uint32_t ISDBegin = ISD->Sections.front()->OutSecOff; 1573 uint32_t ISDEnd = 1574 ISD->Sections.back()->OutSecOff + ISD->Sections.back()->getSize(); 1575 uint32_t LastThunkLowerBound = -1; 1576 if (ISDEnd - ISDBegin > ThunkSectionSpacing * 2) 1577 LastThunkLowerBound = ISDEnd - ThunkSectionSpacing; 1578 1579 uint32_t ISLimit; 1580 uint32_t PrevISLimit = ISDBegin; 1581 uint32_t ThunkUpperBound = ISDBegin + ThunkSectionSpacing; 1582 1583 for (const InputSection *IS : ISD->Sections) { 1584 ISLimit = IS->OutSecOff + IS->getSize(); 1585 if (ISLimit > ThunkUpperBound) { 1586 addThunkSection(OS, ISD, PrevISLimit); 1587 ThunkUpperBound = PrevISLimit + ThunkSectionSpacing; 1588 } 1589 if (ISLimit > LastThunkLowerBound) 1590 break; 1591 PrevISLimit = ISLimit; 1592 } 1593 addThunkSection(OS, ISD, ISLimit); 1594 }); 1595 } 1596 1597 ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS, 1598 InputSectionDescription *ISD, 1599 uint64_t Off) { 1600 auto *TS = make<ThunkSection>(OS, Off); 1601 ISD->ThunkSections.push_back({TS, Pass}); 1602 return TS; 1603 } 1604 1605 std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type, 1606 uint64_t Src) { 1607 std::vector<Thunk *> *ThunkVec = nullptr; 1608 1609 // We use (section, offset) pair to find the thunk position if possible so 1610 // that we create only one thunk for aliased symbols or ICFed sections. 1611 if (auto *D = dyn_cast<Defined>(&Sym)) 1612 if (!D->isInPlt() && D->Section) 1613 ThunkVec = &ThunkedSymbolsBySection[{D->Section->Repl, D->Value}]; 1614 if (!ThunkVec) 1615 ThunkVec = &ThunkedSymbols[&Sym]; 1616 1617 // Check existing Thunks for Sym to see if they can be reused 1618 for (Thunk *T : *ThunkVec) 1619 if (T->isCompatibleWith(Type) && 1620 Target->inBranchRange(Type, Src, T->getThunkTargetSym()->getVA())) 1621 return std::make_pair(T, false); 1622 1623 // No existing compatible Thunk in range, create a new one 1624 Thunk *T = addThunk(Type, Sym); 1625 ThunkVec->push_back(T); 1626 return std::make_pair(T, true); 1627 } 1628 1629 // Return true if the relocation target is an in range Thunk. 1630 // Return false if the relocation is not to a Thunk. If the relocation target 1631 // was originally to a Thunk, but is no longer in range we revert the 1632 // relocation back to its original non-Thunk target. 1633 bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) { 1634 if (Thunk *T = Thunks.lookup(Rel.Sym)) { 1635 if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA())) 1636 return true; 1637 Rel.Sym = &T->Destination; 1638 if (Rel.Sym->isInPlt()) 1639 Rel.Expr = toPlt(Rel.Expr); 1640 } 1641 return false; 1642 } 1643 1644 // Process all relocations from the InputSections that have been assigned 1645 // to InputSectionDescriptions and redirect through Thunks if needed. The 1646 // function should be called iteratively until it returns false. 1647 // 1648 // PreConditions: 1649 // All InputSections that may need a Thunk are reachable from 1650 // OutputSectionCommands. 1651 // 1652 // All OutputSections have an address and all InputSections have an offset 1653 // within the OutputSection. 1654 // 1655 // The offsets between caller (relocation place) and callee 1656 // (relocation target) will not be modified outside of createThunks(). 1657 // 1658 // PostConditions: 1659 // If return value is true then ThunkSections have been inserted into 1660 // OutputSections. All relocations that needed a Thunk based on the information 1661 // available to createThunks() on entry have been redirected to a Thunk. Note 1662 // that adding Thunks changes offsets between caller and callee so more Thunks 1663 // may be required. 1664 // 1665 // If return value is false then no more Thunks are needed, and createThunks has 1666 // made no changes. If the target requires range extension thunks, currently 1667 // ARM, then any future change in offset between caller and callee risks a 1668 // relocation out of range error. 1669 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) { 1670 bool AddressesChanged = false; 1671 1672 if (Pass == 0 && Target->getThunkSectionSpacing()) 1673 createInitialThunkSections(OutputSections); 1674 1675 // With Thunk Size much smaller than branch range we expect to 1676 // converge quickly; if we get to 10 something has gone wrong. 1677 if (Pass == 10) 1678 fatal("thunk creation not converged"); 1679 1680 // Create all the Thunks and insert them into synthetic ThunkSections. The 1681 // ThunkSections are later inserted back into InputSectionDescriptions. 1682 // We separate the creation of ThunkSections from the insertion of the 1683 // ThunkSections as ThunkSections are not always inserted into the same 1684 // InputSectionDescription as the caller. 1685 forEachInputSectionDescription( 1686 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1687 for (InputSection *IS : ISD->Sections) 1688 for (Relocation &Rel : IS->Relocations) { 1689 uint64_t Src = IS->getVA(Rel.Offset); 1690 1691 // If we are a relocation to an existing Thunk, check if it is 1692 // still in range. If not then Rel will be altered to point to its 1693 // original target so another Thunk can be generated. 1694 if (Pass > 0 && normalizeExistingThunk(Rel, Src)) 1695 continue; 1696 1697 if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src, 1698 *Rel.Sym)) 1699 continue; 1700 1701 Thunk *T; 1702 bool IsNew; 1703 std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src); 1704 1705 if (IsNew) { 1706 // Find or create a ThunkSection for the new Thunk 1707 ThunkSection *TS; 1708 if (auto *TIS = T->getTargetInputSection()) 1709 TS = getISThunkSec(TIS); 1710 else 1711 TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src); 1712 TS->addThunk(T); 1713 Thunks[T->getThunkTargetSym()] = T; 1714 } 1715 1716 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 1717 Rel.Sym = T->getThunkTargetSym(); 1718 Rel.Expr = fromPlt(Rel.Expr); 1719 } 1720 1721 for (auto &P : ISD->ThunkSections) 1722 AddressesChanged |= P.first->assignOffsets(); 1723 }); 1724 1725 for (auto &P : ThunkedSections) 1726 AddressesChanged |= P.second->assignOffsets(); 1727 1728 // Merge all created synthetic ThunkSections back into OutputSection 1729 mergeThunks(OutputSections); 1730 ++Pass; 1731 return AddressesChanged; 1732 } 1733 1734 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 1735 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 1736 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 1737 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 1738