1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 // - create GOT/PLT entries
29 // - create new relocations in .dynsym to let the dynamic linker resolve
30 // them at runtime (since ELF supports dynamic linking, not all
31 // relocations can be resolved at link-time)
32 // - create COPY relocs and reserve space in .bss
33 // - replace expensive relocs (in terms of runtime cost) with cheap ones
34 // - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "InputFiles.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
49 #include "Symbols.h"
50 #include "SyntheticSections.h"
51 #include "Target.h"
52 #include "Thunks.h"
53 #include "lld/Common/ErrorHandler.h"
54 #include "lld/Common/Memory.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include <algorithm>
59
60 using namespace llvm;
61 using namespace llvm::ELF;
62 using namespace llvm::object;
63 using namespace llvm::support::endian;
64 using namespace lld;
65 using namespace lld::elf;
66
getLinkerScriptLocation(const Symbol & sym)67 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
68 for (SectionCommand *cmd : script->sectionCommands)
69 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
70 if (assign->sym == &sym)
71 return assign->location;
72 return None;
73 }
74
getDefinedLocation(const Symbol & sym)75 static std::string getDefinedLocation(const Symbol &sym) {
76 const char msg[] = "\n>>> defined in ";
77 if (sym.file)
78 return msg + toString(sym.file);
79 if (Optional<std::string> loc = getLinkerScriptLocation(sym))
80 return msg + *loc;
81 return "";
82 }
83
84 // Construct a message in the following format.
85 //
86 // >>> defined in /home/alice/src/foo.o
87 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
88 // >>> /home/alice/src/bar.o:(.text+0x1)
getLocation(InputSectionBase & s,const Symbol & sym,uint64_t off)89 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
90 uint64_t off) {
91 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
92 std::string src = s.getSrcMsg(sym, off);
93 if (!src.empty())
94 msg += src + "\n>>> ";
95 return msg + s.getObjMsg(off);
96 }
97
reportRangeError(uint8_t * loc,const Relocation & rel,const Twine & v,int64_t min,uint64_t max)98 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
99 int64_t min, uint64_t max) {
100 ErrorPlace errPlace = getErrorPlace(loc);
101 std::string hint;
102 if (rel.sym && !rel.sym->isSection())
103 hint = "; references " + lld::toString(*rel.sym);
104 if (!errPlace.srcLoc.empty())
105 hint += "\n>>> referenced by " + errPlace.srcLoc;
106 if (rel.sym && !rel.sym->isSection())
107 hint += getDefinedLocation(*rel.sym);
108
109 if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
110 hint += "; consider recompiling with -fdebug-types-section to reduce size "
111 "of debug sections";
112
113 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
114 " out of range: " + v.str() + " is not in [" + Twine(min).str() +
115 ", " + Twine(max).str() + "]" + hint);
116 }
117
reportRangeError(uint8_t * loc,int64_t v,int n,const Symbol & sym,const Twine & msg)118 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
119 const Twine &msg) {
120 ErrorPlace errPlace = getErrorPlace(loc);
121 std::string hint;
122 if (!sym.getName().empty())
123 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
124 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
125 " is not in [" + Twine(llvm::minIntN(n)) + ", " +
126 Twine(llvm::maxIntN(n)) + "]" + hint);
127 }
128
129 // Build a bitmask with one bit set for each 64 subset of RelExpr.
buildMask()130 static constexpr uint64_t buildMask() { return 0; }
131
132 template <typename... Tails>
buildMask(int head,Tails...tails)133 static constexpr uint64_t buildMask(int head, Tails... tails) {
134 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
135 buildMask(tails...);
136 }
137
138 // Return true if `Expr` is one of `Exprs`.
139 // There are more than 64 but less than 128 RelExprs, so we divide the set of
140 // exprs into [0, 64) and [64, 128) and represent each range as a constant
141 // 64-bit mask. Then we decide which mask to test depending on the value of
142 // expr and use a simple shift and bitwise-and to test for membership.
oneof(RelExpr expr)143 template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
144 assert(0 <= expr && (int)expr < 128 &&
145 "RelExpr is too large for 128-bit mask!");
146
147 if (expr >= 64)
148 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
149 return (uint64_t(1) << expr) & buildMask(Exprs...);
150 }
151
getMipsPairType(RelType type,bool isLocal)152 static RelType getMipsPairType(RelType type, bool isLocal) {
153 switch (type) {
154 case R_MIPS_HI16:
155 return R_MIPS_LO16;
156 case R_MIPS_GOT16:
157 // In case of global symbol, the R_MIPS_GOT16 relocation does not
158 // have a pair. Each global symbol has a unique entry in the GOT
159 // and a corresponding instruction with help of the R_MIPS_GOT16
160 // relocation loads an address of the symbol. In case of local
161 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
162 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
163 // relocations handle low 16 bits of the address. That allows
164 // to allocate only one GOT entry for every 64 KBytes of local data.
165 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
166 case R_MICROMIPS_GOT16:
167 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
168 case R_MIPS_PCHI16:
169 return R_MIPS_PCLO16;
170 case R_MICROMIPS_HI16:
171 return R_MICROMIPS_LO16;
172 default:
173 return R_MIPS_NONE;
174 }
175 }
176
177 // True if non-preemptable symbol always has the same value regardless of where
178 // the DSO is loaded.
isAbsolute(const Symbol & sym)179 static bool isAbsolute(const Symbol &sym) {
180 if (sym.isUndefWeak())
181 return true;
182 if (const auto *dr = dyn_cast<Defined>(&sym))
183 return dr->section == nullptr; // Absolute symbol.
184 return false;
185 }
186
isAbsoluteValue(const Symbol & sym)187 static bool isAbsoluteValue(const Symbol &sym) {
188 return isAbsolute(sym) || sym.isTls();
189 }
190
191 // Returns true if Expr refers a PLT entry.
needsPlt(RelExpr expr)192 static bool needsPlt(RelExpr expr) {
193 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>(
194 expr);
195 }
196
197 // Returns true if Expr refers a GOT entry. Note that this function
198 // returns false for TLS variables even though they need GOT, because
199 // TLS variables uses GOT differently than the regular variables.
needsGot(RelExpr expr)200 static bool needsGot(RelExpr expr) {
201 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
202 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
203 R_AARCH64_GOT_PAGE>(expr);
204 }
205
206 // True if this expression is of the form Sym - X, where X is a position in the
207 // file (PC, or GOT for example).
isRelExpr(RelExpr expr)208 static bool isRelExpr(RelExpr expr) {
209 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
210 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
211 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
212 }
213
214
toPlt(RelExpr expr)215 static RelExpr toPlt(RelExpr expr) {
216 switch (expr) {
217 case R_PPC64_CALL:
218 return R_PPC64_CALL_PLT;
219 case R_PC:
220 return R_PLT_PC;
221 case R_ABS:
222 return R_PLT;
223 default:
224 return expr;
225 }
226 }
227
fromPlt(RelExpr expr)228 static RelExpr fromPlt(RelExpr expr) {
229 // We decided not to use a plt. Optimize a reference to the plt to a
230 // reference to the symbol itself.
231 switch (expr) {
232 case R_PLT_PC:
233 case R_PPC32_PLTREL:
234 return R_PC;
235 case R_PPC64_CALL_PLT:
236 return R_PPC64_CALL;
237 case R_PLT:
238 return R_ABS;
239 case R_PLT_GOTPLT:
240 return R_GOTPLTREL;
241 default:
242 return expr;
243 }
244 }
245
246 // Returns true if a given shared symbol is in a read-only segment in a DSO.
isReadOnly(SharedSymbol & ss)247 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
248 using Elf_Phdr = typename ELFT::Phdr;
249
250 // Determine if the symbol is read-only by scanning the DSO's program headers.
251 const auto &file = cast<SharedFile>(*ss.file);
252 for (const Elf_Phdr &phdr :
253 check(file.template getObj<ELFT>().program_headers()))
254 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
255 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
256 ss.value < phdr.p_vaddr + phdr.p_memsz)
257 return true;
258 return false;
259 }
260
261 // Returns symbols at the same offset as a given symbol, including SS itself.
262 //
263 // If two or more symbols are at the same offset, and at least one of
264 // them are copied by a copy relocation, all of them need to be copied.
265 // Otherwise, they would refer to different places at runtime.
266 template <class ELFT>
getSymbolsAt(SharedSymbol & ss)267 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
268 using Elf_Sym = typename ELFT::Sym;
269
270 const auto &file = cast<SharedFile>(*ss.file);
271
272 SmallSet<SharedSymbol *, 4> ret;
273 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
274 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
275 s.getType() == STT_TLS || s.st_value != ss.value)
276 continue;
277 StringRef name = check(s.getName(file.getStringTable()));
278 Symbol *sym = symtab->find(name);
279 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
280 ret.insert(alias);
281 }
282
283 // The loop does not check SHT_GNU_verneed, so ret does not contain
284 // non-default version symbols. If ss has a non-default version, ret won't
285 // contain ss. Just add ss unconditionally. If a non-default version alias is
286 // separately copy relocated, it and ss will have different addresses.
287 // Fortunately this case is impractical and fails with GNU ld as well.
288 ret.insert(&ss);
289 return ret;
290 }
291
292 // When a symbol is copy relocated or we create a canonical plt entry, it is
293 // effectively a defined symbol. In the case of copy relocation the symbol is
294 // in .bss and in the case of a canonical plt entry it is in .plt. This function
295 // replaces the existing symbol with a Defined pointing to the appropriate
296 // location.
replaceWithDefined(Symbol & sym,SectionBase & sec,uint64_t value,uint64_t size)297 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
298 uint64_t size) {
299 Symbol old = sym;
300
301 sym.replace(Defined{sym.file, StringRef(), sym.binding, sym.stOther,
302 sym.type, value, size, &sec});
303
304 sym.auxIdx = old.auxIdx;
305 sym.verdefIndex = old.verdefIndex;
306 sym.exportDynamic = true;
307 sym.isUsedInRegularObj = true;
308 // A copy relocated alias may need a GOT entry.
309 sym.needsGot = old.needsGot;
310 }
311
312 // Reserve space in .bss or .bss.rel.ro for copy relocation.
313 //
314 // The copy relocation is pretty much a hack. If you use a copy relocation
315 // in your program, not only the symbol name but the symbol's size, RW/RO
316 // bit and alignment become part of the ABI. In addition to that, if the
317 // symbol has aliases, the aliases become part of the ABI. That's subtle,
318 // but if you violate that implicit ABI, that can cause very counter-
319 // intuitive consequences.
320 //
321 // So, what is the copy relocation? It's for linking non-position
322 // independent code to DSOs. In an ideal world, all references to data
323 // exported by DSOs should go indirectly through GOT. But if object files
324 // are compiled as non-PIC, all data references are direct. There is no
325 // way for the linker to transform the code to use GOT, as machine
326 // instructions are already set in stone in object files. This is where
327 // the copy relocation takes a role.
328 //
329 // A copy relocation instructs the dynamic linker to copy data from a DSO
330 // to a specified address (which is usually in .bss) at load-time. If the
331 // static linker (that's us) finds a direct data reference to a DSO
332 // symbol, it creates a copy relocation, so that the symbol can be
333 // resolved as if it were in .bss rather than in a DSO.
334 //
335 // As you can see in this function, we create a copy relocation for the
336 // dynamic linker, and the relocation contains not only symbol name but
337 // various other information about the symbol. So, such attributes become a
338 // part of the ABI.
339 //
340 // Note for application developers: I can give you a piece of advice if
341 // you are writing a shared library. You probably should export only
342 // functions from your library. You shouldn't export variables.
343 //
344 // As an example what can happen when you export variables without knowing
345 // the semantics of copy relocations, assume that you have an exported
346 // variable of type T. It is an ABI-breaking change to add new members at
347 // end of T even though doing that doesn't change the layout of the
348 // existing members. That's because the space for the new members are not
349 // reserved in .bss unless you recompile the main program. That means they
350 // are likely to overlap with other data that happens to be laid out next
351 // to the variable in .bss. This kind of issue is sometimes very hard to
352 // debug. What's a solution? Instead of exporting a variable V from a DSO,
353 // define an accessor getV().
addCopyRelSymbol(SharedSymbol & ss)354 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
355 // Copy relocation against zero-sized symbol doesn't make sense.
356 uint64_t symSize = ss.getSize();
357 if (symSize == 0 || ss.alignment == 0)
358 fatal("cannot create a copy relocation for symbol " + toString(ss));
359
360 // See if this symbol is in a read-only segment. If so, preserve the symbol's
361 // memory protection by reserving space in the .bss.rel.ro section.
362 bool isRO = isReadOnly<ELFT>(ss);
363 BssSection *sec =
364 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
365 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
366
367 // At this point, sectionBases has been migrated to sections. Append sec to
368 // sections.
369 if (osec->commands.empty() ||
370 !isa<InputSectionDescription>(osec->commands.back()))
371 osec->commands.push_back(make<InputSectionDescription>(""));
372 auto *isd = cast<InputSectionDescription>(osec->commands.back());
373 isd->sections.push_back(sec);
374 osec->commitSection(sec);
375
376 // Look through the DSO's dynamic symbol table for aliases and create a
377 // dynamic symbol for each one. This causes the copy relocation to correctly
378 // interpose any aliases.
379 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
380 replaceWithDefined(*sym, *sec, 0, sym->size);
381
382 mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
383 }
384
385 // .eh_frame sections are mergeable input sections, so their input
386 // offsets are not linearly mapped to output section. For each input
387 // offset, we need to find a section piece containing the offset and
388 // add the piece's base address to the input offset to compute the
389 // output offset. That isn't cheap.
390 //
391 // This class is to speed up the offset computation. When we process
392 // relocations, we access offsets in the monotonically increasing
393 // order. So we can optimize for that access pattern.
394 //
395 // For sections other than .eh_frame, this class doesn't do anything.
396 namespace {
397 class OffsetGetter {
398 public:
OffsetGetter(InputSectionBase & sec)399 explicit OffsetGetter(InputSectionBase &sec) {
400 if (auto *eh = dyn_cast<EhInputSection>(&sec))
401 pieces = eh->pieces;
402 }
403
404 // Translates offsets in input sections to offsets in output sections.
405 // Given offset must increase monotonically. We assume that Piece is
406 // sorted by inputOff.
get(uint64_t off)407 uint64_t get(uint64_t off) {
408 if (pieces.empty())
409 return off;
410
411 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
412 ++i;
413 if (i == pieces.size())
414 fatal(".eh_frame: relocation is not in any piece");
415
416 // Pieces must be contiguous, so there must be no holes in between.
417 assert(pieces[i].inputOff <= off && "Relocation not in any piece");
418
419 // Offset -1 means that the piece is dead (i.e. garbage collected).
420 if (pieces[i].outputOff == -1)
421 return -1;
422 return pieces[i].outputOff + off - pieces[i].inputOff;
423 }
424
425 private:
426 ArrayRef<EhSectionPiece> pieces;
427 size_t i = 0;
428 };
429
430 // This class encapsulates states needed to scan relocations for one
431 // InputSectionBase.
432 class RelocationScanner {
433 public:
RelocationScanner(InputSectionBase & sec)434 explicit RelocationScanner(InputSectionBase &sec)
435 : sec(sec), getter(sec), config(elf::config.get()), target(*elf::target) {
436 }
437 template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels);
438
439 private:
440 InputSectionBase &sec;
441 OffsetGetter getter;
442 const Configuration *const config;
443 const TargetInfo ⌖
444
445 // End of relocations, used by Mips/PPC64.
446 const void *end = nullptr;
447
448 template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
449 template <class ELFT, class RelTy>
450 int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
451 template <class ELFT, class RelTy>
452 int64_t computeAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
453 bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
454 uint64_t relOff) const;
455 void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
456 int64_t addend) const;
457 template <class ELFT, class RelTy> void scanOne(RelTy *&i);
458 };
459 } // namespace
460
461 // MIPS has an odd notion of "paired" relocations to calculate addends.
462 // For example, if a relocation is of R_MIPS_HI16, there must be a
463 // R_MIPS_LO16 relocation after that, and an addend is calculated using
464 // the two relocations.
465 template <class ELFT, class RelTy>
computeMipsAddend(const RelTy & rel,RelExpr expr,bool isLocal) const466 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
467 bool isLocal) const {
468 if (expr == R_MIPS_GOTREL && isLocal)
469 return sec.getFile<ELFT>()->mipsGp0;
470
471 // The ABI says that the paired relocation is used only for REL.
472 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
473 if (RelTy::IsRela)
474 return 0;
475
476 RelType type = rel.getType(config->isMips64EL);
477 uint32_t pairTy = getMipsPairType(type, isLocal);
478 if (pairTy == R_MIPS_NONE)
479 return 0;
480
481 const uint8_t *buf = sec.rawData.data();
482 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
483
484 // To make things worse, paired relocations might not be contiguous in
485 // the relocation table, so we need to do linear search. *sigh*
486 for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
487 if (ri->getType(config->isMips64EL) == pairTy &&
488 ri->getSymbol(config->isMips64EL) == symIndex)
489 return target.getImplicitAddend(buf + ri->r_offset, pairTy);
490
491 warn("can't find matching " + toString(pairTy) + " relocation for " +
492 toString(type));
493 return 0;
494 }
495
496 // Returns an addend of a given relocation. If it is RELA, an addend
497 // is in a relocation itself. If it is REL, we need to read it from an
498 // input section.
499 template <class ELFT, class RelTy>
computeAddend(const RelTy & rel,RelExpr expr,bool isLocal) const500 int64_t RelocationScanner::computeAddend(const RelTy &rel, RelExpr expr,
501 bool isLocal) const {
502 int64_t addend;
503 RelType type = rel.getType(config->isMips64EL);
504
505 if (RelTy::IsRela) {
506 addend = getAddend<ELFT>(rel);
507 } else {
508 const uint8_t *buf = sec.rawData.data();
509 addend = target.getImplicitAddend(buf + rel.r_offset, type);
510 }
511
512 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
513 addend += getPPC64TocBase();
514 if (config->emachine == EM_MIPS)
515 addend += computeMipsAddend<ELFT>(rel, expr, isLocal);
516
517 return addend;
518 }
519
520 // Custom error message if Sym is defined in a discarded section.
521 template <class ELFT>
maybeReportDiscarded(Undefined & sym)522 static std::string maybeReportDiscarded(Undefined &sym) {
523 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
524 if (!file || !sym.discardedSecIdx ||
525 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
526 return "";
527 ArrayRef<typename ELFT::Shdr> objSections =
528 file->template getELFShdrs<ELFT>();
529
530 std::string msg;
531 if (sym.type == ELF::STT_SECTION) {
532 msg = "relocation refers to a discarded section: ";
533 msg += CHECK(
534 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
535 } else {
536 msg = "relocation refers to a symbol in a discarded section: " +
537 toString(sym);
538 }
539 msg += "\n>>> defined in " + toString(file);
540
541 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
542 if (elfSec.sh_type != SHT_GROUP)
543 return msg;
544
545 // If the discarded section is a COMDAT.
546 StringRef signature = file->getShtGroupSignature(objSections, elfSec);
547 if (const InputFile *prevailing =
548 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) {
549 msg += "\n>>> section group signature: " + signature.str() +
550 "\n>>> prevailing definition is in " + toString(prevailing);
551 if (sym.nonPrevailing) {
552 msg += "\n>>> or the symbol in the prevailing group had STB_WEAK "
553 "binding and the symbol in a non-prevailing group had STB_GLOBAL "
554 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
555 "signature is not supported";
556 }
557 }
558 return msg;
559 }
560
561 namespace {
562 // Undefined diagnostics are collected in a vector and emitted once all of
563 // them are known, so that some postprocessing on the list of undefined symbols
564 // can happen before lld emits diagnostics.
565 struct UndefinedDiag {
566 Undefined *sym;
567 struct Loc {
568 InputSectionBase *sec;
569 uint64_t offset;
570 };
571 std::vector<Loc> locs;
572 bool isWarning;
573 };
574
575 std::vector<UndefinedDiag> undefs;
576 }
577
578 // Check whether the definition name def is a mangled function name that matches
579 // the reference name ref.
canSuggestExternCForCXX(StringRef ref,StringRef def)580 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
581 llvm::ItaniumPartialDemangler d;
582 std::string name = def.str();
583 if (d.partialDemangle(name.c_str()))
584 return false;
585 char *buf = d.getFunctionName(nullptr, nullptr);
586 if (!buf)
587 return false;
588 bool ret = ref == buf;
589 free(buf);
590 return ret;
591 }
592
593 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
594 // the suggested symbol, which is either in the symbol table, or in the same
595 // file of sym.
getAlternativeSpelling(const Undefined & sym,std::string & pre_hint,std::string & post_hint)596 static const Symbol *getAlternativeSpelling(const Undefined &sym,
597 std::string &pre_hint,
598 std::string &post_hint) {
599 DenseMap<StringRef, const Symbol *> map;
600 if (sym.file && sym.file->kind() == InputFile::ObjKind) {
601 auto *file = cast<ELFFileBase>(sym.file);
602 // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
603 // will give an error. Don't suggest an alternative spelling.
604 if (file && sym.discardedSecIdx != 0 &&
605 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
606 return nullptr;
607
608 // Build a map of local defined symbols.
609 for (const Symbol *s : sym.file->getSymbols())
610 if (s->isLocal() && s->isDefined() && !s->getName().empty())
611 map.try_emplace(s->getName(), s);
612 }
613
614 auto suggest = [&](StringRef newName) -> const Symbol * {
615 // If defined locally.
616 if (const Symbol *s = map.lookup(newName))
617 return s;
618
619 // If in the symbol table and not undefined.
620 if (const Symbol *s = symtab->find(newName))
621 if (!s->isUndefined())
622 return s;
623
624 return nullptr;
625 };
626
627 // This loop enumerates all strings of Levenshtein distance 1 as typo
628 // correction candidates and suggests the one that exists as a non-undefined
629 // symbol.
630 StringRef name = sym.getName();
631 for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
632 // Insert a character before name[i].
633 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
634 for (char c = '0'; c <= 'z'; ++c) {
635 newName[i] = c;
636 if (const Symbol *s = suggest(newName))
637 return s;
638 }
639 if (i == e)
640 break;
641
642 // Substitute name[i].
643 newName = std::string(name);
644 for (char c = '0'; c <= 'z'; ++c) {
645 newName[i] = c;
646 if (const Symbol *s = suggest(newName))
647 return s;
648 }
649
650 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
651 // common.
652 if (i + 1 < e) {
653 newName[i] = name[i + 1];
654 newName[i + 1] = name[i];
655 if (const Symbol *s = suggest(newName))
656 return s;
657 }
658
659 // Delete name[i].
660 newName = (name.substr(0, i) + name.substr(i + 1)).str();
661 if (const Symbol *s = suggest(newName))
662 return s;
663 }
664
665 // Case mismatch, e.g. Foo vs FOO.
666 for (auto &it : map)
667 if (name.equals_insensitive(it.first))
668 return it.second;
669 for (Symbol *sym : symtab->symbols())
670 if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
671 return sym;
672
673 // The reference may be a mangled name while the definition is not. Suggest a
674 // missing extern "C".
675 if (name.startswith("_Z")) {
676 std::string buf = name.str();
677 llvm::ItaniumPartialDemangler d;
678 if (!d.partialDemangle(buf.c_str()))
679 if (char *buf = d.getFunctionName(nullptr, nullptr)) {
680 const Symbol *s = suggest(buf);
681 free(buf);
682 if (s) {
683 pre_hint = ": extern \"C\" ";
684 return s;
685 }
686 }
687 } else {
688 const Symbol *s = nullptr;
689 for (auto &it : map)
690 if (canSuggestExternCForCXX(name, it.first)) {
691 s = it.second;
692 break;
693 }
694 if (!s)
695 for (Symbol *sym : symtab->symbols())
696 if (canSuggestExternCForCXX(name, sym->getName())) {
697 s = sym;
698 break;
699 }
700 if (s) {
701 pre_hint = " to declare ";
702 post_hint = " as extern \"C\"?";
703 return s;
704 }
705 }
706
707 return nullptr;
708 }
709
reportUndefinedSymbol(const UndefinedDiag & undef,bool correctSpelling)710 static void reportUndefinedSymbol(const UndefinedDiag &undef,
711 bool correctSpelling) {
712 Undefined &sym = *undef.sym;
713
714 auto visibility = [&]() -> std::string {
715 switch (sym.visibility) {
716 case STV_INTERNAL:
717 return "internal ";
718 case STV_HIDDEN:
719 return "hidden ";
720 case STV_PROTECTED:
721 return "protected ";
722 default:
723 return "";
724 }
725 };
726
727 std::string msg;
728 switch (config->ekind) {
729 case ELF32LEKind:
730 msg = maybeReportDiscarded<ELF32LE>(sym);
731 break;
732 case ELF32BEKind:
733 msg = maybeReportDiscarded<ELF32BE>(sym);
734 break;
735 case ELF64LEKind:
736 msg = maybeReportDiscarded<ELF64LE>(sym);
737 break;
738 case ELF64BEKind:
739 msg = maybeReportDiscarded<ELF64BE>(sym);
740 break;
741 default:
742 llvm_unreachable("");
743 }
744 if (msg.empty())
745 msg = "undefined " + visibility() + "symbol: " + toString(sym);
746
747 const size_t maxUndefReferences = 3;
748 size_t i = 0;
749 for (UndefinedDiag::Loc l : undef.locs) {
750 if (i >= maxUndefReferences)
751 break;
752 InputSectionBase &sec = *l.sec;
753 uint64_t offset = l.offset;
754
755 msg += "\n>>> referenced by ";
756 std::string src = sec.getSrcMsg(sym, offset);
757 if (!src.empty())
758 msg += src + "\n>>> ";
759 msg += sec.getObjMsg(offset);
760 i++;
761 }
762
763 if (i < undef.locs.size())
764 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
765 .str();
766
767 if (correctSpelling) {
768 std::string pre_hint = ": ", post_hint;
769 if (const Symbol *corrected =
770 getAlternativeSpelling(sym, pre_hint, post_hint)) {
771 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
772 if (corrected->file)
773 msg += "\n>>> defined in: " + toString(corrected->file);
774 }
775 }
776
777 if (sym.getName().startswith("_ZTV"))
778 msg +=
779 "\n>>> the vtable symbol may be undefined because the class is missing "
780 "its key function (see https://lld.llvm.org/missingkeyfunction)";
781 if (config->gcSections && config->zStartStopGC &&
782 sym.getName().startswith("__start_")) {
783 msg += "\n>>> the encapsulation symbol needs to be retained under "
784 "--gc-sections properly; consider -z nostart-stop-gc "
785 "(see https://lld.llvm.org/ELF/start-stop-gc)";
786 }
787
788 if (undef.isWarning)
789 warn(msg);
790 else
791 error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
792 }
793
reportUndefinedSymbols()794 void elf::reportUndefinedSymbols() {
795 // Find the first "undefined symbol" diagnostic for each diagnostic, and
796 // collect all "referenced from" lines at the first diagnostic.
797 DenseMap<Symbol *, UndefinedDiag *> firstRef;
798 for (UndefinedDiag &undef : undefs) {
799 assert(undef.locs.size() == 1);
800 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
801 canon->locs.push_back(undef.locs[0]);
802 undef.locs.clear();
803 } else
804 firstRef[undef.sym] = &undef;
805 }
806
807 // Enable spell corrector for the first 2 diagnostics.
808 for (auto it : enumerate(undefs))
809 if (!it.value().locs.empty())
810 reportUndefinedSymbol(it.value(), it.index() < 2);
811 undefs.clear();
812 }
813
814 // Report an undefined symbol if necessary.
815 // Returns true if the undefined symbol will produce an error message.
maybeReportUndefined(Undefined & sym,InputSectionBase & sec,uint64_t offset)816 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
817 uint64_t offset) {
818 // If versioned, issue an error (even if the symbol is weak) because we don't
819 // know the defining filename which is required to construct a Verneed entry.
820 if (sym.hasVersionSuffix) {
821 undefs.push_back({&sym, {{&sec, offset}}, false});
822 return true;
823 }
824 if (sym.isWeak())
825 return false;
826
827 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
828 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
829 return false;
830
831 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
832 // which references a switch table in a discarded .rodata/.text section. The
833 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
834 // spec says references from outside the group to a STB_LOCAL symbol are not
835 // allowed. Work around the bug.
836 //
837 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
838 // because .LC0-.LTOC is not representable if the two labels are in different
839 // .got2
840 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
841 return false;
842
843 bool isWarning =
844 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
845 config->noinhibitExec;
846 undefs.push_back({&sym, {{&sec, offset}}, isWarning});
847 return !isWarning;
848 }
849
850 // MIPS N32 ABI treats series of successive relocations with the same offset
851 // as a single relocation. The similar approach used by N64 ABI, but this ABI
852 // packs all relocations into the single relocation record. Here we emulate
853 // this for the N32 ABI. Iterate over relocation with the same offset and put
854 // theirs types into the single bit-set.
855 template <class RelTy>
getMipsN32RelType(RelTy * & rel) const856 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
857 RelType type = 0;
858 uint64_t offset = rel->r_offset;
859
860 int n = 0;
861 while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
862 type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
863 return type;
864 }
865
addRelativeReloc(InputSectionBase & isec,uint64_t offsetInSec,Symbol & sym,int64_t addend,RelExpr expr,RelType type)866 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
867 Symbol &sym, int64_t addend, RelExpr expr,
868 RelType type) {
869 Partition &part = isec.getPartition();
870
871 // Add a relative relocation. If relrDyn section is enabled, and the
872 // relocation offset is guaranteed to be even, add the relocation to
873 // the relrDyn section, otherwise add it to the relaDyn section.
874 // relrDyn sections don't support odd offsets. Also, relrDyn sections
875 // don't store the addend values, so we must write it to the relocated
876 // address.
877 if (part.relrDyn && isec.alignment >= 2 && offsetInSec % 2 == 0) {
878 isec.relocations.push_back({expr, type, offsetInSec, addend, &sym});
879 part.relrDyn->relocs.push_back({&isec, offsetInSec});
880 return;
881 }
882 part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
883 addend, type, expr);
884 }
885
886 template <class PltSection, class GotPltSection>
addPltEntry(PltSection & plt,GotPltSection & gotPlt,RelocationBaseSection & rel,RelType type,Symbol & sym)887 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
888 RelocationBaseSection &rel, RelType type, Symbol &sym) {
889 plt.addEntry(sym);
890 gotPlt.addEntry(sym);
891 rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
892 sym.isPreemptible ? DynamicReloc::AgainstSymbol
893 : DynamicReloc::AddendOnlyWithTargetVA,
894 sym, 0, R_ABS});
895 }
896
addGotEntry(Symbol & sym)897 static void addGotEntry(Symbol &sym) {
898 in.got->addEntry(sym);
899 uint64_t off = sym.getGotOffset();
900
901 // If preemptible, emit a GLOB_DAT relocation.
902 if (sym.isPreemptible) {
903 mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
904 DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
905 return;
906 }
907
908 // Otherwise, the value is either a link-time constant or the load base
909 // plus a constant.
910 if (!config->isPic || isAbsolute(sym))
911 in.got->relocations.push_back({R_ABS, target->symbolicRel, off, 0, &sym});
912 else
913 addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
914 }
915
addTpOffsetGotEntry(Symbol & sym)916 static void addTpOffsetGotEntry(Symbol &sym) {
917 in.got->addEntry(sym);
918 uint64_t off = sym.getGotOffset();
919 if (!sym.isPreemptible && !config->isPic) {
920 in.got->relocations.push_back({R_TPREL, target->symbolicRel, off, 0, &sym});
921 return;
922 }
923 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
924 target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
925 }
926
927 // Return true if we can define a symbol in the executable that
928 // contains the value/function of a symbol defined in a shared
929 // library.
canDefineSymbolInExecutable(Symbol & sym)930 static bool canDefineSymbolInExecutable(Symbol &sym) {
931 // If the symbol has default visibility the symbol defined in the
932 // executable will preempt it.
933 // Note that we want the visibility of the shared symbol itself, not
934 // the visibility of the symbol in the output file we are producing. That is
935 // why we use Sym.stOther.
936 if ((sym.stOther & 0x3) == STV_DEFAULT)
937 return true;
938
939 // If we are allowed to break address equality of functions, defining
940 // a plt entry will allow the program to call the function in the
941 // .so, but the .so and the executable will no agree on the address
942 // of the function. Similar logic for objects.
943 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
944 (sym.isObject() && config->ignoreDataAddressEquality));
945 }
946
947 // Returns true if a given relocation can be computed at link-time.
948 // This only handles relocation types expected in processAux.
949 //
950 // For instance, we know the offset from a relocation to its target at
951 // link-time if the relocation is PC-relative and refers a
952 // non-interposable function in the same executable. This function
953 // will return true for such relocation.
954 //
955 // If this function returns false, that means we need to emit a
956 // dynamic relocation so that the relocation will be fixed at load-time.
isStaticLinkTimeConstant(RelExpr e,RelType type,const Symbol & sym,uint64_t relOff) const957 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
958 const Symbol &sym,
959 uint64_t relOff) const {
960 // These expressions always compute a constant
961 if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE,
962 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
963 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
964 R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT,
965 R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e))
966 return true;
967
968 // These never do, except if the entire file is position dependent or if
969 // only the low bits are used.
970 if (e == R_GOT || e == R_PLT)
971 return target.usesOnlyLowPageBits(type) || !config->isPic;
972
973 if (sym.isPreemptible)
974 return false;
975 if (!config->isPic)
976 return true;
977
978 // The size of a non preemptible symbol is a constant.
979 if (e == R_SIZE)
980 return true;
981
982 // For the target and the relocation, we want to know if they are
983 // absolute or relative.
984 bool absVal = isAbsoluteValue(sym);
985 bool relE = isRelExpr(e);
986 if (absVal && !relE)
987 return true;
988 if (!absVal && relE)
989 return true;
990 if (!absVal && !relE)
991 return target.usesOnlyLowPageBits(type);
992
993 assert(absVal && relE);
994
995 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
996 // in PIC mode. This is a little strange, but it allows us to link function
997 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
998 // Normally such a call will be guarded with a comparison, which will load a
999 // zero from the GOT.
1000 if (sym.isUndefWeak())
1001 return true;
1002
1003 // We set the final symbols values for linker script defined symbols later.
1004 // They always can be computed as a link time constant.
1005 if (sym.scriptDefined)
1006 return true;
1007
1008 error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
1009 toString(sym) + getLocation(sec, sym, relOff));
1010 return true;
1011 }
1012
1013 // The reason we have to do this early scan is as follows
1014 // * To mmap the output file, we need to know the size
1015 // * For that, we need to know how many dynamic relocs we will have.
1016 // It might be possible to avoid this by outputting the file with write:
1017 // * Write the allocated output sections, computing addresses.
1018 // * Apply relocations, recording which ones require a dynamic reloc.
1019 // * Write the dynamic relocations.
1020 // * Write the rest of the file.
1021 // This would have some drawbacks. For example, we would only know if .rela.dyn
1022 // is needed after applying relocations. If it is, it will go after rw and rx
1023 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1024 // complicates things for the dynamic linker and means we would have to reserve
1025 // space for the extra PT_LOAD even if we end up not using it.
processAux(RelExpr expr,RelType type,uint64_t offset,Symbol & sym,int64_t addend) const1026 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1027 Symbol &sym, int64_t addend) const {
1028 // If the relocation is known to be a link-time constant, we know no dynamic
1029 // relocation will be created, pass the control to relocateAlloc() or
1030 // relocateNonAlloc() to resolve it.
1031 //
1032 // The behavior of an undefined weak reference is implementation defined. For
1033 // non-link-time constants, we resolve relocations statically (let
1034 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1035 // relocations for -pie and -shared.
1036 //
1037 // The general expectation of -no-pie static linking is that there is no
1038 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1039 // -shared matches the spirit of its -z undefs default. -pie has freedom on
1040 // choices, and we choose dynamic relocations to be consistent with the
1041 // handling of GOT-generating relocations.
1042 if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1043 (!config->isPic && sym.isUndefWeak())) {
1044 sec.relocations.push_back({expr, type, offset, addend, &sym});
1045 return;
1046 }
1047
1048 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1049 if (canWrite) {
1050 RelType rel = target.getDynRel(type);
1051 if (expr == R_GOT || (rel == target.symbolicRel && !sym.isPreemptible)) {
1052 addRelativeReloc(sec, offset, sym, addend, expr, type);
1053 return;
1054 } else if (rel != 0) {
1055 if (config->emachine == EM_MIPS && rel == target.symbolicRel)
1056 rel = target.relativeRel;
1057 sec.getPartition().relaDyn->addSymbolReloc(rel, sec, offset, sym, addend,
1058 type);
1059
1060 // MIPS ABI turns using of GOT and dynamic relocations inside out.
1061 // While regular ABI uses dynamic relocations to fill up GOT entries
1062 // MIPS ABI requires dynamic linker to fills up GOT entries using
1063 // specially sorted dynamic symbol table. This affects even dynamic
1064 // relocations against symbols which do not require GOT entries
1065 // creation explicitly, i.e. do not have any GOT-relocations. So if
1066 // a preemptible symbol has a dynamic relocation we anyway have
1067 // to create a GOT entry for it.
1068 // If a non-preemptible symbol has a dynamic relocation against it,
1069 // dynamic linker takes it st_value, adds offset and writes down
1070 // result of the dynamic relocation. In case of preemptible symbol
1071 // dynamic linker performs symbol resolution, writes the symbol value
1072 // to the GOT entry and reads the GOT entry when it needs to perform
1073 // a dynamic relocation.
1074 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1075 if (config->emachine == EM_MIPS)
1076 in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1077 return;
1078 }
1079 }
1080
1081 // When producing an executable, we can perform copy relocations (for
1082 // STT_OBJECT) and canonical PLT (for STT_FUNC).
1083 if (!config->shared) {
1084 if (!canDefineSymbolInExecutable(sym)) {
1085 errorOrWarn("cannot preempt symbol: " + toString(sym) +
1086 getLocation(sec, sym, offset));
1087 return;
1088 }
1089
1090 if (sym.isObject()) {
1091 // Produce a copy relocation.
1092 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1093 if (!config->zCopyreloc)
1094 error("unresolvable relocation " + toString(type) +
1095 " against symbol '" + toString(*ss) +
1096 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1097 getLocation(sec, sym, offset));
1098 sym.needsCopy = true;
1099 }
1100 sec.relocations.push_back({expr, type, offset, addend, &sym});
1101 return;
1102 }
1103
1104 // This handles a non PIC program call to function in a shared library. In
1105 // an ideal world, we could just report an error saying the relocation can
1106 // overflow at runtime. In the real world with glibc, crt1.o has a
1107 // R_X86_64_PC32 pointing to libc.so.
1108 //
1109 // The general idea on how to handle such cases is to create a PLT entry and
1110 // use that as the function value.
1111 //
1112 // For the static linking part, we just return a plt expr and everything
1113 // else will use the PLT entry as the address.
1114 //
1115 // The remaining problem is making sure pointer equality still works. We
1116 // need the help of the dynamic linker for that. We let it know that we have
1117 // a direct reference to a so symbol by creating an undefined symbol with a
1118 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1119 // the value of the symbol we created. This is true even for got entries, so
1120 // pointer equality is maintained. To avoid an infinite loop, the only entry
1121 // that points to the real function is a dedicated got entry used by the
1122 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1123 // R_386_JMP_SLOT, etc).
1124
1125 // For position independent executable on i386, the plt entry requires ebx
1126 // to be set. This causes two problems:
1127 // * If some code has a direct reference to a function, it was probably
1128 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
1129 // * If a library definition gets preempted to the executable, it will have
1130 // the wrong ebx value.
1131 if (sym.isFunc()) {
1132 if (config->pie && config->emachine == EM_386)
1133 errorOrWarn("symbol '" + toString(sym) +
1134 "' cannot be preempted; recompile with -fPIE" +
1135 getLocation(sec, sym, offset));
1136 sym.needsCopy = true;
1137 sym.needsPlt = true;
1138 sec.relocations.push_back({expr, type, offset, addend, &sym});
1139 return;
1140 }
1141 }
1142
1143 errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1144 (sym.getName().empty() ? "local symbol"
1145 : "symbol '" + toString(sym) + "'") +
1146 "; recompile with -fPIC" + getLocation(sec, sym, offset));
1147 }
1148
1149 // This function is similar to the `handleTlsRelocation`. MIPS does not
1150 // support any relaxations for TLS relocations so by factoring out MIPS
1151 // handling in to the separate function we can simplify the code and do not
1152 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1153 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1154 // without dynamic relocations.
handleMipsTlsRelocation(RelType type,Symbol & sym,InputSectionBase & c,uint64_t offset,int64_t addend,RelExpr expr)1155 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1156 InputSectionBase &c, uint64_t offset,
1157 int64_t addend, RelExpr expr) {
1158 if (expr == R_MIPS_TLSLD) {
1159 in.mipsGot->addTlsIndex(*c.file);
1160 c.relocations.push_back({expr, type, offset, addend, &sym});
1161 return 1;
1162 }
1163 if (expr == R_MIPS_TLSGD) {
1164 in.mipsGot->addDynTlsEntry(*c.file, sym);
1165 c.relocations.push_back({expr, type, offset, addend, &sym});
1166 return 1;
1167 }
1168 return 0;
1169 }
1170
1171 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1172 // require the generation of a pair of GOT entries that have associated dynamic
1173 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1174 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1175 // symbol in TLS block.
1176 //
1177 // Returns the number of relocations processed.
handleTlsRelocation(RelType type,Symbol & sym,InputSectionBase & c,uint64_t offset,int64_t addend,RelExpr expr)1178 static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1179 InputSectionBase &c, uint64_t offset,
1180 int64_t addend, RelExpr expr) {
1181 if (!sym.isTls())
1182 return 0;
1183
1184 if (config->emachine == EM_MIPS)
1185 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1186
1187 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1188 R_TLSDESC_GOTPLT>(expr) &&
1189 config->shared) {
1190 if (expr != R_TLSDESC_CALL) {
1191 sym.needsTlsDesc = true;
1192 c.relocations.push_back({expr, type, offset, addend, &sym});
1193 }
1194 return 1;
1195 }
1196
1197 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For
1198 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1199 // relaxation as well.
1200 bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
1201 config->emachine != EM_HEXAGON &&
1202 config->emachine != EM_RISCV &&
1203 !c.file->ppc64DisableTLSRelax;
1204
1205 // If we are producing an executable and the symbol is non-preemptable, it
1206 // must be defined and the code sequence can be relaxed to use Local-Exec.
1207 //
1208 // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1209 // we can omit the DTPMOD dynamic relocations and resolve them at link time
1210 // because them are always 1. This may be necessary for static linking as
1211 // DTPMOD may not be expected at load time.
1212 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1213
1214 // Local Dynamic is for access to module local TLS variables, while still
1215 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1216 // module index, with a special value of 0 for the current module. GOT[e1] is
1217 // unused. There only needs to be one module index entry.
1218 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
1219 expr)) {
1220 // Local-Dynamic relocs can be relaxed to Local-Exec.
1221 if (toExecRelax) {
1222 c.relocations.push_back(
1223 {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset,
1224 addend, &sym});
1225 return target->getTlsGdRelaxSkip(type);
1226 }
1227 if (expr == R_TLSLD_HINT)
1228 return 1;
1229 config->needsTlsLd = true;
1230 c.relocations.push_back({expr, type, offset, addend, &sym});
1231 return 1;
1232 }
1233
1234 // Local-Dynamic relocs can be relaxed to Local-Exec.
1235 if (expr == R_DTPREL) {
1236 if (toExecRelax)
1237 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1238 c.relocations.push_back({expr, type, offset, addend, &sym});
1239 return 1;
1240 }
1241
1242 // Local-Dynamic sequence where offset of tls variable relative to dynamic
1243 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1244 if (expr == R_TLSLD_GOT_OFF) {
1245 sym.needsGotDtprel = true;
1246 c.relocations.push_back({expr, type, offset, addend, &sym});
1247 return 1;
1248 }
1249
1250 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1251 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
1252 if (!toExecRelax) {
1253 sym.needsTlsGd = true;
1254 c.relocations.push_back({expr, type, offset, addend, &sym});
1255 return 1;
1256 }
1257
1258 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1259 // depending on the symbol being locally defined or not.
1260 if (sym.isPreemptible) {
1261 sym.needsTlsGdToIe = true;
1262 c.relocations.push_back(
1263 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset,
1264 addend, &sym});
1265 } else {
1266 c.relocations.push_back(
1267 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset,
1268 addend, &sym});
1269 }
1270 return target->getTlsGdRelaxSkip(type);
1271 }
1272
1273 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
1274 R_TLSIE_HINT>(expr)) {
1275 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1276 // defined.
1277 if (toExecRelax && isLocalInExecutable) {
1278 c.relocations.push_back(
1279 {R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1280 } else if (expr != R_TLSIE_HINT) {
1281 sym.needsTlsIe = true;
1282 // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1283 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1284 addRelativeReloc(c, offset, sym, addend, expr, type);
1285 else
1286 c.relocations.push_back({expr, type, offset, addend, &sym});
1287 }
1288 return 1;
1289 }
1290
1291 return 0;
1292 }
1293
scanOne(RelTy * & i)1294 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) {
1295 const RelTy &rel = *i;
1296 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1297 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1298 RelType type;
1299
1300 // Deal with MIPS oddity.
1301 if (config->mipsN32Abi) {
1302 type = getMipsN32RelType(i);
1303 } else {
1304 type = rel.getType(config->isMips64EL);
1305 ++i;
1306 }
1307
1308 // Get an offset in an output section this relocation is applied to.
1309 uint64_t offset = getter.get(rel.r_offset);
1310 if (offset == uint64_t(-1))
1311 return;
1312
1313 // Error if the target symbol is undefined. Symbol index 0 may be used by
1314 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1315 if (sym.isUndefined() && symIndex != 0 &&
1316 maybeReportUndefined(cast<Undefined>(sym), sec, offset))
1317 return;
1318
1319 const uint8_t *relocatedAddr = sec.rawData.begin() + offset;
1320 RelExpr expr = target.getRelExpr(type, sym, relocatedAddr);
1321
1322 // Ignore R_*_NONE and other marker relocations.
1323 if (expr == R_NONE)
1324 return;
1325
1326 // Read an addend.
1327 int64_t addend = computeAddend<ELFT>(rel, expr, sym.isLocal());
1328
1329 if (config->emachine == EM_PPC64) {
1330 // We can separate the small code model relocations into 2 categories:
1331 // 1) Those that access the compiler generated .toc sections.
1332 // 2) Those that access the linker allocated got entries.
1333 // lld allocates got entries to symbols on demand. Since we don't try to
1334 // sort the got entries in any way, we don't have to track which objects
1335 // have got-based small code model relocs. The .toc sections get placed
1336 // after the end of the linker allocated .got section and we do sort those
1337 // so sections addressed with small code model relocations come first.
1338 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1339 sec.file->ppc64SmallCodeModelTocRelocs = true;
1340
1341 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1342 // InputSectionBase::relocateAlloc().
1343 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1344 cast<Defined>(sym).section->name == ".toc")
1345 ppc64noTocRelax.insert({&sym, addend});
1346
1347 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1348 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1349 if (i == end) {
1350 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1351 "relocation" +
1352 getLocation(sec, sym, offset));
1353 return;
1354 }
1355
1356 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1357 // so we can discern it later from the toc-case.
1358 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1359 ++offset;
1360 }
1361 }
1362
1363 // If the relocation does not emit a GOT or GOTPLT entry but its computation
1364 // uses their addresses, we need GOT or GOTPLT to be created.
1365 //
1366 // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1367 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1368 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1369 in.gotPlt->hasGotPltOffRel = true;
1370 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1371 R_PPC64_RELAX_TOC>(expr)) {
1372 in.got->hasGotOffRel = true;
1373 }
1374
1375 // Process TLS relocations, including relaxing TLS relocations. Note that
1376 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1377 if (expr == R_TPREL || expr == R_TPREL_NEG) {
1378 if (config->shared) {
1379 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1380 " cannot be used with -shared" +
1381 getLocation(sec, sym, offset));
1382 return;
1383 }
1384 } else if (unsigned processed =
1385 handleTlsRelocation(type, sym, sec, offset, addend, expr)) {
1386 i += (processed - 1);
1387 return;
1388 }
1389
1390 // Relax relocations.
1391 //
1392 // If we know that a PLT entry will be resolved within the same ELF module, we
1393 // can skip PLT access and directly jump to the destination function. For
1394 // example, if we are linking a main executable, all dynamic symbols that can
1395 // be resolved within the executable will actually be resolved that way at
1396 // runtime, because the main executable is always at the beginning of a search
1397 // list. We can leverage that fact.
1398 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1399 if (expr != R_GOT_PC) {
1400 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1401 // stub type. It should be ignored if optimized to R_PC.
1402 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1403 addend &= ~0x8000;
1404 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1405 // call __tls_get_addr even if the symbol is non-preemptible.
1406 if (!(config->emachine == EM_HEXAGON &&
1407 (type == R_HEX_GD_PLT_B22_PCREL ||
1408 type == R_HEX_GD_PLT_B22_PCREL_X ||
1409 type == R_HEX_GD_PLT_B32_PCREL_X)))
1410 expr = fromPlt(expr);
1411 } else if (!isAbsoluteValue(sym)) {
1412 expr = target.adjustGotPcExpr(type, addend, relocatedAddr);
1413 }
1414 }
1415
1416 // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1417 // direct relocation on through.
1418 if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1419 sym.exportDynamic = true;
1420 mainPart->relaDyn->addSymbolReloc(type, sec, offset, sym, addend, type);
1421 return;
1422 }
1423
1424 if (needsGot(expr)) {
1425 if (config->emachine == EM_MIPS) {
1426 // MIPS ABI has special rules to process GOT entries and doesn't
1427 // require relocation entries for them. A special case is TLS
1428 // relocations. In that case dynamic loader applies dynamic
1429 // relocations to initialize TLS GOT entries.
1430 // See "Global Offset Table" in Chapter 5 in the following document
1431 // for detailed description:
1432 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1433 in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1434 } else {
1435 sym.needsGot = true;
1436 }
1437 } else if (needsPlt(expr)) {
1438 sym.needsPlt = true;
1439 } else {
1440 sym.hasDirectReloc = true;
1441 }
1442
1443 processAux(expr, type, offset, sym, addend);
1444 }
1445
1446 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1447 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1448 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1449 // instructions are generated by very old IBM XL compilers. Work around the
1450 // issue by disabling GD/LD to IE/LE relaxation.
1451 template <class RelTy>
checkPPC64TLSRelax(InputSectionBase & sec,ArrayRef<RelTy> rels)1452 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1453 // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1454 if (!sec.file || sec.file->ppc64DisableTLSRelax)
1455 return;
1456 bool hasGDLD = false;
1457 for (const RelTy &rel : rels) {
1458 RelType type = rel.getType(false);
1459 switch (type) {
1460 case R_PPC64_TLSGD:
1461 case R_PPC64_TLSLD:
1462 return; // Found a marker
1463 case R_PPC64_GOT_TLSGD16:
1464 case R_PPC64_GOT_TLSGD16_HA:
1465 case R_PPC64_GOT_TLSGD16_HI:
1466 case R_PPC64_GOT_TLSGD16_LO:
1467 case R_PPC64_GOT_TLSLD16:
1468 case R_PPC64_GOT_TLSLD16_HA:
1469 case R_PPC64_GOT_TLSLD16_HI:
1470 case R_PPC64_GOT_TLSLD16_LO:
1471 hasGDLD = true;
1472 break;
1473 }
1474 }
1475 if (hasGDLD) {
1476 sec.file->ppc64DisableTLSRelax = true;
1477 warn(toString(sec.file) +
1478 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1479 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1480 }
1481 }
1482
1483 template <class ELFT, class RelTy>
scan(ArrayRef<RelTy> rels)1484 void RelocationScanner::scan(ArrayRef<RelTy> rels) {
1485 // Not all relocations end up in Sec.Relocations, but a lot do.
1486 sec.relocations.reserve(rels.size());
1487
1488 if (config->emachine == EM_PPC64)
1489 checkPPC64TLSRelax<RelTy>(sec, rels);
1490
1491 // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1492 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1493 // script), the relocations may be unordered.
1494 SmallVector<RelTy, 0> storage;
1495 if (isa<EhInputSection>(sec))
1496 rels = sortRels(rels, storage);
1497
1498 end = static_cast<const void *>(rels.end());
1499 for (auto i = rels.begin(); i != end;)
1500 scanOne<ELFT>(i);
1501
1502 // Sort relocations by offset for more efficient searching for
1503 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1504 if (config->emachine == EM_RISCV ||
1505 (config->emachine == EM_PPC64 && sec.name == ".toc"))
1506 llvm::stable_sort(sec.relocations,
1507 [](const Relocation &lhs, const Relocation &rhs) {
1508 return lhs.offset < rhs.offset;
1509 });
1510 }
1511
scanRelocations(InputSectionBase & s)1512 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1513 RelocationScanner scanner(s);
1514 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>();
1515 if (rels.areRelocsRel())
1516 scanner.template scan<ELFT>(rels.rels);
1517 else
1518 scanner.template scan<ELFT>(rels.relas);
1519 }
1520
handleNonPreemptibleIfunc(Symbol & sym)1521 static bool handleNonPreemptibleIfunc(Symbol &sym) {
1522 // Handle a reference to a non-preemptible ifunc. These are special in a
1523 // few ways:
1524 //
1525 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1526 // a fixed value. But assuming that all references to the ifunc are
1527 // GOT-generating or PLT-generating, the handling of an ifunc is
1528 // relatively straightforward. We create a PLT entry in Iplt, which is
1529 // usually at the end of .plt, which makes an indirect call using a
1530 // matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1531 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1532 // which is usually at the end of .rela.plt. Unlike most relocations in
1533 // .rela.plt, which may be evaluated lazily without -z now, dynamic
1534 // loaders evaluate IRELATIVE relocs eagerly, which means that for
1535 // IRELATIVE relocs only, GOT-generating relocations can point directly to
1536 // .got.plt without requiring a separate GOT entry.
1537 //
1538 // - Despite the fact that an ifunc does not have a fixed value, compilers
1539 // that are not passed -fPIC will assume that they do, and will emit
1540 // direct (non-GOT-generating, non-PLT-generating) relocations to the
1541 // symbol. This means that if a direct relocation to the symbol is
1542 // seen, the linker must set a value for the symbol, and this value must
1543 // be consistent no matter what type of reference is made to the symbol.
1544 // This can be done by creating a PLT entry for the symbol in the way
1545 // described above and making it canonical, that is, making all references
1546 // point to the PLT entry instead of the resolver. In lld we also store
1547 // the address of the PLT entry in the dynamic symbol table, which means
1548 // that the symbol will also have the same value in other modules.
1549 // Because the value loaded from the GOT needs to be consistent with
1550 // the value computed using a direct relocation, a non-preemptible ifunc
1551 // may end up with two GOT entries, one in .got.plt that points to the
1552 // address returned by the resolver and is used only by the PLT entry,
1553 // and another in .got that points to the PLT entry and is used by
1554 // GOT-generating relocations.
1555 //
1556 // - The fact that these symbols do not have a fixed value makes them an
1557 // exception to the general rule that a statically linked executable does
1558 // not require any form of dynamic relocation. To handle these relocations
1559 // correctly, the IRELATIVE relocations are stored in an array which a
1560 // statically linked executable's startup code must enumerate using the
1561 // linker-defined symbols __rela?_iplt_{start,end}.
1562 if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1563 return false;
1564 // Skip unreferenced non-preemptible ifunc.
1565 if (!(sym.needsGot || sym.needsPlt || sym.hasDirectReloc))
1566 return true;
1567
1568 sym.isInIplt = true;
1569
1570 // Create an Iplt and the associated IRELATIVE relocation pointing to the
1571 // original section/value pairs. For non-GOT non-PLT relocation case below, we
1572 // may alter section/value, so create a copy of the symbol to make
1573 // section/value fixed.
1574 auto *directSym = makeDefined(cast<Defined>(sym));
1575 directSym->allocateAux();
1576 addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel,
1577 *directSym);
1578 sym.allocateAux();
1579 symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1580
1581 if (sym.hasDirectReloc) {
1582 // Change the value to the IPLT and redirect all references to it.
1583 auto &d = cast<Defined>(sym);
1584 d.section = in.iplt.get();
1585 d.value = d.getPltIdx() * target->ipltEntrySize;
1586 d.size = 0;
1587 // It's important to set the symbol type here so that dynamic loaders
1588 // don't try to call the PLT as if it were an ifunc resolver.
1589 d.type = STT_FUNC;
1590
1591 if (sym.needsGot)
1592 addGotEntry(sym);
1593 } else if (sym.needsGot) {
1594 // Redirect GOT accesses to point to the Igot.
1595 sym.gotInIgot = true;
1596 }
1597 return true;
1598 }
1599
postScanRelocations()1600 void elf::postScanRelocations() {
1601 auto fn = [](Symbol &sym) {
1602 if (handleNonPreemptibleIfunc(sym))
1603 return;
1604 if (!sym.needsDynReloc())
1605 return;
1606 sym.allocateAux();
1607
1608 if (sym.needsGot)
1609 addGotEntry(sym);
1610 if (sym.needsPlt)
1611 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1612 if (sym.needsCopy) {
1613 if (sym.isObject()) {
1614 invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym));
1615 // needsCopy is cleared for sym and its aliases so that in later
1616 // iterations aliases won't cause redundant copies.
1617 assert(!sym.needsCopy);
1618 } else {
1619 assert(sym.isFunc() && sym.needsPlt);
1620 if (!sym.isDefined()) {
1621 replaceWithDefined(sym, *in.plt,
1622 target->pltHeaderSize +
1623 target->pltEntrySize * sym.getPltIdx(),
1624 0);
1625 sym.needsCopy = true;
1626 if (config->emachine == EM_PPC) {
1627 // PPC32 canonical PLT entries are at the beginning of .glink
1628 cast<Defined>(sym).value = in.plt->headerSize;
1629 in.plt->headerSize += 16;
1630 cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1631 }
1632 }
1633 }
1634 }
1635
1636 if (!sym.isTls())
1637 return;
1638 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1639
1640 if (sym.needsTlsDesc) {
1641 in.got->addTlsDescEntry(sym);
1642 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1643 target->tlsDescRel, *in.got, in.got->getTlsDescOffset(sym), sym,
1644 target->tlsDescRel);
1645 }
1646 if (sym.needsTlsGd) {
1647 in.got->addDynTlsEntry(sym);
1648 uint64_t off = in.got->getGlobalDynOffset(sym);
1649 if (isLocalInExecutable)
1650 // Write one to the GOT slot.
1651 in.got->relocations.push_back(
1652 {R_ADDEND, target->symbolicRel, off, 1, &sym});
1653 else
1654 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *in.got,
1655 off, sym);
1656
1657 // If the symbol is preemptible we need the dynamic linker to write
1658 // the offset too.
1659 uint64_t offsetOff = off + config->wordsize;
1660 if (sym.isPreemptible)
1661 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *in.got,
1662 offsetOff, sym);
1663 else
1664 in.got->relocations.push_back(
1665 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1666 }
1667 if (sym.needsTlsGdToIe) {
1668 in.got->addEntry(sym);
1669 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *in.got,
1670 sym.getGotOffset(), sym);
1671 }
1672 if (sym.needsGotDtprel) {
1673 in.got->addEntry(sym);
1674 in.got->relocations.push_back(
1675 {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1676 }
1677
1678 if (sym.needsTlsIe && !sym.needsTlsGdToIe)
1679 addTpOffsetGotEntry(sym);
1680 };
1681
1682 if (config->needsTlsLd && in.got->addTlsIndex()) {
1683 static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0);
1684 if (config->shared)
1685 mainPart->relaDyn->addReloc(
1686 {target->tlsModuleIndexRel, in.got.get(), in.got->getTlsIndexOff()});
1687 else
1688 in.got->relocations.push_back(
1689 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &dummy});
1690 }
1691
1692 assert(symAux.empty());
1693 for (Symbol *sym : symtab->symbols())
1694 fn(*sym);
1695
1696 // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1697 // handling. They don't need regular PLT.
1698 for (ELFFileBase *file : ctx->objectFiles)
1699 for (Symbol *sym : file->getLocalSymbols())
1700 fn(*sym);
1701 }
1702
mergeCmp(const InputSection * a,const InputSection * b)1703 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1704 // std::merge requires a strict weak ordering.
1705 if (a->outSecOff < b->outSecOff)
1706 return true;
1707
1708 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1709 if (a->outSecOff == b->outSecOff && a != b) {
1710 auto *ta = dyn_cast<ThunkSection>(a);
1711 auto *tb = dyn_cast<ThunkSection>(b);
1712
1713 // Check if Thunk is immediately before any specific Target
1714 // InputSection for example Mips LA25 Thunks.
1715 if (ta && ta->getTargetInputSection() == b)
1716 return true;
1717
1718 // Place Thunk Sections without specific targets before
1719 // non-Thunk Sections.
1720 if (ta && !tb && !ta->getTargetInputSection())
1721 return true;
1722 }
1723
1724 return false;
1725 }
1726
1727 // Call Fn on every executable InputSection accessed via the linker script
1728 // InputSectionDescription::Sections.
forEachInputSectionDescription(ArrayRef<OutputSection * > outputSections,llvm::function_ref<void (OutputSection *,InputSectionDescription *)> fn)1729 static void forEachInputSectionDescription(
1730 ArrayRef<OutputSection *> outputSections,
1731 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1732 for (OutputSection *os : outputSections) {
1733 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1734 continue;
1735 for (SectionCommand *bc : os->commands)
1736 if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1737 fn(os, isd);
1738 }
1739 }
1740
1741 // Thunk Implementation
1742 //
1743 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1744 // of code that the linker inserts inbetween a caller and a callee. The thunks
1745 // are added at link time rather than compile time as the decision on whether
1746 // a thunk is needed, such as the caller and callee being out of range, can only
1747 // be made at link time.
1748 //
1749 // It is straightforward to tell given the current state of the program when a
1750 // thunk is needed for a particular call. The more difficult part is that
1751 // the thunk needs to be placed in the program such that the caller can reach
1752 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1753 // the program alters addresses, which can mean more thunks etc.
1754 //
1755 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1756 // The decision to have a ThunkSection act as a container means that we can
1757 // more easily handle the most common case of a single block of contiguous
1758 // Thunks by inserting just a single ThunkSection.
1759 //
1760 // The implementation of Thunks in lld is split across these areas
1761 // Relocations.cpp : Framework for creating and placing thunks
1762 // Thunks.cpp : The code generated for each supported thunk
1763 // Target.cpp : Target specific hooks that the framework uses to decide when
1764 // a thunk is used
1765 // Synthetic.cpp : Implementation of ThunkSection
1766 // Writer.cpp : Iteratively call framework until no more Thunks added
1767 //
1768 // Thunk placement requirements:
1769 // Mips LA25 thunks. These must be placed immediately before the callee section
1770 // We can assume that the caller is in range of the Thunk. These are modelled
1771 // by Thunks that return the section they must precede with
1772 // getTargetInputSection().
1773 //
1774 // ARM interworking and range extension thunks. These thunks must be placed
1775 // within range of the caller. All implemented ARM thunks can always reach the
1776 // callee as they use an indirect jump via a register that has no range
1777 // restrictions.
1778 //
1779 // Thunk placement algorithm:
1780 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1781 // getTargetInputSection().
1782 //
1783 // For thunks that must be placed within range of the caller there are many
1784 // possible choices given that the maximum range from the caller is usually
1785 // much larger than the average InputSection size. Desirable properties include:
1786 // - Maximize reuse of thunks by multiple callers
1787 // - Minimize number of ThunkSections to simplify insertion
1788 // - Handle impact of already added Thunks on addresses
1789 // - Simple to understand and implement
1790 //
1791 // In lld for the first pass, we pre-create one or more ThunkSections per
1792 // InputSectionDescription at Target specific intervals. A ThunkSection is
1793 // placed so that the estimated end of the ThunkSection is within range of the
1794 // start of the InputSectionDescription or the previous ThunkSection. For
1795 // example:
1796 // InputSectionDescription
1797 // Section 0
1798 // ...
1799 // Section N
1800 // ThunkSection 0
1801 // Section N + 1
1802 // ...
1803 // Section N + K
1804 // Thunk Section 1
1805 //
1806 // The intention is that we can add a Thunk to a ThunkSection that is well
1807 // spaced enough to service a number of callers without having to do a lot
1808 // of work. An important principle is that it is not an error if a Thunk cannot
1809 // be placed in a pre-created ThunkSection; when this happens we create a new
1810 // ThunkSection placed next to the caller. This allows us to handle the vast
1811 // majority of thunks simply, but also handle rare cases where the branch range
1812 // is smaller than the target specific spacing.
1813 //
1814 // The algorithm is expected to create all the thunks that are needed in a
1815 // single pass, with a small number of programs needing a second pass due to
1816 // the insertion of thunks in the first pass increasing the offset between
1817 // callers and callees that were only just in range.
1818 //
1819 // A consequence of allowing new ThunkSections to be created outside of the
1820 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1821 // range in pass K, are out of range in some pass > K due to the insertion of
1822 // more Thunks in between the caller and callee. When this happens we retarget
1823 // the relocation back to the original target and create another Thunk.
1824
1825 // Remove ThunkSections that are empty, this should only be the initial set
1826 // precreated on pass 0.
1827
1828 // Insert the Thunks for OutputSection OS into their designated place
1829 // in the Sections vector, and recalculate the InputSection output section
1830 // offsets.
1831 // This may invalidate any output section offsets stored outside of InputSection
mergeThunks(ArrayRef<OutputSection * > outputSections)1832 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1833 forEachInputSectionDescription(
1834 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1835 if (isd->thunkSections.empty())
1836 return;
1837
1838 // Remove any zero sized precreated Thunks.
1839 llvm::erase_if(isd->thunkSections,
1840 [](const std::pair<ThunkSection *, uint32_t> &ts) {
1841 return ts.first->getSize() == 0;
1842 });
1843
1844 // ISD->ThunkSections contains all created ThunkSections, including
1845 // those inserted in previous passes. Extract the Thunks created this
1846 // pass and order them in ascending outSecOff.
1847 std::vector<ThunkSection *> newThunks;
1848 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1849 if (ts.second == pass)
1850 newThunks.push_back(ts.first);
1851 llvm::stable_sort(newThunks,
1852 [](const ThunkSection *a, const ThunkSection *b) {
1853 return a->outSecOff < b->outSecOff;
1854 });
1855
1856 // Merge sorted vectors of Thunks and InputSections by outSecOff
1857 SmallVector<InputSection *, 0> tmp;
1858 tmp.reserve(isd->sections.size() + newThunks.size());
1859
1860 std::merge(isd->sections.begin(), isd->sections.end(),
1861 newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1862 mergeCmp);
1863
1864 isd->sections = std::move(tmp);
1865 });
1866 }
1867
getPCBias(RelType type)1868 static int64_t getPCBias(RelType type) {
1869 if (config->emachine != EM_ARM)
1870 return 0;
1871 switch (type) {
1872 case R_ARM_THM_JUMP19:
1873 case R_ARM_THM_JUMP24:
1874 case R_ARM_THM_CALL:
1875 return 4;
1876 default:
1877 return 8;
1878 }
1879 }
1880
1881 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1882 // is in range of Src. An ISD maps to a range of InputSections described by a
1883 // linker script section pattern such as { .text .text.* }.
getISDThunkSec(OutputSection * os,InputSection * isec,InputSectionDescription * isd,const Relocation & rel,uint64_t src)1884 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1885 InputSection *isec,
1886 InputSectionDescription *isd,
1887 const Relocation &rel,
1888 uint64_t src) {
1889 // See the comment in getThunk for -pcBias below.
1890 const int64_t pcBias = getPCBias(rel.type);
1891 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1892 ThunkSection *ts = tp.first;
1893 uint64_t tsBase = os->addr + ts->outSecOff - pcBias;
1894 uint64_t tsLimit = tsBase + ts->getSize();
1895 if (target->inBranchRange(rel.type, src,
1896 (src > tsLimit) ? tsBase : tsLimit))
1897 return ts;
1898 }
1899
1900 // No suitable ThunkSection exists. This can happen when there is a branch
1901 // with lower range than the ThunkSection spacing or when there are too
1902 // many Thunks. Create a new ThunkSection as close to the InputSection as
1903 // possible. Error if InputSection is so large we cannot place ThunkSection
1904 // anywhere in Range.
1905 uint64_t thunkSecOff = isec->outSecOff;
1906 if (!target->inBranchRange(rel.type, src,
1907 os->addr + thunkSecOff + rel.addend)) {
1908 thunkSecOff = isec->outSecOff + isec->getSize();
1909 if (!target->inBranchRange(rel.type, src,
1910 os->addr + thunkSecOff + rel.addend))
1911 fatal("InputSection too large for range extension thunk " +
1912 isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1913 }
1914 return addThunkSection(os, isd, thunkSecOff);
1915 }
1916
1917 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1918 // precedes its Target.
getISThunkSec(InputSection * isec)1919 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1920 ThunkSection *ts = thunkedSections.lookup(isec);
1921 if (ts)
1922 return ts;
1923
1924 // Find InputSectionRange within Target Output Section (TOS) that the
1925 // InputSection (IS) that we need to precede is in.
1926 OutputSection *tos = isec->getParent();
1927 for (SectionCommand *bc : tos->commands) {
1928 auto *isd = dyn_cast<InputSectionDescription>(bc);
1929 if (!isd || isd->sections.empty())
1930 continue;
1931
1932 InputSection *first = isd->sections.front();
1933 InputSection *last = isd->sections.back();
1934
1935 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1936 continue;
1937
1938 ts = addThunkSection(tos, isd, isec->outSecOff);
1939 thunkedSections[isec] = ts;
1940 return ts;
1941 }
1942
1943 return nullptr;
1944 }
1945
1946 // Create one or more ThunkSections per OS that can be used to place Thunks.
1947 // We attempt to place the ThunkSections using the following desirable
1948 // properties:
1949 // - Within range of the maximum number of callers
1950 // - Minimise the number of ThunkSections
1951 //
1952 // We follow a simple but conservative heuristic to place ThunkSections at
1953 // offsets that are multiples of a Target specific branch range.
1954 // For an InputSectionDescription that is smaller than the range, a single
1955 // ThunkSection at the end of the range will do.
1956 //
1957 // For an InputSectionDescription that is more than twice the size of the range,
1958 // we place the last ThunkSection at range bytes from the end of the
1959 // InputSectionDescription in order to increase the likelihood that the
1960 // distance from a thunk to its target will be sufficiently small to
1961 // allow for the creation of a short thunk.
createInitialThunkSections(ArrayRef<OutputSection * > outputSections)1962 void ThunkCreator::createInitialThunkSections(
1963 ArrayRef<OutputSection *> outputSections) {
1964 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1965
1966 forEachInputSectionDescription(
1967 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1968 if (isd->sections.empty())
1969 return;
1970
1971 uint32_t isdBegin = isd->sections.front()->outSecOff;
1972 uint32_t isdEnd =
1973 isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1974 uint32_t lastThunkLowerBound = -1;
1975 if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1976 lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1977
1978 uint32_t isecLimit;
1979 uint32_t prevIsecLimit = isdBegin;
1980 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1981
1982 for (const InputSection *isec : isd->sections) {
1983 isecLimit = isec->outSecOff + isec->getSize();
1984 if (isecLimit > thunkUpperBound) {
1985 addThunkSection(os, isd, prevIsecLimit);
1986 thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1987 }
1988 if (isecLimit > lastThunkLowerBound)
1989 break;
1990 prevIsecLimit = isecLimit;
1991 }
1992 addThunkSection(os, isd, isecLimit);
1993 });
1994 }
1995
addThunkSection(OutputSection * os,InputSectionDescription * isd,uint64_t off)1996 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1997 InputSectionDescription *isd,
1998 uint64_t off) {
1999 auto *ts = make<ThunkSection>(os, off);
2000 ts->partition = os->partition;
2001 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
2002 !isd->sections.empty()) {
2003 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2004 // thunks we disturb the base addresses of sections placed after the thunks
2005 // this makes patches we have generated redundant, and may cause us to
2006 // generate more patches as different instructions are now in sensitive
2007 // locations. When we generate more patches we may force more branches to
2008 // go out of range, causing more thunks to be generated. In pathological
2009 // cases this can cause the address dependent content pass not to converge.
2010 // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2011 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2012 // which means that adding Thunks to the section does not invalidate
2013 // errata patches for following code.
2014 // Rounding up the size to 4KiB has consequences for code-size and can
2015 // trip up linker script defined assertions. For example the linux kernel
2016 // has an assertion that what LLD represents as an InputSectionDescription
2017 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2018 // We use the heuristic of rounding up the size when both of the following
2019 // conditions are true:
2020 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2021 // accounts for the case where no single InputSectionDescription is
2022 // larger than the OutputSection size. This is conservative but simple.
2023 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2024 // any assertion failures that an InputSectionDescription is < 4 KiB
2025 // in size.
2026 uint64_t isdSize = isd->sections.back()->outSecOff +
2027 isd->sections.back()->getSize() -
2028 isd->sections.front()->outSecOff;
2029 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2030 ts->roundUpSizeForErrata = true;
2031 }
2032 isd->thunkSections.push_back({ts, pass});
2033 return ts;
2034 }
2035
isThunkSectionCompatible(InputSection * source,SectionBase * target)2036 static bool isThunkSectionCompatible(InputSection *source,
2037 SectionBase *target) {
2038 // We can't reuse thunks in different loadable partitions because they might
2039 // not be loaded. But partition 1 (the main partition) will always be loaded.
2040 if (source->partition != target->partition)
2041 return target->partition == 1;
2042 return true;
2043 }
2044
getThunk(InputSection * isec,Relocation & rel,uint64_t src)2045 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2046 Relocation &rel, uint64_t src) {
2047 std::vector<Thunk *> *thunkVec = nullptr;
2048 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2049 // out in the relocation addend. We compensate for the PC bias so that
2050 // an Arm and Thumb relocation to the same destination get the same keyAddend,
2051 // which is usually 0.
2052 const int64_t pcBias = getPCBias(rel.type);
2053 const int64_t keyAddend = rel.addend + pcBias;
2054
2055 // We use a ((section, offset), addend) pair to find the thunk position if
2056 // possible so that we create only one thunk for aliased symbols or ICFed
2057 // sections. There may be multiple relocations sharing the same (section,
2058 // offset + addend) pair. We may revert the relocation back to its original
2059 // non-Thunk target, so we cannot fold offset + addend.
2060 if (auto *d = dyn_cast<Defined>(rel.sym))
2061 if (!d->isInPlt() && d->section)
2062 thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2063 keyAddend}];
2064 if (!thunkVec)
2065 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2066
2067 // Check existing Thunks for Sym to see if they can be reused
2068 for (Thunk *t : *thunkVec)
2069 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2070 t->isCompatibleWith(*isec, rel) &&
2071 target->inBranchRange(rel.type, src,
2072 t->getThunkTargetSym()->getVA(-pcBias)))
2073 return std::make_pair(t, false);
2074
2075 // No existing compatible Thunk in range, create a new one
2076 Thunk *t = addThunk(*isec, rel);
2077 thunkVec->push_back(t);
2078 return std::make_pair(t, true);
2079 }
2080
2081 // Return true if the relocation target is an in range Thunk.
2082 // Return false if the relocation is not to a Thunk. If the relocation target
2083 // was originally to a Thunk, but is no longer in range we revert the
2084 // relocation back to its original non-Thunk target.
normalizeExistingThunk(Relocation & rel,uint64_t src)2085 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2086 if (Thunk *t = thunks.lookup(rel.sym)) {
2087 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2088 return true;
2089 rel.sym = &t->destination;
2090 rel.addend = t->addend;
2091 if (rel.sym->isInPlt())
2092 rel.expr = toPlt(rel.expr);
2093 }
2094 return false;
2095 }
2096
2097 // Process all relocations from the InputSections that have been assigned
2098 // to InputSectionDescriptions and redirect through Thunks if needed. The
2099 // function should be called iteratively until it returns false.
2100 //
2101 // PreConditions:
2102 // All InputSections that may need a Thunk are reachable from
2103 // OutputSectionCommands.
2104 //
2105 // All OutputSections have an address and all InputSections have an offset
2106 // within the OutputSection.
2107 //
2108 // The offsets between caller (relocation place) and callee
2109 // (relocation target) will not be modified outside of createThunks().
2110 //
2111 // PostConditions:
2112 // If return value is true then ThunkSections have been inserted into
2113 // OutputSections. All relocations that needed a Thunk based on the information
2114 // available to createThunks() on entry have been redirected to a Thunk. Note
2115 // that adding Thunks changes offsets between caller and callee so more Thunks
2116 // may be required.
2117 //
2118 // If return value is false then no more Thunks are needed, and createThunks has
2119 // made no changes. If the target requires range extension thunks, currently
2120 // ARM, then any future change in offset between caller and callee risks a
2121 // relocation out of range error.
createThunks(uint32_t pass,ArrayRef<OutputSection * > outputSections)2122 bool ThunkCreator::createThunks(uint32_t pass,
2123 ArrayRef<OutputSection *> outputSections) {
2124 this->pass = pass;
2125 bool addressesChanged = false;
2126
2127 if (pass == 0 && target->getThunkSectionSpacing())
2128 createInitialThunkSections(outputSections);
2129
2130 // Create all the Thunks and insert them into synthetic ThunkSections. The
2131 // ThunkSections are later inserted back into InputSectionDescriptions.
2132 // We separate the creation of ThunkSections from the insertion of the
2133 // ThunkSections as ThunkSections are not always inserted into the same
2134 // InputSectionDescription as the caller.
2135 forEachInputSectionDescription(
2136 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2137 for (InputSection *isec : isd->sections)
2138 for (Relocation &rel : isec->relocations) {
2139 uint64_t src = isec->getVA(rel.offset);
2140
2141 // If we are a relocation to an existing Thunk, check if it is
2142 // still in range. If not then Rel will be altered to point to its
2143 // original target so another Thunk can be generated.
2144 if (pass > 0 && normalizeExistingThunk(rel, src))
2145 continue;
2146
2147 if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2148 *rel.sym, rel.addend))
2149 continue;
2150
2151 Thunk *t;
2152 bool isNew;
2153 std::tie(t, isNew) = getThunk(isec, rel, src);
2154
2155 if (isNew) {
2156 // Find or create a ThunkSection for the new Thunk
2157 ThunkSection *ts;
2158 if (auto *tis = t->getTargetInputSection())
2159 ts = getISThunkSec(tis);
2160 else
2161 ts = getISDThunkSec(os, isec, isd, rel, src);
2162 ts->addThunk(t);
2163 thunks[t->getThunkTargetSym()] = t;
2164 }
2165
2166 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2167 rel.sym = t->getThunkTargetSym();
2168 rel.expr = fromPlt(rel.expr);
2169
2170 // On AArch64 and PPC, a jump/call relocation may be encoded as
2171 // STT_SECTION + non-zero addend, clear the addend after
2172 // redirection.
2173 if (config->emachine != EM_MIPS)
2174 rel.addend = -getPCBias(rel.type);
2175 }
2176
2177 for (auto &p : isd->thunkSections)
2178 addressesChanged |= p.first->assignOffsets();
2179 });
2180
2181 for (auto &p : thunkedSections)
2182 addressesChanged |= p.second->assignOffsets();
2183
2184 // Merge all created synthetic ThunkSections back into OutputSection
2185 mergeThunks(outputSections);
2186 return addressesChanged;
2187 }
2188
2189 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2190 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2191 // __tls_get_addr.
2192 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
hexagonNeedsTLSSymbol(ArrayRef<OutputSection * > outputSections)2193 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2194 bool needTlsSymbol = false;
2195 forEachInputSectionDescription(
2196 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2197 for (InputSection *isec : isd->sections)
2198 for (Relocation &rel : isec->relocations)
2199 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2200 needTlsSymbol = true;
2201 return;
2202 }
2203 });
2204 return needTlsSymbol;
2205 }
2206
hexagonTLSSymbolUpdate(ArrayRef<OutputSection * > outputSections)2207 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2208 Symbol *sym = symtab->find("__tls_get_addr");
2209 if (!sym)
2210 return;
2211 bool needEntry = true;
2212 forEachInputSectionDescription(
2213 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2214 for (InputSection *isec : isd->sections)
2215 for (Relocation &rel : isec->relocations)
2216 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2217 if (needEntry) {
2218 sym->allocateAux();
2219 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2220 *sym);
2221 needEntry = false;
2222 }
2223 rel.sym = sym;
2224 }
2225 });
2226 }
2227
2228 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2229 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2230 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2231 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2232