1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (BaseCommand *base : script->sectionCommands) 70 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 71 if (cmd->sym == &sym) 72 return cmd->location; 73 return None; 74 } 75 76 static std::string getDefinedLocation(const Symbol &sym) { 77 std::string msg = "\n>>> defined in "; 78 if (sym.file) 79 msg += toString(sym.file); 80 else if (Optional<std::string> loc = getLinkerScriptLocation(sym)) 81 msg += *loc; 82 return msg; 83 } 84 85 // Construct a message in the following format. 86 // 87 // >>> defined in /home/alice/src/foo.o 88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 89 // >>> /home/alice/src/bar.o:(.text+0x1) 90 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 91 uint64_t off) { 92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 93 std::string src = s.getSrcMsg(sym, off); 94 if (!src.empty()) 95 msg += src + "\n>>> "; 96 return msg + s.getObjMsg(off); 97 } 98 99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 100 int64_t min, uint64_t max) { 101 ErrorPlace errPlace = getErrorPlace(loc); 102 std::string hint; 103 if (rel.sym && !rel.sym->isLocal()) 104 hint = "; references " + lld::toString(*rel.sym) + 105 getDefinedLocation(*rel.sym); 106 107 if (errPlace.isec && errPlace.isec->name.startswith(".debug")) 108 hint += "; consider recompiling with -fdebug-types-section to reduce size " 109 "of debug sections"; 110 111 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 112 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 113 ", " + Twine(max).str() + "]" + hint); 114 } 115 116 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 117 const Twine &msg) { 118 ErrorPlace errPlace = getErrorPlace(loc); 119 std::string hint; 120 if (!sym.getName().empty()) 121 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym); 122 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 123 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 124 Twine(llvm::maxIntN(n)) + "]" + hint); 125 } 126 127 namespace { 128 // Build a bitmask with one bit set for each RelExpr. 129 // 130 // Constexpr function arguments can't be used in static asserts, so we 131 // use template arguments to build the mask. 132 // But function template partial specializations don't exist (needed 133 // for base case of the recursion), so we need a dummy struct. 134 template <RelExpr... Exprs> struct RelExprMaskBuilder { 135 static inline uint64_t build() { return 0; } 136 }; 137 138 // Specialization for recursive case. 139 template <RelExpr Head, RelExpr... Tail> 140 struct RelExprMaskBuilder<Head, Tail...> { 141 static inline uint64_t build() { 142 static_assert(0 <= Head && Head < 64, 143 "RelExpr is too large for 64-bit mask!"); 144 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 145 } 146 }; 147 } // namespace 148 149 // Return true if `Expr` is one of `Exprs`. 150 // There are fewer than 64 RelExpr's, so we can represent any set of 151 // RelExpr's as a constant bit mask and test for membership with a 152 // couple cheap bitwise operations. 153 template <RelExpr... Exprs> bool oneof(RelExpr expr) { 154 assert(0 <= expr && (int)expr < 64 && 155 "RelExpr is too large for 64-bit mask!"); 156 return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build(); 157 } 158 159 // This function is similar to the `handleTlsRelocation`. MIPS does not 160 // support any relaxations for TLS relocations so by factoring out MIPS 161 // handling in to the separate function we can simplify the code and do not 162 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 163 // Mips has a custom MipsGotSection that handles the writing of GOT entries 164 // without dynamic relocations. 165 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 166 InputSectionBase &c, uint64_t offset, 167 int64_t addend, RelExpr expr) { 168 if (expr == R_MIPS_TLSLD) { 169 in.mipsGot->addTlsIndex(*c.file); 170 c.relocations.push_back({expr, type, offset, addend, &sym}); 171 return 1; 172 } 173 if (expr == R_MIPS_TLSGD) { 174 in.mipsGot->addDynTlsEntry(*c.file, sym); 175 c.relocations.push_back({expr, type, offset, addend, &sym}); 176 return 1; 177 } 178 return 0; 179 } 180 181 // Notes about General Dynamic and Local Dynamic TLS models below. They may 182 // require the generation of a pair of GOT entries that have associated dynamic 183 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 184 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 185 // symbol in TLS block. 186 // 187 // Returns the number of relocations processed. 188 template <class ELFT> 189 static unsigned 190 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, 191 typename ELFT::uint offset, int64_t addend, RelExpr expr) { 192 if (!sym.isTls()) 193 return 0; 194 195 if (config->emachine == EM_MIPS) 196 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 197 198 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>( 199 expr) && 200 config->shared) { 201 if (in.got->addDynTlsEntry(sym)) { 202 uint64_t off = in.got->getGlobalDynOffset(sym); 203 mainPart->relaDyn->addReloc( 204 {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0}); 205 } 206 if (expr != R_TLSDESC_CALL) 207 c.relocations.push_back({expr, type, offset, addend, &sym}); 208 return 1; 209 } 210 211 bool toExecRelax = !config->shared && config->emachine != EM_ARM && 212 config->emachine != EM_HEXAGON && 213 config->emachine != EM_RISCV; 214 215 // If we are producing an executable and the symbol is non-preemptable, it 216 // must be defined and the code sequence can be relaxed to use Local-Exec. 217 // 218 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 219 // we can omit the DTPMOD dynamic relocations and resolve them at link time 220 // because them are always 1. This may be necessary for static linking as 221 // DTPMOD may not be expected at load time. 222 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 223 224 // Local Dynamic is for access to module local TLS variables, while still 225 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 226 // module index, with a special value of 0 for the current module. GOT[e1] is 227 // unused. There only needs to be one module index entry. 228 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 229 expr)) { 230 // Local-Dynamic relocs can be relaxed to Local-Exec. 231 if (toExecRelax) { 232 c.relocations.push_back( 233 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, 234 offset, addend, &sym}); 235 return target->getTlsGdRelaxSkip(type); 236 } 237 if (expr == R_TLSLD_HINT) 238 return 1; 239 if (in.got->addTlsIndex()) { 240 if (isLocalInExecutable) 241 in.got->relocations.push_back( 242 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); 243 else 244 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, 245 in.got->getTlsIndexOff(), nullptr); 246 } 247 c.relocations.push_back({expr, type, offset, addend, &sym}); 248 return 1; 249 } 250 251 // Local-Dynamic relocs can be relaxed to Local-Exec. 252 if (expr == R_DTPREL && toExecRelax) { 253 c.relocations.push_back( 254 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, 255 offset, addend, &sym}); 256 return 1; 257 } 258 259 // Local-Dynamic sequence where offset of tls variable relative to dynamic 260 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 261 if (expr == R_TLSLD_GOT_OFF) { 262 if (!sym.isInGot()) { 263 in.got->addEntry(sym); 264 uint64_t off = sym.getGotOffset(); 265 in.got->relocations.push_back( 266 {R_ABS, target->tlsOffsetRel, off, 0, &sym}); 267 } 268 c.relocations.push_back({expr, type, offset, addend, &sym}); 269 return 1; 270 } 271 272 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 273 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 274 if (!toExecRelax) { 275 if (in.got->addDynTlsEntry(sym)) { 276 uint64_t off = in.got->getGlobalDynOffset(sym); 277 278 if (isLocalInExecutable) 279 // Write one to the GOT slot. 280 in.got->relocations.push_back( 281 {R_ADDEND, target->symbolicRel, off, 1, &sym}); 282 else 283 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym); 284 285 // If the symbol is preemptible we need the dynamic linker to write 286 // the offset too. 287 uint64_t offsetOff = off + config->wordsize; 288 if (sym.isPreemptible) 289 mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff, 290 &sym); 291 else 292 in.got->relocations.push_back( 293 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 294 } 295 c.relocations.push_back({expr, type, offset, addend, &sym}); 296 return 1; 297 } 298 299 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 300 // depending on the symbol being locally defined or not. 301 if (sym.isPreemptible) { 302 c.relocations.push_back( 303 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type, 304 offset, addend, &sym}); 305 if (!sym.isInGot()) { 306 in.got->addEntry(sym); 307 mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(), 308 &sym); 309 } 310 } else { 311 c.relocations.push_back( 312 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type, 313 offset, addend, &sym}); 314 } 315 return target->getTlsGdRelaxSkip(type); 316 } 317 318 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 319 // defined. 320 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 321 R_TLSIE_HINT>(expr) && 322 toExecRelax && isLocalInExecutable) { 323 c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 324 return 1; 325 } 326 327 if (expr == R_TLSIE_HINT) 328 return 1; 329 return 0; 330 } 331 332 static RelType getMipsPairType(RelType type, bool isLocal) { 333 switch (type) { 334 case R_MIPS_HI16: 335 return R_MIPS_LO16; 336 case R_MIPS_GOT16: 337 // In case of global symbol, the R_MIPS_GOT16 relocation does not 338 // have a pair. Each global symbol has a unique entry in the GOT 339 // and a corresponding instruction with help of the R_MIPS_GOT16 340 // relocation loads an address of the symbol. In case of local 341 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 342 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 343 // relocations handle low 16 bits of the address. That allows 344 // to allocate only one GOT entry for every 64 KBytes of local data. 345 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 346 case R_MICROMIPS_GOT16: 347 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 348 case R_MIPS_PCHI16: 349 return R_MIPS_PCLO16; 350 case R_MICROMIPS_HI16: 351 return R_MICROMIPS_LO16; 352 default: 353 return R_MIPS_NONE; 354 } 355 } 356 357 // True if non-preemptable symbol always has the same value regardless of where 358 // the DSO is loaded. 359 static bool isAbsolute(const Symbol &sym) { 360 if (sym.isUndefWeak()) 361 return true; 362 if (const auto *dr = dyn_cast<Defined>(&sym)) 363 return dr->section == nullptr; // Absolute symbol. 364 return false; 365 } 366 367 static bool isAbsoluteValue(const Symbol &sym) { 368 return isAbsolute(sym) || sym.isTls(); 369 } 370 371 // Returns true if Expr refers a PLT entry. 372 static bool needsPlt(RelExpr expr) { 373 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr); 374 } 375 376 // Returns true if Expr refers a GOT entry. Note that this function 377 // returns false for TLS variables even though they need GOT, because 378 // TLS variables uses GOT differently than the regular variables. 379 static bool needsGot(RelExpr expr) { 380 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 381 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>( 382 expr); 383 } 384 385 // True if this expression is of the form Sym - X, where X is a position in the 386 // file (PC, or GOT for example). 387 static bool isRelExpr(RelExpr expr) { 388 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 389 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 390 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr); 391 } 392 393 // Returns true if a given relocation can be computed at link-time. 394 // 395 // For instance, we know the offset from a relocation to its target at 396 // link-time if the relocation is PC-relative and refers a 397 // non-interposable function in the same executable. This function 398 // will return true for such relocation. 399 // 400 // If this function returns false, that means we need to emit a 401 // dynamic relocation so that the relocation will be fixed at load-time. 402 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 403 InputSectionBase &s, uint64_t relOff) { 404 // These expressions always compute a constant 405 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF, 406 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 407 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 408 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 409 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL, 410 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL, 411 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT>( 412 e)) 413 return true; 414 415 // These never do, except if the entire file is position dependent or if 416 // only the low bits are used. 417 if (e == R_GOT || e == R_PLT || e == R_TLSDESC) 418 return target->usesOnlyLowPageBits(type) || !config->isPic; 419 420 if (sym.isPreemptible) 421 return false; 422 if (!config->isPic) 423 return true; 424 425 // The size of a non preemptible symbol is a constant. 426 if (e == R_SIZE) 427 return true; 428 429 // For the target and the relocation, we want to know if they are 430 // absolute or relative. 431 bool absVal = isAbsoluteValue(sym); 432 bool relE = isRelExpr(e); 433 if (absVal && !relE) 434 return true; 435 if (!absVal && relE) 436 return true; 437 if (!absVal && !relE) 438 return target->usesOnlyLowPageBits(type); 439 440 assert(absVal && relE); 441 442 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 443 // in PIC mode. This is a little strange, but it allows us to link function 444 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 445 // Normally such a call will be guarded with a comparison, which will load a 446 // zero from the GOT. 447 if (sym.isUndefWeak()) 448 return true; 449 450 // We set the final symbols values for linker script defined symbols later. 451 // They always can be computed as a link time constant. 452 if (sym.scriptDefined) 453 return true; 454 455 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 456 toString(sym) + getLocation(s, sym, relOff)); 457 return true; 458 } 459 460 static RelExpr toPlt(RelExpr expr) { 461 switch (expr) { 462 case R_PPC64_CALL: 463 return R_PPC64_CALL_PLT; 464 case R_PC: 465 return R_PLT_PC; 466 case R_ABS: 467 return R_PLT; 468 default: 469 return expr; 470 } 471 } 472 473 static RelExpr fromPlt(RelExpr expr) { 474 // We decided not to use a plt. Optimize a reference to the plt to a 475 // reference to the symbol itself. 476 switch (expr) { 477 case R_PLT_PC: 478 case R_PPC32_PLTREL: 479 return R_PC; 480 case R_PPC64_CALL_PLT: 481 return R_PPC64_CALL; 482 case R_PLT: 483 return R_ABS; 484 default: 485 return expr; 486 } 487 } 488 489 // Returns true if a given shared symbol is in a read-only segment in a DSO. 490 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 491 using Elf_Phdr = typename ELFT::Phdr; 492 493 // Determine if the symbol is read-only by scanning the DSO's program headers. 494 const SharedFile &file = ss.getFile(); 495 for (const Elf_Phdr &phdr : 496 check(file.template getObj<ELFT>().program_headers())) 497 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 498 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 499 ss.value < phdr.p_vaddr + phdr.p_memsz) 500 return true; 501 return false; 502 } 503 504 // Returns symbols at the same offset as a given symbol, including SS itself. 505 // 506 // If two or more symbols are at the same offset, and at least one of 507 // them are copied by a copy relocation, all of them need to be copied. 508 // Otherwise, they would refer to different places at runtime. 509 template <class ELFT> 510 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 511 using Elf_Sym = typename ELFT::Sym; 512 513 SharedFile &file = ss.getFile(); 514 515 SmallSet<SharedSymbol *, 4> ret; 516 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 517 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 518 s.getType() == STT_TLS || s.st_value != ss.value) 519 continue; 520 StringRef name = check(s.getName(file.getStringTable())); 521 Symbol *sym = symtab->find(name); 522 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 523 ret.insert(alias); 524 } 525 return ret; 526 } 527 528 // When a symbol is copy relocated or we create a canonical plt entry, it is 529 // effectively a defined symbol. In the case of copy relocation the symbol is 530 // in .bss and in the case of a canonical plt entry it is in .plt. This function 531 // replaces the existing symbol with a Defined pointing to the appropriate 532 // location. 533 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, 534 uint64_t size) { 535 Symbol old = sym; 536 537 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, 538 sym.type, value, size, sec}); 539 540 sym.pltIndex = old.pltIndex; 541 sym.gotIndex = old.gotIndex; 542 sym.verdefIndex = old.verdefIndex; 543 sym.exportDynamic = true; 544 sym.isUsedInRegularObj = true; 545 } 546 547 // Reserve space in .bss or .bss.rel.ro for copy relocation. 548 // 549 // The copy relocation is pretty much a hack. If you use a copy relocation 550 // in your program, not only the symbol name but the symbol's size, RW/RO 551 // bit and alignment become part of the ABI. In addition to that, if the 552 // symbol has aliases, the aliases become part of the ABI. That's subtle, 553 // but if you violate that implicit ABI, that can cause very counter- 554 // intuitive consequences. 555 // 556 // So, what is the copy relocation? It's for linking non-position 557 // independent code to DSOs. In an ideal world, all references to data 558 // exported by DSOs should go indirectly through GOT. But if object files 559 // are compiled as non-PIC, all data references are direct. There is no 560 // way for the linker to transform the code to use GOT, as machine 561 // instructions are already set in stone in object files. This is where 562 // the copy relocation takes a role. 563 // 564 // A copy relocation instructs the dynamic linker to copy data from a DSO 565 // to a specified address (which is usually in .bss) at load-time. If the 566 // static linker (that's us) finds a direct data reference to a DSO 567 // symbol, it creates a copy relocation, so that the symbol can be 568 // resolved as if it were in .bss rather than in a DSO. 569 // 570 // As you can see in this function, we create a copy relocation for the 571 // dynamic linker, and the relocation contains not only symbol name but 572 // various other information about the symbol. So, such attributes become a 573 // part of the ABI. 574 // 575 // Note for application developers: I can give you a piece of advice if 576 // you are writing a shared library. You probably should export only 577 // functions from your library. You shouldn't export variables. 578 // 579 // As an example what can happen when you export variables without knowing 580 // the semantics of copy relocations, assume that you have an exported 581 // variable of type T. It is an ABI-breaking change to add new members at 582 // end of T even though doing that doesn't change the layout of the 583 // existing members. That's because the space for the new members are not 584 // reserved in .bss unless you recompile the main program. That means they 585 // are likely to overlap with other data that happens to be laid out next 586 // to the variable in .bss. This kind of issue is sometimes very hard to 587 // debug. What's a solution? Instead of exporting a variable V from a DSO, 588 // define an accessor getV(). 589 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 590 // Copy relocation against zero-sized symbol doesn't make sense. 591 uint64_t symSize = ss.getSize(); 592 if (symSize == 0 || ss.alignment == 0) 593 fatal("cannot create a copy relocation for symbol " + toString(ss)); 594 595 // See if this symbol is in a read-only segment. If so, preserve the symbol's 596 // memory protection by reserving space in the .bss.rel.ro section. 597 bool isRO = isReadOnly<ELFT>(ss); 598 BssSection *sec = 599 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 600 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 601 602 // At this point, sectionBases has been migrated to sections. Append sec to 603 // sections. 604 if (osec->sectionCommands.empty() || 605 !isa<InputSectionDescription>(osec->sectionCommands.back())) 606 osec->sectionCommands.push_back(make<InputSectionDescription>("")); 607 auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back()); 608 isd->sections.push_back(sec); 609 osec->commitSection(sec); 610 611 // Look through the DSO's dynamic symbol table for aliases and create a 612 // dynamic symbol for each one. This causes the copy relocation to correctly 613 // interpose any aliases. 614 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 615 replaceWithDefined(*sym, sec, 0, sym->size); 616 617 mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss); 618 } 619 620 // MIPS has an odd notion of "paired" relocations to calculate addends. 621 // For example, if a relocation is of R_MIPS_HI16, there must be a 622 // R_MIPS_LO16 relocation after that, and an addend is calculated using 623 // the two relocations. 624 template <class ELFT, class RelTy> 625 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, 626 InputSectionBase &sec, RelExpr expr, 627 bool isLocal) { 628 if (expr == R_MIPS_GOTREL && isLocal) 629 return sec.getFile<ELFT>()->mipsGp0; 630 631 // The ABI says that the paired relocation is used only for REL. 632 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 633 if (RelTy::IsRela) 634 return 0; 635 636 RelType type = rel.getType(config->isMips64EL); 637 uint32_t pairTy = getMipsPairType(type, isLocal); 638 if (pairTy == R_MIPS_NONE) 639 return 0; 640 641 const uint8_t *buf = sec.data().data(); 642 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 643 644 // To make things worse, paired relocations might not be contiguous in 645 // the relocation table, so we need to do linear search. *sigh* 646 for (const RelTy *ri = &rel; ri != end; ++ri) 647 if (ri->getType(config->isMips64EL) == pairTy && 648 ri->getSymbol(config->isMips64EL) == symIndex) 649 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 650 651 warn("can't find matching " + toString(pairTy) + " relocation for " + 652 toString(type)); 653 return 0; 654 } 655 656 // Returns an addend of a given relocation. If it is RELA, an addend 657 // is in a relocation itself. If it is REL, we need to read it from an 658 // input section. 659 template <class ELFT, class RelTy> 660 static int64_t computeAddend(const RelTy &rel, const RelTy *end, 661 InputSectionBase &sec, RelExpr expr, 662 bool isLocal) { 663 int64_t addend; 664 RelType type = rel.getType(config->isMips64EL); 665 666 if (RelTy::IsRela) { 667 addend = getAddend<ELFT>(rel); 668 } else { 669 const uint8_t *buf = sec.data().data(); 670 addend = target->getImplicitAddend(buf + rel.r_offset, type); 671 } 672 673 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 674 addend += getPPC64TocBase(); 675 if (config->emachine == EM_MIPS) 676 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); 677 678 return addend; 679 } 680 681 // Custom error message if Sym is defined in a discarded section. 682 template <class ELFT> 683 static std::string maybeReportDiscarded(Undefined &sym) { 684 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 685 if (!file || !sym.discardedSecIdx || 686 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 687 return ""; 688 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = 689 CHECK(file->getObj().sections(), file); 690 691 std::string msg; 692 if (sym.type == ELF::STT_SECTION) { 693 msg = "relocation refers to a discarded section: "; 694 msg += CHECK( 695 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 696 } else { 697 msg = "relocation refers to a symbol in a discarded section: " + 698 toString(sym); 699 } 700 msg += "\n>>> defined in " + toString(file); 701 702 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 703 if (elfSec.sh_type != SHT_GROUP) 704 return msg; 705 706 // If the discarded section is a COMDAT. 707 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 708 if (const InputFile *prevailing = 709 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) 710 msg += "\n>>> section group signature: " + signature.str() + 711 "\n>>> prevailing definition is in " + toString(prevailing); 712 return msg; 713 } 714 715 // Undefined diagnostics are collected in a vector and emitted once all of 716 // them are known, so that some postprocessing on the list of undefined symbols 717 // can happen before lld emits diagnostics. 718 struct UndefinedDiag { 719 Symbol *sym; 720 struct Loc { 721 InputSectionBase *sec; 722 uint64_t offset; 723 }; 724 std::vector<Loc> locs; 725 bool isWarning; 726 }; 727 728 static std::vector<UndefinedDiag> undefs; 729 730 // Check whether the definition name def is a mangled function name that matches 731 // the reference name ref. 732 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 733 llvm::ItaniumPartialDemangler d; 734 std::string name = def.str(); 735 if (d.partialDemangle(name.c_str())) 736 return false; 737 char *buf = d.getFunctionName(nullptr, nullptr); 738 if (!buf) 739 return false; 740 bool ret = ref == buf; 741 free(buf); 742 return ret; 743 } 744 745 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 746 // the suggested symbol, which is either in the symbol table, or in the same 747 // file of sym. 748 template <class ELFT> 749 static const Symbol *getAlternativeSpelling(const Undefined &sym, 750 std::string &pre_hint, 751 std::string &post_hint) { 752 DenseMap<StringRef, const Symbol *> map; 753 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) { 754 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 755 // will give an error. Don't suggest an alternative spelling. 756 if (file && sym.discardedSecIdx != 0 && 757 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 758 return nullptr; 759 760 // Build a map of local defined symbols. 761 for (const Symbol *s : sym.file->getSymbols()) 762 if (s->isLocal() && s->isDefined()) 763 map.try_emplace(s->getName(), s); 764 } 765 766 auto suggest = [&](StringRef newName) -> const Symbol * { 767 // If defined locally. 768 if (const Symbol *s = map.lookup(newName)) 769 return s; 770 771 // If in the symbol table and not undefined. 772 if (const Symbol *s = symtab->find(newName)) 773 if (!s->isUndefined()) 774 return s; 775 776 return nullptr; 777 }; 778 779 // This loop enumerates all strings of Levenshtein distance 1 as typo 780 // correction candidates and suggests the one that exists as a non-undefined 781 // symbol. 782 StringRef name = sym.getName(); 783 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 784 // Insert a character before name[i]. 785 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 786 for (char c = '0'; c <= 'z'; ++c) { 787 newName[i] = c; 788 if (const Symbol *s = suggest(newName)) 789 return s; 790 } 791 if (i == e) 792 break; 793 794 // Substitute name[i]. 795 newName = std::string(name); 796 for (char c = '0'; c <= 'z'; ++c) { 797 newName[i] = c; 798 if (const Symbol *s = suggest(newName)) 799 return s; 800 } 801 802 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 803 // common. 804 if (i + 1 < e) { 805 newName[i] = name[i + 1]; 806 newName[i + 1] = name[i]; 807 if (const Symbol *s = suggest(newName)) 808 return s; 809 } 810 811 // Delete name[i]. 812 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 813 if (const Symbol *s = suggest(newName)) 814 return s; 815 } 816 817 // Case mismatch, e.g. Foo vs FOO. 818 for (auto &it : map) 819 if (name.equals_lower(it.first)) 820 return it.second; 821 for (Symbol *sym : symtab->symbols()) 822 if (!sym->isUndefined() && name.equals_lower(sym->getName())) 823 return sym; 824 825 // The reference may be a mangled name while the definition is not. Suggest a 826 // missing extern "C". 827 if (name.startswith("_Z")) { 828 std::string buf = name.str(); 829 llvm::ItaniumPartialDemangler d; 830 if (!d.partialDemangle(buf.c_str())) 831 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 832 const Symbol *s = suggest(buf); 833 free(buf); 834 if (s) { 835 pre_hint = ": extern \"C\" "; 836 return s; 837 } 838 } 839 } else { 840 const Symbol *s = nullptr; 841 for (auto &it : map) 842 if (canSuggestExternCForCXX(name, it.first)) { 843 s = it.second; 844 break; 845 } 846 if (!s) 847 for (Symbol *sym : symtab->symbols()) 848 if (canSuggestExternCForCXX(name, sym->getName())) { 849 s = sym; 850 break; 851 } 852 if (s) { 853 pre_hint = " to declare "; 854 post_hint = " as extern \"C\"?"; 855 return s; 856 } 857 } 858 859 return nullptr; 860 } 861 862 template <class ELFT> 863 static void reportUndefinedSymbol(const UndefinedDiag &undef, 864 bool correctSpelling) { 865 Symbol &sym = *undef.sym; 866 867 auto visibility = [&]() -> std::string { 868 switch (sym.visibility) { 869 case STV_INTERNAL: 870 return "internal "; 871 case STV_HIDDEN: 872 return "hidden "; 873 case STV_PROTECTED: 874 return "protected "; 875 default: 876 return ""; 877 } 878 }; 879 880 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); 881 if (msg.empty()) 882 msg = "undefined " + visibility() + "symbol: " + toString(sym); 883 884 const size_t maxUndefReferences = 3; 885 size_t i = 0; 886 for (UndefinedDiag::Loc l : undef.locs) { 887 if (i >= maxUndefReferences) 888 break; 889 InputSectionBase &sec = *l.sec; 890 uint64_t offset = l.offset; 891 892 msg += "\n>>> referenced by "; 893 std::string src = sec.getSrcMsg(sym, offset); 894 if (!src.empty()) 895 msg += src + "\n>>> "; 896 msg += sec.getObjMsg(offset); 897 i++; 898 } 899 900 if (i < undef.locs.size()) 901 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 902 .str(); 903 904 if (correctSpelling) { 905 std::string pre_hint = ": ", post_hint; 906 if (const Symbol *corrected = getAlternativeSpelling<ELFT>( 907 cast<Undefined>(sym), pre_hint, post_hint)) { 908 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 909 if (corrected->file) 910 msg += "\n>>> defined in: " + toString(corrected->file); 911 } 912 } 913 914 if (sym.getName().startswith("_ZTV")) 915 msg += 916 "\n>>> the vtable symbol may be undefined because the class is missing " 917 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 918 919 if (undef.isWarning) 920 warn(msg); 921 else 922 error(msg); 923 } 924 925 template <class ELFT> void elf::reportUndefinedSymbols() { 926 // Find the first "undefined symbol" diagnostic for each diagnostic, and 927 // collect all "referenced from" lines at the first diagnostic. 928 DenseMap<Symbol *, UndefinedDiag *> firstRef; 929 for (UndefinedDiag &undef : undefs) { 930 assert(undef.locs.size() == 1); 931 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 932 canon->locs.push_back(undef.locs[0]); 933 undef.locs.clear(); 934 } else 935 firstRef[undef.sym] = &undef; 936 } 937 938 // Enable spell corrector for the first 2 diagnostics. 939 for (auto it : enumerate(undefs)) 940 if (!it.value().locs.empty()) 941 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); 942 undefs.clear(); 943 } 944 945 // Report an undefined symbol if necessary. 946 // Returns true if the undefined symbol will produce an error message. 947 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, 948 uint64_t offset) { 949 if (!sym.isUndefined() || sym.isWeak()) 950 return false; 951 952 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; 953 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 954 return false; 955 956 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 957 // which references a switch table in a discarded .rodata/.text section. The 958 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 959 // spec says references from outside the group to a STB_LOCAL symbol are not 960 // allowed. Work around the bug. 961 // 962 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 963 // because .LC0-.LTOC is not representable if the two labels are in different 964 // .got2 965 if (cast<Undefined>(sym).discardedSecIdx != 0 && 966 (sec.name == ".got2" || sec.name == ".toc")) 967 return false; 968 969 bool isWarning = 970 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 971 config->noinhibitExec; 972 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 973 return !isWarning; 974 } 975 976 // MIPS N32 ABI treats series of successive relocations with the same offset 977 // as a single relocation. The similar approach used by N64 ABI, but this ABI 978 // packs all relocations into the single relocation record. Here we emulate 979 // this for the N32 ABI. Iterate over relocation with the same offset and put 980 // theirs types into the single bit-set. 981 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { 982 RelType type = 0; 983 uint64_t offset = rel->r_offset; 984 985 int n = 0; 986 while (rel != end && rel->r_offset == offset) 987 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 988 return type; 989 } 990 991 // .eh_frame sections are mergeable input sections, so their input 992 // offsets are not linearly mapped to output section. For each input 993 // offset, we need to find a section piece containing the offset and 994 // add the piece's base address to the input offset to compute the 995 // output offset. That isn't cheap. 996 // 997 // This class is to speed up the offset computation. When we process 998 // relocations, we access offsets in the monotonically increasing 999 // order. So we can optimize for that access pattern. 1000 // 1001 // For sections other than .eh_frame, this class doesn't do anything. 1002 namespace { 1003 class OffsetGetter { 1004 public: 1005 explicit OffsetGetter(InputSectionBase &sec) { 1006 if (auto *eh = dyn_cast<EhInputSection>(&sec)) 1007 pieces = eh->pieces; 1008 } 1009 1010 // Translates offsets in input sections to offsets in output sections. 1011 // Given offset must increase monotonically. We assume that Piece is 1012 // sorted by inputOff. 1013 uint64_t get(uint64_t off) { 1014 if (pieces.empty()) 1015 return off; 1016 1017 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) 1018 ++i; 1019 if (i == pieces.size()) 1020 fatal(".eh_frame: relocation is not in any piece"); 1021 1022 // Pieces must be contiguous, so there must be no holes in between. 1023 assert(pieces[i].inputOff <= off && "Relocation not in any piece"); 1024 1025 // Offset -1 means that the piece is dead (i.e. garbage collected). 1026 if (pieces[i].outputOff == -1) 1027 return -1; 1028 return pieces[i].outputOff + off - pieces[i].inputOff; 1029 } 1030 1031 private: 1032 ArrayRef<EhSectionPiece> pieces; 1033 size_t i = 0; 1034 }; 1035 } // namespace 1036 1037 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, 1038 Symbol *sym, int64_t addend, RelExpr expr, 1039 RelType type) { 1040 Partition &part = isec->getPartition(); 1041 1042 // Add a relative relocation. If relrDyn section is enabled, and the 1043 // relocation offset is guaranteed to be even, add the relocation to 1044 // the relrDyn section, otherwise add it to the relaDyn section. 1045 // relrDyn sections don't support odd offsets. Also, relrDyn sections 1046 // don't store the addend values, so we must write it to the relocated 1047 // address. 1048 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { 1049 isec->relocations.push_back({expr, type, offsetInSec, addend, sym}); 1050 part.relrDyn->relocs.push_back({isec, offsetInSec}); 1051 return; 1052 } 1053 part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend, 1054 expr, type); 1055 } 1056 1057 template <class PltSection, class GotPltSection> 1058 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, 1059 RelocationBaseSection *rel, RelType type, Symbol &sym) { 1060 plt->addEntry(sym); 1061 gotPlt->addEntry(sym); 1062 rel->addReloc( 1063 {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0}); 1064 } 1065 1066 static void addGotEntry(Symbol &sym) { 1067 in.got->addEntry(sym); 1068 1069 RelExpr expr = sym.isTls() ? R_TLS : R_ABS; 1070 uint64_t off = sym.getGotOffset(); 1071 1072 // If a GOT slot value can be calculated at link-time, which is now, 1073 // we can just fill that out. 1074 // 1075 // (We don't actually write a value to a GOT slot right now, but we 1076 // add a static relocation to a Relocations vector so that 1077 // InputSection::relocate will do the work for us. We may be able 1078 // to just write a value now, but it is a TODO.) 1079 bool isLinkTimeConstant = 1080 !sym.isPreemptible && (!config->isPic || isAbsolute(sym)); 1081 if (isLinkTimeConstant) { 1082 in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym}); 1083 return; 1084 } 1085 1086 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 1087 // the GOT slot will be fixed at load-time. 1088 if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) { 1089 addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel); 1090 return; 1091 } 1092 mainPart->relaDyn->addReloc( 1093 sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0, 1094 sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel); 1095 } 1096 1097 // Return true if we can define a symbol in the executable that 1098 // contains the value/function of a symbol defined in a shared 1099 // library. 1100 static bool canDefineSymbolInExecutable(Symbol &sym) { 1101 // If the symbol has default visibility the symbol defined in the 1102 // executable will preempt it. 1103 // Note that we want the visibility of the shared symbol itself, not 1104 // the visibility of the symbol in the output file we are producing. That is 1105 // why we use Sym.stOther. 1106 if ((sym.stOther & 0x3) == STV_DEFAULT) 1107 return true; 1108 1109 // If we are allowed to break address equality of functions, defining 1110 // a plt entry will allow the program to call the function in the 1111 // .so, but the .so and the executable will no agree on the address 1112 // of the function. Similar logic for objects. 1113 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 1114 (sym.isObject() && config->ignoreDataAddressEquality)); 1115 } 1116 1117 // The reason we have to do this early scan is as follows 1118 // * To mmap the output file, we need to know the size 1119 // * For that, we need to know how many dynamic relocs we will have. 1120 // It might be possible to avoid this by outputting the file with write: 1121 // * Write the allocated output sections, computing addresses. 1122 // * Apply relocations, recording which ones require a dynamic reloc. 1123 // * Write the dynamic relocations. 1124 // * Write the rest of the file. 1125 // This would have some drawbacks. For example, we would only know if .rela.dyn 1126 // is needed after applying relocations. If it is, it will go after rw and rx 1127 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1128 // complicates things for the dynamic linker and means we would have to reserve 1129 // space for the extra PT_LOAD even if we end up not using it. 1130 template <class ELFT, class RelTy> 1131 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, 1132 uint64_t offset, Symbol &sym, const RelTy &rel, 1133 int64_t addend) { 1134 // If the relocation is known to be a link-time constant, we know no dynamic 1135 // relocation will be created, pass the control to relocateAlloc() or 1136 // relocateNonAlloc() to resolve it. 1137 // 1138 // The behavior of an undefined weak reference is implementation defined. If 1139 // the relocation is to a weak undef, and we are producing an executable, let 1140 // relocate{,Non}Alloc() resolve it. 1141 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || 1142 (!config->shared && sym.isUndefWeak())) { 1143 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1144 return; 1145 } 1146 1147 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; 1148 if (canWrite) { 1149 RelType rel = target->getDynRel(type); 1150 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 1151 addRelativeReloc(&sec, offset, &sym, addend, expr, type); 1152 return; 1153 } else if (rel != 0) { 1154 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1155 rel = target->relativeRel; 1156 sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend, 1157 R_ADDEND, type); 1158 1159 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1160 // While regular ABI uses dynamic relocations to fill up GOT entries 1161 // MIPS ABI requires dynamic linker to fills up GOT entries using 1162 // specially sorted dynamic symbol table. This affects even dynamic 1163 // relocations against symbols which do not require GOT entries 1164 // creation explicitly, i.e. do not have any GOT-relocations. So if 1165 // a preemptible symbol has a dynamic relocation we anyway have 1166 // to create a GOT entry for it. 1167 // If a non-preemptible symbol has a dynamic relocation against it, 1168 // dynamic linker takes it st_value, adds offset and writes down 1169 // result of the dynamic relocation. In case of preemptible symbol 1170 // dynamic linker performs symbol resolution, writes the symbol value 1171 // to the GOT entry and reads the GOT entry when it needs to perform 1172 // a dynamic relocation. 1173 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1174 if (config->emachine == EM_MIPS) 1175 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1176 return; 1177 } 1178 } 1179 1180 // When producing an executable, we can perform copy relocations (for 1181 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1182 if (!config->shared) { 1183 if (!canDefineSymbolInExecutable(sym)) { 1184 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1185 getLocation(sec, sym, offset)); 1186 return; 1187 } 1188 1189 if (sym.isObject()) { 1190 // Produce a copy relocation. 1191 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1192 if (!config->zCopyreloc) 1193 error("unresolvable relocation " + toString(type) + 1194 " against symbol '" + toString(*ss) + 1195 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1196 getLocation(sec, sym, offset)); 1197 addCopyRelSymbol<ELFT>(*ss); 1198 } 1199 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1200 return; 1201 } 1202 1203 // This handles a non PIC program call to function in a shared library. In 1204 // an ideal world, we could just report an error saying the relocation can 1205 // overflow at runtime. In the real world with glibc, crt1.o has a 1206 // R_X86_64_PC32 pointing to libc.so. 1207 // 1208 // The general idea on how to handle such cases is to create a PLT entry and 1209 // use that as the function value. 1210 // 1211 // For the static linking part, we just return a plt expr and everything 1212 // else will use the PLT entry as the address. 1213 // 1214 // The remaining problem is making sure pointer equality still works. We 1215 // need the help of the dynamic linker for that. We let it know that we have 1216 // a direct reference to a so symbol by creating an undefined symbol with a 1217 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1218 // the value of the symbol we created. This is true even for got entries, so 1219 // pointer equality is maintained. To avoid an infinite loop, the only entry 1220 // that points to the real function is a dedicated got entry used by the 1221 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1222 // R_386_JMP_SLOT, etc). 1223 1224 // For position independent executable on i386, the plt entry requires ebx 1225 // to be set. This causes two problems: 1226 // * If some code has a direct reference to a function, it was probably 1227 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1228 // * If a library definition gets preempted to the executable, it will have 1229 // the wrong ebx value. 1230 if (sym.isFunc()) { 1231 if (config->pie && config->emachine == EM_386) 1232 errorOrWarn("symbol '" + toString(sym) + 1233 "' cannot be preempted; recompile with -fPIE" + 1234 getLocation(sec, sym, offset)); 1235 if (!sym.isInPlt()) 1236 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1237 if (!sym.isDefined()) { 1238 replaceWithDefined( 1239 sym, in.plt, 1240 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); 1241 if (config->emachine == EM_PPC) { 1242 // PPC32 canonical PLT entries are at the beginning of .glink 1243 cast<Defined>(sym).value = in.plt->headerSize; 1244 in.plt->headerSize += 16; 1245 cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym); 1246 } 1247 } 1248 sym.needsPltAddr = true; 1249 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1250 return; 1251 } 1252 } 1253 1254 if (config->isPic) { 1255 if (!canWrite && !isRelExpr(expr)) 1256 errorOrWarn( 1257 "can't create dynamic relocation " + toString(type) + " against " + 1258 (sym.getName().empty() ? "local symbol" 1259 : "symbol: " + toString(sym)) + 1260 " in readonly segment; recompile object files with -fPIC " 1261 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 1262 getLocation(sec, sym, offset)); 1263 else 1264 errorOrWarn( 1265 "relocation " + toString(type) + " cannot be used against " + 1266 (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) + 1267 "; recompile with -fPIC" + getLocation(sec, sym, offset)); 1268 return; 1269 } 1270 1271 errorOrWarn("symbol '" + toString(sym) + "' has no type" + 1272 getLocation(sec, sym, offset)); 1273 } 1274 1275 template <class ELFT, class RelTy> 1276 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, 1277 RelTy *start, RelTy *end) { 1278 const RelTy &rel = *i; 1279 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1280 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); 1281 RelType type; 1282 1283 // Deal with MIPS oddity. 1284 if (config->mipsN32Abi) { 1285 type = getMipsN32RelType(i, end); 1286 } else { 1287 type = rel.getType(config->isMips64EL); 1288 ++i; 1289 } 1290 1291 // Get an offset in an output section this relocation is applied to. 1292 uint64_t offset = getOffset.get(rel.r_offset); 1293 if (offset == uint64_t(-1)) 1294 return; 1295 1296 // Error if the target symbol is undefined. Symbol index 0 may be used by 1297 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1298 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) 1299 return; 1300 1301 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; 1302 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); 1303 1304 // Ignore R_*_NONE and other marker relocations. 1305 if (expr == R_NONE) 1306 return; 1307 1308 if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) { 1309 warn("using ifunc symbols when text relocations are allowed may produce " 1310 "a binary that will segfault, if the object file is linked with " 1311 "old version of glibc (glibc 2.28 and earlier). If this applies to " 1312 "you, consider recompiling the object files without -fPIC and " 1313 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " 1314 "turn off this warning." + 1315 getLocation(sec, sym, offset)); 1316 } 1317 1318 // Read an addend. 1319 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); 1320 1321 if (config->emachine == EM_PPC64) { 1322 // For a call to __tls_get_addr, the instruction needs to be relocated by 1323 // two relocations, R_PPC64_TLSGD/R_PPC64_TLSLD and R_PPC64_REL24[_NOTOC]. 1324 // R_PPC64_TLSGD/R_PPC64_TLSLD should precede R_PPC64_REL24[_NOTOC]. 1325 if ((type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) && 1326 sym.getName() == "__tls_get_addr") { 1327 bool err = i - start < 2; 1328 if (!err) { 1329 // Subtract 2 to get the previous iterator because we have already done 1330 // ++i above. This is now safe because we know that i-1 is not the 1331 // start. 1332 const RelTy &prevRel = *(i - 2); 1333 RelType prevType = prevRel.getType(config->isMips64EL); 1334 err = prevRel.r_offset != rel.r_offset || 1335 (prevType != R_PPC64_TLSGD && prevType != R_PPC64_TLSLD); 1336 } 1337 1338 if (err) 1339 errorOrWarn("call to __tls_get_addr is missing a " 1340 "R_PPC64_TLSGD/R_PPC64_TLSLD relocation" + 1341 getLocation(sec, sym, offset)); 1342 } 1343 1344 // We can separate the small code model relocations into 2 categories: 1345 // 1) Those that access the compiler generated .toc sections. 1346 // 2) Those that access the linker allocated got entries. 1347 // lld allocates got entries to symbols on demand. Since we don't try to 1348 // sort the got entries in any way, we don't have to track which objects 1349 // have got-based small code model relocs. The .toc sections get placed 1350 // after the end of the linker allocated .got section and we do sort those 1351 // so sections addressed with small code model relocations come first. 1352 if (isPPC64SmallCodeModelTocReloc(type)) 1353 sec.file->ppc64SmallCodeModelTocRelocs = true; 1354 1355 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1356 // InputSectionBase::relocateAlloc(). 1357 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1358 cast<Defined>(sym).section->name == ".toc") 1359 ppc64noTocRelax.insert({&sym, addend}); 1360 1361 if (type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) { 1362 if (i == end) { 1363 errorOrWarn("R_PPC64_TLSGD may not be the last relocation" + 1364 getLocation(sec, sym, offset)); 1365 return; 1366 } 1367 1368 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, 1369 // so we can discern it later from the toc-case. 1370 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1371 ++offset; 1372 } 1373 } 1374 1375 // Relax relocations. 1376 // 1377 // If we know that a PLT entry will be resolved within the same ELF module, we 1378 // can skip PLT access and directly jump to the destination function. For 1379 // example, if we are linking a main executable, all dynamic symbols that can 1380 // be resolved within the executable will actually be resolved that way at 1381 // runtime, because the main executable is always at the beginning of a search 1382 // list. We can leverage that fact. 1383 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { 1384 if (expr == R_GOT_PC && !isAbsoluteValue(sym)) { 1385 expr = target->adjustRelaxExpr(type, relocatedAddr, expr); 1386 } else { 1387 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1388 // stub type. It should be ignored if optimized to R_PC. 1389 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1390 addend &= ~0x8000; 1391 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1392 // call __tls_get_addr even if the symbol is non-preemptible. 1393 if (!(config->emachine == EM_HEXAGON && 1394 (type == R_HEX_GD_PLT_B22_PCREL || 1395 type == R_HEX_GD_PLT_B22_PCREL_X || 1396 type == R_HEX_GD_PLT_B32_PCREL_X))) 1397 expr = fromPlt(expr); 1398 } 1399 } 1400 1401 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1402 // uses their addresses, we need GOT or GOTPLT to be created. 1403 // 1404 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1405 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1406 in.gotPlt->hasGotPltOffRel = true; 1407 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( 1408 expr)) { 1409 in.got->hasGotOffRel = true; 1410 } 1411 1412 // Process some TLS relocations, including relaxing TLS relocations. 1413 // Note that this function does not handle all TLS relocations. 1414 if (unsigned processed = 1415 handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) { 1416 i += (processed - 1); 1417 return; 1418 } 1419 1420 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1421 // direct relocation on through. 1422 if (sym.isGnuIFunc() && config->zIfuncNoplt) { 1423 sym.exportDynamic = true; 1424 mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type); 1425 return; 1426 } 1427 1428 // Non-preemptible ifuncs require special handling. First, handle the usual 1429 // case where the symbol isn't one of these. 1430 if (!sym.isGnuIFunc() || sym.isPreemptible) { 1431 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1432 if (needsPlt(expr) && !sym.isInPlt()) 1433 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1434 1435 // Create a GOT slot if a relocation needs GOT. 1436 if (needsGot(expr)) { 1437 if (config->emachine == EM_MIPS) { 1438 // MIPS ABI has special rules to process GOT entries and doesn't 1439 // require relocation entries for them. A special case is TLS 1440 // relocations. In that case dynamic loader applies dynamic 1441 // relocations to initialize TLS GOT entries. 1442 // See "Global Offset Table" in Chapter 5 in the following document 1443 // for detailed description: 1444 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1445 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1446 } else if (!sym.isInGot()) { 1447 addGotEntry(sym); 1448 } 1449 } 1450 } else { 1451 // Handle a reference to a non-preemptible ifunc. These are special in a 1452 // few ways: 1453 // 1454 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1455 // a fixed value. But assuming that all references to the ifunc are 1456 // GOT-generating or PLT-generating, the handling of an ifunc is 1457 // relatively straightforward. We create a PLT entry in Iplt, which is 1458 // usually at the end of .plt, which makes an indirect call using a 1459 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1460 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1461 // which is usually at the end of .rela.plt. Unlike most relocations in 1462 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1463 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1464 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1465 // .got.plt without requiring a separate GOT entry. 1466 // 1467 // - Despite the fact that an ifunc does not have a fixed value, compilers 1468 // that are not passed -fPIC will assume that they do, and will emit 1469 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1470 // symbol. This means that if a direct relocation to the symbol is 1471 // seen, the linker must set a value for the symbol, and this value must 1472 // be consistent no matter what type of reference is made to the symbol. 1473 // This can be done by creating a PLT entry for the symbol in the way 1474 // described above and making it canonical, that is, making all references 1475 // point to the PLT entry instead of the resolver. In lld we also store 1476 // the address of the PLT entry in the dynamic symbol table, which means 1477 // that the symbol will also have the same value in other modules. 1478 // Because the value loaded from the GOT needs to be consistent with 1479 // the value computed using a direct relocation, a non-preemptible ifunc 1480 // may end up with two GOT entries, one in .got.plt that points to the 1481 // address returned by the resolver and is used only by the PLT entry, 1482 // and another in .got that points to the PLT entry and is used by 1483 // GOT-generating relocations. 1484 // 1485 // - The fact that these symbols do not have a fixed value makes them an 1486 // exception to the general rule that a statically linked executable does 1487 // not require any form of dynamic relocation. To handle these relocations 1488 // correctly, the IRELATIVE relocations are stored in an array which a 1489 // statically linked executable's startup code must enumerate using the 1490 // linker-defined symbols __rela?_iplt_{start,end}. 1491 if (!sym.isInPlt()) { 1492 // Create PLT and GOTPLT slots for the symbol. 1493 sym.isInIplt = true; 1494 1495 // Create a copy of the symbol to use as the target of the IRELATIVE 1496 // relocation in the igotPlt. This is in case we make the PLT canonical 1497 // later, which would overwrite the original symbol. 1498 // 1499 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1500 // that's really needed to create the IRELATIVE is the section and value, 1501 // so ideally we should just need to copy those. 1502 auto *directSym = make<Defined>(cast<Defined>(sym)); 1503 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, 1504 *directSym); 1505 sym.pltIndex = directSym->pltIndex; 1506 } 1507 if (needsGot(expr)) { 1508 // Redirect GOT accesses to point to the Igot. 1509 // 1510 // This field is also used to keep track of whether we ever needed a GOT 1511 // entry. If we did and we make the PLT canonical later, we'll need to 1512 // create a GOT entry pointing to the PLT entry for Sym. 1513 sym.gotInIgot = true; 1514 } else if (!needsPlt(expr)) { 1515 // Make the ifunc's PLT entry canonical by changing the value of its 1516 // symbol to redirect all references to point to it. 1517 auto &d = cast<Defined>(sym); 1518 d.section = in.iplt; 1519 d.value = sym.pltIndex * target->ipltEntrySize; 1520 d.size = 0; 1521 // It's important to set the symbol type here so that dynamic loaders 1522 // don't try to call the PLT as if it were an ifunc resolver. 1523 d.type = STT_FUNC; 1524 1525 if (sym.gotInIgot) { 1526 // We previously encountered a GOT generating reference that we 1527 // redirected to the Igot. Now that the PLT entry is canonical we must 1528 // clear the redirection to the Igot and add a GOT entry. As we've 1529 // changed the symbol type to STT_FUNC future GOT generating references 1530 // will naturally use this GOT entry. 1531 // 1532 // We don't need to worry about creating a MIPS GOT here because ifuncs 1533 // aren't a thing on MIPS. 1534 sym.gotInIgot = false; 1535 addGotEntry(sym); 1536 } 1537 } 1538 } 1539 1540 processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend); 1541 } 1542 1543 template <class ELFT, class RelTy> 1544 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1545 OffsetGetter getOffset(sec); 1546 1547 // Not all relocations end up in Sec.Relocations, but a lot do. 1548 sec.relocations.reserve(rels.size()); 1549 1550 for (auto i = rels.begin(), end = rels.end(); i != end;) 1551 scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end); 1552 1553 // Sort relocations by offset for more efficient searching for 1554 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1555 if (config->emachine == EM_RISCV || 1556 (config->emachine == EM_PPC64 && sec.name == ".toc")) 1557 llvm::stable_sort(sec.relocations, 1558 [](const Relocation &lhs, const Relocation &rhs) { 1559 return lhs.offset < rhs.offset; 1560 }); 1561 } 1562 1563 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) { 1564 if (s.areRelocsRela) 1565 scanRelocs<ELFT>(s, s.relas<ELFT>()); 1566 else 1567 scanRelocs<ELFT>(s, s.rels<ELFT>()); 1568 } 1569 1570 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1571 // std::merge requires a strict weak ordering. 1572 if (a->outSecOff < b->outSecOff) 1573 return true; 1574 1575 if (a->outSecOff == b->outSecOff) { 1576 auto *ta = dyn_cast<ThunkSection>(a); 1577 auto *tb = dyn_cast<ThunkSection>(b); 1578 1579 // Check if Thunk is immediately before any specific Target 1580 // InputSection for example Mips LA25 Thunks. 1581 if (ta && ta->getTargetInputSection() == b) 1582 return true; 1583 1584 // Place Thunk Sections without specific targets before 1585 // non-Thunk Sections. 1586 if (ta && !tb && !ta->getTargetInputSection()) 1587 return true; 1588 } 1589 1590 return false; 1591 } 1592 1593 // Call Fn on every executable InputSection accessed via the linker script 1594 // InputSectionDescription::Sections. 1595 static void forEachInputSectionDescription( 1596 ArrayRef<OutputSection *> outputSections, 1597 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1598 for (OutputSection *os : outputSections) { 1599 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1600 continue; 1601 for (BaseCommand *bc : os->sectionCommands) 1602 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1603 fn(os, isd); 1604 } 1605 } 1606 1607 // Thunk Implementation 1608 // 1609 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1610 // of code that the linker inserts inbetween a caller and a callee. The thunks 1611 // are added at link time rather than compile time as the decision on whether 1612 // a thunk is needed, such as the caller and callee being out of range, can only 1613 // be made at link time. 1614 // 1615 // It is straightforward to tell given the current state of the program when a 1616 // thunk is needed for a particular call. The more difficult part is that 1617 // the thunk needs to be placed in the program such that the caller can reach 1618 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1619 // the program alters addresses, which can mean more thunks etc. 1620 // 1621 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1622 // The decision to have a ThunkSection act as a container means that we can 1623 // more easily handle the most common case of a single block of contiguous 1624 // Thunks by inserting just a single ThunkSection. 1625 // 1626 // The implementation of Thunks in lld is split across these areas 1627 // Relocations.cpp : Framework for creating and placing thunks 1628 // Thunks.cpp : The code generated for each supported thunk 1629 // Target.cpp : Target specific hooks that the framework uses to decide when 1630 // a thunk is used 1631 // Synthetic.cpp : Implementation of ThunkSection 1632 // Writer.cpp : Iteratively call framework until no more Thunks added 1633 // 1634 // Thunk placement requirements: 1635 // Mips LA25 thunks. These must be placed immediately before the callee section 1636 // We can assume that the caller is in range of the Thunk. These are modelled 1637 // by Thunks that return the section they must precede with 1638 // getTargetInputSection(). 1639 // 1640 // ARM interworking and range extension thunks. These thunks must be placed 1641 // within range of the caller. All implemented ARM thunks can always reach the 1642 // callee as they use an indirect jump via a register that has no range 1643 // restrictions. 1644 // 1645 // Thunk placement algorithm: 1646 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1647 // getTargetInputSection(). 1648 // 1649 // For thunks that must be placed within range of the caller there are many 1650 // possible choices given that the maximum range from the caller is usually 1651 // much larger than the average InputSection size. Desirable properties include: 1652 // - Maximize reuse of thunks by multiple callers 1653 // - Minimize number of ThunkSections to simplify insertion 1654 // - Handle impact of already added Thunks on addresses 1655 // - Simple to understand and implement 1656 // 1657 // In lld for the first pass, we pre-create one or more ThunkSections per 1658 // InputSectionDescription at Target specific intervals. A ThunkSection is 1659 // placed so that the estimated end of the ThunkSection is within range of the 1660 // start of the InputSectionDescription or the previous ThunkSection. For 1661 // example: 1662 // InputSectionDescription 1663 // Section 0 1664 // ... 1665 // Section N 1666 // ThunkSection 0 1667 // Section N + 1 1668 // ... 1669 // Section N + K 1670 // Thunk Section 1 1671 // 1672 // The intention is that we can add a Thunk to a ThunkSection that is well 1673 // spaced enough to service a number of callers without having to do a lot 1674 // of work. An important principle is that it is not an error if a Thunk cannot 1675 // be placed in a pre-created ThunkSection; when this happens we create a new 1676 // ThunkSection placed next to the caller. This allows us to handle the vast 1677 // majority of thunks simply, but also handle rare cases where the branch range 1678 // is smaller than the target specific spacing. 1679 // 1680 // The algorithm is expected to create all the thunks that are needed in a 1681 // single pass, with a small number of programs needing a second pass due to 1682 // the insertion of thunks in the first pass increasing the offset between 1683 // callers and callees that were only just in range. 1684 // 1685 // A consequence of allowing new ThunkSections to be created outside of the 1686 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1687 // range in pass K, are out of range in some pass > K due to the insertion of 1688 // more Thunks in between the caller and callee. When this happens we retarget 1689 // the relocation back to the original target and create another Thunk. 1690 1691 // Remove ThunkSections that are empty, this should only be the initial set 1692 // precreated on pass 0. 1693 1694 // Insert the Thunks for OutputSection OS into their designated place 1695 // in the Sections vector, and recalculate the InputSection output section 1696 // offsets. 1697 // This may invalidate any output section offsets stored outside of InputSection 1698 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1699 forEachInputSectionDescription( 1700 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1701 if (isd->thunkSections.empty()) 1702 return; 1703 1704 // Remove any zero sized precreated Thunks. 1705 llvm::erase_if(isd->thunkSections, 1706 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1707 return ts.first->getSize() == 0; 1708 }); 1709 1710 // ISD->ThunkSections contains all created ThunkSections, including 1711 // those inserted in previous passes. Extract the Thunks created this 1712 // pass and order them in ascending outSecOff. 1713 std::vector<ThunkSection *> newThunks; 1714 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1715 if (ts.second == pass) 1716 newThunks.push_back(ts.first); 1717 llvm::stable_sort(newThunks, 1718 [](const ThunkSection *a, const ThunkSection *b) { 1719 return a->outSecOff < b->outSecOff; 1720 }); 1721 1722 // Merge sorted vectors of Thunks and InputSections by outSecOff 1723 std::vector<InputSection *> tmp; 1724 tmp.reserve(isd->sections.size() + newThunks.size()); 1725 1726 std::merge(isd->sections.begin(), isd->sections.end(), 1727 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1728 mergeCmp); 1729 1730 isd->sections = std::move(tmp); 1731 }); 1732 } 1733 1734 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1735 // is in range of Src. An ISD maps to a range of InputSections described by a 1736 // linker script section pattern such as { .text .text.* }. 1737 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec, 1738 InputSectionDescription *isd, 1739 uint32_t type, uint64_t src) { 1740 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1741 ThunkSection *ts = tp.first; 1742 uint64_t tsBase = os->addr + ts->outSecOff; 1743 uint64_t tsLimit = tsBase + ts->getSize(); 1744 if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit)) 1745 return ts; 1746 } 1747 1748 // No suitable ThunkSection exists. This can happen when there is a branch 1749 // with lower range than the ThunkSection spacing or when there are too 1750 // many Thunks. Create a new ThunkSection as close to the InputSection as 1751 // possible. Error if InputSection is so large we cannot place ThunkSection 1752 // anywhere in Range. 1753 uint64_t thunkSecOff = isec->outSecOff; 1754 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) { 1755 thunkSecOff = isec->outSecOff + isec->getSize(); 1756 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) 1757 fatal("InputSection too large for range extension thunk " + 1758 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1759 } 1760 return addThunkSection(os, isd, thunkSecOff); 1761 } 1762 1763 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1764 // precedes its Target. 1765 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1766 ThunkSection *ts = thunkedSections.lookup(isec); 1767 if (ts) 1768 return ts; 1769 1770 // Find InputSectionRange within Target Output Section (TOS) that the 1771 // InputSection (IS) that we need to precede is in. 1772 OutputSection *tos = isec->getParent(); 1773 for (BaseCommand *bc : tos->sectionCommands) { 1774 auto *isd = dyn_cast<InputSectionDescription>(bc); 1775 if (!isd || isd->sections.empty()) 1776 continue; 1777 1778 InputSection *first = isd->sections.front(); 1779 InputSection *last = isd->sections.back(); 1780 1781 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1782 continue; 1783 1784 ts = addThunkSection(tos, isd, isec->outSecOff); 1785 thunkedSections[isec] = ts; 1786 return ts; 1787 } 1788 1789 return nullptr; 1790 } 1791 1792 // Create one or more ThunkSections per OS that can be used to place Thunks. 1793 // We attempt to place the ThunkSections using the following desirable 1794 // properties: 1795 // - Within range of the maximum number of callers 1796 // - Minimise the number of ThunkSections 1797 // 1798 // We follow a simple but conservative heuristic to place ThunkSections at 1799 // offsets that are multiples of a Target specific branch range. 1800 // For an InputSectionDescription that is smaller than the range, a single 1801 // ThunkSection at the end of the range will do. 1802 // 1803 // For an InputSectionDescription that is more than twice the size of the range, 1804 // we place the last ThunkSection at range bytes from the end of the 1805 // InputSectionDescription in order to increase the likelihood that the 1806 // distance from a thunk to its target will be sufficiently small to 1807 // allow for the creation of a short thunk. 1808 void ThunkCreator::createInitialThunkSections( 1809 ArrayRef<OutputSection *> outputSections) { 1810 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 1811 1812 forEachInputSectionDescription( 1813 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1814 if (isd->sections.empty()) 1815 return; 1816 1817 uint32_t isdBegin = isd->sections.front()->outSecOff; 1818 uint32_t isdEnd = 1819 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 1820 uint32_t lastThunkLowerBound = -1; 1821 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 1822 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 1823 1824 uint32_t isecLimit; 1825 uint32_t prevIsecLimit = isdBegin; 1826 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 1827 1828 for (const InputSection *isec : isd->sections) { 1829 isecLimit = isec->outSecOff + isec->getSize(); 1830 if (isecLimit > thunkUpperBound) { 1831 addThunkSection(os, isd, prevIsecLimit); 1832 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 1833 } 1834 if (isecLimit > lastThunkLowerBound) 1835 break; 1836 prevIsecLimit = isecLimit; 1837 } 1838 addThunkSection(os, isd, isecLimit); 1839 }); 1840 } 1841 1842 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 1843 InputSectionDescription *isd, 1844 uint64_t off) { 1845 auto *ts = make<ThunkSection>(os, off); 1846 ts->partition = os->partition; 1847 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 1848 !isd->sections.empty()) { 1849 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 1850 // thunks we disturb the base addresses of sections placed after the thunks 1851 // this makes patches we have generated redundant, and may cause us to 1852 // generate more patches as different instructions are now in sensitive 1853 // locations. When we generate more patches we may force more branches to 1854 // go out of range, causing more thunks to be generated. In pathological 1855 // cases this can cause the address dependent content pass not to converge. 1856 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 1857 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 1858 // which means that adding Thunks to the section does not invalidate 1859 // errata patches for following code. 1860 // Rounding up the size to 4KiB has consequences for code-size and can 1861 // trip up linker script defined assertions. For example the linux kernel 1862 // has an assertion that what LLD represents as an InputSectionDescription 1863 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 1864 // We use the heuristic of rounding up the size when both of the following 1865 // conditions are true: 1866 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 1867 // accounts for the case where no single InputSectionDescription is 1868 // larger than the OutputSection size. This is conservative but simple. 1869 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 1870 // any assertion failures that an InputSectionDescription is < 4 KiB 1871 // in size. 1872 uint64_t isdSize = isd->sections.back()->outSecOff + 1873 isd->sections.back()->getSize() - 1874 isd->sections.front()->outSecOff; 1875 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 1876 ts->roundUpSizeForErrata = true; 1877 } 1878 isd->thunkSections.push_back({ts, pass}); 1879 return ts; 1880 } 1881 1882 static bool isThunkSectionCompatible(InputSection *source, 1883 SectionBase *target) { 1884 // We can't reuse thunks in different loadable partitions because they might 1885 // not be loaded. But partition 1 (the main partition) will always be loaded. 1886 if (source->partition != target->partition) 1887 return target->partition == 1; 1888 return true; 1889 } 1890 1891 static int64_t getPCBias(RelType type) { 1892 if (config->emachine != EM_ARM) 1893 return 0; 1894 switch (type) { 1895 case R_ARM_THM_JUMP19: 1896 case R_ARM_THM_JUMP24: 1897 case R_ARM_THM_CALL: 1898 return 4; 1899 default: 1900 return 8; 1901 } 1902 } 1903 1904 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 1905 Relocation &rel, uint64_t src) { 1906 std::vector<Thunk *> *thunkVec = nullptr; 1907 int64_t addend = rel.addend + getPCBias(rel.type); 1908 1909 // We use a ((section, offset), addend) pair to find the thunk position if 1910 // possible so that we create only one thunk for aliased symbols or ICFed 1911 // sections. There may be multiple relocations sharing the same (section, 1912 // offset + addend) pair. We may revert the relocation back to its original 1913 // non-Thunk target, so we cannot fold offset + addend. 1914 if (auto *d = dyn_cast<Defined>(rel.sym)) 1915 if (!d->isInPlt() && d->section) 1916 thunkVec = &thunkedSymbolsBySectionAndAddend[{ 1917 {d->section->repl, d->value}, addend}]; 1918 if (!thunkVec) 1919 thunkVec = &thunkedSymbols[{rel.sym, addend}]; 1920 1921 // Check existing Thunks for Sym to see if they can be reused 1922 for (Thunk *t : *thunkVec) 1923 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 1924 t->isCompatibleWith(*isec, rel) && 1925 target->inBranchRange(rel.type, src, 1926 t->getThunkTargetSym()->getVA(rel.addend) + 1927 getPCBias(rel.type))) 1928 return std::make_pair(t, false); 1929 1930 // No existing compatible Thunk in range, create a new one 1931 Thunk *t = addThunk(*isec, rel); 1932 thunkVec->push_back(t); 1933 return std::make_pair(t, true); 1934 } 1935 1936 // Return true if the relocation target is an in range Thunk. 1937 // Return false if the relocation is not to a Thunk. If the relocation target 1938 // was originally to a Thunk, but is no longer in range we revert the 1939 // relocation back to its original non-Thunk target. 1940 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 1941 if (Thunk *t = thunks.lookup(rel.sym)) { 1942 if (target->inBranchRange(rel.type, src, 1943 rel.sym->getVA(rel.addend) + getPCBias(rel.type))) 1944 return true; 1945 rel.sym = &t->destination; 1946 rel.addend = t->addend; 1947 if (rel.sym->isInPlt()) 1948 rel.expr = toPlt(rel.expr); 1949 } 1950 return false; 1951 } 1952 1953 // Process all relocations from the InputSections that have been assigned 1954 // to InputSectionDescriptions and redirect through Thunks if needed. The 1955 // function should be called iteratively until it returns false. 1956 // 1957 // PreConditions: 1958 // All InputSections that may need a Thunk are reachable from 1959 // OutputSectionCommands. 1960 // 1961 // All OutputSections have an address and all InputSections have an offset 1962 // within the OutputSection. 1963 // 1964 // The offsets between caller (relocation place) and callee 1965 // (relocation target) will not be modified outside of createThunks(). 1966 // 1967 // PostConditions: 1968 // If return value is true then ThunkSections have been inserted into 1969 // OutputSections. All relocations that needed a Thunk based on the information 1970 // available to createThunks() on entry have been redirected to a Thunk. Note 1971 // that adding Thunks changes offsets between caller and callee so more Thunks 1972 // may be required. 1973 // 1974 // If return value is false then no more Thunks are needed, and createThunks has 1975 // made no changes. If the target requires range extension thunks, currently 1976 // ARM, then any future change in offset between caller and callee risks a 1977 // relocation out of range error. 1978 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { 1979 bool addressesChanged = false; 1980 1981 if (pass == 0 && target->getThunkSectionSpacing()) 1982 createInitialThunkSections(outputSections); 1983 1984 // Create all the Thunks and insert them into synthetic ThunkSections. The 1985 // ThunkSections are later inserted back into InputSectionDescriptions. 1986 // We separate the creation of ThunkSections from the insertion of the 1987 // ThunkSections as ThunkSections are not always inserted into the same 1988 // InputSectionDescription as the caller. 1989 forEachInputSectionDescription( 1990 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1991 for (InputSection *isec : isd->sections) 1992 for (Relocation &rel : isec->relocations) { 1993 uint64_t src = isec->getVA(rel.offset); 1994 1995 // If we are a relocation to an existing Thunk, check if it is 1996 // still in range. If not then Rel will be altered to point to its 1997 // original target so another Thunk can be generated. 1998 if (pass > 0 && normalizeExistingThunk(rel, src)) 1999 continue; 2000 2001 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2002 *rel.sym, rel.addend)) 2003 continue; 2004 2005 Thunk *t; 2006 bool isNew; 2007 std::tie(t, isNew) = getThunk(isec, rel, src); 2008 2009 if (isNew) { 2010 // Find or create a ThunkSection for the new Thunk 2011 ThunkSection *ts; 2012 if (auto *tis = t->getTargetInputSection()) 2013 ts = getISThunkSec(tis); 2014 else 2015 ts = getISDThunkSec(os, isec, isd, rel.type, src); 2016 ts->addThunk(t); 2017 thunks[t->getThunkTargetSym()] = t; 2018 } 2019 2020 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2021 rel.sym = t->getThunkTargetSym(); 2022 rel.expr = fromPlt(rel.expr); 2023 2024 // On AArch64 and PPC, a jump/call relocation may be encoded as 2025 // STT_SECTION + non-zero addend, clear the addend after 2026 // redirection. 2027 if (config->emachine != EM_MIPS) 2028 rel.addend = -getPCBias(rel.type); 2029 } 2030 2031 for (auto &p : isd->thunkSections) 2032 addressesChanged |= p.first->assignOffsets(); 2033 }); 2034 2035 for (auto &p : thunkedSections) 2036 addressesChanged |= p.second->assignOffsets(); 2037 2038 // Merge all created synthetic ThunkSections back into OutputSection 2039 mergeThunks(outputSections); 2040 ++pass; 2041 return addressesChanged; 2042 } 2043 2044 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2045 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2046 // __tls_get_addr. 2047 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2048 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2049 bool needTlsSymbol = false; 2050 forEachInputSectionDescription( 2051 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2052 for (InputSection *isec : isd->sections) 2053 for (Relocation &rel : isec->relocations) 2054 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2055 needTlsSymbol = true; 2056 return; 2057 } 2058 }); 2059 return needTlsSymbol; 2060 } 2061 2062 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2063 Symbol *sym = symtab->find("__tls_get_addr"); 2064 if (!sym) 2065 return; 2066 bool needEntry = true; 2067 forEachInputSectionDescription( 2068 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2069 for (InputSection *isec : isd->sections) 2070 for (Relocation &rel : isec->relocations) 2071 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2072 if (needEntry) { 2073 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, 2074 *sym); 2075 needEntry = false; 2076 } 2077 rel.sym = sym; 2078 } 2079 }); 2080 } 2081 2082 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 2083 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 2084 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 2085 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 2086 template void elf::reportUndefinedSymbols<ELF32LE>(); 2087 template void elf::reportUndefinedSymbols<ELF32BE>(); 2088 template void elf::reportUndefinedSymbols<ELF64LE>(); 2089 template void elf::reportUndefinedSymbols<ELF64BE>(); 2090