1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains platform-independent functions to process relocations.
11 // I'll describe the overview of this file here.
12 //
13 // Simple relocations are easy to handle for the linker. For example,
14 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
15 // with the relative offsets to the target symbols. It would just be
16 // reading records from relocation sections and applying them to output.
17 //
18 // But not all relocations are that easy to handle. For example, for
19 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
20 // symbols if they don't exist, and fix up locations with GOT entry
21 // offsets from the beginning of GOT section. So there is more than
22 // fixing addresses in relocation processing.
23 //
24 // ELF defines a large number of complex relocations.
25 //
26 // The functions in this file analyze relocations and do whatever needs
27 // to be done. It includes, but not limited to, the following.
28 //
29 //  - create GOT/PLT entries
30 //  - create new relocations in .dynsym to let the dynamic linker resolve
31 //    them at runtime (since ELF supports dynamic linking, not all
32 //    relocations can be resolved at link-time)
33 //  - create COPY relocs and reserve space in .bss
34 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
35 //  - error out infeasible combinations such as PIC and non-relative relocs
36 //
37 // Note that the functions in this file don't actually apply relocations
38 // because it doesn't know about the output file nor the output file buffer.
39 // It instead stores Relocation objects to InputSection's Relocations
40 // vector to let it apply later in InputSection::writeTo.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "Relocations.h"
45 #include "Config.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
49 #include "Symbols.h"
50 #include "SyntheticSections.h"
51 #include "Target.h"
52 #include "Thunks.h"
53 #include "lld/Common/Memory.h"
54 #include "lld/Common/Strings.h"
55 #include "llvm/Support/Endian.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 
59 using namespace llvm;
60 using namespace llvm::ELF;
61 using namespace llvm::object;
62 using namespace llvm::support::endian;
63 
64 using namespace lld;
65 using namespace lld::elf;
66 
67 // Construct a message in the following format.
68 //
69 // >>> defined in /home/alice/src/foo.o
70 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
71 // >>>               /home/alice/src/bar.o:(.text+0x1)
72 static std::string getLocation(InputSectionBase &S, const Symbol &Sym,
73                                uint64_t Off) {
74   std::string Msg =
75       "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by ";
76   std::string Src = S.getSrcMsg(Sym, Off);
77   if (!Src.empty())
78     Msg += Src + "\n>>>               ";
79   return Msg + S.getObjMsg(Off);
80 }
81 
82 // This function is similar to the `handleTlsRelocation`. MIPS does not
83 // support any relaxations for TLS relocations so by factoring out MIPS
84 // handling in to the separate function we can simplify the code and do not
85 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
86 // Mips has a custom MipsGotSection that handles the writing of GOT entries
87 // without dynamic relocations.
88 template <class ELFT>
89 static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym,
90                                         InputSectionBase &C, uint64_t Offset,
91                                         int64_t Addend, RelExpr Expr) {
92   if (Expr == R_MIPS_TLSLD) {
93     if (InX::MipsGot->addTlsIndex() && Config->Pic)
94       InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::MipsGot,
95                              InX::MipsGot->getTlsIndexOff(), nullptr);
96     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
97     return 1;
98   }
99 
100   if (Expr == R_MIPS_TLSGD) {
101     if (InX::MipsGot->addDynTlsEntry(Sym) && Sym.IsPreemptible) {
102       uint64_t Off = InX::MipsGot->getGlobalDynOffset(Sym);
103       InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::MipsGot, Off,
104                              &Sym);
105       if (Sym.IsPreemptible)
106         InX::RelaDyn->addReloc(Target->TlsOffsetRel, InX::MipsGot,
107                                Off + Config->Wordsize, &Sym);
108     }
109     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
110     return 1;
111   }
112   return 0;
113 }
114 
115 // This function is similar to the `handleMipsTlsRelocation`. ARM also does not
116 // support any relaxations for TLS relocations. ARM is logically similar to Mips
117 // in how it handles TLS, but Mips uses its own custom GOT which handles some
118 // of the cases that ARM uses GOT relocations for.
119 //
120 // We look for TLS global dynamic and local dynamic relocations, these may
121 // require the generation of a pair of GOT entries that have associated
122 // dynamic relocations. When the results of the dynamic relocations can be
123 // resolved at static link time we do so. This is necessary for static linking
124 // as there will be no dynamic loader to resolve them at load-time.
125 //
126 // The pair of GOT entries created are of the form
127 // GOT[e0] Module Index (Used to find pointer to TLS block at run-time)
128 // GOT[e1] Offset of symbol in TLS block
129 template <class ELFT>
130 static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym,
131                                        InputSectionBase &C, uint64_t Offset,
132                                        int64_t Addend, RelExpr Expr) {
133   // The Dynamic TLS Module Index Relocation for a symbol defined in an
134   // executable is always 1. If the target Symbol is not preemptible then
135   // we know the offset into the TLS block at static link time.
136   bool NeedDynId = Sym.IsPreemptible || Config->Shared;
137   bool NeedDynOff = Sym.IsPreemptible;
138 
139   auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) {
140     if (Dyn)
141       InX::RelaDyn->addReloc(Type, InX::Got, Off, Dest);
142     else
143       InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest});
144   };
145 
146   // Local Dynamic is for access to module local TLS variables, while still
147   // being suitable for being dynamically loaded via dlopen.
148   // GOT[e0] is the module index, with a special value of 0 for the current
149   // module. GOT[e1] is unused. There only needs to be one module index entry.
150   if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) {
151     AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel,
152                 NeedDynId ? nullptr : &Sym, NeedDynId);
153     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
154     return 1;
155   }
156 
157   // Global Dynamic is the most general purpose access model. When we know
158   // the module index and offset of symbol in TLS block we can fill these in
159   // using static GOT relocations.
160   if (Expr == R_TLSGD_PC) {
161     if (InX::Got->addDynTlsEntry(Sym)) {
162       uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
163       AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId);
164       AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym,
165                   NeedDynOff);
166     }
167     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
168     return 1;
169   }
170   return 0;
171 }
172 
173 // Returns the number of relocations processed.
174 template <class ELFT>
175 static unsigned
176 handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C,
177                     typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) {
178   if (!(C.Flags & SHF_ALLOC))
179     return 0;
180 
181   if (!Sym.isTls())
182     return 0;
183 
184   if (Config->EMachine == EM_ARM)
185     return handleARMTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);
186   if (Config->EMachine == EM_MIPS)
187     return handleMipsTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);
188 
189   if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) &&
190       Config->Shared) {
191     if (InX::Got->addDynTlsEntry(Sym)) {
192       uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
193       InX::RelaDyn->addReloc(
194           {Target->TlsDescRel, InX::Got, Off, !Sym.IsPreemptible, &Sym, 0});
195     }
196     if (Expr != R_TLSDESC_CALL)
197       C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
198     return 1;
199   }
200 
201   if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) {
202     // Local-Dynamic relocs can be relaxed to Local-Exec.
203     if (!Config->Shared) {
204       C.Relocations.push_back(
205           {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
206       return 2;
207     }
208     if (InX::Got->addTlsIndex())
209       InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got,
210                              InX::Got->getTlsIndexOff(), nullptr);
211     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
212     return 1;
213   }
214 
215   // Local-Dynamic relocs can be relaxed to Local-Exec.
216   if (isRelExprOneOf<R_ABS, R_TLSLD, R_TLSLD_PC>(Expr) && !Config->Shared) {
217     C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
218     return 1;
219   }
220 
221   if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD,
222                      R_TLSGD_PC>(Expr)) {
223     if (Config->Shared) {
224       if (InX::Got->addDynTlsEntry(Sym)) {
225         uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
226         InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got, Off, &Sym);
227 
228         // If the symbol is preemptible we need the dynamic linker to write
229         // the offset too.
230         uint64_t OffsetOff = Off + Config->Wordsize;
231         if (Sym.IsPreemptible)
232           InX::RelaDyn->addReloc(Target->TlsOffsetRel, InX::Got, OffsetOff,
233                                  &Sym);
234         else
235           InX::Got->Relocations.push_back(
236               {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym});
237       }
238       C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
239       return 1;
240     }
241 
242     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
243     // depending on the symbol being locally defined or not.
244     if (Sym.IsPreemptible) {
245       C.Relocations.push_back(
246           {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
247            Offset, Addend, &Sym});
248       if (!Sym.isInGot()) {
249         InX::Got->addEntry(Sym);
250         InX::RelaDyn->addReloc(Target->TlsGotRel, InX::Got, Sym.getGotOffset(),
251                                &Sym);
252       }
253     } else {
254       C.Relocations.push_back(
255           {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type,
256            Offset, Addend, &Sym});
257     }
258     return Target->TlsGdRelaxSkip;
259   }
260 
261   // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
262   // defined.
263   if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) &&
264       !Config->Shared && !Sym.IsPreemptible) {
265     C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym});
266     return 1;
267   }
268 
269   if (Expr == R_TLSDESC_CALL)
270     return 1;
271   return 0;
272 }
273 
274 static RelType getMipsPairType(RelType Type, bool IsLocal) {
275   switch (Type) {
276   case R_MIPS_HI16:
277     return R_MIPS_LO16;
278   case R_MIPS_GOT16:
279     // In case of global symbol, the R_MIPS_GOT16 relocation does not
280     // have a pair. Each global symbol has a unique entry in the GOT
281     // and a corresponding instruction with help of the R_MIPS_GOT16
282     // relocation loads an address of the symbol. In case of local
283     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
284     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
285     // relocations handle low 16 bits of the address. That allows
286     // to allocate only one GOT entry for every 64 KBytes of local data.
287     return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE;
288   case R_MICROMIPS_GOT16:
289     return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
290   case R_MIPS_PCHI16:
291     return R_MIPS_PCLO16;
292   case R_MICROMIPS_HI16:
293     return R_MICROMIPS_LO16;
294   default:
295     return R_MIPS_NONE;
296   }
297 }
298 
299 // True if non-preemptable symbol always has the same value regardless of where
300 // the DSO is loaded.
301 static bool isAbsolute(const Symbol &Sym) {
302   if (Sym.isUndefWeak())
303     return true;
304   if (const auto *DR = dyn_cast<Defined>(&Sym))
305     return DR->Section == nullptr; // Absolute symbol.
306   return false;
307 }
308 
309 static bool isAbsoluteValue(const Symbol &Sym) {
310   return isAbsolute(Sym) || Sym.isTls();
311 }
312 
313 // Returns true if Expr refers a PLT entry.
314 static bool needsPlt(RelExpr Expr) {
315   return isRelExprOneOf<R_PLT_PC, R_PPC_CALL_PLT, R_PLT, R_PLT_PAGE_PC>(Expr);
316 }
317 
318 // Returns true if Expr refers a GOT entry. Note that this function
319 // returns false for TLS variables even though they need GOT, because
320 // TLS variables uses GOT differently than the regular variables.
321 static bool needsGot(RelExpr Expr) {
322   return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
323                         R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC,
324                         R_GOT_FROM_END>(Expr);
325 }
326 
327 // True if this expression is of the form Sym - X, where X is a position in the
328 // file (PC, or GOT for example).
329 static bool isRelExpr(RelExpr Expr) {
330   return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL,
331                         R_PAGE_PC, R_RELAX_GOT_PC>(Expr);
332 }
333 
334 // Returns true if a given relocation can be computed at link-time.
335 //
336 // For instance, we know the offset from a relocation to its target at
337 // link-time if the relocation is PC-relative and refers a
338 // non-interposable function in the same executable. This function
339 // will return true for such relocation.
340 //
341 // If this function returns false, that means we need to emit a
342 // dynamic relocation so that the relocation will be fixed at load-time.
343 static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym,
344                                      InputSectionBase &S, uint64_t RelOff) {
345   // These expressions always compute a constant
346   if (isRelExprOneOf<R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE,
347                      R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32,
348                      R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC,
349                      R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_PC,
350                      R_TLSGD, R_PPC_CALL_PLT, R_TLSDESC_CALL, R_TLSDESC_PAGE,
351                      R_HINT>(E))
352     return true;
353 
354   // These never do, except if the entire file is position dependent or if
355   // only the low bits are used.
356   if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
357     return Target->usesOnlyLowPageBits(Type) || !Config->Pic;
358 
359   if (Sym.IsPreemptible)
360     return false;
361   if (!Config->Pic)
362     return true;
363 
364   // The size of a non preemptible symbol is a constant.
365   if (E == R_SIZE)
366     return true;
367 
368   // For the target and the relocation, we want to know if they are
369   // absolute or relative.
370   bool AbsVal = isAbsoluteValue(Sym);
371   bool RelE = isRelExpr(E);
372   if (AbsVal && !RelE)
373     return true;
374   if (!AbsVal && RelE)
375     return true;
376   if (!AbsVal && !RelE)
377     return Target->usesOnlyLowPageBits(Type);
378 
379   // Relative relocation to an absolute value. This is normally unrepresentable,
380   // but if the relocation refers to a weak undefined symbol, we allow it to
381   // resolve to the image base. This is a little strange, but it allows us to
382   // link function calls to such symbols. Normally such a call will be guarded
383   // with a comparison, which will load a zero from the GOT.
384   // Another special case is MIPS _gp_disp symbol which represents offset
385   // between start of a function and '_gp' value and defined as absolute just
386   // to simplify the code.
387   assert(AbsVal && RelE);
388   if (Sym.isUndefWeak())
389     return true;
390 
391   error("relocation " + toString(Type) + " cannot refer to absolute symbol: " +
392         toString(Sym) + getLocation(S, Sym, RelOff));
393   return true;
394 }
395 
396 static RelExpr toPlt(RelExpr Expr) {
397   switch (Expr) {
398   case R_PPC_CALL:
399     return R_PPC_CALL_PLT;
400   case R_PC:
401     return R_PLT_PC;
402   case R_PAGE_PC:
403     return R_PLT_PAGE_PC;
404   case R_ABS:
405     return R_PLT;
406   default:
407     return Expr;
408   }
409 }
410 
411 static RelExpr fromPlt(RelExpr Expr) {
412   // We decided not to use a plt. Optimize a reference to the plt to a
413   // reference to the symbol itself.
414   switch (Expr) {
415   case R_PLT_PC:
416     return R_PC;
417   case R_PPC_CALL_PLT:
418     return R_PPC_CALL;
419   case R_PLT:
420     return R_ABS;
421   default:
422     return Expr;
423   }
424 }
425 
426 // Returns true if a given shared symbol is in a read-only segment in a DSO.
427 template <class ELFT> static bool isReadOnly(SharedSymbol &SS) {
428   typedef typename ELFT::Phdr Elf_Phdr;
429 
430   // Determine if the symbol is read-only by scanning the DSO's program headers.
431   const SharedFile<ELFT> &File = SS.getFile<ELFT>();
432   for (const Elf_Phdr &Phdr : check(File.getObj().program_headers()))
433     if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) &&
434         !(Phdr.p_flags & ELF::PF_W) && SS.Value >= Phdr.p_vaddr &&
435         SS.Value < Phdr.p_vaddr + Phdr.p_memsz)
436       return true;
437   return false;
438 }
439 
440 // Returns symbols at the same offset as a given symbol, including SS itself.
441 //
442 // If two or more symbols are at the same offset, and at least one of
443 // them are copied by a copy relocation, all of them need to be copied.
444 // Otherwise, they would refer different places at runtime.
445 template <class ELFT>
446 static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol &SS) {
447   typedef typename ELFT::Sym Elf_Sym;
448 
449   SharedFile<ELFT> &File = SS.getFile<ELFT>();
450 
451   std::vector<SharedSymbol *> Ret;
452   for (const Elf_Sym &S : File.getGlobalELFSyms()) {
453     if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS ||
454         S.st_value != SS.Value)
455       continue;
456     StringRef Name = check(S.getName(File.getStringTable()));
457     Symbol *Sym = Symtab->find(Name);
458     if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym))
459       Ret.push_back(Alias);
460   }
461   return Ret;
462 }
463 
464 // When a symbol is copy relocated or we create a canonical plt entry, it is
465 // effectively a defined symbol. In the case of copy relocation the symbol is
466 // in .bss and in the case of a canonical plt entry it is in .plt. This function
467 // replaces the existing symbol with a Defined pointing to the appropriate
468 // location.
469 static void replaceWithDefined(Symbol &Sym, SectionBase *Sec, uint64_t Value,
470                                uint64_t Size) {
471   Symbol Old = Sym;
472   replaceSymbol<Defined>(&Sym, Sym.File, Sym.getName(), Sym.Binding,
473                          Sym.StOther, Sym.Type, Value, Size, Sec);
474   Sym.PltIndex = Old.PltIndex;
475   Sym.GotIndex = Old.GotIndex;
476   Sym.VerdefIndex = Old.VerdefIndex;
477   Sym.IsInGlobalMipsGot = Old.IsInGlobalMipsGot;
478   Sym.IsPreemptible = true;
479   Sym.ExportDynamic = true;
480   Sym.IsUsedInRegularObj = true;
481   Sym.Used = true;
482 }
483 
484 // Reserve space in .bss or .bss.rel.ro for copy relocation.
485 //
486 // The copy relocation is pretty much a hack. If you use a copy relocation
487 // in your program, not only the symbol name but the symbol's size, RW/RO
488 // bit and alignment become part of the ABI. In addition to that, if the
489 // symbol has aliases, the aliases become part of the ABI. That's subtle,
490 // but if you violate that implicit ABI, that can cause very counter-
491 // intuitive consequences.
492 //
493 // So, what is the copy relocation? It's for linking non-position
494 // independent code to DSOs. In an ideal world, all references to data
495 // exported by DSOs should go indirectly through GOT. But if object files
496 // are compiled as non-PIC, all data references are direct. There is no
497 // way for the linker to transform the code to use GOT, as machine
498 // instructions are already set in stone in object files. This is where
499 // the copy relocation takes a role.
500 //
501 // A copy relocation instructs the dynamic linker to copy data from a DSO
502 // to a specified address (which is usually in .bss) at load-time. If the
503 // static linker (that's us) finds a direct data reference to a DSO
504 // symbol, it creates a copy relocation, so that the symbol can be
505 // resolved as if it were in .bss rather than in a DSO.
506 //
507 // As you can see in this function, we create a copy relocation for the
508 // dynamic linker, and the relocation contains not only symbol name but
509 // various other informtion about the symbol. So, such attributes become a
510 // part of the ABI.
511 //
512 // Note for application developers: I can give you a piece of advice if
513 // you are writing a shared library. You probably should export only
514 // functions from your library. You shouldn't export variables.
515 //
516 // As an example what can happen when you export variables without knowing
517 // the semantics of copy relocations, assume that you have an exported
518 // variable of type T. It is an ABI-breaking change to add new members at
519 // end of T even though doing that doesn't change the layout of the
520 // existing members. That's because the space for the new members are not
521 // reserved in .bss unless you recompile the main program. That means they
522 // are likely to overlap with other data that happens to be laid out next
523 // to the variable in .bss. This kind of issue is sometimes very hard to
524 // debug. What's a solution? Instead of exporting a varaible V from a DSO,
525 // define an accessor getV().
526 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &SS) {
527   // Copy relocation against zero-sized symbol doesn't make sense.
528   uint64_t SymSize = SS.getSize();
529   if (SymSize == 0)
530     fatal("cannot create a copy relocation for symbol " + toString(SS));
531 
532   // See if this symbol is in a read-only segment. If so, preserve the symbol's
533   // memory protection by reserving space in the .bss.rel.ro section.
534   bool IsReadOnly = isReadOnly<ELFT>(SS);
535   BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss",
536                                      SymSize, SS.Alignment);
537   if (IsReadOnly)
538     InX::BssRelRo->getParent()->addSection(Sec);
539   else
540     InX::Bss->getParent()->addSection(Sec);
541 
542   // Look through the DSO's dynamic symbol table for aliases and create a
543   // dynamic symbol for each one. This causes the copy relocation to correctly
544   // interpose any aliases.
545   for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS))
546     replaceWithDefined(*Sym, Sec, 0, Sym->Size);
547 
548   InX::RelaDyn->addReloc(Target->CopyRel, Sec, 0, &SS);
549 }
550 
551 // MIPS has an odd notion of "paired" relocations to calculate addends.
552 // For example, if a relocation is of R_MIPS_HI16, there must be a
553 // R_MIPS_LO16 relocation after that, and an addend is calculated using
554 // the two relocations.
555 template <class ELFT, class RelTy>
556 static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End,
557                                  InputSectionBase &Sec, RelExpr Expr,
558                                  bool IsLocal) {
559   if (Expr == R_MIPS_GOTREL && IsLocal)
560     return Sec.getFile<ELFT>()->MipsGp0;
561 
562   // The ABI says that the paired relocation is used only for REL.
563   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
564   if (RelTy::IsRela)
565     return 0;
566 
567   RelType Type = Rel.getType(Config->IsMips64EL);
568   uint32_t PairTy = getMipsPairType(Type, IsLocal);
569   if (PairTy == R_MIPS_NONE)
570     return 0;
571 
572   const uint8_t *Buf = Sec.Data.data();
573   uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);
574 
575   // To make things worse, paired relocations might not be contiguous in
576   // the relocation table, so we need to do linear search. *sigh*
577   for (const RelTy *RI = &Rel; RI != End; ++RI)
578     if (RI->getType(Config->IsMips64EL) == PairTy &&
579         RI->getSymbol(Config->IsMips64EL) == SymIndex)
580       return Target->getImplicitAddend(Buf + RI->r_offset, PairTy);
581 
582   warn("can't find matching " + toString(PairTy) + " relocation for " +
583        toString(Type));
584   return 0;
585 }
586 
587 // Returns an addend of a given relocation. If it is RELA, an addend
588 // is in a relocation itself. If it is REL, we need to read it from an
589 // input section.
590 template <class ELFT, class RelTy>
591 static int64_t computeAddend(const RelTy &Rel, const RelTy *End,
592                              InputSectionBase &Sec, RelExpr Expr,
593                              bool IsLocal) {
594   int64_t Addend;
595   RelType Type = Rel.getType(Config->IsMips64EL);
596 
597   if (RelTy::IsRela) {
598     Addend = getAddend<ELFT>(Rel);
599   } else {
600     const uint8_t *Buf = Sec.Data.data();
601     Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type);
602   }
603 
604   if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC)
605     Addend += getPPC64TocBase();
606   if (Config->EMachine == EM_MIPS)
607     Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal);
608 
609   return Addend;
610 }
611 
612 // Report an undefined symbol if necessary.
613 // Returns true if this function printed out an error message.
614 static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec,
615                                  uint64_t Offset) {
616   if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll)
617     return false;
618 
619   if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak())
620     return false;
621 
622   bool CanBeExternal =
623       Sym.computeBinding() != STB_LOCAL && Sym.Visibility == STV_DEFAULT;
624   if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)
625     return false;
626 
627   std::string Msg =
628       "undefined symbol: " + toString(Sym) + "\n>>> referenced by ";
629 
630   std::string Src = Sec.getSrcMsg(Sym, Offset);
631   if (!Src.empty())
632     Msg += Src + "\n>>>               ";
633   Msg += Sec.getObjMsg(Offset);
634 
635   if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) ||
636       Config->NoinhibitExec) {
637     warn(Msg);
638     return false;
639   }
640 
641   error(Msg);
642   return true;
643 }
644 
645 // MIPS N32 ABI treats series of successive relocations with the same offset
646 // as a single relocation. The similar approach used by N64 ABI, but this ABI
647 // packs all relocations into the single relocation record. Here we emulate
648 // this for the N32 ABI. Iterate over relocation with the same offset and put
649 // theirs types into the single bit-set.
650 template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) {
651   RelType Type = 0;
652   uint64_t Offset = Rel->r_offset;
653 
654   int N = 0;
655   while (Rel != End && Rel->r_offset == Offset)
656     Type |= (Rel++)->getType(Config->IsMips64EL) << (8 * N++);
657   return Type;
658 }
659 
660 // .eh_frame sections are mergeable input sections, so their input
661 // offsets are not linearly mapped to output section. For each input
662 // offset, we need to find a section piece containing the offset and
663 // add the piece's base address to the input offset to compute the
664 // output offset. That isn't cheap.
665 //
666 // This class is to speed up the offset computation. When we process
667 // relocations, we access offsets in the monotonically increasing
668 // order. So we can optimize for that access pattern.
669 //
670 // For sections other than .eh_frame, this class doesn't do anything.
671 namespace {
672 class OffsetGetter {
673 public:
674   explicit OffsetGetter(InputSectionBase &Sec) {
675     if (auto *Eh = dyn_cast<EhInputSection>(&Sec))
676       Pieces = Eh->Pieces;
677   }
678 
679   // Translates offsets in input sections to offsets in output sections.
680   // Given offset must increase monotonically. We assume that Piece is
681   // sorted by InputOff.
682   uint64_t get(uint64_t Off) {
683     if (Pieces.empty())
684       return Off;
685 
686     while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off)
687       ++I;
688     if (I == Pieces.size())
689       return Off;
690 
691     // Pieces must be contiguous, so there must be no holes in between.
692     assert(Pieces[I].InputOff <= Off && "Relocation not in any piece");
693 
694     // Offset -1 means that the piece is dead (i.e. garbage collected).
695     if (Pieces[I].OutputOff == -1)
696       return -1;
697     return Pieces[I].OutputOff + Off - Pieces[I].InputOff;
698   }
699 
700 private:
701   ArrayRef<EhSectionPiece> Pieces;
702   size_t I = 0;
703 };
704 } // namespace
705 
706 template <class ELFT, class GotPltSection>
707 static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt,
708                         RelocationBaseSection *Rel, RelType Type, Symbol &Sym) {
709   Plt->addEntry<ELFT>(Sym);
710   GotPlt->addEntry(Sym);
711   Rel->addReloc(
712       {Type, GotPlt, Sym.getGotPltOffset(), !Sym.IsPreemptible, &Sym, 0});
713 }
714 
715 template <class ELFT> static void addGotEntry(Symbol &Sym) {
716   InX::Got->addEntry(Sym);
717 
718   RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS;
719   uint64_t Off = Sym.getGotOffset();
720 
721   // If a GOT slot value can be calculated at link-time, which is now,
722   // we can just fill that out.
723   //
724   // (We don't actually write a value to a GOT slot right now, but we
725   // add a static relocation to a Relocations vector so that
726   // InputSection::relocate will do the work for us. We may be able
727   // to just write a value now, but it is a TODO.)
728   bool IsLinkTimeConstant =
729       !Sym.IsPreemptible && (!Config->Pic || isAbsolute(Sym));
730   if (IsLinkTimeConstant) {
731     InX::Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym});
732     return;
733   }
734 
735   // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
736   // the GOT slot will be fixed at load-time.
737   RelType Type;
738   if (Sym.isTls())
739     Type = Target->TlsGotRel;
740   else if (!Sym.IsPreemptible && Config->Pic && !isAbsolute(Sym))
741     Type = Target->RelativeRel;
742   else
743     Type = Target->GotRel;
744   InX::RelaDyn->addReloc(Type, InX::Got, Off, &Sym, 0,
745                          Sym.IsPreemptible ? R_ADDEND : R_ABS, Target->GotRel);
746 }
747 
748 // Return true if we can define a symbol in the executable that
749 // contains the value/function of a symbol defined in a shared
750 // library.
751 static bool canDefineSymbolInExecutable(Symbol &Sym) {
752   // If the symbol has default visibility the symbol defined in the
753   // executable will preempt it.
754   // Note that we want the visibility of the shared symbol itself, not
755   // the visibility of the symbol in the output file we are producing. That is
756   // why we use Sym.StOther.
757   if ((Sym.StOther & 0x3) == STV_DEFAULT)
758     return true;
759 
760   // If we are allowed to break address equality of functions, defining
761   // a plt entry will allow the program to call the function in the
762   // .so, but the .so and the executable will no agree on the address
763   // of the function. Similar logic for objects.
764   return ((Sym.isFunc() && Config->IgnoreFunctionAddressEquality) ||
765           (Sym.isObject() && Config->IgnoreDataAddressEquality));
766 }
767 
768 // The reason we have to do this early scan is as follows
769 // * To mmap the output file, we need to know the size
770 // * For that, we need to know how many dynamic relocs we will have.
771 // It might be possible to avoid this by outputting the file with write:
772 // * Write the allocated output sections, computing addresses.
773 // * Apply relocations, recording which ones require a dynamic reloc.
774 // * Write the dynamic relocations.
775 // * Write the rest of the file.
776 // This would have some drawbacks. For example, we would only know if .rela.dyn
777 // is needed after applying relocations. If it is, it will go after rw and rx
778 // sections. Given that it is ro, we will need an extra PT_LOAD. This
779 // complicates things for the dynamic linker and means we would have to reserve
780 // space for the extra PT_LOAD even if we end up not using it.
781 template <class ELFT, class RelTy>
782 static void processRelocAux(InputSectionBase &Sec, RelExpr Expr, RelType Type,
783                             uint64_t Offset, Symbol &Sym, const RelTy &Rel,
784                             int64_t Addend) {
785   if (isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Offset)) {
786     Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
787     return;
788   }
789   bool CanWrite = (Sec.Flags & SHF_WRITE) || !Config->ZText;
790   if (CanWrite) {
791     // R_GOT refers to a position in the got, even if the symbol is preemptible.
792     bool IsPreemptibleValue = Sym.IsPreemptible && Expr != R_GOT;
793 
794     if (!IsPreemptibleValue) {
795       InX::RelaDyn->addReloc(Target->RelativeRel, &Sec, Offset, &Sym, Addend,
796                              Expr, Type);
797       return;
798     } else if (RelType Rel = Target->getDynRel(Type)) {
799       InX::RelaDyn->addReloc(Rel, &Sec, Offset, &Sym, Addend, R_ADDEND, Type);
800 
801       // MIPS ABI turns using of GOT and dynamic relocations inside out.
802       // While regular ABI uses dynamic relocations to fill up GOT entries
803       // MIPS ABI requires dynamic linker to fills up GOT entries using
804       // specially sorted dynamic symbol table. This affects even dynamic
805       // relocations against symbols which do not require GOT entries
806       // creation explicitly, i.e. do not have any GOT-relocations. So if
807       // a preemptible symbol has a dynamic relocation we anyway have
808       // to create a GOT entry for it.
809       // If a non-preemptible symbol has a dynamic relocation against it,
810       // dynamic linker takes it st_value, adds offset and writes down
811       // result of the dynamic relocation. In case of preemptible symbol
812       // dynamic linker performs symbol resolution, writes the symbol value
813       // to the GOT entry and reads the GOT entry when it needs to perform
814       // a dynamic relocation.
815       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
816       if (Config->EMachine == EM_MIPS)
817         InX::MipsGot->addEntry(Sym, Addend, Expr);
818       return;
819     }
820   }
821 
822   // If the relocation is to a weak undef, and we are producing
823   // executable, give up on it and produce a non preemptible 0.
824   if (!Config->Shared && Sym.isUndefWeak()) {
825     Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
826     return;
827   }
828 
829   if (!CanWrite && (Config->Pic && !isRelExpr(Expr))) {
830     error(
831         "can't create dynamic relocation " + toString(Type) + " against " +
832         (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) +
833         " in readonly segment; recompile object files with -fPIC "
834         "or pass '-Wl,-z,notext' to allow text relocations in the output" +
835         getLocation(Sec, Sym, Offset));
836     return;
837   }
838 
839   // Copy relocations are only possible if we are creating an executable.
840   if (Config->Shared) {
841     errorOrWarn("relocation " + toString(Type) +
842                 " cannot be used against symbol " + toString(Sym) +
843                 "; recompile with -fPIC" + getLocation(Sec, Sym, Offset));
844     return;
845   }
846 
847   // If the symbol is undefined we already reported any relevant errors.
848   if (Sym.isUndefined())
849     return;
850 
851   if (!canDefineSymbolInExecutable(Sym)) {
852     error("cannot preempt symbol: " + toString(Sym) +
853           getLocation(Sec, Sym, Offset));
854     return;
855   }
856 
857   if (Sym.isObject()) {
858     // Produce a copy relocation.
859     if (auto *SS = dyn_cast<SharedSymbol>(&Sym)) {
860       if (!Config->ZCopyreloc)
861         error("unresolvable relocation " + toString(Type) +
862               " against symbol '" + toString(*SS) +
863               "'; recompile with -fPIC or remove '-z nocopyreloc'" +
864               getLocation(Sec, Sym, Offset));
865       addCopyRelSymbol<ELFT>(*SS);
866     }
867     Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
868     return;
869   }
870 
871   if (Sym.isFunc()) {
872     // This handles a non PIC program call to function in a shared library. In
873     // an ideal world, we could just report an error saying the relocation can
874     // overflow at runtime. In the real world with glibc, crt1.o has a
875     // R_X86_64_PC32 pointing to libc.so.
876     //
877     // The general idea on how to handle such cases is to create a PLT entry and
878     // use that as the function value.
879     //
880     // For the static linking part, we just return a plt expr and everything
881     // else will use the PLT entry as the address.
882     //
883     // The remaining problem is making sure pointer equality still works. We
884     // need the help of the dynamic linker for that. We let it know that we have
885     // a direct reference to a so symbol by creating an undefined symbol with a
886     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
887     // the value of the symbol we created. This is true even for got entries, so
888     // pointer equality is maintained. To avoid an infinite loop, the only entry
889     // that points to the real function is a dedicated got entry used by the
890     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
891     // R_386_JMP_SLOT, etc).
892 
893     // For position independent executable on i386, the plt entry requires ebx
894     // to be set. This causes two problems:
895     // * If some code has a direct reference to a function, it was probably
896     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
897     // * If a library definition gets preempted to the executable, it will have
898     //   the wrong ebx value.
899     if (Config->Pie && Config->EMachine == EM_386)
900       errorOrWarn("symbol '" + toString(Sym) +
901                   "' cannot be preempted; recompile with -fPIE" +
902                   getLocation(Sec, Sym, Offset));
903     if (!Sym.isInPlt())
904       addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel,
905                         Sym);
906     if (!Sym.isDefined())
907       replaceWithDefined(Sym, InX::Plt, Sym.getPltOffset(), 0);
908     Sym.NeedsPltAddr = true;
909     Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
910     return;
911   }
912 
913   errorOrWarn("symbol '" + toString(Sym) + "' has no type" +
914               getLocation(Sec, Sym, Offset));
915 }
916 
917 template <class ELFT, class RelTy>
918 static void scanReloc(InputSectionBase &Sec, OffsetGetter &GetOffset, RelTy *&I,
919                       RelTy *End) {
920   const RelTy &Rel = *I;
921   Symbol &Sym = Sec.getFile<ELFT>()->getRelocTargetSym(Rel);
922   RelType Type;
923 
924   // Deal with MIPS oddity.
925   if (Config->MipsN32Abi) {
926     Type = getMipsN32RelType(I, End);
927   } else {
928     Type = Rel.getType(Config->IsMips64EL);
929     ++I;
930   }
931 
932   // Get an offset in an output section this relocation is applied to.
933   uint64_t Offset = GetOffset.get(Rel.r_offset);
934   if (Offset == uint64_t(-1))
935     return;
936 
937   // Skip if the target symbol is an erroneous undefined symbol.
938   if (maybeReportUndefined(Sym, Sec, Rel.r_offset))
939     return;
940 
941   const uint8_t *RelocatedAddr = Sec.Data.begin() + Rel.r_offset;
942   RelExpr Expr = Target->getRelExpr(Type, Sym, RelocatedAddr);
943 
944   // Ignore "hint" relocations because they are only markers for relaxation.
945   if (isRelExprOneOf<R_HINT, R_NONE>(Expr))
946     return;
947 
948   // Strenghten or relax relocations.
949   //
950   // GNU ifunc symbols must be accessed via PLT because their addresses
951   // are determined by runtime.
952   //
953   // On the other hand, if we know that a PLT entry will be resolved within
954   // the same ELF module, we can skip PLT access and directly jump to the
955   // destination function. For example, if we are linking a main exectuable,
956   // all dynamic symbols that can be resolved within the executable will
957   // actually be resolved that way at runtime, because the main exectuable
958   // is always at the beginning of a search list. We can leverage that fact.
959   if (Sym.isGnuIFunc())
960     Expr = toPlt(Expr);
961   else if (!Sym.IsPreemptible && Expr == R_GOT_PC && !isAbsoluteValue(Sym))
962     Expr = Target->adjustRelaxExpr(Type, RelocatedAddr, Expr);
963   else if (!Sym.IsPreemptible)
964     Expr = fromPlt(Expr);
965 
966   // This relocation does not require got entry, but it is relative to got and
967   // needs it to be created. Here we request for that.
968   if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL,
969                      R_GOTREL_FROM_END, R_PPC_TOC>(Expr))
970     InX::Got->HasGotOffRel = true;
971 
972   // Read an addend.
973   int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());
974 
975   // Process some TLS relocations, including relaxing TLS relocations.
976   // Note that this function does not handle all TLS relocations.
977   if (unsigned Processed =
978           handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) {
979     I += (Processed - 1);
980     return;
981   }
982 
983   // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
984   if (needsPlt(Expr) && !Sym.isInPlt()) {
985     if (Sym.isGnuIFunc() && !Sym.IsPreemptible)
986       addPltEntry<ELFT>(InX::Iplt, InX::IgotPlt, InX::RelaIplt,
987                         Target->IRelativeRel, Sym);
988     else
989       addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel,
990                         Sym);
991   }
992 
993   // Create a GOT slot if a relocation needs GOT.
994   if (needsGot(Expr)) {
995     if (Config->EMachine == EM_MIPS) {
996       // MIPS ABI has special rules to process GOT entries and doesn't
997       // require relocation entries for them. A special case is TLS
998       // relocations. In that case dynamic loader applies dynamic
999       // relocations to initialize TLS GOT entries.
1000       // See "Global Offset Table" in Chapter 5 in the following document
1001       // for detailed description:
1002       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1003       InX::MipsGot->addEntry(Sym, Addend, Expr);
1004       if (Sym.isTls() && Sym.IsPreemptible)
1005         InX::RelaDyn->addReloc(Target->TlsGotRel, InX::MipsGot,
1006                                Sym.getGotOffset(), &Sym);
1007     } else if (!Sym.isInGot()) {
1008       addGotEntry<ELFT>(Sym);
1009     }
1010   }
1011 
1012   processRelocAux<ELFT>(Sec, Expr, Type, Offset, Sym, Rel, Addend);
1013 }
1014 
1015 template <class ELFT, class RelTy>
1016 static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) {
1017   OffsetGetter GetOffset(Sec);
1018 
1019   // Not all relocations end up in Sec.Relocations, but a lot do.
1020   Sec.Relocations.reserve(Rels.size());
1021 
1022   for (auto I = Rels.begin(), End = Rels.end(); I != End;)
1023     scanReloc<ELFT>(Sec, GetOffset, I, End);
1024 }
1025 
1026 template <class ELFT> void elf::scanRelocations(InputSectionBase &S) {
1027   if (S.AreRelocsRela)
1028     scanRelocs<ELFT>(S, S.relas<ELFT>());
1029   else
1030     scanRelocs<ELFT>(S, S.rels<ELFT>());
1031 }
1032 
1033 // Thunk Implementation
1034 //
1035 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1036 // of code that the linker inserts inbetween a caller and a callee. The thunks
1037 // are added at link time rather than compile time as the decision on whether
1038 // a thunk is needed, such as the caller and callee being out of range, can only
1039 // be made at link time.
1040 //
1041 // It is straightforward to tell given the current state of the program when a
1042 // thunk is needed for a particular call. The more difficult part is that
1043 // the thunk needs to be placed in the program such that the caller can reach
1044 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1045 // the program alters addresses, which can mean more thunks etc.
1046 //
1047 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1048 // The decision to have a ThunkSection act as a container means that we can
1049 // more easily handle the most common case of a single block of contiguous
1050 // Thunks by inserting just a single ThunkSection.
1051 //
1052 // The implementation of Thunks in lld is split across these areas
1053 // Relocations.cpp : Framework for creating and placing thunks
1054 // Thunks.cpp : The code generated for each supported thunk
1055 // Target.cpp : Target specific hooks that the framework uses to decide when
1056 //              a thunk is used
1057 // Synthetic.cpp : Implementation of ThunkSection
1058 // Writer.cpp : Iteratively call framework until no more Thunks added
1059 //
1060 // Thunk placement requirements:
1061 // Mips LA25 thunks. These must be placed immediately before the callee section
1062 // We can assume that the caller is in range of the Thunk. These are modelled
1063 // by Thunks that return the section they must precede with
1064 // getTargetInputSection().
1065 //
1066 // ARM interworking and range extension thunks. These thunks must be placed
1067 // within range of the caller. All implemented ARM thunks can always reach the
1068 // callee as they use an indirect jump via a register that has no range
1069 // restrictions.
1070 //
1071 // Thunk placement algorithm:
1072 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1073 // getTargetInputSection().
1074 //
1075 // For thunks that must be placed within range of the caller there are many
1076 // possible choices given that the maximum range from the caller is usually
1077 // much larger than the average InputSection size. Desirable properties include:
1078 // - Maximize reuse of thunks by multiple callers
1079 // - Minimize number of ThunkSections to simplify insertion
1080 // - Handle impact of already added Thunks on addresses
1081 // - Simple to understand and implement
1082 //
1083 // In lld for the first pass, we pre-create one or more ThunkSections per
1084 // InputSectionDescription at Target specific intervals. A ThunkSection is
1085 // placed so that the estimated end of the ThunkSection is within range of the
1086 // start of the InputSectionDescription or the previous ThunkSection. For
1087 // example:
1088 // InputSectionDescription
1089 // Section 0
1090 // ...
1091 // Section N
1092 // ThunkSection 0
1093 // Section N + 1
1094 // ...
1095 // Section N + K
1096 // Thunk Section 1
1097 //
1098 // The intention is that we can add a Thunk to a ThunkSection that is well
1099 // spaced enough to service a number of callers without having to do a lot
1100 // of work. An important principle is that it is not an error if a Thunk cannot
1101 // be placed in a pre-created ThunkSection; when this happens we create a new
1102 // ThunkSection placed next to the caller. This allows us to handle the vast
1103 // majority of thunks simply, but also handle rare cases where the branch range
1104 // is smaller than the target specific spacing.
1105 //
1106 // The algorithm is expected to create all the thunks that are needed in a
1107 // single pass, with a small number of programs needing a second pass due to
1108 // the insertion of thunks in the first pass increasing the offset between
1109 // callers and callees that were only just in range.
1110 //
1111 // A consequence of allowing new ThunkSections to be created outside of the
1112 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1113 // range in pass K, are out of range in some pass > K due to the insertion of
1114 // more Thunks in between the caller and callee. When this happens we retarget
1115 // the relocation back to the original target and create another Thunk.
1116 
1117 // Remove ThunkSections that are empty, this should only be the initial set
1118 // precreated on pass 0.
1119 
1120 // Insert the Thunks for OutputSection OS into their designated place
1121 // in the Sections vector, and recalculate the InputSection output section
1122 // offsets.
1123 // This may invalidate any output section offsets stored outside of InputSection
1124 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) {
1125   forEachInputSectionDescription(
1126       OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
1127         if (ISD->ThunkSections.empty())
1128           return;
1129 
1130         // Remove any zero sized precreated Thunks.
1131         llvm::erase_if(ISD->ThunkSections,
1132                        [](const std::pair<ThunkSection *, uint32_t> &TS) {
1133                          return TS.first->getSize() == 0;
1134                        });
1135         // ISD->ThunkSections contains all created ThunkSections, including
1136         // those inserted in previous passes. Extract the Thunks created this
1137         // pass and order them in ascending OutSecOff.
1138         std::vector<ThunkSection *> NewThunks;
1139         for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections)
1140           if (TS.second == Pass)
1141             NewThunks.push_back(TS.first);
1142         std::stable_sort(NewThunks.begin(), NewThunks.end(),
1143                          [](const ThunkSection *A, const ThunkSection *B) {
1144                            return A->OutSecOff < B->OutSecOff;
1145                          });
1146 
1147         // Merge sorted vectors of Thunks and InputSections by OutSecOff
1148         std::vector<InputSection *> Tmp;
1149         Tmp.reserve(ISD->Sections.size() + NewThunks.size());
1150         auto MergeCmp = [](const InputSection *A, const InputSection *B) {
1151           // std::merge requires a strict weak ordering.
1152           if (A->OutSecOff < B->OutSecOff)
1153             return true;
1154           if (A->OutSecOff == B->OutSecOff) {
1155             auto *TA = dyn_cast<ThunkSection>(A);
1156             auto *TB = dyn_cast<ThunkSection>(B);
1157             // Check if Thunk is immediately before any specific Target
1158             // InputSection for example Mips LA25 Thunks.
1159             if (TA && TA->getTargetInputSection() == B)
1160               return true;
1161             if (TA && !TB && !TA->getTargetInputSection())
1162               // Place Thunk Sections without specific targets before
1163               // non-Thunk Sections.
1164               return true;
1165           }
1166           return false;
1167         };
1168         std::merge(ISD->Sections.begin(), ISD->Sections.end(),
1169                    NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp),
1170                    MergeCmp);
1171         ISD->Sections = std::move(Tmp);
1172       });
1173 }
1174 
1175 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1176 // is in range of Src. An ISD maps to a range of InputSections described by a
1177 // linker script section pattern such as { .text .text.* }.
1178 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS,
1179                                            InputSectionDescription *ISD,
1180                                            uint32_t Type, uint64_t Src) {
1181   for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) {
1182     ThunkSection *TS = TP.first;
1183     uint64_t TSBase = OS->Addr + TS->OutSecOff;
1184     uint64_t TSLimit = TSBase + TS->getSize();
1185     if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit))
1186       return TS;
1187   }
1188 
1189   // No suitable ThunkSection exists. This can happen when there is a branch
1190   // with lower range than the ThunkSection spacing or when there are too
1191   // many Thunks. Create a new ThunkSection as close to the InputSection as
1192   // possible. Error if InputSection is so large we cannot place ThunkSection
1193   // anywhere in Range.
1194   uint64_t ThunkSecOff = IS->OutSecOff;
1195   if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) {
1196     ThunkSecOff = IS->OutSecOff + IS->getSize();
1197     if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff))
1198       fatal("InputSection too large for range extension thunk " +
1199             IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff)));
1200   }
1201   return addThunkSection(OS, ISD, ThunkSecOff);
1202 }
1203 
1204 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1205 // precedes its Target.
1206 ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) {
1207   ThunkSection *TS = ThunkedSections.lookup(IS);
1208   if (TS)
1209     return TS;
1210 
1211   // Find InputSectionRange within Target Output Section (TOS) that the
1212   // InputSection (IS) that we need to precede is in.
1213   OutputSection *TOS = IS->getParent();
1214   for (BaseCommand *BC : TOS->SectionCommands)
1215     if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
1216       if (ISD->Sections.empty())
1217         continue;
1218       InputSection *first = ISD->Sections.front();
1219       InputSection *last = ISD->Sections.back();
1220       if (IS->OutSecOff >= first->OutSecOff &&
1221           IS->OutSecOff <= last->OutSecOff) {
1222         TS = addThunkSection(TOS, ISD, IS->OutSecOff);
1223         ThunkedSections[IS] = TS;
1224         break;
1225       }
1226     }
1227   return TS;
1228 }
1229 
1230 // Create one or more ThunkSections per OS that can be used to place Thunks.
1231 // We attempt to place the ThunkSections using the following desirable
1232 // properties:
1233 // - Within range of the maximum number of callers
1234 // - Minimise the number of ThunkSections
1235 //
1236 // We follow a simple but conservative heuristic to place ThunkSections at
1237 // offsets that are multiples of a Target specific branch range.
1238 // For an InputSectionDescription that is smaller than the range, a single
1239 // ThunkSection at the end of the range will do.
1240 //
1241 // For an InputSectionDescription that is more than twice the size of the range,
1242 // we place the last ThunkSection at range bytes from the end of the
1243 // InputSectionDescription in order to increase the likelihood that the
1244 // distance from a thunk to its target will be sufficiently small to
1245 // allow for the creation of a short thunk.
1246 void ThunkCreator::createInitialThunkSections(
1247     ArrayRef<OutputSection *> OutputSections) {
1248   forEachInputSectionDescription(
1249       OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
1250         if (ISD->Sections.empty())
1251           return;
1252         uint32_t ISDBegin = ISD->Sections.front()->OutSecOff;
1253         uint32_t ISDEnd =
1254             ISD->Sections.back()->OutSecOff + ISD->Sections.back()->getSize();
1255         uint32_t LastThunkLowerBound = -1;
1256         if (ISDEnd - ISDBegin > Target->ThunkSectionSpacing * 2)
1257           LastThunkLowerBound = ISDEnd - Target->ThunkSectionSpacing;
1258 
1259         uint32_t ISLimit;
1260         uint32_t PrevISLimit = ISDBegin;
1261         uint32_t ThunkUpperBound = ISDBegin + Target->ThunkSectionSpacing;
1262 
1263         for (const InputSection *IS : ISD->Sections) {
1264           ISLimit = IS->OutSecOff + IS->getSize();
1265           if (ISLimit > ThunkUpperBound) {
1266             addThunkSection(OS, ISD, PrevISLimit);
1267             ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
1268           }
1269           if (ISLimit > LastThunkLowerBound)
1270             break;
1271           PrevISLimit = ISLimit;
1272         }
1273         addThunkSection(OS, ISD, ISLimit);
1274       });
1275 }
1276 
1277 ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS,
1278                                             InputSectionDescription *ISD,
1279                                             uint64_t Off) {
1280   auto *TS = make<ThunkSection>(OS, Off);
1281   ISD->ThunkSections.push_back(std::make_pair(TS, Pass));
1282   return TS;
1283 }
1284 
1285 std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type,
1286                                                 uint64_t Src) {
1287   std::vector<Thunk *> *ThunkVec = nullptr;
1288   // We use (section, offset) pair to find the thunk position if possible so
1289   // that we create only one thunk for aliased symbols or ICFed sections.
1290   if (auto *D = dyn_cast<Defined>(&Sym))
1291     if (!D->isInPlt() && D->Section)
1292       ThunkVec = &ThunkedSymbolsBySection[{D->Section->Repl, D->Value}];
1293   if (!ThunkVec)
1294     ThunkVec = &ThunkedSymbols[&Sym];
1295   // Check existing Thunks for Sym to see if they can be reused
1296   for (Thunk *ET : *ThunkVec)
1297     if (ET->isCompatibleWith(Type) &&
1298         Target->inBranchRange(Type, Src, ET->getThunkTargetSym()->getVA()))
1299       return std::make_pair(ET, false);
1300   // No existing compatible Thunk in range, create a new one
1301   Thunk *T = addThunk(Type, Sym);
1302   ThunkVec->push_back(T);
1303   return std::make_pair(T, true);
1304 }
1305 
1306 // Call Fn on every executable InputSection accessed via the linker script
1307 // InputSectionDescription::Sections.
1308 void ThunkCreator::forEachInputSectionDescription(
1309     ArrayRef<OutputSection *> OutputSections,
1310     std::function<void(OutputSection *, InputSectionDescription *)> Fn) {
1311   for (OutputSection *OS : OutputSections) {
1312     if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
1313       continue;
1314     for (BaseCommand *BC : OS->SectionCommands)
1315       if (auto *ISD = dyn_cast<InputSectionDescription>(BC))
1316         Fn(OS, ISD);
1317   }
1318 }
1319 
1320 // Return true if the relocation target is an in range Thunk.
1321 // Return false if the relocation is not to a Thunk. If the relocation target
1322 // was originally to a Thunk, but is no longer in range we revert the
1323 // relocation back to its original non-Thunk target.
1324 bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) {
1325   if (Thunk *ET = Thunks.lookup(Rel.Sym)) {
1326     if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA()))
1327       return true;
1328     Rel.Sym = &ET->Destination;
1329     if (Rel.Sym->isInPlt())
1330       Rel.Expr = toPlt(Rel.Expr);
1331   }
1332   return false;
1333 }
1334 
1335 // Process all relocations from the InputSections that have been assigned
1336 // to InputSectionDescriptions and redirect through Thunks if needed. The
1337 // function should be called iteratively until it returns false.
1338 //
1339 // PreConditions:
1340 // All InputSections that may need a Thunk are reachable from
1341 // OutputSectionCommands.
1342 //
1343 // All OutputSections have an address and all InputSections have an offset
1344 // within the OutputSection.
1345 //
1346 // The offsets between caller (relocation place) and callee
1347 // (relocation target) will not be modified outside of createThunks().
1348 //
1349 // PostConditions:
1350 // If return value is true then ThunkSections have been inserted into
1351 // OutputSections. All relocations that needed a Thunk based on the information
1352 // available to createThunks() on entry have been redirected to a Thunk. Note
1353 // that adding Thunks changes offsets between caller and callee so more Thunks
1354 // may be required.
1355 //
1356 // If return value is false then no more Thunks are needed, and createThunks has
1357 // made no changes. If the target requires range extension thunks, currently
1358 // ARM, then any future change in offset between caller and callee risks a
1359 // relocation out of range error.
1360 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) {
1361   bool AddressesChanged = false;
1362   if (Pass == 0 && Target->ThunkSectionSpacing)
1363     createInitialThunkSections(OutputSections);
1364   else if (Pass == 10)
1365     // With Thunk Size much smaller than branch range we expect to
1366     // converge quickly; if we get to 10 something has gone wrong.
1367     fatal("thunk creation not converged");
1368 
1369   // Create all the Thunks and insert them into synthetic ThunkSections. The
1370   // ThunkSections are later inserted back into InputSectionDescriptions.
1371   // We separate the creation of ThunkSections from the insertion of the
1372   // ThunkSections as ThunkSections are not always inserted into the same
1373   // InputSectionDescription as the caller.
1374   forEachInputSectionDescription(
1375       OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
1376         for (InputSection *IS : ISD->Sections)
1377           for (Relocation &Rel : IS->Relocations) {
1378             uint64_t Src = IS->getVA(Rel.Offset);
1379 
1380             // If we are a relocation to an existing Thunk, check if it is
1381             // still in range. If not then Rel will be altered to point to its
1382             // original target so another Thunk can be generated.
1383             if (Pass > 0 && normalizeExistingThunk(Rel, Src))
1384               continue;
1385 
1386             if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src,
1387                                     *Rel.Sym))
1388               continue;
1389             Thunk *T;
1390             bool IsNew;
1391             std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src);
1392             if (IsNew) {
1393               // Find or create a ThunkSection for the new Thunk
1394               ThunkSection *TS;
1395               if (auto *TIS = T->getTargetInputSection())
1396                 TS = getISThunkSec(TIS);
1397               else
1398                 TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src);
1399               TS->addThunk(T);
1400               Thunks[T->getThunkTargetSym()] = T;
1401             }
1402             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
1403             Rel.Sym = T->getThunkTargetSym();
1404             Rel.Expr = fromPlt(Rel.Expr);
1405           }
1406         for (auto &P : ISD->ThunkSections)
1407           AddressesChanged |= P.first->assignOffsets();
1408       });
1409   for (auto &P : ThunkedSections)
1410     AddressesChanged |= P.second->assignOffsets();
1411 
1412   // Merge all created synthetic ThunkSections back into OutputSection
1413   mergeThunks(OutputSections);
1414   ++Pass;
1415   return AddressesChanged;
1416 }
1417 
1418 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
1419 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
1420 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
1421 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
1422