1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains platform-independent functions to process relocations. 11 // I'll describe the overview of this file here. 12 // 13 // Simple relocations are easy to handle for the linker. For example, 14 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 15 // with the relative offsets to the target symbols. It would just be 16 // reading records from relocation sections and applying them to output. 17 // 18 // But not all relocations are that easy to handle. For example, for 19 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 20 // symbols if they don't exist, and fix up locations with GOT entry 21 // offsets from the beginning of GOT section. So there is more than 22 // fixing addresses in relocation processing. 23 // 24 // ELF defines a large number of complex relocations. 25 // 26 // The functions in this file analyze relocations and do whatever needs 27 // to be done. It includes, but not limited to, the following. 28 // 29 // - create GOT/PLT entries 30 // - create new relocations in .dynsym to let the dynamic linker resolve 31 // them at runtime (since ELF supports dynamic linking, not all 32 // relocations can be resolved at link-time) 33 // - create COPY relocs and reserve space in .bss 34 // - replace expensive relocs (in terms of runtime cost) with cheap ones 35 // - error out infeasible combinations such as PIC and non-relative relocs 36 // 37 // Note that the functions in this file don't actually apply relocations 38 // because it doesn't know about the output file nor the output file buffer. 39 // It instead stores Relocation objects to InputSection's Relocations 40 // vector to let it apply later in InputSection::writeTo. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "Relocations.h" 45 #include "Config.h" 46 #include "LinkerScript.h" 47 #include "OutputSections.h" 48 #include "SymbolTable.h" 49 #include "Symbols.h" 50 #include "SyntheticSections.h" 51 #include "Target.h" 52 #include "Thunks.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/Support/Endian.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 59 using namespace llvm; 60 using namespace llvm::ELF; 61 using namespace llvm::object; 62 using namespace llvm::support::endian; 63 64 using namespace lld; 65 using namespace lld::elf; 66 67 // Construct a message in the following format. 68 // 69 // >>> defined in /home/alice/src/foo.o 70 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 71 // >>> /home/alice/src/bar.o:(.text+0x1) 72 static std::string getLocation(InputSectionBase &S, const Symbol &Sym, 73 uint64_t Off) { 74 std::string Msg = 75 "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by "; 76 std::string Src = S.getSrcMsg(Sym, Off); 77 if (!Src.empty()) 78 Msg += Src + "\n>>> "; 79 return Msg + S.getObjMsg(Off); 80 } 81 82 // This function is similar to the `handleTlsRelocation`. MIPS does not 83 // support any relaxations for TLS relocations so by factoring out MIPS 84 // handling in to the separate function we can simplify the code and do not 85 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 86 // Mips has a custom MipsGotSection that handles the writing of GOT entries 87 // without dynamic relocations. 88 template <class ELFT> 89 static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym, 90 InputSectionBase &C, uint64_t Offset, 91 int64_t Addend, RelExpr Expr) { 92 if (Expr == R_MIPS_TLSLD) { 93 if (InX::MipsGot->addTlsIndex() && Config->Pic) 94 InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::MipsGot, 95 InX::MipsGot->getTlsIndexOff(), nullptr); 96 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 97 return 1; 98 } 99 100 if (Expr == R_MIPS_TLSGD) { 101 if (InX::MipsGot->addDynTlsEntry(Sym) && Sym.IsPreemptible) { 102 uint64_t Off = InX::MipsGot->getGlobalDynOffset(Sym); 103 InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::MipsGot, Off, 104 &Sym); 105 if (Sym.IsPreemptible) 106 InX::RelaDyn->addReloc(Target->TlsOffsetRel, InX::MipsGot, 107 Off + Config->Wordsize, &Sym); 108 } 109 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 110 return 1; 111 } 112 return 0; 113 } 114 115 // This function is similar to the `handleMipsTlsRelocation`. ARM also does not 116 // support any relaxations for TLS relocations. ARM is logically similar to Mips 117 // in how it handles TLS, but Mips uses its own custom GOT which handles some 118 // of the cases that ARM uses GOT relocations for. 119 // 120 // We look for TLS global dynamic and local dynamic relocations, these may 121 // require the generation of a pair of GOT entries that have associated 122 // dynamic relocations. When the results of the dynamic relocations can be 123 // resolved at static link time we do so. This is necessary for static linking 124 // as there will be no dynamic loader to resolve them at load-time. 125 // 126 // The pair of GOT entries created are of the form 127 // GOT[e0] Module Index (Used to find pointer to TLS block at run-time) 128 // GOT[e1] Offset of symbol in TLS block 129 template <class ELFT> 130 static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym, 131 InputSectionBase &C, uint64_t Offset, 132 int64_t Addend, RelExpr Expr) { 133 // The Dynamic TLS Module Index Relocation for a symbol defined in an 134 // executable is always 1. If the target Symbol is not preemptible then 135 // we know the offset into the TLS block at static link time. 136 bool NeedDynId = Sym.IsPreemptible || Config->Shared; 137 bool NeedDynOff = Sym.IsPreemptible; 138 139 auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) { 140 if (Dyn) 141 InX::RelaDyn->addReloc(Type, InX::Got, Off, Dest); 142 else 143 InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest}); 144 }; 145 146 // Local Dynamic is for access to module local TLS variables, while still 147 // being suitable for being dynamically loaded via dlopen. 148 // GOT[e0] is the module index, with a special value of 0 for the current 149 // module. GOT[e1] is unused. There only needs to be one module index entry. 150 if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) { 151 AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel, 152 NeedDynId ? nullptr : &Sym, NeedDynId); 153 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 154 return 1; 155 } 156 157 // Global Dynamic is the most general purpose access model. When we know 158 // the module index and offset of symbol in TLS block we can fill these in 159 // using static GOT relocations. 160 if (Expr == R_TLSGD_PC) { 161 if (InX::Got->addDynTlsEntry(Sym)) { 162 uint64_t Off = InX::Got->getGlobalDynOffset(Sym); 163 AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId); 164 AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym, 165 NeedDynOff); 166 } 167 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 168 return 1; 169 } 170 return 0; 171 } 172 173 // Returns the number of relocations processed. 174 template <class ELFT> 175 static unsigned 176 handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C, 177 typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { 178 if (!(C.Flags & SHF_ALLOC)) 179 return 0; 180 181 if (!Sym.isTls()) 182 return 0; 183 184 if (Config->EMachine == EM_ARM) 185 return handleARMTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr); 186 if (Config->EMachine == EM_MIPS) 187 return handleMipsTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr); 188 189 if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) && 190 Config->Shared) { 191 if (InX::Got->addDynTlsEntry(Sym)) { 192 uint64_t Off = InX::Got->getGlobalDynOffset(Sym); 193 InX::RelaDyn->addReloc( 194 {Target->TlsDescRel, InX::Got, Off, !Sym.IsPreemptible, &Sym, 0}); 195 } 196 if (Expr != R_TLSDESC_CALL) 197 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 198 return 1; 199 } 200 201 if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) { 202 // Local-Dynamic relocs can be relaxed to Local-Exec. 203 if (!Config->Shared) { 204 C.Relocations.push_back( 205 {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym}); 206 return 2; 207 } 208 if (InX::Got->addTlsIndex()) 209 InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got, 210 InX::Got->getTlsIndexOff(), nullptr); 211 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 212 return 1; 213 } 214 215 // Local-Dynamic relocs can be relaxed to Local-Exec. 216 if (isRelExprOneOf<R_ABS, R_TLSLD, R_TLSLD_PC>(Expr) && !Config->Shared) { 217 C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym}); 218 return 1; 219 } 220 221 if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD, 222 R_TLSGD_PC>(Expr)) { 223 if (Config->Shared) { 224 if (InX::Got->addDynTlsEntry(Sym)) { 225 uint64_t Off = InX::Got->getGlobalDynOffset(Sym); 226 InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got, Off, &Sym); 227 228 // If the symbol is preemptible we need the dynamic linker to write 229 // the offset too. 230 uint64_t OffsetOff = Off + Config->Wordsize; 231 if (Sym.IsPreemptible) 232 InX::RelaDyn->addReloc(Target->TlsOffsetRel, InX::Got, OffsetOff, 233 &Sym); 234 else 235 InX::Got->Relocations.push_back( 236 {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym}); 237 } 238 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 239 return 1; 240 } 241 242 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 243 // depending on the symbol being locally defined or not. 244 if (Sym.IsPreemptible) { 245 C.Relocations.push_back( 246 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, 247 Offset, Addend, &Sym}); 248 if (!Sym.isInGot()) { 249 InX::Got->addEntry(Sym); 250 InX::RelaDyn->addReloc(Target->TlsGotRel, InX::Got, Sym.getGotOffset(), 251 &Sym); 252 } 253 } else { 254 C.Relocations.push_back( 255 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, 256 Offset, Addend, &Sym}); 257 } 258 return Target->TlsGdRelaxSkip; 259 } 260 261 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 262 // defined. 263 if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) && 264 !Config->Shared && !Sym.IsPreemptible) { 265 C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym}); 266 return 1; 267 } 268 269 if (Expr == R_TLSDESC_CALL) 270 return 1; 271 return 0; 272 } 273 274 static RelType getMipsPairType(RelType Type, bool IsLocal) { 275 switch (Type) { 276 case R_MIPS_HI16: 277 return R_MIPS_LO16; 278 case R_MIPS_GOT16: 279 // In case of global symbol, the R_MIPS_GOT16 relocation does not 280 // have a pair. Each global symbol has a unique entry in the GOT 281 // and a corresponding instruction with help of the R_MIPS_GOT16 282 // relocation loads an address of the symbol. In case of local 283 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 284 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 285 // relocations handle low 16 bits of the address. That allows 286 // to allocate only one GOT entry for every 64 KBytes of local data. 287 return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE; 288 case R_MICROMIPS_GOT16: 289 return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 290 case R_MIPS_PCHI16: 291 return R_MIPS_PCLO16; 292 case R_MICROMIPS_HI16: 293 return R_MICROMIPS_LO16; 294 default: 295 return R_MIPS_NONE; 296 } 297 } 298 299 // True if non-preemptable symbol always has the same value regardless of where 300 // the DSO is loaded. 301 static bool isAbsolute(const Symbol &Sym) { 302 if (Sym.isUndefWeak()) 303 return true; 304 if (const auto *DR = dyn_cast<Defined>(&Sym)) 305 return DR->Section == nullptr; // Absolute symbol. 306 return false; 307 } 308 309 static bool isAbsoluteValue(const Symbol &Sym) { 310 return isAbsolute(Sym) || Sym.isTls(); 311 } 312 313 // Returns true if Expr refers a PLT entry. 314 static bool needsPlt(RelExpr Expr) { 315 return isRelExprOneOf<R_PLT_PC, R_PPC_CALL_PLT, R_PLT, R_PLT_PAGE_PC>(Expr); 316 } 317 318 // Returns true if Expr refers a GOT entry. Note that this function 319 // returns false for TLS variables even though they need GOT, because 320 // TLS variables uses GOT differently than the regular variables. 321 static bool needsGot(RelExpr Expr) { 322 return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 323 R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC, 324 R_GOT_FROM_END>(Expr); 325 } 326 327 // True if this expression is of the form Sym - X, where X is a position in the 328 // file (PC, or GOT for example). 329 static bool isRelExpr(RelExpr Expr) { 330 return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL, 331 R_PAGE_PC, R_RELAX_GOT_PC>(Expr); 332 } 333 334 // Returns true if a given relocation can be computed at link-time. 335 // 336 // For instance, we know the offset from a relocation to its target at 337 // link-time if the relocation is PC-relative and refers a 338 // non-interposable function in the same executable. This function 339 // will return true for such relocation. 340 // 341 // If this function returns false, that means we need to emit a 342 // dynamic relocation so that the relocation will be fixed at load-time. 343 static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym, 344 InputSectionBase &S, uint64_t RelOff) { 345 // These expressions always compute a constant 346 if (isRelExprOneOf<R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, 347 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, 348 R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC, 349 R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_PC, 350 R_TLSGD, R_PPC_CALL_PLT, R_TLSDESC_CALL, R_TLSDESC_PAGE, 351 R_HINT>(E)) 352 return true; 353 354 // These never do, except if the entire file is position dependent or if 355 // only the low bits are used. 356 if (E == R_GOT || E == R_PLT || E == R_TLSDESC) 357 return Target->usesOnlyLowPageBits(Type) || !Config->Pic; 358 359 if (Sym.IsPreemptible) 360 return false; 361 if (!Config->Pic) 362 return true; 363 364 // The size of a non preemptible symbol is a constant. 365 if (E == R_SIZE) 366 return true; 367 368 // For the target and the relocation, we want to know if they are 369 // absolute or relative. 370 bool AbsVal = isAbsoluteValue(Sym); 371 bool RelE = isRelExpr(E); 372 if (AbsVal && !RelE) 373 return true; 374 if (!AbsVal && RelE) 375 return true; 376 if (!AbsVal && !RelE) 377 return Target->usesOnlyLowPageBits(Type); 378 379 // Relative relocation to an absolute value. This is normally unrepresentable, 380 // but if the relocation refers to a weak undefined symbol, we allow it to 381 // resolve to the image base. This is a little strange, but it allows us to 382 // link function calls to such symbols. Normally such a call will be guarded 383 // with a comparison, which will load a zero from the GOT. 384 // Another special case is MIPS _gp_disp symbol which represents offset 385 // between start of a function and '_gp' value and defined as absolute just 386 // to simplify the code. 387 assert(AbsVal && RelE); 388 if (Sym.isUndefWeak()) 389 return true; 390 391 error("relocation " + toString(Type) + " cannot refer to absolute symbol: " + 392 toString(Sym) + getLocation(S, Sym, RelOff)); 393 return true; 394 } 395 396 static RelExpr toPlt(RelExpr Expr) { 397 switch (Expr) { 398 case R_PPC_CALL: 399 return R_PPC_CALL_PLT; 400 case R_PC: 401 return R_PLT_PC; 402 case R_PAGE_PC: 403 return R_PLT_PAGE_PC; 404 case R_ABS: 405 return R_PLT; 406 default: 407 return Expr; 408 } 409 } 410 411 static RelExpr fromPlt(RelExpr Expr) { 412 // We decided not to use a plt. Optimize a reference to the plt to a 413 // reference to the symbol itself. 414 switch (Expr) { 415 case R_PLT_PC: 416 return R_PC; 417 case R_PPC_CALL_PLT: 418 return R_PPC_CALL; 419 case R_PLT: 420 return R_ABS; 421 default: 422 return Expr; 423 } 424 } 425 426 // Returns true if a given shared symbol is in a read-only segment in a DSO. 427 template <class ELFT> static bool isReadOnly(SharedSymbol &SS) { 428 typedef typename ELFT::Phdr Elf_Phdr; 429 430 // Determine if the symbol is read-only by scanning the DSO's program headers. 431 const SharedFile<ELFT> &File = SS.getFile<ELFT>(); 432 for (const Elf_Phdr &Phdr : check(File.getObj().program_headers())) 433 if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && 434 !(Phdr.p_flags & ELF::PF_W) && SS.Value >= Phdr.p_vaddr && 435 SS.Value < Phdr.p_vaddr + Phdr.p_memsz) 436 return true; 437 return false; 438 } 439 440 // Returns symbols at the same offset as a given symbol, including SS itself. 441 // 442 // If two or more symbols are at the same offset, and at least one of 443 // them are copied by a copy relocation, all of them need to be copied. 444 // Otherwise, they would refer different places at runtime. 445 template <class ELFT> 446 static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol &SS) { 447 typedef typename ELFT::Sym Elf_Sym; 448 449 SharedFile<ELFT> &File = SS.getFile<ELFT>(); 450 451 std::vector<SharedSymbol *> Ret; 452 for (const Elf_Sym &S : File.getGlobalELFSyms()) { 453 if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS || 454 S.st_value != SS.Value) 455 continue; 456 StringRef Name = check(S.getName(File.getStringTable())); 457 Symbol *Sym = Symtab->find(Name); 458 if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym)) 459 Ret.push_back(Alias); 460 } 461 return Ret; 462 } 463 464 // When a symbol is copy relocated or we create a canonical plt entry, it is 465 // effectively a defined symbol. In the case of copy relocation the symbol is 466 // in .bss and in the case of a canonical plt entry it is in .plt. This function 467 // replaces the existing symbol with a Defined pointing to the appropriate 468 // location. 469 static void replaceWithDefined(Symbol &Sym, SectionBase *Sec, uint64_t Value, 470 uint64_t Size) { 471 Symbol Old = Sym; 472 replaceSymbol<Defined>(&Sym, Sym.File, Sym.getName(), Sym.Binding, 473 Sym.StOther, Sym.Type, Value, Size, Sec); 474 Sym.PltIndex = Old.PltIndex; 475 Sym.GotIndex = Old.GotIndex; 476 Sym.VerdefIndex = Old.VerdefIndex; 477 Sym.IsInGlobalMipsGot = Old.IsInGlobalMipsGot; 478 Sym.IsPreemptible = true; 479 Sym.ExportDynamic = true; 480 Sym.IsUsedInRegularObj = true; 481 Sym.Used = true; 482 } 483 484 // Reserve space in .bss or .bss.rel.ro for copy relocation. 485 // 486 // The copy relocation is pretty much a hack. If you use a copy relocation 487 // in your program, not only the symbol name but the symbol's size, RW/RO 488 // bit and alignment become part of the ABI. In addition to that, if the 489 // symbol has aliases, the aliases become part of the ABI. That's subtle, 490 // but if you violate that implicit ABI, that can cause very counter- 491 // intuitive consequences. 492 // 493 // So, what is the copy relocation? It's for linking non-position 494 // independent code to DSOs. In an ideal world, all references to data 495 // exported by DSOs should go indirectly through GOT. But if object files 496 // are compiled as non-PIC, all data references are direct. There is no 497 // way for the linker to transform the code to use GOT, as machine 498 // instructions are already set in stone in object files. This is where 499 // the copy relocation takes a role. 500 // 501 // A copy relocation instructs the dynamic linker to copy data from a DSO 502 // to a specified address (which is usually in .bss) at load-time. If the 503 // static linker (that's us) finds a direct data reference to a DSO 504 // symbol, it creates a copy relocation, so that the symbol can be 505 // resolved as if it were in .bss rather than in a DSO. 506 // 507 // As you can see in this function, we create a copy relocation for the 508 // dynamic linker, and the relocation contains not only symbol name but 509 // various other informtion about the symbol. So, such attributes become a 510 // part of the ABI. 511 // 512 // Note for application developers: I can give you a piece of advice if 513 // you are writing a shared library. You probably should export only 514 // functions from your library. You shouldn't export variables. 515 // 516 // As an example what can happen when you export variables without knowing 517 // the semantics of copy relocations, assume that you have an exported 518 // variable of type T. It is an ABI-breaking change to add new members at 519 // end of T even though doing that doesn't change the layout of the 520 // existing members. That's because the space for the new members are not 521 // reserved in .bss unless you recompile the main program. That means they 522 // are likely to overlap with other data that happens to be laid out next 523 // to the variable in .bss. This kind of issue is sometimes very hard to 524 // debug. What's a solution? Instead of exporting a varaible V from a DSO, 525 // define an accessor getV(). 526 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &SS) { 527 // Copy relocation against zero-sized symbol doesn't make sense. 528 uint64_t SymSize = SS.getSize(); 529 if (SymSize == 0) 530 fatal("cannot create a copy relocation for symbol " + toString(SS)); 531 532 // See if this symbol is in a read-only segment. If so, preserve the symbol's 533 // memory protection by reserving space in the .bss.rel.ro section. 534 bool IsReadOnly = isReadOnly<ELFT>(SS); 535 BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss", 536 SymSize, SS.Alignment); 537 if (IsReadOnly) 538 InX::BssRelRo->getParent()->addSection(Sec); 539 else 540 InX::Bss->getParent()->addSection(Sec); 541 542 // Look through the DSO's dynamic symbol table for aliases and create a 543 // dynamic symbol for each one. This causes the copy relocation to correctly 544 // interpose any aliases. 545 for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) 546 replaceWithDefined(*Sym, Sec, 0, Sym->Size); 547 548 InX::RelaDyn->addReloc(Target->CopyRel, Sec, 0, &SS); 549 } 550 551 // MIPS has an odd notion of "paired" relocations to calculate addends. 552 // For example, if a relocation is of R_MIPS_HI16, there must be a 553 // R_MIPS_LO16 relocation after that, and an addend is calculated using 554 // the two relocations. 555 template <class ELFT, class RelTy> 556 static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End, 557 InputSectionBase &Sec, RelExpr Expr, 558 bool IsLocal) { 559 if (Expr == R_MIPS_GOTREL && IsLocal) 560 return Sec.getFile<ELFT>()->MipsGp0; 561 562 // The ABI says that the paired relocation is used only for REL. 563 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 564 if (RelTy::IsRela) 565 return 0; 566 567 RelType Type = Rel.getType(Config->IsMips64EL); 568 uint32_t PairTy = getMipsPairType(Type, IsLocal); 569 if (PairTy == R_MIPS_NONE) 570 return 0; 571 572 const uint8_t *Buf = Sec.Data.data(); 573 uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); 574 575 // To make things worse, paired relocations might not be contiguous in 576 // the relocation table, so we need to do linear search. *sigh* 577 for (const RelTy *RI = &Rel; RI != End; ++RI) 578 if (RI->getType(Config->IsMips64EL) == PairTy && 579 RI->getSymbol(Config->IsMips64EL) == SymIndex) 580 return Target->getImplicitAddend(Buf + RI->r_offset, PairTy); 581 582 warn("can't find matching " + toString(PairTy) + " relocation for " + 583 toString(Type)); 584 return 0; 585 } 586 587 // Returns an addend of a given relocation. If it is RELA, an addend 588 // is in a relocation itself. If it is REL, we need to read it from an 589 // input section. 590 template <class ELFT, class RelTy> 591 static int64_t computeAddend(const RelTy &Rel, const RelTy *End, 592 InputSectionBase &Sec, RelExpr Expr, 593 bool IsLocal) { 594 int64_t Addend; 595 RelType Type = Rel.getType(Config->IsMips64EL); 596 597 if (RelTy::IsRela) { 598 Addend = getAddend<ELFT>(Rel); 599 } else { 600 const uint8_t *Buf = Sec.Data.data(); 601 Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type); 602 } 603 604 if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC) 605 Addend += getPPC64TocBase(); 606 if (Config->EMachine == EM_MIPS) 607 Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal); 608 609 return Addend; 610 } 611 612 // Report an undefined symbol if necessary. 613 // Returns true if this function printed out an error message. 614 static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec, 615 uint64_t Offset) { 616 if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll) 617 return false; 618 619 if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak()) 620 return false; 621 622 bool CanBeExternal = 623 Sym.computeBinding() != STB_LOCAL && Sym.Visibility == STV_DEFAULT; 624 if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal) 625 return false; 626 627 std::string Msg = 628 "undefined symbol: " + toString(Sym) + "\n>>> referenced by "; 629 630 std::string Src = Sec.getSrcMsg(Sym, Offset); 631 if (!Src.empty()) 632 Msg += Src + "\n>>> "; 633 Msg += Sec.getObjMsg(Offset); 634 635 if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) || 636 Config->NoinhibitExec) { 637 warn(Msg); 638 return false; 639 } 640 641 error(Msg); 642 return true; 643 } 644 645 // MIPS N32 ABI treats series of successive relocations with the same offset 646 // as a single relocation. The similar approach used by N64 ABI, but this ABI 647 // packs all relocations into the single relocation record. Here we emulate 648 // this for the N32 ABI. Iterate over relocation with the same offset and put 649 // theirs types into the single bit-set. 650 template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) { 651 RelType Type = 0; 652 uint64_t Offset = Rel->r_offset; 653 654 int N = 0; 655 while (Rel != End && Rel->r_offset == Offset) 656 Type |= (Rel++)->getType(Config->IsMips64EL) << (8 * N++); 657 return Type; 658 } 659 660 // .eh_frame sections are mergeable input sections, so their input 661 // offsets are not linearly mapped to output section. For each input 662 // offset, we need to find a section piece containing the offset and 663 // add the piece's base address to the input offset to compute the 664 // output offset. That isn't cheap. 665 // 666 // This class is to speed up the offset computation. When we process 667 // relocations, we access offsets in the monotonically increasing 668 // order. So we can optimize for that access pattern. 669 // 670 // For sections other than .eh_frame, this class doesn't do anything. 671 namespace { 672 class OffsetGetter { 673 public: 674 explicit OffsetGetter(InputSectionBase &Sec) { 675 if (auto *Eh = dyn_cast<EhInputSection>(&Sec)) 676 Pieces = Eh->Pieces; 677 } 678 679 // Translates offsets in input sections to offsets in output sections. 680 // Given offset must increase monotonically. We assume that Piece is 681 // sorted by InputOff. 682 uint64_t get(uint64_t Off) { 683 if (Pieces.empty()) 684 return Off; 685 686 while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off) 687 ++I; 688 if (I == Pieces.size()) 689 return Off; 690 691 // Pieces must be contiguous, so there must be no holes in between. 692 assert(Pieces[I].InputOff <= Off && "Relocation not in any piece"); 693 694 // Offset -1 means that the piece is dead (i.e. garbage collected). 695 if (Pieces[I].OutputOff == -1) 696 return -1; 697 return Pieces[I].OutputOff + Off - Pieces[I].InputOff; 698 } 699 700 private: 701 ArrayRef<EhSectionPiece> Pieces; 702 size_t I = 0; 703 }; 704 } // namespace 705 706 template <class ELFT, class GotPltSection> 707 static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt, 708 RelocationBaseSection *Rel, RelType Type, Symbol &Sym) { 709 Plt->addEntry<ELFT>(Sym); 710 GotPlt->addEntry(Sym); 711 Rel->addReloc( 712 {Type, GotPlt, Sym.getGotPltOffset(), !Sym.IsPreemptible, &Sym, 0}); 713 } 714 715 template <class ELFT> static void addGotEntry(Symbol &Sym) { 716 InX::Got->addEntry(Sym); 717 718 RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS; 719 uint64_t Off = Sym.getGotOffset(); 720 721 // If a GOT slot value can be calculated at link-time, which is now, 722 // we can just fill that out. 723 // 724 // (We don't actually write a value to a GOT slot right now, but we 725 // add a static relocation to a Relocations vector so that 726 // InputSection::relocate will do the work for us. We may be able 727 // to just write a value now, but it is a TODO.) 728 bool IsLinkTimeConstant = 729 !Sym.IsPreemptible && (!Config->Pic || isAbsolute(Sym)); 730 if (IsLinkTimeConstant) { 731 InX::Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym}); 732 return; 733 } 734 735 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 736 // the GOT slot will be fixed at load-time. 737 RelType Type; 738 if (Sym.isTls()) 739 Type = Target->TlsGotRel; 740 else if (!Sym.IsPreemptible && Config->Pic && !isAbsolute(Sym)) 741 Type = Target->RelativeRel; 742 else 743 Type = Target->GotRel; 744 InX::RelaDyn->addReloc(Type, InX::Got, Off, &Sym, 0, 745 Sym.IsPreemptible ? R_ADDEND : R_ABS, Target->GotRel); 746 } 747 748 // Return true if we can define a symbol in the executable that 749 // contains the value/function of a symbol defined in a shared 750 // library. 751 static bool canDefineSymbolInExecutable(Symbol &Sym) { 752 // If the symbol has default visibility the symbol defined in the 753 // executable will preempt it. 754 // Note that we want the visibility of the shared symbol itself, not 755 // the visibility of the symbol in the output file we are producing. That is 756 // why we use Sym.StOther. 757 if ((Sym.StOther & 0x3) == STV_DEFAULT) 758 return true; 759 760 // If we are allowed to break address equality of functions, defining 761 // a plt entry will allow the program to call the function in the 762 // .so, but the .so and the executable will no agree on the address 763 // of the function. Similar logic for objects. 764 return ((Sym.isFunc() && Config->IgnoreFunctionAddressEquality) || 765 (Sym.isObject() && Config->IgnoreDataAddressEquality)); 766 } 767 768 // The reason we have to do this early scan is as follows 769 // * To mmap the output file, we need to know the size 770 // * For that, we need to know how many dynamic relocs we will have. 771 // It might be possible to avoid this by outputting the file with write: 772 // * Write the allocated output sections, computing addresses. 773 // * Apply relocations, recording which ones require a dynamic reloc. 774 // * Write the dynamic relocations. 775 // * Write the rest of the file. 776 // This would have some drawbacks. For example, we would only know if .rela.dyn 777 // is needed after applying relocations. If it is, it will go after rw and rx 778 // sections. Given that it is ro, we will need an extra PT_LOAD. This 779 // complicates things for the dynamic linker and means we would have to reserve 780 // space for the extra PT_LOAD even if we end up not using it. 781 template <class ELFT, class RelTy> 782 static void processRelocAux(InputSectionBase &Sec, RelExpr Expr, RelType Type, 783 uint64_t Offset, Symbol &Sym, const RelTy &Rel, 784 int64_t Addend) { 785 if (isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Offset)) { 786 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 787 return; 788 } 789 bool CanWrite = (Sec.Flags & SHF_WRITE) || !Config->ZText; 790 if (CanWrite) { 791 // R_GOT refers to a position in the got, even if the symbol is preemptible. 792 bool IsPreemptibleValue = Sym.IsPreemptible && Expr != R_GOT; 793 794 if (!IsPreemptibleValue) { 795 InX::RelaDyn->addReloc(Target->RelativeRel, &Sec, Offset, &Sym, Addend, 796 Expr, Type); 797 return; 798 } else if (RelType Rel = Target->getDynRel(Type)) { 799 InX::RelaDyn->addReloc(Rel, &Sec, Offset, &Sym, Addend, R_ADDEND, Type); 800 801 // MIPS ABI turns using of GOT and dynamic relocations inside out. 802 // While regular ABI uses dynamic relocations to fill up GOT entries 803 // MIPS ABI requires dynamic linker to fills up GOT entries using 804 // specially sorted dynamic symbol table. This affects even dynamic 805 // relocations against symbols which do not require GOT entries 806 // creation explicitly, i.e. do not have any GOT-relocations. So if 807 // a preemptible symbol has a dynamic relocation we anyway have 808 // to create a GOT entry for it. 809 // If a non-preemptible symbol has a dynamic relocation against it, 810 // dynamic linker takes it st_value, adds offset and writes down 811 // result of the dynamic relocation. In case of preemptible symbol 812 // dynamic linker performs symbol resolution, writes the symbol value 813 // to the GOT entry and reads the GOT entry when it needs to perform 814 // a dynamic relocation. 815 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 816 if (Config->EMachine == EM_MIPS) 817 InX::MipsGot->addEntry(Sym, Addend, Expr); 818 return; 819 } 820 } 821 822 // If the relocation is to a weak undef, and we are producing 823 // executable, give up on it and produce a non preemptible 0. 824 if (!Config->Shared && Sym.isUndefWeak()) { 825 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 826 return; 827 } 828 829 if (!CanWrite && (Config->Pic && !isRelExpr(Expr))) { 830 error( 831 "can't create dynamic relocation " + toString(Type) + " against " + 832 (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) + 833 " in readonly segment; recompile object files with -fPIC " 834 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 835 getLocation(Sec, Sym, Offset)); 836 return; 837 } 838 839 // Copy relocations are only possible if we are creating an executable. 840 if (Config->Shared) { 841 errorOrWarn("relocation " + toString(Type) + 842 " cannot be used against symbol " + toString(Sym) + 843 "; recompile with -fPIC" + getLocation(Sec, Sym, Offset)); 844 return; 845 } 846 847 // If the symbol is undefined we already reported any relevant errors. 848 if (Sym.isUndefined()) 849 return; 850 851 if (!canDefineSymbolInExecutable(Sym)) { 852 error("cannot preempt symbol: " + toString(Sym) + 853 getLocation(Sec, Sym, Offset)); 854 return; 855 } 856 857 if (Sym.isObject()) { 858 // Produce a copy relocation. 859 if (auto *SS = dyn_cast<SharedSymbol>(&Sym)) { 860 if (!Config->ZCopyreloc) 861 error("unresolvable relocation " + toString(Type) + 862 " against symbol '" + toString(*SS) + 863 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 864 getLocation(Sec, Sym, Offset)); 865 addCopyRelSymbol<ELFT>(*SS); 866 } 867 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 868 return; 869 } 870 871 if (Sym.isFunc()) { 872 // This handles a non PIC program call to function in a shared library. In 873 // an ideal world, we could just report an error saying the relocation can 874 // overflow at runtime. In the real world with glibc, crt1.o has a 875 // R_X86_64_PC32 pointing to libc.so. 876 // 877 // The general idea on how to handle such cases is to create a PLT entry and 878 // use that as the function value. 879 // 880 // For the static linking part, we just return a plt expr and everything 881 // else will use the PLT entry as the address. 882 // 883 // The remaining problem is making sure pointer equality still works. We 884 // need the help of the dynamic linker for that. We let it know that we have 885 // a direct reference to a so symbol by creating an undefined symbol with a 886 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 887 // the value of the symbol we created. This is true even for got entries, so 888 // pointer equality is maintained. To avoid an infinite loop, the only entry 889 // that points to the real function is a dedicated got entry used by the 890 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 891 // R_386_JMP_SLOT, etc). 892 893 // For position independent executable on i386, the plt entry requires ebx 894 // to be set. This causes two problems: 895 // * If some code has a direct reference to a function, it was probably 896 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 897 // * If a library definition gets preempted to the executable, it will have 898 // the wrong ebx value. 899 if (Config->Pie && Config->EMachine == EM_386) 900 errorOrWarn("symbol '" + toString(Sym) + 901 "' cannot be preempted; recompile with -fPIE" + 902 getLocation(Sec, Sym, Offset)); 903 if (!Sym.isInPlt()) 904 addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel, 905 Sym); 906 if (!Sym.isDefined()) 907 replaceWithDefined(Sym, InX::Plt, Sym.getPltOffset(), 0); 908 Sym.NeedsPltAddr = true; 909 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 910 return; 911 } 912 913 errorOrWarn("symbol '" + toString(Sym) + "' has no type" + 914 getLocation(Sec, Sym, Offset)); 915 } 916 917 template <class ELFT, class RelTy> 918 static void scanReloc(InputSectionBase &Sec, OffsetGetter &GetOffset, RelTy *&I, 919 RelTy *End) { 920 const RelTy &Rel = *I; 921 Symbol &Sym = Sec.getFile<ELFT>()->getRelocTargetSym(Rel); 922 RelType Type; 923 924 // Deal with MIPS oddity. 925 if (Config->MipsN32Abi) { 926 Type = getMipsN32RelType(I, End); 927 } else { 928 Type = Rel.getType(Config->IsMips64EL); 929 ++I; 930 } 931 932 // Get an offset in an output section this relocation is applied to. 933 uint64_t Offset = GetOffset.get(Rel.r_offset); 934 if (Offset == uint64_t(-1)) 935 return; 936 937 // Skip if the target symbol is an erroneous undefined symbol. 938 if (maybeReportUndefined(Sym, Sec, Rel.r_offset)) 939 return; 940 941 const uint8_t *RelocatedAddr = Sec.Data.begin() + Rel.r_offset; 942 RelExpr Expr = Target->getRelExpr(Type, Sym, RelocatedAddr); 943 944 // Ignore "hint" relocations because they are only markers for relaxation. 945 if (isRelExprOneOf<R_HINT, R_NONE>(Expr)) 946 return; 947 948 // Strenghten or relax relocations. 949 // 950 // GNU ifunc symbols must be accessed via PLT because their addresses 951 // are determined by runtime. 952 // 953 // On the other hand, if we know that a PLT entry will be resolved within 954 // the same ELF module, we can skip PLT access and directly jump to the 955 // destination function. For example, if we are linking a main exectuable, 956 // all dynamic symbols that can be resolved within the executable will 957 // actually be resolved that way at runtime, because the main exectuable 958 // is always at the beginning of a search list. We can leverage that fact. 959 if (Sym.isGnuIFunc()) 960 Expr = toPlt(Expr); 961 else if (!Sym.IsPreemptible && Expr == R_GOT_PC && !isAbsoluteValue(Sym)) 962 Expr = Target->adjustRelaxExpr(Type, RelocatedAddr, Expr); 963 else if (!Sym.IsPreemptible) 964 Expr = fromPlt(Expr); 965 966 // This relocation does not require got entry, but it is relative to got and 967 // needs it to be created. Here we request for that. 968 if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL, 969 R_GOTREL_FROM_END, R_PPC_TOC>(Expr)) 970 InX::Got->HasGotOffRel = true; 971 972 // Read an addend. 973 int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal()); 974 975 // Process some TLS relocations, including relaxing TLS relocations. 976 // Note that this function does not handle all TLS relocations. 977 if (unsigned Processed = 978 handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) { 979 I += (Processed - 1); 980 return; 981 } 982 983 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 984 if (needsPlt(Expr) && !Sym.isInPlt()) { 985 if (Sym.isGnuIFunc() && !Sym.IsPreemptible) 986 addPltEntry<ELFT>(InX::Iplt, InX::IgotPlt, InX::RelaIplt, 987 Target->IRelativeRel, Sym); 988 else 989 addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel, 990 Sym); 991 } 992 993 // Create a GOT slot if a relocation needs GOT. 994 if (needsGot(Expr)) { 995 if (Config->EMachine == EM_MIPS) { 996 // MIPS ABI has special rules to process GOT entries and doesn't 997 // require relocation entries for them. A special case is TLS 998 // relocations. In that case dynamic loader applies dynamic 999 // relocations to initialize TLS GOT entries. 1000 // See "Global Offset Table" in Chapter 5 in the following document 1001 // for detailed description: 1002 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1003 InX::MipsGot->addEntry(Sym, Addend, Expr); 1004 if (Sym.isTls() && Sym.IsPreemptible) 1005 InX::RelaDyn->addReloc(Target->TlsGotRel, InX::MipsGot, 1006 Sym.getGotOffset(), &Sym); 1007 } else if (!Sym.isInGot()) { 1008 addGotEntry<ELFT>(Sym); 1009 } 1010 } 1011 1012 processRelocAux<ELFT>(Sec, Expr, Type, Offset, Sym, Rel, Addend); 1013 } 1014 1015 template <class ELFT, class RelTy> 1016 static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) { 1017 OffsetGetter GetOffset(Sec); 1018 1019 // Not all relocations end up in Sec.Relocations, but a lot do. 1020 Sec.Relocations.reserve(Rels.size()); 1021 1022 for (auto I = Rels.begin(), End = Rels.end(); I != End;) 1023 scanReloc<ELFT>(Sec, GetOffset, I, End); 1024 } 1025 1026 template <class ELFT> void elf::scanRelocations(InputSectionBase &S) { 1027 if (S.AreRelocsRela) 1028 scanRelocs<ELFT>(S, S.relas<ELFT>()); 1029 else 1030 scanRelocs<ELFT>(S, S.rels<ELFT>()); 1031 } 1032 1033 // Thunk Implementation 1034 // 1035 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1036 // of code that the linker inserts inbetween a caller and a callee. The thunks 1037 // are added at link time rather than compile time as the decision on whether 1038 // a thunk is needed, such as the caller and callee being out of range, can only 1039 // be made at link time. 1040 // 1041 // It is straightforward to tell given the current state of the program when a 1042 // thunk is needed for a particular call. The more difficult part is that 1043 // the thunk needs to be placed in the program such that the caller can reach 1044 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1045 // the program alters addresses, which can mean more thunks etc. 1046 // 1047 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1048 // The decision to have a ThunkSection act as a container means that we can 1049 // more easily handle the most common case of a single block of contiguous 1050 // Thunks by inserting just a single ThunkSection. 1051 // 1052 // The implementation of Thunks in lld is split across these areas 1053 // Relocations.cpp : Framework for creating and placing thunks 1054 // Thunks.cpp : The code generated for each supported thunk 1055 // Target.cpp : Target specific hooks that the framework uses to decide when 1056 // a thunk is used 1057 // Synthetic.cpp : Implementation of ThunkSection 1058 // Writer.cpp : Iteratively call framework until no more Thunks added 1059 // 1060 // Thunk placement requirements: 1061 // Mips LA25 thunks. These must be placed immediately before the callee section 1062 // We can assume that the caller is in range of the Thunk. These are modelled 1063 // by Thunks that return the section they must precede with 1064 // getTargetInputSection(). 1065 // 1066 // ARM interworking and range extension thunks. These thunks must be placed 1067 // within range of the caller. All implemented ARM thunks can always reach the 1068 // callee as they use an indirect jump via a register that has no range 1069 // restrictions. 1070 // 1071 // Thunk placement algorithm: 1072 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1073 // getTargetInputSection(). 1074 // 1075 // For thunks that must be placed within range of the caller there are many 1076 // possible choices given that the maximum range from the caller is usually 1077 // much larger than the average InputSection size. Desirable properties include: 1078 // - Maximize reuse of thunks by multiple callers 1079 // - Minimize number of ThunkSections to simplify insertion 1080 // - Handle impact of already added Thunks on addresses 1081 // - Simple to understand and implement 1082 // 1083 // In lld for the first pass, we pre-create one or more ThunkSections per 1084 // InputSectionDescription at Target specific intervals. A ThunkSection is 1085 // placed so that the estimated end of the ThunkSection is within range of the 1086 // start of the InputSectionDescription or the previous ThunkSection. For 1087 // example: 1088 // InputSectionDescription 1089 // Section 0 1090 // ... 1091 // Section N 1092 // ThunkSection 0 1093 // Section N + 1 1094 // ... 1095 // Section N + K 1096 // Thunk Section 1 1097 // 1098 // The intention is that we can add a Thunk to a ThunkSection that is well 1099 // spaced enough to service a number of callers without having to do a lot 1100 // of work. An important principle is that it is not an error if a Thunk cannot 1101 // be placed in a pre-created ThunkSection; when this happens we create a new 1102 // ThunkSection placed next to the caller. This allows us to handle the vast 1103 // majority of thunks simply, but also handle rare cases where the branch range 1104 // is smaller than the target specific spacing. 1105 // 1106 // The algorithm is expected to create all the thunks that are needed in a 1107 // single pass, with a small number of programs needing a second pass due to 1108 // the insertion of thunks in the first pass increasing the offset between 1109 // callers and callees that were only just in range. 1110 // 1111 // A consequence of allowing new ThunkSections to be created outside of the 1112 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1113 // range in pass K, are out of range in some pass > K due to the insertion of 1114 // more Thunks in between the caller and callee. When this happens we retarget 1115 // the relocation back to the original target and create another Thunk. 1116 1117 // Remove ThunkSections that are empty, this should only be the initial set 1118 // precreated on pass 0. 1119 1120 // Insert the Thunks for OutputSection OS into their designated place 1121 // in the Sections vector, and recalculate the InputSection output section 1122 // offsets. 1123 // This may invalidate any output section offsets stored outside of InputSection 1124 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) { 1125 forEachInputSectionDescription( 1126 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1127 if (ISD->ThunkSections.empty()) 1128 return; 1129 1130 // Remove any zero sized precreated Thunks. 1131 llvm::erase_if(ISD->ThunkSections, 1132 [](const std::pair<ThunkSection *, uint32_t> &TS) { 1133 return TS.first->getSize() == 0; 1134 }); 1135 // ISD->ThunkSections contains all created ThunkSections, including 1136 // those inserted in previous passes. Extract the Thunks created this 1137 // pass and order them in ascending OutSecOff. 1138 std::vector<ThunkSection *> NewThunks; 1139 for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections) 1140 if (TS.second == Pass) 1141 NewThunks.push_back(TS.first); 1142 std::stable_sort(NewThunks.begin(), NewThunks.end(), 1143 [](const ThunkSection *A, const ThunkSection *B) { 1144 return A->OutSecOff < B->OutSecOff; 1145 }); 1146 1147 // Merge sorted vectors of Thunks and InputSections by OutSecOff 1148 std::vector<InputSection *> Tmp; 1149 Tmp.reserve(ISD->Sections.size() + NewThunks.size()); 1150 auto MergeCmp = [](const InputSection *A, const InputSection *B) { 1151 // std::merge requires a strict weak ordering. 1152 if (A->OutSecOff < B->OutSecOff) 1153 return true; 1154 if (A->OutSecOff == B->OutSecOff) { 1155 auto *TA = dyn_cast<ThunkSection>(A); 1156 auto *TB = dyn_cast<ThunkSection>(B); 1157 // Check if Thunk is immediately before any specific Target 1158 // InputSection for example Mips LA25 Thunks. 1159 if (TA && TA->getTargetInputSection() == B) 1160 return true; 1161 if (TA && !TB && !TA->getTargetInputSection()) 1162 // Place Thunk Sections without specific targets before 1163 // non-Thunk Sections. 1164 return true; 1165 } 1166 return false; 1167 }; 1168 std::merge(ISD->Sections.begin(), ISD->Sections.end(), 1169 NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp), 1170 MergeCmp); 1171 ISD->Sections = std::move(Tmp); 1172 }); 1173 } 1174 1175 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1176 // is in range of Src. An ISD maps to a range of InputSections described by a 1177 // linker script section pattern such as { .text .text.* }. 1178 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS, 1179 InputSectionDescription *ISD, 1180 uint32_t Type, uint64_t Src) { 1181 for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) { 1182 ThunkSection *TS = TP.first; 1183 uint64_t TSBase = OS->Addr + TS->OutSecOff; 1184 uint64_t TSLimit = TSBase + TS->getSize(); 1185 if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit)) 1186 return TS; 1187 } 1188 1189 // No suitable ThunkSection exists. This can happen when there is a branch 1190 // with lower range than the ThunkSection spacing or when there are too 1191 // many Thunks. Create a new ThunkSection as close to the InputSection as 1192 // possible. Error if InputSection is so large we cannot place ThunkSection 1193 // anywhere in Range. 1194 uint64_t ThunkSecOff = IS->OutSecOff; 1195 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) { 1196 ThunkSecOff = IS->OutSecOff + IS->getSize(); 1197 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) 1198 fatal("InputSection too large for range extension thunk " + 1199 IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff))); 1200 } 1201 return addThunkSection(OS, ISD, ThunkSecOff); 1202 } 1203 1204 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1205 // precedes its Target. 1206 ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) { 1207 ThunkSection *TS = ThunkedSections.lookup(IS); 1208 if (TS) 1209 return TS; 1210 1211 // Find InputSectionRange within Target Output Section (TOS) that the 1212 // InputSection (IS) that we need to precede is in. 1213 OutputSection *TOS = IS->getParent(); 1214 for (BaseCommand *BC : TOS->SectionCommands) 1215 if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) { 1216 if (ISD->Sections.empty()) 1217 continue; 1218 InputSection *first = ISD->Sections.front(); 1219 InputSection *last = ISD->Sections.back(); 1220 if (IS->OutSecOff >= first->OutSecOff && 1221 IS->OutSecOff <= last->OutSecOff) { 1222 TS = addThunkSection(TOS, ISD, IS->OutSecOff); 1223 ThunkedSections[IS] = TS; 1224 break; 1225 } 1226 } 1227 return TS; 1228 } 1229 1230 // Create one or more ThunkSections per OS that can be used to place Thunks. 1231 // We attempt to place the ThunkSections using the following desirable 1232 // properties: 1233 // - Within range of the maximum number of callers 1234 // - Minimise the number of ThunkSections 1235 // 1236 // We follow a simple but conservative heuristic to place ThunkSections at 1237 // offsets that are multiples of a Target specific branch range. 1238 // For an InputSectionDescription that is smaller than the range, a single 1239 // ThunkSection at the end of the range will do. 1240 // 1241 // For an InputSectionDescription that is more than twice the size of the range, 1242 // we place the last ThunkSection at range bytes from the end of the 1243 // InputSectionDescription in order to increase the likelihood that the 1244 // distance from a thunk to its target will be sufficiently small to 1245 // allow for the creation of a short thunk. 1246 void ThunkCreator::createInitialThunkSections( 1247 ArrayRef<OutputSection *> OutputSections) { 1248 forEachInputSectionDescription( 1249 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1250 if (ISD->Sections.empty()) 1251 return; 1252 uint32_t ISDBegin = ISD->Sections.front()->OutSecOff; 1253 uint32_t ISDEnd = 1254 ISD->Sections.back()->OutSecOff + ISD->Sections.back()->getSize(); 1255 uint32_t LastThunkLowerBound = -1; 1256 if (ISDEnd - ISDBegin > Target->ThunkSectionSpacing * 2) 1257 LastThunkLowerBound = ISDEnd - Target->ThunkSectionSpacing; 1258 1259 uint32_t ISLimit; 1260 uint32_t PrevISLimit = ISDBegin; 1261 uint32_t ThunkUpperBound = ISDBegin + Target->ThunkSectionSpacing; 1262 1263 for (const InputSection *IS : ISD->Sections) { 1264 ISLimit = IS->OutSecOff + IS->getSize(); 1265 if (ISLimit > ThunkUpperBound) { 1266 addThunkSection(OS, ISD, PrevISLimit); 1267 ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing; 1268 } 1269 if (ISLimit > LastThunkLowerBound) 1270 break; 1271 PrevISLimit = ISLimit; 1272 } 1273 addThunkSection(OS, ISD, ISLimit); 1274 }); 1275 } 1276 1277 ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS, 1278 InputSectionDescription *ISD, 1279 uint64_t Off) { 1280 auto *TS = make<ThunkSection>(OS, Off); 1281 ISD->ThunkSections.push_back(std::make_pair(TS, Pass)); 1282 return TS; 1283 } 1284 1285 std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type, 1286 uint64_t Src) { 1287 std::vector<Thunk *> *ThunkVec = nullptr; 1288 // We use (section, offset) pair to find the thunk position if possible so 1289 // that we create only one thunk for aliased symbols or ICFed sections. 1290 if (auto *D = dyn_cast<Defined>(&Sym)) 1291 if (!D->isInPlt() && D->Section) 1292 ThunkVec = &ThunkedSymbolsBySection[{D->Section->Repl, D->Value}]; 1293 if (!ThunkVec) 1294 ThunkVec = &ThunkedSymbols[&Sym]; 1295 // Check existing Thunks for Sym to see if they can be reused 1296 for (Thunk *ET : *ThunkVec) 1297 if (ET->isCompatibleWith(Type) && 1298 Target->inBranchRange(Type, Src, ET->getThunkTargetSym()->getVA())) 1299 return std::make_pair(ET, false); 1300 // No existing compatible Thunk in range, create a new one 1301 Thunk *T = addThunk(Type, Sym); 1302 ThunkVec->push_back(T); 1303 return std::make_pair(T, true); 1304 } 1305 1306 // Call Fn on every executable InputSection accessed via the linker script 1307 // InputSectionDescription::Sections. 1308 void ThunkCreator::forEachInputSectionDescription( 1309 ArrayRef<OutputSection *> OutputSections, 1310 std::function<void(OutputSection *, InputSectionDescription *)> Fn) { 1311 for (OutputSection *OS : OutputSections) { 1312 if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) 1313 continue; 1314 for (BaseCommand *BC : OS->SectionCommands) 1315 if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) 1316 Fn(OS, ISD); 1317 } 1318 } 1319 1320 // Return true if the relocation target is an in range Thunk. 1321 // Return false if the relocation is not to a Thunk. If the relocation target 1322 // was originally to a Thunk, but is no longer in range we revert the 1323 // relocation back to its original non-Thunk target. 1324 bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) { 1325 if (Thunk *ET = Thunks.lookup(Rel.Sym)) { 1326 if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA())) 1327 return true; 1328 Rel.Sym = &ET->Destination; 1329 if (Rel.Sym->isInPlt()) 1330 Rel.Expr = toPlt(Rel.Expr); 1331 } 1332 return false; 1333 } 1334 1335 // Process all relocations from the InputSections that have been assigned 1336 // to InputSectionDescriptions and redirect through Thunks if needed. The 1337 // function should be called iteratively until it returns false. 1338 // 1339 // PreConditions: 1340 // All InputSections that may need a Thunk are reachable from 1341 // OutputSectionCommands. 1342 // 1343 // All OutputSections have an address and all InputSections have an offset 1344 // within the OutputSection. 1345 // 1346 // The offsets between caller (relocation place) and callee 1347 // (relocation target) will not be modified outside of createThunks(). 1348 // 1349 // PostConditions: 1350 // If return value is true then ThunkSections have been inserted into 1351 // OutputSections. All relocations that needed a Thunk based on the information 1352 // available to createThunks() on entry have been redirected to a Thunk. Note 1353 // that adding Thunks changes offsets between caller and callee so more Thunks 1354 // may be required. 1355 // 1356 // If return value is false then no more Thunks are needed, and createThunks has 1357 // made no changes. If the target requires range extension thunks, currently 1358 // ARM, then any future change in offset between caller and callee risks a 1359 // relocation out of range error. 1360 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) { 1361 bool AddressesChanged = false; 1362 if (Pass == 0 && Target->ThunkSectionSpacing) 1363 createInitialThunkSections(OutputSections); 1364 else if (Pass == 10) 1365 // With Thunk Size much smaller than branch range we expect to 1366 // converge quickly; if we get to 10 something has gone wrong. 1367 fatal("thunk creation not converged"); 1368 1369 // Create all the Thunks and insert them into synthetic ThunkSections. The 1370 // ThunkSections are later inserted back into InputSectionDescriptions. 1371 // We separate the creation of ThunkSections from the insertion of the 1372 // ThunkSections as ThunkSections are not always inserted into the same 1373 // InputSectionDescription as the caller. 1374 forEachInputSectionDescription( 1375 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1376 for (InputSection *IS : ISD->Sections) 1377 for (Relocation &Rel : IS->Relocations) { 1378 uint64_t Src = IS->getVA(Rel.Offset); 1379 1380 // If we are a relocation to an existing Thunk, check if it is 1381 // still in range. If not then Rel will be altered to point to its 1382 // original target so another Thunk can be generated. 1383 if (Pass > 0 && normalizeExistingThunk(Rel, Src)) 1384 continue; 1385 1386 if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src, 1387 *Rel.Sym)) 1388 continue; 1389 Thunk *T; 1390 bool IsNew; 1391 std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src); 1392 if (IsNew) { 1393 // Find or create a ThunkSection for the new Thunk 1394 ThunkSection *TS; 1395 if (auto *TIS = T->getTargetInputSection()) 1396 TS = getISThunkSec(TIS); 1397 else 1398 TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src); 1399 TS->addThunk(T); 1400 Thunks[T->getThunkTargetSym()] = T; 1401 } 1402 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 1403 Rel.Sym = T->getThunkTargetSym(); 1404 Rel.Expr = fromPlt(Rel.Expr); 1405 } 1406 for (auto &P : ISD->ThunkSections) 1407 AddressesChanged |= P.first->assignOffsets(); 1408 }); 1409 for (auto &P : ThunkedSections) 1410 AddressesChanged |= P.second->assignOffsets(); 1411 1412 // Merge all created synthetic ThunkSections back into OutputSection 1413 mergeThunks(OutputSections); 1414 ++Pass; 1415 return AddressesChanged; 1416 } 1417 1418 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 1419 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 1420 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 1421 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 1422