1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Support/Endian.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 60 using namespace llvm; 61 using namespace llvm::ELF; 62 using namespace llvm::object; 63 using namespace llvm::support::endian; 64 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (BaseCommand *base : script->sectionCommands) 70 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 71 if (cmd->sym == &sym) 72 return cmd->location; 73 return None; 74 } 75 76 // Construct a message in the following format. 77 // 78 // >>> defined in /home/alice/src/foo.o 79 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 80 // >>> /home/alice/src/bar.o:(.text+0x1) 81 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 82 uint64_t off) { 83 std::string msg = "\n>>> defined in "; 84 if (sym.file) 85 msg += toString(sym.file); 86 else if (Optional<std::string> loc = getLinkerScriptLocation(sym)) 87 msg += *loc; 88 89 msg += "\n>>> referenced by "; 90 std::string src = s.getSrcMsg(sym, off); 91 if (!src.empty()) 92 msg += src + "\n>>> "; 93 return msg + s.getObjMsg(off); 94 } 95 96 namespace { 97 // Build a bitmask with one bit set for each RelExpr. 98 // 99 // Constexpr function arguments can't be used in static asserts, so we 100 // use template arguments to build the mask. 101 // But function template partial specializations don't exist (needed 102 // for base case of the recursion), so we need a dummy struct. 103 template <RelExpr... Exprs> struct RelExprMaskBuilder { 104 static inline uint64_t build() { return 0; } 105 }; 106 107 // Specialization for recursive case. 108 template <RelExpr Head, RelExpr... Tail> 109 struct RelExprMaskBuilder<Head, Tail...> { 110 static inline uint64_t build() { 111 static_assert(0 <= Head && Head < 64, 112 "RelExpr is too large for 64-bit mask!"); 113 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 114 } 115 }; 116 } // namespace 117 118 // Return true if `Expr` is one of `Exprs`. 119 // There are fewer than 64 RelExpr's, so we can represent any set of 120 // RelExpr's as a constant bit mask and test for membership with a 121 // couple cheap bitwise operations. 122 template <RelExpr... Exprs> bool oneof(RelExpr expr) { 123 assert(0 <= expr && (int)expr < 64 && 124 "RelExpr is too large for 64-bit mask!"); 125 return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build(); 126 } 127 128 // This function is similar to the `handleTlsRelocation`. MIPS does not 129 // support any relaxations for TLS relocations so by factoring out MIPS 130 // handling in to the separate function we can simplify the code and do not 131 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 132 // Mips has a custom MipsGotSection that handles the writing of GOT entries 133 // without dynamic relocations. 134 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 135 InputSectionBase &c, uint64_t offset, 136 int64_t addend, RelExpr expr) { 137 if (expr == R_MIPS_TLSLD) { 138 in.mipsGot->addTlsIndex(*c.file); 139 c.relocations.push_back({expr, type, offset, addend, &sym}); 140 return 1; 141 } 142 if (expr == R_MIPS_TLSGD) { 143 in.mipsGot->addDynTlsEntry(*c.file, sym); 144 c.relocations.push_back({expr, type, offset, addend, &sym}); 145 return 1; 146 } 147 return 0; 148 } 149 150 // Notes about General Dynamic and Local Dynamic TLS models below. They may 151 // require the generation of a pair of GOT entries that have associated dynamic 152 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 153 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 154 // symbol in TLS block. 155 // 156 // Returns the number of relocations processed. 157 template <class ELFT> 158 static unsigned 159 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, 160 typename ELFT::uint offset, int64_t addend, RelExpr expr) { 161 if (!sym.isTls()) 162 return 0; 163 164 if (config->emachine == EM_MIPS) 165 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 166 167 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>( 168 expr) && 169 config->shared) { 170 if (in.got->addDynTlsEntry(sym)) { 171 uint64_t off = in.got->getGlobalDynOffset(sym); 172 mainPart->relaDyn->addReloc( 173 {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0}); 174 } 175 if (expr != R_TLSDESC_CALL) 176 c.relocations.push_back({expr, type, offset, addend, &sym}); 177 return 1; 178 } 179 180 bool canRelax = config->emachine != EM_ARM && config->emachine != EM_RISCV; 181 182 // If we are producing an executable and the symbol is non-preemptable, it 183 // must be defined and the code sequence can be relaxed to use Local-Exec. 184 // 185 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 186 // we can omit the DTPMOD dynamic relocations and resolve them at link time 187 // because them are always 1. This may be necessary for static linking as 188 // DTPMOD may not be expected at load time. 189 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 190 191 // Local Dynamic is for access to module local TLS variables, while still 192 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 193 // module index, with a special value of 0 for the current module. GOT[e1] is 194 // unused. There only needs to be one module index entry. 195 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 196 expr)) { 197 // Local-Dynamic relocs can be relaxed to Local-Exec. 198 if (canRelax && !config->shared) { 199 c.relocations.push_back( 200 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, 201 offset, addend, &sym}); 202 return target->getTlsGdRelaxSkip(type); 203 } 204 if (expr == R_TLSLD_HINT) 205 return 1; 206 if (in.got->addTlsIndex()) { 207 if (isLocalInExecutable) 208 in.got->relocations.push_back( 209 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); 210 else 211 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, 212 in.got->getTlsIndexOff(), nullptr); 213 } 214 c.relocations.push_back({expr, type, offset, addend, &sym}); 215 return 1; 216 } 217 218 // Local-Dynamic relocs can be relaxed to Local-Exec. 219 if (expr == R_DTPREL && !config->shared) { 220 c.relocations.push_back( 221 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, 222 offset, addend, &sym}); 223 return 1; 224 } 225 226 // Local-Dynamic sequence where offset of tls variable relative to dynamic 227 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 228 if (expr == R_TLSLD_GOT_OFF) { 229 if (!sym.isInGot()) { 230 in.got->addEntry(sym); 231 uint64_t off = sym.getGotOffset(); 232 in.got->relocations.push_back( 233 {R_ABS, target->tlsOffsetRel, off, 0, &sym}); 234 } 235 c.relocations.push_back({expr, type, offset, addend, &sym}); 236 return 1; 237 } 238 239 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 240 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 241 if (!canRelax || config->shared) { 242 if (in.got->addDynTlsEntry(sym)) { 243 uint64_t off = in.got->getGlobalDynOffset(sym); 244 245 if (isLocalInExecutable) 246 // Write one to the GOT slot. 247 in.got->relocations.push_back( 248 {R_ADDEND, target->symbolicRel, off, 1, &sym}); 249 else 250 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym); 251 252 // If the symbol is preemptible we need the dynamic linker to write 253 // the offset too. 254 uint64_t offsetOff = off + config->wordsize; 255 if (sym.isPreemptible) 256 mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff, 257 &sym); 258 else 259 in.got->relocations.push_back( 260 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 261 } 262 c.relocations.push_back({expr, type, offset, addend, &sym}); 263 return 1; 264 } 265 266 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 267 // depending on the symbol being locally defined or not. 268 if (sym.isPreemptible) { 269 c.relocations.push_back( 270 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type, 271 offset, addend, &sym}); 272 if (!sym.isInGot()) { 273 in.got->addEntry(sym); 274 mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(), 275 &sym); 276 } 277 } else { 278 c.relocations.push_back( 279 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type, 280 offset, addend, &sym}); 281 } 282 return target->getTlsGdRelaxSkip(type); 283 } 284 285 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 286 // defined. 287 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 288 R_TLSIE_HINT>(expr) && 289 canRelax && isLocalInExecutable) { 290 c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 291 return 1; 292 } 293 294 if (expr == R_TLSIE_HINT) 295 return 1; 296 return 0; 297 } 298 299 static RelType getMipsPairType(RelType type, bool isLocal) { 300 switch (type) { 301 case R_MIPS_HI16: 302 return R_MIPS_LO16; 303 case R_MIPS_GOT16: 304 // In case of global symbol, the R_MIPS_GOT16 relocation does not 305 // have a pair. Each global symbol has a unique entry in the GOT 306 // and a corresponding instruction with help of the R_MIPS_GOT16 307 // relocation loads an address of the symbol. In case of local 308 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 309 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 310 // relocations handle low 16 bits of the address. That allows 311 // to allocate only one GOT entry for every 64 KBytes of local data. 312 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 313 case R_MICROMIPS_GOT16: 314 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 315 case R_MIPS_PCHI16: 316 return R_MIPS_PCLO16; 317 case R_MICROMIPS_HI16: 318 return R_MICROMIPS_LO16; 319 default: 320 return R_MIPS_NONE; 321 } 322 } 323 324 // True if non-preemptable symbol always has the same value regardless of where 325 // the DSO is loaded. 326 static bool isAbsolute(const Symbol &sym) { 327 if (sym.isUndefWeak()) 328 return true; 329 if (const auto *dr = dyn_cast<Defined>(&sym)) 330 return dr->section == nullptr; // Absolute symbol. 331 return false; 332 } 333 334 static bool isAbsoluteValue(const Symbol &sym) { 335 return isAbsolute(sym) || sym.isTls(); 336 } 337 338 // Returns true if Expr refers a PLT entry. 339 static bool needsPlt(RelExpr expr) { 340 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr); 341 } 342 343 // Returns true if Expr refers a GOT entry. Note that this function 344 // returns false for TLS variables even though they need GOT, because 345 // TLS variables uses GOT differently than the regular variables. 346 static bool needsGot(RelExpr expr) { 347 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 348 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>( 349 expr); 350 } 351 352 // True if this expression is of the form Sym - X, where X is a position in the 353 // file (PC, or GOT for example). 354 static bool isRelExpr(RelExpr expr) { 355 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 356 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 357 R_RISCV_PC_INDIRECT>(expr); 358 } 359 360 // Returns true if a given relocation can be computed at link-time. 361 // 362 // For instance, we know the offset from a relocation to its target at 363 // link-time if the relocation is PC-relative and refers a 364 // non-interposable function in the same executable. This function 365 // will return true for such relocation. 366 // 367 // If this function returns false, that means we need to emit a 368 // dynamic relocation so that the relocation will be fixed at load-time. 369 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 370 InputSectionBase &s, uint64_t relOff) { 371 // These expressions always compute a constant 372 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF, 373 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 374 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 375 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 376 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL, 377 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL, 378 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_HINT, R_TLSLD_HINT, 379 R_TLSIE_HINT>(e)) 380 return true; 381 382 // These never do, except if the entire file is position dependent or if 383 // only the low bits are used. 384 if (e == R_GOT || e == R_PLT || e == R_TLSDESC) 385 return target->usesOnlyLowPageBits(type) || !config->isPic; 386 387 if (sym.isPreemptible) 388 return false; 389 if (!config->isPic) 390 return true; 391 392 // The size of a non preemptible symbol is a constant. 393 if (e == R_SIZE) 394 return true; 395 396 // For the target and the relocation, we want to know if they are 397 // absolute or relative. 398 bool absVal = isAbsoluteValue(sym); 399 bool relE = isRelExpr(e); 400 if (absVal && !relE) 401 return true; 402 if (!absVal && relE) 403 return true; 404 if (!absVal && !relE) 405 return target->usesOnlyLowPageBits(type); 406 407 // Relative relocation to an absolute value. This is normally unrepresentable, 408 // but if the relocation refers to a weak undefined symbol, we allow it to 409 // resolve to the image base. This is a little strange, but it allows us to 410 // link function calls to such symbols. Normally such a call will be guarded 411 // with a comparison, which will load a zero from the GOT. 412 // Another special case is MIPS _gp_disp symbol which represents offset 413 // between start of a function and '_gp' value and defined as absolute just 414 // to simplify the code. 415 assert(absVal && relE); 416 if (sym.isUndefWeak()) 417 return true; 418 419 // We set the final symbols values for linker script defined symbols later. 420 // They always can be computed as a link time constant. 421 if (sym.scriptDefined) 422 return true; 423 424 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 425 toString(sym) + getLocation(s, sym, relOff)); 426 return true; 427 } 428 429 static RelExpr toPlt(RelExpr expr) { 430 switch (expr) { 431 case R_PPC64_CALL: 432 return R_PPC64_CALL_PLT; 433 case R_PC: 434 return R_PLT_PC; 435 case R_ABS: 436 return R_PLT; 437 default: 438 return expr; 439 } 440 } 441 442 static RelExpr fromPlt(RelExpr expr) { 443 // We decided not to use a plt. Optimize a reference to the plt to a 444 // reference to the symbol itself. 445 switch (expr) { 446 case R_PLT_PC: 447 case R_PPC32_PLTREL: 448 return R_PC; 449 case R_PPC64_CALL_PLT: 450 return R_PPC64_CALL; 451 case R_PLT: 452 return R_ABS; 453 default: 454 return expr; 455 } 456 } 457 458 // Returns true if a given shared symbol is in a read-only segment in a DSO. 459 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 460 using Elf_Phdr = typename ELFT::Phdr; 461 462 // Determine if the symbol is read-only by scanning the DSO's program headers. 463 const SharedFile &file = ss.getFile(); 464 for (const Elf_Phdr &phdr : 465 check(file.template getObj<ELFT>().program_headers())) 466 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 467 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 468 ss.value < phdr.p_vaddr + phdr.p_memsz) 469 return true; 470 return false; 471 } 472 473 // Returns symbols at the same offset as a given symbol, including SS itself. 474 // 475 // If two or more symbols are at the same offset, and at least one of 476 // them are copied by a copy relocation, all of them need to be copied. 477 // Otherwise, they would refer to different places at runtime. 478 template <class ELFT> 479 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 480 using Elf_Sym = typename ELFT::Sym; 481 482 SharedFile &file = ss.getFile(); 483 484 SmallSet<SharedSymbol *, 4> ret; 485 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 486 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 487 s.getType() == STT_TLS || s.st_value != ss.value) 488 continue; 489 StringRef name = check(s.getName(file.getStringTable())); 490 Symbol *sym = symtab->find(name); 491 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 492 ret.insert(alias); 493 } 494 return ret; 495 } 496 497 // When a symbol is copy relocated or we create a canonical plt entry, it is 498 // effectively a defined symbol. In the case of copy relocation the symbol is 499 // in .bss and in the case of a canonical plt entry it is in .plt. This function 500 // replaces the existing symbol with a Defined pointing to the appropriate 501 // location. 502 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, 503 uint64_t size) { 504 Symbol old = sym; 505 506 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, 507 sym.type, value, size, sec}); 508 509 sym.pltIndex = old.pltIndex; 510 sym.gotIndex = old.gotIndex; 511 sym.verdefIndex = old.verdefIndex; 512 sym.ppc64BranchltIndex = old.ppc64BranchltIndex; 513 sym.exportDynamic = true; 514 sym.isUsedInRegularObj = true; 515 } 516 517 // Reserve space in .bss or .bss.rel.ro for copy relocation. 518 // 519 // The copy relocation is pretty much a hack. If you use a copy relocation 520 // in your program, not only the symbol name but the symbol's size, RW/RO 521 // bit and alignment become part of the ABI. In addition to that, if the 522 // symbol has aliases, the aliases become part of the ABI. That's subtle, 523 // but if you violate that implicit ABI, that can cause very counter- 524 // intuitive consequences. 525 // 526 // So, what is the copy relocation? It's for linking non-position 527 // independent code to DSOs. In an ideal world, all references to data 528 // exported by DSOs should go indirectly through GOT. But if object files 529 // are compiled as non-PIC, all data references are direct. There is no 530 // way for the linker to transform the code to use GOT, as machine 531 // instructions are already set in stone in object files. This is where 532 // the copy relocation takes a role. 533 // 534 // A copy relocation instructs the dynamic linker to copy data from a DSO 535 // to a specified address (which is usually in .bss) at load-time. If the 536 // static linker (that's us) finds a direct data reference to a DSO 537 // symbol, it creates a copy relocation, so that the symbol can be 538 // resolved as if it were in .bss rather than in a DSO. 539 // 540 // As you can see in this function, we create a copy relocation for the 541 // dynamic linker, and the relocation contains not only symbol name but 542 // various other informtion about the symbol. So, such attributes become a 543 // part of the ABI. 544 // 545 // Note for application developers: I can give you a piece of advice if 546 // you are writing a shared library. You probably should export only 547 // functions from your library. You shouldn't export variables. 548 // 549 // As an example what can happen when you export variables without knowing 550 // the semantics of copy relocations, assume that you have an exported 551 // variable of type T. It is an ABI-breaking change to add new members at 552 // end of T even though doing that doesn't change the layout of the 553 // existing members. That's because the space for the new members are not 554 // reserved in .bss unless you recompile the main program. That means they 555 // are likely to overlap with other data that happens to be laid out next 556 // to the variable in .bss. This kind of issue is sometimes very hard to 557 // debug. What's a solution? Instead of exporting a varaible V from a DSO, 558 // define an accessor getV(). 559 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 560 // Copy relocation against zero-sized symbol doesn't make sense. 561 uint64_t symSize = ss.getSize(); 562 if (symSize == 0 || ss.alignment == 0) 563 fatal("cannot create a copy relocation for symbol " + toString(ss)); 564 565 // See if this symbol is in a read-only segment. If so, preserve the symbol's 566 // memory protection by reserving space in the .bss.rel.ro section. 567 bool isRO = isReadOnly<ELFT>(ss); 568 BssSection *sec = 569 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 570 if (isRO) 571 in.bssRelRo->getParent()->addSection(sec); 572 else 573 in.bss->getParent()->addSection(sec); 574 575 // Look through the DSO's dynamic symbol table for aliases and create a 576 // dynamic symbol for each one. This causes the copy relocation to correctly 577 // interpose any aliases. 578 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 579 replaceWithDefined(*sym, sec, 0, sym->size); 580 581 mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss); 582 } 583 584 // MIPS has an odd notion of "paired" relocations to calculate addends. 585 // For example, if a relocation is of R_MIPS_HI16, there must be a 586 // R_MIPS_LO16 relocation after that, and an addend is calculated using 587 // the two relocations. 588 template <class ELFT, class RelTy> 589 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, 590 InputSectionBase &sec, RelExpr expr, 591 bool isLocal) { 592 if (expr == R_MIPS_GOTREL && isLocal) 593 return sec.getFile<ELFT>()->mipsGp0; 594 595 // The ABI says that the paired relocation is used only for REL. 596 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 597 if (RelTy::IsRela) 598 return 0; 599 600 RelType type = rel.getType(config->isMips64EL); 601 uint32_t pairTy = getMipsPairType(type, isLocal); 602 if (pairTy == R_MIPS_NONE) 603 return 0; 604 605 const uint8_t *buf = sec.data().data(); 606 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 607 608 // To make things worse, paired relocations might not be contiguous in 609 // the relocation table, so we need to do linear search. *sigh* 610 for (const RelTy *ri = &rel; ri != end; ++ri) 611 if (ri->getType(config->isMips64EL) == pairTy && 612 ri->getSymbol(config->isMips64EL) == symIndex) 613 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 614 615 warn("can't find matching " + toString(pairTy) + " relocation for " + 616 toString(type)); 617 return 0; 618 } 619 620 // Returns an addend of a given relocation. If it is RELA, an addend 621 // is in a relocation itself. If it is REL, we need to read it from an 622 // input section. 623 template <class ELFT, class RelTy> 624 static int64_t computeAddend(const RelTy &rel, const RelTy *end, 625 InputSectionBase &sec, RelExpr expr, 626 bool isLocal) { 627 int64_t addend; 628 RelType type = rel.getType(config->isMips64EL); 629 630 if (RelTy::IsRela) { 631 addend = getAddend<ELFT>(rel); 632 } else { 633 const uint8_t *buf = sec.data().data(); 634 addend = target->getImplicitAddend(buf + rel.r_offset, type); 635 } 636 637 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 638 addend += getPPC64TocBase(); 639 if (config->emachine == EM_MIPS) 640 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); 641 642 return addend; 643 } 644 645 // Custom error message if Sym is defined in a discarded section. 646 template <class ELFT> 647 static std::string maybeReportDiscarded(Undefined &sym) { 648 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 649 if (!file || !sym.discardedSecIdx || 650 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 651 return ""; 652 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = 653 CHECK(file->getObj().sections(), file); 654 655 std::string msg; 656 if (sym.type == ELF::STT_SECTION) { 657 msg = "relocation refers to a discarded section: "; 658 msg += CHECK( 659 file->getObj().getSectionName(&objSections[sym.discardedSecIdx]), file); 660 } else { 661 msg = "relocation refers to a symbol in a discarded section: " + 662 toString(sym); 663 } 664 msg += "\n>>> defined in " + toString(file); 665 666 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 667 if (elfSec.sh_type != SHT_GROUP) 668 return msg; 669 670 // If the discarded section is a COMDAT. 671 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 672 if (const InputFile *prevailing = 673 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) 674 msg += "\n>>> section group signature: " + signature.str() + 675 "\n>>> prevailing definition is in " + toString(prevailing); 676 return msg; 677 } 678 679 // Undefined diagnostics are collected in a vector and emitted once all of 680 // them are known, so that some postprocessing on the list of undefined symbols 681 // can happen before lld emits diagnostics. 682 struct UndefinedDiag { 683 Symbol *sym; 684 struct Loc { 685 InputSectionBase *sec; 686 uint64_t offset; 687 }; 688 std::vector<Loc> locs; 689 bool isWarning; 690 }; 691 692 static std::vector<UndefinedDiag> undefs; 693 694 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 695 // the suggested symbol, which is either in the symbol table, or in the same 696 // file of sym. 697 static const Symbol *getAlternativeSpelling(const Undefined &sym) { 698 // Build a map of local defined symbols. 699 DenseMap<StringRef, const Symbol *> map; 700 if (sym.file && !isa<SharedFile>(sym.file)) { 701 for (const Symbol *s : sym.file->getSymbols()) 702 if (s->isLocal() && s->isDefined()) 703 map.try_emplace(s->getName(), s); 704 } 705 706 auto suggest = [&](StringRef newName) -> const Symbol * { 707 // If defined locally. 708 if (const Symbol *s = map.lookup(newName)) 709 return s; 710 711 // If in the symbol table and not undefined. 712 if (const Symbol *s = symtab->find(newName)) 713 if (!s->isUndefined()) 714 return s; 715 716 return nullptr; 717 }; 718 719 // This loop enumerates all strings of Levenshtein distance 1 as typo 720 // correction candidates and suggests the one that exists as a non-undefined 721 // symbol. 722 StringRef name = sym.getName(); 723 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 724 // Insert a character before name[i]. 725 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 726 for (char c = '0'; c <= 'z'; ++c) { 727 newName[i] = c; 728 if (const Symbol *s = suggest(newName)) 729 return s; 730 } 731 if (i == e) 732 break; 733 734 // Substitute name[i]. 735 newName = name; 736 for (char c = '0'; c <= 'z'; ++c) { 737 newName[i] = c; 738 if (const Symbol *s = suggest(newName)) 739 return s; 740 } 741 742 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 743 // common. 744 if (i + 1 < e) { 745 newName[i] = name[i + 1]; 746 newName[i + 1] = name[i]; 747 if (const Symbol *s = suggest(newName)) 748 return s; 749 } 750 751 // Delete name[i]. 752 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 753 if (const Symbol *s = suggest(newName)) 754 return s; 755 } 756 757 return nullptr; 758 } 759 760 template <class ELFT> 761 static void reportUndefinedSymbol(const UndefinedDiag &undef, 762 bool correctSpelling) { 763 Symbol &sym = *undef.sym; 764 765 auto visibility = [&]() -> std::string { 766 switch (sym.visibility) { 767 case STV_INTERNAL: 768 return "internal "; 769 case STV_HIDDEN: 770 return "hidden "; 771 case STV_PROTECTED: 772 return "protected "; 773 default: 774 return ""; 775 } 776 }; 777 778 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); 779 if (msg.empty()) 780 msg = "undefined " + visibility() + "symbol: " + toString(sym); 781 782 const size_t maxUndefReferences = 10; 783 size_t i = 0; 784 for (UndefinedDiag::Loc l : undef.locs) { 785 if (i >= maxUndefReferences) 786 break; 787 InputSectionBase &sec = *l.sec; 788 uint64_t offset = l.offset; 789 790 msg += "\n>>> referenced by "; 791 std::string src = sec.getSrcMsg(sym, offset); 792 if (!src.empty()) 793 msg += src + "\n>>> "; 794 msg += sec.getObjMsg(offset); 795 i++; 796 } 797 798 if (i < undef.locs.size()) 799 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 800 .str(); 801 802 if (correctSpelling) 803 if (const Symbol *corrected = 804 getAlternativeSpelling(cast<Undefined>(sym))) { 805 msg += "\n>>> did you mean: " + toString(*corrected); 806 if (corrected->file) 807 msg += "\n>>> defined in: " + toString(corrected->file); 808 } 809 810 if (sym.getName().startswith("_ZTV")) 811 msg += "\nthe vtable symbol may be undefined because the class is missing " 812 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 813 814 if (undef.isWarning) 815 warn(msg); 816 else 817 error(msg); 818 } 819 820 template <class ELFT> void elf::reportUndefinedSymbols() { 821 // Find the first "undefined symbol" diagnostic for each diagnostic, and 822 // collect all "referenced from" lines at the first diagnostic. 823 DenseMap<Symbol *, UndefinedDiag *> firstRef; 824 for (UndefinedDiag &undef : undefs) { 825 assert(undef.locs.size() == 1); 826 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 827 canon->locs.push_back(undef.locs[0]); 828 undef.locs.clear(); 829 } else 830 firstRef[undef.sym] = &undef; 831 } 832 833 // Enable spell corrector for the first 2 diagnostics. 834 for (auto it : enumerate(undefs)) 835 if (!it.value().locs.empty()) 836 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); 837 undefs.clear(); 838 } 839 840 // Report an undefined symbol if necessary. 841 // Returns true if the undefined symbol will produce an error message. 842 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, 843 uint64_t offset) { 844 if (!sym.isUndefined() || sym.isWeak()) 845 return false; 846 847 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; 848 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 849 return false; 850 851 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 852 // which references a switch table in a discarded .rodata/.text section. The 853 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 854 // spec says references from outside the group to a STB_LOCAL symbol are not 855 // allowed. Work around the bug. 856 if (config->emachine == EM_PPC64 && 857 cast<Undefined>(sym).discardedSecIdx != 0 && sec.name == ".toc") 858 return false; 859 860 bool isWarning = 861 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 862 config->noinhibitExec; 863 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 864 return !isWarning; 865 } 866 867 // MIPS N32 ABI treats series of successive relocations with the same offset 868 // as a single relocation. The similar approach used by N64 ABI, but this ABI 869 // packs all relocations into the single relocation record. Here we emulate 870 // this for the N32 ABI. Iterate over relocation with the same offset and put 871 // theirs types into the single bit-set. 872 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { 873 RelType type = 0; 874 uint64_t offset = rel->r_offset; 875 876 int n = 0; 877 while (rel != end && rel->r_offset == offset) 878 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 879 return type; 880 } 881 882 // .eh_frame sections are mergeable input sections, so their input 883 // offsets are not linearly mapped to output section. For each input 884 // offset, we need to find a section piece containing the offset and 885 // add the piece's base address to the input offset to compute the 886 // output offset. That isn't cheap. 887 // 888 // This class is to speed up the offset computation. When we process 889 // relocations, we access offsets in the monotonically increasing 890 // order. So we can optimize for that access pattern. 891 // 892 // For sections other than .eh_frame, this class doesn't do anything. 893 namespace { 894 class OffsetGetter { 895 public: 896 explicit OffsetGetter(InputSectionBase &sec) { 897 if (auto *eh = dyn_cast<EhInputSection>(&sec)) 898 pieces = eh->pieces; 899 } 900 901 // Translates offsets in input sections to offsets in output sections. 902 // Given offset must increase monotonically. We assume that Piece is 903 // sorted by inputOff. 904 uint64_t get(uint64_t off) { 905 if (pieces.empty()) 906 return off; 907 908 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) 909 ++i; 910 if (i == pieces.size()) 911 fatal(".eh_frame: relocation is not in any piece"); 912 913 // Pieces must be contiguous, so there must be no holes in between. 914 assert(pieces[i].inputOff <= off && "Relocation not in any piece"); 915 916 // Offset -1 means that the piece is dead (i.e. garbage collected). 917 if (pieces[i].outputOff == -1) 918 return -1; 919 return pieces[i].outputOff + off - pieces[i].inputOff; 920 } 921 922 private: 923 ArrayRef<EhSectionPiece> pieces; 924 size_t i = 0; 925 }; 926 } // namespace 927 928 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, 929 Symbol *sym, int64_t addend, RelExpr expr, 930 RelType type) { 931 Partition &part = isec->getPartition(); 932 933 // Add a relative relocation. If relrDyn section is enabled, and the 934 // relocation offset is guaranteed to be even, add the relocation to 935 // the relrDyn section, otherwise add it to the relaDyn section. 936 // relrDyn sections don't support odd offsets. Also, relrDyn sections 937 // don't store the addend values, so we must write it to the relocated 938 // address. 939 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { 940 isec->relocations.push_back({expr, type, offsetInSec, addend, sym}); 941 part.relrDyn->relocs.push_back({isec, offsetInSec}); 942 return; 943 } 944 part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend, 945 expr, type); 946 } 947 948 template <class ELFT, class GotPltSection> 949 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, 950 RelocationBaseSection *rel, RelType type, Symbol &sym) { 951 plt->addEntry<ELFT>(sym); 952 gotPlt->addEntry(sym); 953 rel->addReloc( 954 {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0}); 955 } 956 957 static void addGotEntry(Symbol &sym) { 958 in.got->addEntry(sym); 959 960 RelExpr expr = sym.isTls() ? R_TLS : R_ABS; 961 uint64_t off = sym.getGotOffset(); 962 963 // If a GOT slot value can be calculated at link-time, which is now, 964 // we can just fill that out. 965 // 966 // (We don't actually write a value to a GOT slot right now, but we 967 // add a static relocation to a Relocations vector so that 968 // InputSection::relocate will do the work for us. We may be able 969 // to just write a value now, but it is a TODO.) 970 bool isLinkTimeConstant = 971 !sym.isPreemptible && (!config->isPic || isAbsolute(sym)); 972 if (isLinkTimeConstant) { 973 in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym}); 974 return; 975 } 976 977 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 978 // the GOT slot will be fixed at load-time. 979 if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) { 980 addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel); 981 return; 982 } 983 mainPart->relaDyn->addReloc( 984 sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0, 985 sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel); 986 } 987 988 // Return true if we can define a symbol in the executable that 989 // contains the value/function of a symbol defined in a shared 990 // library. 991 static bool canDefineSymbolInExecutable(Symbol &sym) { 992 // If the symbol has default visibility the symbol defined in the 993 // executable will preempt it. 994 // Note that we want the visibility of the shared symbol itself, not 995 // the visibility of the symbol in the output file we are producing. That is 996 // why we use Sym.stOther. 997 if ((sym.stOther & 0x3) == STV_DEFAULT) 998 return true; 999 1000 // If we are allowed to break address equality of functions, defining 1001 // a plt entry will allow the program to call the function in the 1002 // .so, but the .so and the executable will no agree on the address 1003 // of the function. Similar logic for objects. 1004 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 1005 (sym.isObject() && config->ignoreDataAddressEquality)); 1006 } 1007 1008 // The reason we have to do this early scan is as follows 1009 // * To mmap the output file, we need to know the size 1010 // * For that, we need to know how many dynamic relocs we will have. 1011 // It might be possible to avoid this by outputting the file with write: 1012 // * Write the allocated output sections, computing addresses. 1013 // * Apply relocations, recording which ones require a dynamic reloc. 1014 // * Write the dynamic relocations. 1015 // * Write the rest of the file. 1016 // This would have some drawbacks. For example, we would only know if .rela.dyn 1017 // is needed after applying relocations. If it is, it will go after rw and rx 1018 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1019 // complicates things for the dynamic linker and means we would have to reserve 1020 // space for the extra PT_LOAD even if we end up not using it. 1021 template <class ELFT, class RelTy> 1022 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, 1023 uint64_t offset, Symbol &sym, const RelTy &rel, 1024 int64_t addend) { 1025 // If the relocation is known to be a link-time constant, we know no dynamic 1026 // relocation will be created, pass the control to relocateAlloc() or 1027 // relocateNonAlloc() to resolve it. 1028 // 1029 // The behavior of an undefined weak reference is implementation defined. If 1030 // the relocation is to a weak undef, and we are producing an executable, let 1031 // relocate{,Non}Alloc() resolve it. 1032 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || 1033 (!config->shared && sym.isUndefWeak())) { 1034 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1035 return; 1036 } 1037 1038 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; 1039 if (canWrite) { 1040 RelType rel = target->getDynRel(type); 1041 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 1042 addRelativeReloc(&sec, offset, &sym, addend, expr, type); 1043 return; 1044 } else if (rel != 0) { 1045 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1046 rel = target->relativeRel; 1047 sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend, 1048 R_ADDEND, type); 1049 1050 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1051 // While regular ABI uses dynamic relocations to fill up GOT entries 1052 // MIPS ABI requires dynamic linker to fills up GOT entries using 1053 // specially sorted dynamic symbol table. This affects even dynamic 1054 // relocations against symbols which do not require GOT entries 1055 // creation explicitly, i.e. do not have any GOT-relocations. So if 1056 // a preemptible symbol has a dynamic relocation we anyway have 1057 // to create a GOT entry for it. 1058 // If a non-preemptible symbol has a dynamic relocation against it, 1059 // dynamic linker takes it st_value, adds offset and writes down 1060 // result of the dynamic relocation. In case of preemptible symbol 1061 // dynamic linker performs symbol resolution, writes the symbol value 1062 // to the GOT entry and reads the GOT entry when it needs to perform 1063 // a dynamic relocation. 1064 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1065 if (config->emachine == EM_MIPS) 1066 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1067 return; 1068 } 1069 } 1070 1071 // When producing an executable, we can perform copy relocations (for 1072 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1073 if (!config->shared) { 1074 if (!canDefineSymbolInExecutable(sym)) { 1075 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1076 getLocation(sec, sym, offset)); 1077 return; 1078 } 1079 1080 if (sym.isObject()) { 1081 // Produce a copy relocation. 1082 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1083 if (!config->zCopyreloc) 1084 error("unresolvable relocation " + toString(type) + 1085 " against symbol '" + toString(*ss) + 1086 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1087 getLocation(sec, sym, offset)); 1088 addCopyRelSymbol<ELFT>(*ss); 1089 } 1090 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1091 return; 1092 } 1093 1094 // This handles a non PIC program call to function in a shared library. In 1095 // an ideal world, we could just report an error saying the relocation can 1096 // overflow at runtime. In the real world with glibc, crt1.o has a 1097 // R_X86_64_PC32 pointing to libc.so. 1098 // 1099 // The general idea on how to handle such cases is to create a PLT entry and 1100 // use that as the function value. 1101 // 1102 // For the static linking part, we just return a plt expr and everything 1103 // else will use the PLT entry as the address. 1104 // 1105 // The remaining problem is making sure pointer equality still works. We 1106 // need the help of the dynamic linker for that. We let it know that we have 1107 // a direct reference to a so symbol by creating an undefined symbol with a 1108 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1109 // the value of the symbol we created. This is true even for got entries, so 1110 // pointer equality is maintained. To avoid an infinite loop, the only entry 1111 // that points to the real function is a dedicated got entry used by the 1112 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1113 // R_386_JMP_SLOT, etc). 1114 1115 // For position independent executable on i386, the plt entry requires ebx 1116 // to be set. This causes two problems: 1117 // * If some code has a direct reference to a function, it was probably 1118 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1119 // * If a library definition gets preempted to the executable, it will have 1120 // the wrong ebx value. 1121 if (sym.isFunc()) { 1122 if (config->pie && config->emachine == EM_386) 1123 errorOrWarn("symbol '" + toString(sym) + 1124 "' cannot be preempted; recompile with -fPIE" + 1125 getLocation(sec, sym, offset)); 1126 if (!sym.isInPlt()) 1127 addPltEntry<ELFT>(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1128 if (!sym.isDefined()) 1129 replaceWithDefined( 1130 sym, in.plt, 1131 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); 1132 sym.needsPltAddr = true; 1133 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1134 return; 1135 } 1136 } 1137 1138 if (config->isPic) { 1139 if (!canWrite && !isRelExpr(expr)) 1140 errorOrWarn( 1141 "can't create dynamic relocation " + toString(type) + " against " + 1142 (sym.getName().empty() ? "local symbol" 1143 : "symbol: " + toString(sym)) + 1144 " in readonly segment; recompile object files with -fPIC " 1145 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 1146 getLocation(sec, sym, offset)); 1147 else 1148 errorOrWarn( 1149 "relocation " + toString(type) + " cannot be used against " + 1150 (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) + 1151 "; recompile with -fPIC" + getLocation(sec, sym, offset)); 1152 return; 1153 } 1154 1155 errorOrWarn("symbol '" + toString(sym) + "' has no type" + 1156 getLocation(sec, sym, offset)); 1157 } 1158 1159 template <class ELFT, class RelTy> 1160 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, 1161 RelTy *end) { 1162 const RelTy &rel = *i; 1163 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1164 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); 1165 RelType type; 1166 1167 // Deal with MIPS oddity. 1168 if (config->mipsN32Abi) { 1169 type = getMipsN32RelType(i, end); 1170 } else { 1171 type = rel.getType(config->isMips64EL); 1172 ++i; 1173 } 1174 1175 // Get an offset in an output section this relocation is applied to. 1176 uint64_t offset = getOffset.get(rel.r_offset); 1177 if (offset == uint64_t(-1)) 1178 return; 1179 1180 // Error if the target symbol is undefined. Symbol index 0 may be used by 1181 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1182 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) 1183 return; 1184 1185 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; 1186 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); 1187 1188 // Ignore "hint" relocations because they are only markers for relaxation. 1189 if (oneof<R_HINT, R_NONE>(expr)) 1190 return; 1191 1192 // We can separate the small code model relocations into 2 categories: 1193 // 1) Those that access the compiler generated .toc sections. 1194 // 2) Those that access the linker allocated got entries. 1195 // lld allocates got entries to symbols on demand. Since we don't try to sort 1196 // the got entries in any way, we don't have to track which objects have 1197 // got-based small code model relocs. The .toc sections get placed after the 1198 // end of the linker allocated .got section and we do sort those so sections 1199 // addressed with small code model relocations come first. 1200 if (config->emachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(type)) 1201 sec.file->ppc64SmallCodeModelTocRelocs = true; 1202 1203 if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) { 1204 warn("using ifunc symbols when text relocations are allowed may produce " 1205 "a binary that will segfault, if the object file is linked with " 1206 "old version of glibc (glibc 2.28 and earlier). If this applies to " 1207 "you, consider recompiling the object files without -fPIC and " 1208 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " 1209 "turn off this warning." + 1210 getLocation(sec, sym, offset)); 1211 } 1212 1213 // Read an addend. 1214 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); 1215 1216 // Relax relocations. 1217 // 1218 // If we know that a PLT entry will be resolved within the same ELF module, we 1219 // can skip PLT access and directly jump to the destination function. For 1220 // example, if we are linking a main exectuable, all dynamic symbols that can 1221 // be resolved within the executable will actually be resolved that way at 1222 // runtime, because the main exectuable is always at the beginning of a search 1223 // list. We can leverage that fact. 1224 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { 1225 if (expr == R_GOT_PC && !isAbsoluteValue(sym)) { 1226 expr = target->adjustRelaxExpr(type, relocatedAddr, expr); 1227 } else { 1228 // Addend of R_PPC_PLTREL24 is used to choose call stub type. It should be 1229 // ignored if optimized to R_PC. 1230 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1231 addend = 0; 1232 expr = fromPlt(expr); 1233 } 1234 } 1235 1236 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1237 // uses their addresses, we need GOT or GOTPLT to be created. 1238 // 1239 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1240 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1241 in.gotPlt->hasGotPltOffRel = true; 1242 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( 1243 expr)) { 1244 in.got->hasGotOffRel = true; 1245 } 1246 1247 // Process some TLS relocations, including relaxing TLS relocations. 1248 // Note that this function does not handle all TLS relocations. 1249 if (unsigned processed = 1250 handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) { 1251 i += (processed - 1); 1252 return; 1253 } 1254 1255 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1256 // direct relocation on through. 1257 if (sym.isGnuIFunc() && config->zIfuncNoplt) { 1258 sym.exportDynamic = true; 1259 mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type); 1260 return; 1261 } 1262 1263 // Non-preemptible ifuncs require special handling. First, handle the usual 1264 // case where the symbol isn't one of these. 1265 if (!sym.isGnuIFunc() || sym.isPreemptible) { 1266 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1267 if (needsPlt(expr) && !sym.isInPlt()) 1268 addPltEntry<ELFT>(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1269 1270 // Create a GOT slot if a relocation needs GOT. 1271 if (needsGot(expr)) { 1272 if (config->emachine == EM_MIPS) { 1273 // MIPS ABI has special rules to process GOT entries and doesn't 1274 // require relocation entries for them. A special case is TLS 1275 // relocations. In that case dynamic loader applies dynamic 1276 // relocations to initialize TLS GOT entries. 1277 // See "Global Offset Table" in Chapter 5 in the following document 1278 // for detailed description: 1279 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1280 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1281 } else if (!sym.isInGot()) { 1282 addGotEntry(sym); 1283 } 1284 } 1285 } else { 1286 // Handle a reference to a non-preemptible ifunc. These are special in a 1287 // few ways: 1288 // 1289 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1290 // a fixed value. But assuming that all references to the ifunc are 1291 // GOT-generating or PLT-generating, the handling of an ifunc is 1292 // relatively straightforward. We create a PLT entry in Iplt, which is 1293 // usually at the end of .plt, which makes an indirect call using a 1294 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1295 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1296 // which is usually at the end of .rela.plt. Unlike most relocations in 1297 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1298 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1299 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1300 // .got.plt without requiring a separate GOT entry. 1301 // 1302 // - Despite the fact that an ifunc does not have a fixed value, compilers 1303 // that are not passed -fPIC will assume that they do, and will emit 1304 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1305 // symbol. This means that if a direct relocation to the symbol is 1306 // seen, the linker must set a value for the symbol, and this value must 1307 // be consistent no matter what type of reference is made to the symbol. 1308 // This can be done by creating a PLT entry for the symbol in the way 1309 // described above and making it canonical, that is, making all references 1310 // point to the PLT entry instead of the resolver. In lld we also store 1311 // the address of the PLT entry in the dynamic symbol table, which means 1312 // that the symbol will also have the same value in other modules. 1313 // Because the value loaded from the GOT needs to be consistent with 1314 // the value computed using a direct relocation, a non-preemptible ifunc 1315 // may end up with two GOT entries, one in .got.plt that points to the 1316 // address returned by the resolver and is used only by the PLT entry, 1317 // and another in .got that points to the PLT entry and is used by 1318 // GOT-generating relocations. 1319 // 1320 // - The fact that these symbols do not have a fixed value makes them an 1321 // exception to the general rule that a statically linked executable does 1322 // not require any form of dynamic relocation. To handle these relocations 1323 // correctly, the IRELATIVE relocations are stored in an array which a 1324 // statically linked executable's startup code must enumerate using the 1325 // linker-defined symbols __rela?_iplt_{start,end}. 1326 if (!sym.isInPlt()) { 1327 // Create PLT and GOTPLT slots for the symbol. 1328 sym.isInIplt = true; 1329 1330 // Create a copy of the symbol to use as the target of the IRELATIVE 1331 // relocation in the igotPlt. This is in case we make the PLT canonical 1332 // later, which would overwrite the original symbol. 1333 // 1334 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1335 // that's really needed to create the IRELATIVE is the section and value, 1336 // so ideally we should just need to copy those. 1337 auto *directSym = make<Defined>(cast<Defined>(sym)); 1338 addPltEntry<ELFT>(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, 1339 *directSym); 1340 sym.pltIndex = directSym->pltIndex; 1341 } 1342 if (needsGot(expr)) { 1343 // Redirect GOT accesses to point to the Igot. 1344 // 1345 // This field is also used to keep track of whether we ever needed a GOT 1346 // entry. If we did and we make the PLT canonical later, we'll need to 1347 // create a GOT entry pointing to the PLT entry for Sym. 1348 sym.gotInIgot = true; 1349 } else if (!needsPlt(expr)) { 1350 // Make the ifunc's PLT entry canonical by changing the value of its 1351 // symbol to redirect all references to point to it. 1352 unsigned entryOffset = sym.pltIndex * target->pltEntrySize; 1353 if (config->zRetpolineplt) 1354 entryOffset += target->pltHeaderSize; 1355 1356 auto &d = cast<Defined>(sym); 1357 d.section = in.iplt; 1358 d.value = entryOffset; 1359 d.size = 0; 1360 // It's important to set the symbol type here so that dynamic loaders 1361 // don't try to call the PLT as if it were an ifunc resolver. 1362 d.type = STT_FUNC; 1363 1364 if (sym.gotInIgot) { 1365 // We previously encountered a GOT generating reference that we 1366 // redirected to the Igot. Now that the PLT entry is canonical we must 1367 // clear the redirection to the Igot and add a GOT entry. As we've 1368 // changed the symbol type to STT_FUNC future GOT generating references 1369 // will naturally use this GOT entry. 1370 // 1371 // We don't need to worry about creating a MIPS GOT here because ifuncs 1372 // aren't a thing on MIPS. 1373 sym.gotInIgot = false; 1374 addGotEntry(sym); 1375 } 1376 } 1377 } 1378 1379 processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend); 1380 } 1381 1382 template <class ELFT, class RelTy> 1383 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1384 OffsetGetter getOffset(sec); 1385 1386 // Not all relocations end up in Sec.Relocations, but a lot do. 1387 sec.relocations.reserve(rels.size()); 1388 1389 for (auto i = rels.begin(), end = rels.end(); i != end;) 1390 scanReloc<ELFT>(sec, getOffset, i, end); 1391 1392 // Sort relocations by offset for more efficient searching for 1393 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1394 if (config->emachine == EM_RISCV || 1395 (config->emachine == EM_PPC64 && sec.name == ".toc")) 1396 llvm::stable_sort(sec.relocations, 1397 [](const Relocation &lhs, const Relocation &rhs) { 1398 return lhs.offset < rhs.offset; 1399 }); 1400 } 1401 1402 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) { 1403 if (s.areRelocsRela) 1404 scanRelocs<ELFT>(s, s.relas<ELFT>()); 1405 else 1406 scanRelocs<ELFT>(s, s.rels<ELFT>()); 1407 } 1408 1409 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1410 // std::merge requires a strict weak ordering. 1411 if (a->outSecOff < b->outSecOff) 1412 return true; 1413 1414 if (a->outSecOff == b->outSecOff) { 1415 auto *ta = dyn_cast<ThunkSection>(a); 1416 auto *tb = dyn_cast<ThunkSection>(b); 1417 1418 // Check if Thunk is immediately before any specific Target 1419 // InputSection for example Mips LA25 Thunks. 1420 if (ta && ta->getTargetInputSection() == b) 1421 return true; 1422 1423 // Place Thunk Sections without specific targets before 1424 // non-Thunk Sections. 1425 if (ta && !tb && !ta->getTargetInputSection()) 1426 return true; 1427 } 1428 1429 return false; 1430 } 1431 1432 // Call Fn on every executable InputSection accessed via the linker script 1433 // InputSectionDescription::Sections. 1434 static void forEachInputSectionDescription( 1435 ArrayRef<OutputSection *> outputSections, 1436 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1437 for (OutputSection *os : outputSections) { 1438 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1439 continue; 1440 for (BaseCommand *bc : os->sectionCommands) 1441 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1442 fn(os, isd); 1443 } 1444 } 1445 1446 // Thunk Implementation 1447 // 1448 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1449 // of code that the linker inserts inbetween a caller and a callee. The thunks 1450 // are added at link time rather than compile time as the decision on whether 1451 // a thunk is needed, such as the caller and callee being out of range, can only 1452 // be made at link time. 1453 // 1454 // It is straightforward to tell given the current state of the program when a 1455 // thunk is needed for a particular call. The more difficult part is that 1456 // the thunk needs to be placed in the program such that the caller can reach 1457 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1458 // the program alters addresses, which can mean more thunks etc. 1459 // 1460 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1461 // The decision to have a ThunkSection act as a container means that we can 1462 // more easily handle the most common case of a single block of contiguous 1463 // Thunks by inserting just a single ThunkSection. 1464 // 1465 // The implementation of Thunks in lld is split across these areas 1466 // Relocations.cpp : Framework for creating and placing thunks 1467 // Thunks.cpp : The code generated for each supported thunk 1468 // Target.cpp : Target specific hooks that the framework uses to decide when 1469 // a thunk is used 1470 // Synthetic.cpp : Implementation of ThunkSection 1471 // Writer.cpp : Iteratively call framework until no more Thunks added 1472 // 1473 // Thunk placement requirements: 1474 // Mips LA25 thunks. These must be placed immediately before the callee section 1475 // We can assume that the caller is in range of the Thunk. These are modelled 1476 // by Thunks that return the section they must precede with 1477 // getTargetInputSection(). 1478 // 1479 // ARM interworking and range extension thunks. These thunks must be placed 1480 // within range of the caller. All implemented ARM thunks can always reach the 1481 // callee as they use an indirect jump via a register that has no range 1482 // restrictions. 1483 // 1484 // Thunk placement algorithm: 1485 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1486 // getTargetInputSection(). 1487 // 1488 // For thunks that must be placed within range of the caller there are many 1489 // possible choices given that the maximum range from the caller is usually 1490 // much larger than the average InputSection size. Desirable properties include: 1491 // - Maximize reuse of thunks by multiple callers 1492 // - Minimize number of ThunkSections to simplify insertion 1493 // - Handle impact of already added Thunks on addresses 1494 // - Simple to understand and implement 1495 // 1496 // In lld for the first pass, we pre-create one or more ThunkSections per 1497 // InputSectionDescription at Target specific intervals. A ThunkSection is 1498 // placed so that the estimated end of the ThunkSection is within range of the 1499 // start of the InputSectionDescription or the previous ThunkSection. For 1500 // example: 1501 // InputSectionDescription 1502 // Section 0 1503 // ... 1504 // Section N 1505 // ThunkSection 0 1506 // Section N + 1 1507 // ... 1508 // Section N + K 1509 // Thunk Section 1 1510 // 1511 // The intention is that we can add a Thunk to a ThunkSection that is well 1512 // spaced enough to service a number of callers without having to do a lot 1513 // of work. An important principle is that it is not an error if a Thunk cannot 1514 // be placed in a pre-created ThunkSection; when this happens we create a new 1515 // ThunkSection placed next to the caller. This allows us to handle the vast 1516 // majority of thunks simply, but also handle rare cases where the branch range 1517 // is smaller than the target specific spacing. 1518 // 1519 // The algorithm is expected to create all the thunks that are needed in a 1520 // single pass, with a small number of programs needing a second pass due to 1521 // the insertion of thunks in the first pass increasing the offset between 1522 // callers and callees that were only just in range. 1523 // 1524 // A consequence of allowing new ThunkSections to be created outside of the 1525 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1526 // range in pass K, are out of range in some pass > K due to the insertion of 1527 // more Thunks in between the caller and callee. When this happens we retarget 1528 // the relocation back to the original target and create another Thunk. 1529 1530 // Remove ThunkSections that are empty, this should only be the initial set 1531 // precreated on pass 0. 1532 1533 // Insert the Thunks for OutputSection OS into their designated place 1534 // in the Sections vector, and recalculate the InputSection output section 1535 // offsets. 1536 // This may invalidate any output section offsets stored outside of InputSection 1537 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1538 forEachInputSectionDescription( 1539 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1540 if (isd->thunkSections.empty()) 1541 return; 1542 1543 // Remove any zero sized precreated Thunks. 1544 llvm::erase_if(isd->thunkSections, 1545 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1546 return ts.first->getSize() == 0; 1547 }); 1548 1549 // ISD->ThunkSections contains all created ThunkSections, including 1550 // those inserted in previous passes. Extract the Thunks created this 1551 // pass and order them in ascending outSecOff. 1552 std::vector<ThunkSection *> newThunks; 1553 for (const std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1554 if (ts.second == pass) 1555 newThunks.push_back(ts.first); 1556 llvm::stable_sort(newThunks, 1557 [](const ThunkSection *a, const ThunkSection *b) { 1558 return a->outSecOff < b->outSecOff; 1559 }); 1560 1561 // Merge sorted vectors of Thunks and InputSections by outSecOff 1562 std::vector<InputSection *> tmp; 1563 tmp.reserve(isd->sections.size() + newThunks.size()); 1564 1565 std::merge(isd->sections.begin(), isd->sections.end(), 1566 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1567 mergeCmp); 1568 1569 isd->sections = std::move(tmp); 1570 }); 1571 } 1572 1573 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1574 // is in range of Src. An ISD maps to a range of InputSections described by a 1575 // linker script section pattern such as { .text .text.* }. 1576 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec, 1577 InputSectionDescription *isd, 1578 uint32_t type, uint64_t src) { 1579 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1580 ThunkSection *ts = tp.first; 1581 uint64_t tsBase = os->addr + ts->outSecOff; 1582 uint64_t tsLimit = tsBase + ts->getSize(); 1583 if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit)) 1584 return ts; 1585 } 1586 1587 // No suitable ThunkSection exists. This can happen when there is a branch 1588 // with lower range than the ThunkSection spacing or when there are too 1589 // many Thunks. Create a new ThunkSection as close to the InputSection as 1590 // possible. Error if InputSection is so large we cannot place ThunkSection 1591 // anywhere in Range. 1592 uint64_t thunkSecOff = isec->outSecOff; 1593 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) { 1594 thunkSecOff = isec->outSecOff + isec->getSize(); 1595 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) 1596 fatal("InputSection too large for range extension thunk " + 1597 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1598 } 1599 return addThunkSection(os, isd, thunkSecOff); 1600 } 1601 1602 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1603 // precedes its Target. 1604 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1605 ThunkSection *ts = thunkedSections.lookup(isec); 1606 if (ts) 1607 return ts; 1608 1609 // Find InputSectionRange within Target Output Section (TOS) that the 1610 // InputSection (IS) that we need to precede is in. 1611 OutputSection *tos = isec->getParent(); 1612 for (BaseCommand *bc : tos->sectionCommands) { 1613 auto *isd = dyn_cast<InputSectionDescription>(bc); 1614 if (!isd || isd->sections.empty()) 1615 continue; 1616 1617 InputSection *first = isd->sections.front(); 1618 InputSection *last = isd->sections.back(); 1619 1620 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1621 continue; 1622 1623 ts = addThunkSection(tos, isd, isec->outSecOff); 1624 thunkedSections[isec] = ts; 1625 return ts; 1626 } 1627 1628 return nullptr; 1629 } 1630 1631 // Create one or more ThunkSections per OS that can be used to place Thunks. 1632 // We attempt to place the ThunkSections using the following desirable 1633 // properties: 1634 // - Within range of the maximum number of callers 1635 // - Minimise the number of ThunkSections 1636 // 1637 // We follow a simple but conservative heuristic to place ThunkSections at 1638 // offsets that are multiples of a Target specific branch range. 1639 // For an InputSectionDescription that is smaller than the range, a single 1640 // ThunkSection at the end of the range will do. 1641 // 1642 // For an InputSectionDescription that is more than twice the size of the range, 1643 // we place the last ThunkSection at range bytes from the end of the 1644 // InputSectionDescription in order to increase the likelihood that the 1645 // distance from a thunk to its target will be sufficiently small to 1646 // allow for the creation of a short thunk. 1647 void ThunkCreator::createInitialThunkSections( 1648 ArrayRef<OutputSection *> outputSections) { 1649 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 1650 1651 forEachInputSectionDescription( 1652 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1653 if (isd->sections.empty()) 1654 return; 1655 1656 uint32_t isdBegin = isd->sections.front()->outSecOff; 1657 uint32_t isdEnd = 1658 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 1659 uint32_t lastThunkLowerBound = -1; 1660 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 1661 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 1662 1663 uint32_t isecLimit; 1664 uint32_t prevIsecLimit = isdBegin; 1665 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 1666 1667 for (const InputSection *isec : isd->sections) { 1668 isecLimit = isec->outSecOff + isec->getSize(); 1669 if (isecLimit > thunkUpperBound) { 1670 addThunkSection(os, isd, prevIsecLimit); 1671 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 1672 } 1673 if (isecLimit > lastThunkLowerBound) 1674 break; 1675 prevIsecLimit = isecLimit; 1676 } 1677 addThunkSection(os, isd, isecLimit); 1678 }); 1679 } 1680 1681 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 1682 InputSectionDescription *isd, 1683 uint64_t off) { 1684 auto *ts = make<ThunkSection>(os, off); 1685 ts->partition = os->partition; 1686 isd->thunkSections.push_back({ts, pass}); 1687 return ts; 1688 } 1689 1690 static bool isThunkSectionCompatible(InputSection *source, 1691 SectionBase *target) { 1692 // We can't reuse thunks in different loadable partitions because they might 1693 // not be loaded. But partition 1 (the main partition) will always be loaded. 1694 if (source->partition != target->partition) 1695 return target->partition == 1; 1696 return true; 1697 } 1698 1699 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 1700 Relocation &rel, uint64_t src) { 1701 std::vector<Thunk *> *thunkVec = nullptr; 1702 1703 // We use (section, offset) pair to find the thunk position if possible so 1704 // that we create only one thunk for aliased symbols or ICFed sections. 1705 if (auto *d = dyn_cast<Defined>(rel.sym)) 1706 if (!d->isInPlt() && d->section) 1707 thunkVec = &thunkedSymbolsBySection[{d->section->repl, d->value}]; 1708 if (!thunkVec) 1709 thunkVec = &thunkedSymbols[rel.sym]; 1710 1711 // Check existing Thunks for Sym to see if they can be reused 1712 for (Thunk *t : *thunkVec) 1713 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 1714 t->isCompatibleWith(*isec, rel) && 1715 target->inBranchRange(rel.type, src, t->getThunkTargetSym()->getVA())) 1716 return std::make_pair(t, false); 1717 1718 // No existing compatible Thunk in range, create a new one 1719 Thunk *t = addThunk(*isec, rel); 1720 thunkVec->push_back(t); 1721 return std::make_pair(t, true); 1722 } 1723 1724 // Return true if the relocation target is an in range Thunk. 1725 // Return false if the relocation is not to a Thunk. If the relocation target 1726 // was originally to a Thunk, but is no longer in range we revert the 1727 // relocation back to its original non-Thunk target. 1728 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 1729 if (Thunk *t = thunks.lookup(rel.sym)) { 1730 if (target->inBranchRange(rel.type, src, rel.sym->getVA())) 1731 return true; 1732 rel.sym = &t->destination; 1733 if (rel.sym->isInPlt()) 1734 rel.expr = toPlt(rel.expr); 1735 } 1736 return false; 1737 } 1738 1739 // Process all relocations from the InputSections that have been assigned 1740 // to InputSectionDescriptions and redirect through Thunks if needed. The 1741 // function should be called iteratively until it returns false. 1742 // 1743 // PreConditions: 1744 // All InputSections that may need a Thunk are reachable from 1745 // OutputSectionCommands. 1746 // 1747 // All OutputSections have an address and all InputSections have an offset 1748 // within the OutputSection. 1749 // 1750 // The offsets between caller (relocation place) and callee 1751 // (relocation target) will not be modified outside of createThunks(). 1752 // 1753 // PostConditions: 1754 // If return value is true then ThunkSections have been inserted into 1755 // OutputSections. All relocations that needed a Thunk based on the information 1756 // available to createThunks() on entry have been redirected to a Thunk. Note 1757 // that adding Thunks changes offsets between caller and callee so more Thunks 1758 // may be required. 1759 // 1760 // If return value is false then no more Thunks are needed, and createThunks has 1761 // made no changes. If the target requires range extension thunks, currently 1762 // ARM, then any future change in offset between caller and callee risks a 1763 // relocation out of range error. 1764 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { 1765 bool addressesChanged = false; 1766 1767 if (pass == 0 && target->getThunkSectionSpacing()) 1768 createInitialThunkSections(outputSections); 1769 1770 // Create all the Thunks and insert them into synthetic ThunkSections. The 1771 // ThunkSections are later inserted back into InputSectionDescriptions. 1772 // We separate the creation of ThunkSections from the insertion of the 1773 // ThunkSections as ThunkSections are not always inserted into the same 1774 // InputSectionDescription as the caller. 1775 forEachInputSectionDescription( 1776 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1777 for (InputSection *isec : isd->sections) 1778 for (Relocation &rel : isec->relocations) { 1779 uint64_t src = isec->getVA(rel.offset); 1780 1781 // If we are a relocation to an existing Thunk, check if it is 1782 // still in range. If not then Rel will be altered to point to its 1783 // original target so another Thunk can be generated. 1784 if (pass > 0 && normalizeExistingThunk(rel, src)) 1785 continue; 1786 1787 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 1788 *rel.sym)) 1789 continue; 1790 1791 Thunk *t; 1792 bool isNew; 1793 std::tie(t, isNew) = getThunk(isec, rel, src); 1794 1795 if (isNew) { 1796 // Find or create a ThunkSection for the new Thunk 1797 ThunkSection *ts; 1798 if (auto *tis = t->getTargetInputSection()) 1799 ts = getISThunkSec(tis); 1800 else 1801 ts = getISDThunkSec(os, isec, isd, rel.type, src); 1802 ts->addThunk(t); 1803 thunks[t->getThunkTargetSym()] = t; 1804 } 1805 1806 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 1807 rel.sym = t->getThunkTargetSym(); 1808 rel.expr = fromPlt(rel.expr); 1809 1810 // The addend of R_PPC_PLTREL24 should be ignored after changing to 1811 // R_PC. 1812 if (config->emachine == EM_PPC && rel.type == R_PPC_PLTREL24) 1813 rel.addend = 0; 1814 } 1815 1816 for (auto &p : isd->thunkSections) 1817 addressesChanged |= p.first->assignOffsets(); 1818 }); 1819 1820 for (auto &p : thunkedSections) 1821 addressesChanged |= p.second->assignOffsets(); 1822 1823 // Merge all created synthetic ThunkSections back into OutputSection 1824 mergeThunks(outputSections); 1825 ++pass; 1826 return addressesChanged; 1827 } 1828 1829 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 1830 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 1831 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 1832 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 1833 template void elf::reportUndefinedSymbols<ELF32LE>(); 1834 template void elf::reportUndefinedSymbols<ELF32BE>(); 1835 template void elf::reportUndefinedSymbols<ELF64LE>(); 1836 template void elf::reportUndefinedSymbols<ELF64BE>(); 1837