1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Support/Endian.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 60 using namespace llvm; 61 using namespace llvm::ELF; 62 using namespace llvm::object; 63 using namespace llvm::support::endian; 64 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &Sym) { 69 for (BaseCommand *Base : Script->SectionCommands) 70 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) 71 if (Cmd->Sym == &Sym) 72 return Cmd->Location; 73 return None; 74 } 75 76 // Construct a message in the following format. 77 // 78 // >>> defined in /home/alice/src/foo.o 79 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 80 // >>> /home/alice/src/bar.o:(.text+0x1) 81 static std::string getLocation(InputSectionBase &S, const Symbol &Sym, 82 uint64_t Off) { 83 std::string Msg = "\n>>> defined in "; 84 if (Sym.File) 85 Msg += toString(Sym.File); 86 else if (Optional<std::string> Loc = getLinkerScriptLocation(Sym)) 87 Msg += *Loc; 88 89 Msg += "\n>>> referenced by "; 90 std::string Src = S.getSrcMsg(Sym, Off); 91 if (!Src.empty()) 92 Msg += Src + "\n>>> "; 93 return Msg + S.getObjMsg(Off); 94 } 95 96 namespace { 97 // Build a bitmask with one bit set for each RelExpr. 98 // 99 // Constexpr function arguments can't be used in static asserts, so we 100 // use template arguments to build the mask. 101 // But function template partial specializations don't exist (needed 102 // for base case of the recursion), so we need a dummy struct. 103 template <RelExpr... Exprs> struct RelExprMaskBuilder { 104 static inline uint64_t build() { return 0; } 105 }; 106 107 // Specialization for recursive case. 108 template <RelExpr Head, RelExpr... Tail> 109 struct RelExprMaskBuilder<Head, Tail...> { 110 static inline uint64_t build() { 111 static_assert(0 <= Head && Head < 64, 112 "RelExpr is too large for 64-bit mask!"); 113 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 114 } 115 }; 116 } // namespace 117 118 // Return true if `Expr` is one of `Exprs`. 119 // There are fewer than 64 RelExpr's, so we can represent any set of 120 // RelExpr's as a constant bit mask and test for membership with a 121 // couple cheap bitwise operations. 122 template <RelExpr... Exprs> bool oneof(RelExpr Expr) { 123 assert(0 <= Expr && (int)Expr < 64 && 124 "RelExpr is too large for 64-bit mask!"); 125 return (uint64_t(1) << Expr) & RelExprMaskBuilder<Exprs...>::build(); 126 } 127 128 // This function is similar to the `handleTlsRelocation`. MIPS does not 129 // support any relaxations for TLS relocations so by factoring out MIPS 130 // handling in to the separate function we can simplify the code and do not 131 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 132 // Mips has a custom MipsGotSection that handles the writing of GOT entries 133 // without dynamic relocations. 134 static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym, 135 InputSectionBase &C, uint64_t Offset, 136 int64_t Addend, RelExpr Expr) { 137 if (Expr == R_MIPS_TLSLD) { 138 In.MipsGot->addTlsIndex(*C.File); 139 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 140 return 1; 141 } 142 if (Expr == R_MIPS_TLSGD) { 143 In.MipsGot->addDynTlsEntry(*C.File, Sym); 144 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 145 return 1; 146 } 147 return 0; 148 } 149 150 // This function is similar to the `handleMipsTlsRelocation`. ARM also does not 151 // support any relaxations for TLS relocations. ARM is logically similar to Mips 152 // in how it handles TLS, but Mips uses its own custom GOT which handles some 153 // of the cases that ARM uses GOT relocations for. 154 // 155 // We look for TLS global dynamic and local dynamic relocations, these may 156 // require the generation of a pair of GOT entries that have associated 157 // dynamic relocations. When the results of the dynamic relocations can be 158 // resolved at static link time we do so. This is necessary for static linking 159 // as there will be no dynamic loader to resolve them at load-time. 160 // 161 // The pair of GOT entries created are of the form 162 // GOT[e0] Module Index (Used to find pointer to TLS block at run-time) 163 // GOT[e1] Offset of symbol in TLS block 164 static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym, 165 InputSectionBase &C, uint64_t Offset, 166 int64_t Addend, RelExpr Expr) { 167 // The Dynamic TLS Module Index Relocation for a symbol defined in an 168 // executable is always 1. If the target Symbol is not preemptible then 169 // we know the offset into the TLS block at static link time. 170 bool NeedDynId = Sym.IsPreemptible || Config->Shared; 171 bool NeedDynOff = Sym.IsPreemptible; 172 173 auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) { 174 if (Dyn) 175 In.RelaDyn->addReloc(Type, In.Got, Off, Dest); 176 else 177 In.Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest}); 178 }; 179 180 // Local Dynamic is for access to module local TLS variables, while still 181 // being suitable for being dynamically loaded via dlopen. 182 // GOT[e0] is the module index, with a special value of 0 for the current 183 // module. GOT[e1] is unused. There only needs to be one module index entry. 184 if (Expr == R_TLSLD_PC && In.Got->addTlsIndex()) { 185 AddTlsReloc(In.Got->getTlsIndexOff(), Target->TlsModuleIndexRel, 186 NeedDynId ? nullptr : &Sym, NeedDynId); 187 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 188 return 1; 189 } 190 191 // Global Dynamic is the most general purpose access model. When we know 192 // the module index and offset of symbol in TLS block we can fill these in 193 // using static GOT relocations. 194 if (Expr == R_TLSGD_PC) { 195 if (In.Got->addDynTlsEntry(Sym)) { 196 uint64_t Off = In.Got->getGlobalDynOffset(Sym); 197 AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId); 198 AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym, 199 NeedDynOff); 200 } 201 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 202 return 1; 203 } 204 return 0; 205 } 206 207 // Returns the number of relocations processed. 208 template <class ELFT> 209 static unsigned 210 handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C, 211 typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { 212 if (!Sym.isTls()) 213 return 0; 214 215 if (Config->EMachine == EM_ARM) 216 return handleARMTlsRelocation(Type, Sym, C, Offset, Addend, Expr); 217 if (Config->EMachine == EM_MIPS) 218 return handleMipsTlsRelocation(Type, Sym, C, Offset, Addend, Expr); 219 220 if (oneof<R_TLSDESC, R_AARCH64_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) && 221 Config->Shared) { 222 if (In.Got->addDynTlsEntry(Sym)) { 223 uint64_t Off = In.Got->getGlobalDynOffset(Sym); 224 In.RelaDyn->addReloc( 225 {Target->TlsDescRel, In.Got, Off, !Sym.IsPreemptible, &Sym, 0}); 226 } 227 if (Expr != R_TLSDESC_CALL) 228 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 229 return 1; 230 } 231 232 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 233 Expr)) { 234 // Local-Dynamic relocs can be relaxed to Local-Exec. 235 if (!Config->Shared) { 236 C.Relocations.push_back( 237 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type, 238 Offset, Addend, &Sym}); 239 return Target->getTlsGdRelaxSkip(Type); 240 } 241 if (Expr == R_TLSLD_HINT) 242 return 1; 243 if (In.Got->addTlsIndex()) 244 In.RelaDyn->addReloc(Target->TlsModuleIndexRel, In.Got, 245 In.Got->getTlsIndexOff(), nullptr); 246 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 247 return 1; 248 } 249 250 // Local-Dynamic relocs can be relaxed to Local-Exec. 251 if (Expr == R_DTPREL && !Config->Shared) { 252 C.Relocations.push_back( 253 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type, 254 Offset, Addend, &Sym}); 255 return 1; 256 } 257 258 // Local-Dynamic sequence where offset of tls variable relative to dynamic 259 // thread pointer is stored in the got. 260 if (Expr == R_TLSLD_GOT_OFF) { 261 // Local-Dynamic relocs can be relaxed to local-exec 262 if (!Config->Shared) { 263 C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym}); 264 return 1; 265 } 266 if (!Sym.isInGot()) { 267 In.Got->addEntry(Sym); 268 uint64_t Off = Sym.getGotOffset(); 269 In.Got->Relocations.push_back( 270 {R_ABS, Target->TlsOffsetRel, Off, 0, &Sym}); 271 } 272 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 273 return 1; 274 } 275 276 if (oneof<R_TLSDESC, R_AARCH64_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD_GOT, 277 R_TLSGD_GOTPLT, R_TLSGD_PC>(Expr)) { 278 if (Config->Shared) { 279 if (In.Got->addDynTlsEntry(Sym)) { 280 uint64_t Off = In.Got->getGlobalDynOffset(Sym); 281 In.RelaDyn->addReloc(Target->TlsModuleIndexRel, In.Got, Off, &Sym); 282 283 // If the symbol is preemptible we need the dynamic linker to write 284 // the offset too. 285 uint64_t OffsetOff = Off + Config->Wordsize; 286 if (Sym.IsPreemptible) 287 In.RelaDyn->addReloc(Target->TlsOffsetRel, In.Got, OffsetOff, &Sym); 288 else 289 In.Got->Relocations.push_back( 290 {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym}); 291 } 292 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 293 return 1; 294 } 295 296 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 297 // depending on the symbol being locally defined or not. 298 if (Sym.IsPreemptible) { 299 C.Relocations.push_back( 300 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, 301 Offset, Addend, &Sym}); 302 if (!Sym.isInGot()) { 303 In.Got->addEntry(Sym); 304 In.RelaDyn->addReloc(Target->TlsGotRel, In.Got, Sym.getGotOffset(), 305 &Sym); 306 } 307 } else { 308 C.Relocations.push_back( 309 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, 310 Offset, Addend, &Sym}); 311 } 312 return Target->getTlsGdRelaxSkip(Type); 313 } 314 315 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 316 // defined. 317 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 318 R_TLSIE_HINT>(Expr) && 319 !Config->Shared && !Sym.IsPreemptible) { 320 C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym}); 321 return 1; 322 } 323 324 if (Expr == R_TLSIE_HINT) 325 return 1; 326 return 0; 327 } 328 329 static RelType getMipsPairType(RelType Type, bool IsLocal) { 330 switch (Type) { 331 case R_MIPS_HI16: 332 return R_MIPS_LO16; 333 case R_MIPS_GOT16: 334 // In case of global symbol, the R_MIPS_GOT16 relocation does not 335 // have a pair. Each global symbol has a unique entry in the GOT 336 // and a corresponding instruction with help of the R_MIPS_GOT16 337 // relocation loads an address of the symbol. In case of local 338 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 339 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 340 // relocations handle low 16 bits of the address. That allows 341 // to allocate only one GOT entry for every 64 KBytes of local data. 342 return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE; 343 case R_MICROMIPS_GOT16: 344 return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 345 case R_MIPS_PCHI16: 346 return R_MIPS_PCLO16; 347 case R_MICROMIPS_HI16: 348 return R_MICROMIPS_LO16; 349 default: 350 return R_MIPS_NONE; 351 } 352 } 353 354 // True if non-preemptable symbol always has the same value regardless of where 355 // the DSO is loaded. 356 static bool isAbsolute(const Symbol &Sym) { 357 if (Sym.isUndefWeak()) 358 return true; 359 if (const auto *DR = dyn_cast<Defined>(&Sym)) 360 return DR->Section == nullptr; // Absolute symbol. 361 return false; 362 } 363 364 static bool isAbsoluteValue(const Symbol &Sym) { 365 return isAbsolute(Sym) || Sym.isTls(); 366 } 367 368 // Returns true if Expr refers a PLT entry. 369 static bool needsPlt(RelExpr Expr) { 370 return oneof<R_PLT_PC, R_PPC_CALL_PLT, R_PLT>(Expr); 371 } 372 373 // Returns true if Expr refers a GOT entry. Note that this function 374 // returns false for TLS variables even though they need GOT, because 375 // TLS variables uses GOT differently than the regular variables. 376 static bool needsGot(RelExpr Expr) { 377 return oneof<R_GOT, R_GOT_OFF, R_HEXAGON_GOT, R_MIPS_GOT_LOCAL_PAGE, 378 R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, 379 R_GOT_PC, R_GOTPLT>(Expr); 380 } 381 382 // True if this expression is of the form Sym - X, where X is a position in the 383 // file (PC, or GOT for example). 384 static bool isRelExpr(RelExpr Expr) { 385 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC_CALL, 386 R_PPC_CALL_PLT, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC>(Expr); 387 } 388 389 // Returns true if a given relocation can be computed at link-time. 390 // 391 // For instance, we know the offset from a relocation to its target at 392 // link-time if the relocation is PC-relative and refers a 393 // non-interposable function in the same executable. This function 394 // will return true for such relocation. 395 // 396 // If this function returns false, that means we need to emit a 397 // dynamic relocation so that the relocation will be fixed at load-time. 398 static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym, 399 InputSectionBase &S, uint64_t RelOff) { 400 // These expressions always compute a constant 401 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_HEXAGON_GOT, R_TLSLD_GOT_OFF, 402 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 403 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 404 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 405 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC_CALL_PLT, 406 R_TLSDESC_CALL, R_AARCH64_TLSDESC_PAGE, R_HINT, R_TLSLD_HINT, 407 R_TLSIE_HINT>(E)) 408 return true; 409 410 // These never do, except if the entire file is position dependent or if 411 // only the low bits are used. 412 if (E == R_GOT || E == R_PLT || E == R_TLSDESC) 413 return Target->usesOnlyLowPageBits(Type) || !Config->Pic; 414 415 if (Sym.IsPreemptible) 416 return false; 417 if (!Config->Pic) 418 return true; 419 420 // The size of a non preemptible symbol is a constant. 421 if (E == R_SIZE) 422 return true; 423 424 // We set the final symbols values for linker script defined symbols later. 425 // They always can be computed as a link time constant. 426 if (Sym.ScriptDefined) 427 return true; 428 429 // For the target and the relocation, we want to know if they are 430 // absolute or relative. 431 bool AbsVal = isAbsoluteValue(Sym); 432 bool RelE = isRelExpr(E); 433 if (AbsVal && !RelE) 434 return true; 435 if (!AbsVal && RelE) 436 return true; 437 if (!AbsVal && !RelE) 438 return Target->usesOnlyLowPageBits(Type); 439 440 // Relative relocation to an absolute value. This is normally unrepresentable, 441 // but if the relocation refers to a weak undefined symbol, we allow it to 442 // resolve to the image base. This is a little strange, but it allows us to 443 // link function calls to such symbols. Normally such a call will be guarded 444 // with a comparison, which will load a zero from the GOT. 445 // Another special case is MIPS _gp_disp symbol which represents offset 446 // between start of a function and '_gp' value and defined as absolute just 447 // to simplify the code. 448 assert(AbsVal && RelE); 449 if (Sym.isUndefWeak()) 450 return true; 451 452 error("relocation " + toString(Type) + " cannot refer to absolute symbol: " + 453 toString(Sym) + getLocation(S, Sym, RelOff)); 454 return true; 455 } 456 457 static RelExpr toPlt(RelExpr Expr) { 458 switch (Expr) { 459 case R_PPC_CALL: 460 return R_PPC_CALL_PLT; 461 case R_PC: 462 return R_PLT_PC; 463 case R_ABS: 464 return R_PLT; 465 default: 466 return Expr; 467 } 468 } 469 470 static RelExpr fromPlt(RelExpr Expr) { 471 // We decided not to use a plt. Optimize a reference to the plt to a 472 // reference to the symbol itself. 473 switch (Expr) { 474 case R_PLT_PC: 475 return R_PC; 476 case R_PPC_CALL_PLT: 477 return R_PPC_CALL; 478 case R_PLT: 479 return R_ABS; 480 default: 481 return Expr; 482 } 483 } 484 485 // Returns true if a given shared symbol is in a read-only segment in a DSO. 486 template <class ELFT> static bool isReadOnly(SharedSymbol &SS) { 487 using Elf_Phdr = typename ELFT::Phdr; 488 489 // Determine if the symbol is read-only by scanning the DSO's program headers. 490 const SharedFile &File = SS.getFile(); 491 for (const Elf_Phdr &Phdr : 492 check(File.template getObj<ELFT>().program_headers())) 493 if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && 494 !(Phdr.p_flags & ELF::PF_W) && SS.Value >= Phdr.p_vaddr && 495 SS.Value < Phdr.p_vaddr + Phdr.p_memsz) 496 return true; 497 return false; 498 } 499 500 // Returns symbols at the same offset as a given symbol, including SS itself. 501 // 502 // If two or more symbols are at the same offset, and at least one of 503 // them are copied by a copy relocation, all of them need to be copied. 504 // Otherwise, they would refer to different places at runtime. 505 template <class ELFT> 506 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &SS) { 507 using Elf_Sym = typename ELFT::Sym; 508 509 SharedFile &File = SS.getFile(); 510 511 SmallSet<SharedSymbol *, 4> Ret; 512 for (const Elf_Sym &S : File.template getGlobalELFSyms<ELFT>()) { 513 if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS || 514 S.getType() == STT_TLS || S.st_value != SS.Value) 515 continue; 516 StringRef Name = check(S.getName(File.getStringTable())); 517 Symbol *Sym = Symtab->find(Name); 518 if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym)) 519 Ret.insert(Alias); 520 } 521 return Ret; 522 } 523 524 // When a symbol is copy relocated or we create a canonical plt entry, it is 525 // effectively a defined symbol. In the case of copy relocation the symbol is 526 // in .bss and in the case of a canonical plt entry it is in .plt. This function 527 // replaces the existing symbol with a Defined pointing to the appropriate 528 // location. 529 static void replaceWithDefined(Symbol &Sym, SectionBase *Sec, uint64_t Value, 530 uint64_t Size) { 531 Symbol Old = Sym; 532 replaceSymbol<Defined>(&Sym, Sym.File, Sym.getName(), Sym.Binding, 533 Sym.StOther, Sym.Type, Value, Size, Sec); 534 Sym.PltIndex = Old.PltIndex; 535 Sym.GotIndex = Old.GotIndex; 536 Sym.VerdefIndex = Old.VerdefIndex; 537 Sym.PPC64BranchltIndex = Old.PPC64BranchltIndex; 538 Sym.IsPreemptible = true; 539 Sym.ExportDynamic = true; 540 Sym.IsUsedInRegularObj = true; 541 Sym.Used = true; 542 } 543 544 // Reserve space in .bss or .bss.rel.ro for copy relocation. 545 // 546 // The copy relocation is pretty much a hack. If you use a copy relocation 547 // in your program, not only the symbol name but the symbol's size, RW/RO 548 // bit and alignment become part of the ABI. In addition to that, if the 549 // symbol has aliases, the aliases become part of the ABI. That's subtle, 550 // but if you violate that implicit ABI, that can cause very counter- 551 // intuitive consequences. 552 // 553 // So, what is the copy relocation? It's for linking non-position 554 // independent code to DSOs. In an ideal world, all references to data 555 // exported by DSOs should go indirectly through GOT. But if object files 556 // are compiled as non-PIC, all data references are direct. There is no 557 // way for the linker to transform the code to use GOT, as machine 558 // instructions are already set in stone in object files. This is where 559 // the copy relocation takes a role. 560 // 561 // A copy relocation instructs the dynamic linker to copy data from a DSO 562 // to a specified address (which is usually in .bss) at load-time. If the 563 // static linker (that's us) finds a direct data reference to a DSO 564 // symbol, it creates a copy relocation, so that the symbol can be 565 // resolved as if it were in .bss rather than in a DSO. 566 // 567 // As you can see in this function, we create a copy relocation for the 568 // dynamic linker, and the relocation contains not only symbol name but 569 // various other informtion about the symbol. So, such attributes become a 570 // part of the ABI. 571 // 572 // Note for application developers: I can give you a piece of advice if 573 // you are writing a shared library. You probably should export only 574 // functions from your library. You shouldn't export variables. 575 // 576 // As an example what can happen when you export variables without knowing 577 // the semantics of copy relocations, assume that you have an exported 578 // variable of type T. It is an ABI-breaking change to add new members at 579 // end of T even though doing that doesn't change the layout of the 580 // existing members. That's because the space for the new members are not 581 // reserved in .bss unless you recompile the main program. That means they 582 // are likely to overlap with other data that happens to be laid out next 583 // to the variable in .bss. This kind of issue is sometimes very hard to 584 // debug. What's a solution? Instead of exporting a varaible V from a DSO, 585 // define an accessor getV(). 586 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &SS) { 587 // Copy relocation against zero-sized symbol doesn't make sense. 588 uint64_t SymSize = SS.getSize(); 589 if (SymSize == 0 || SS.Alignment == 0) 590 fatal("cannot create a copy relocation for symbol " + toString(SS)); 591 592 // See if this symbol is in a read-only segment. If so, preserve the symbol's 593 // memory protection by reserving space in the .bss.rel.ro section. 594 bool IsReadOnly = isReadOnly<ELFT>(SS); 595 BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss", 596 SymSize, SS.Alignment); 597 if (IsReadOnly) 598 In.BssRelRo->getParent()->addSection(Sec); 599 else 600 In.Bss->getParent()->addSection(Sec); 601 602 // Look through the DSO's dynamic symbol table for aliases and create a 603 // dynamic symbol for each one. This causes the copy relocation to correctly 604 // interpose any aliases. 605 for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) 606 replaceWithDefined(*Sym, Sec, 0, Sym->Size); 607 608 In.RelaDyn->addReloc(Target->CopyRel, Sec, 0, &SS); 609 } 610 611 // MIPS has an odd notion of "paired" relocations to calculate addends. 612 // For example, if a relocation is of R_MIPS_HI16, there must be a 613 // R_MIPS_LO16 relocation after that, and an addend is calculated using 614 // the two relocations. 615 template <class ELFT, class RelTy> 616 static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End, 617 InputSectionBase &Sec, RelExpr Expr, 618 bool IsLocal) { 619 if (Expr == R_MIPS_GOTREL && IsLocal) 620 return Sec.getFile<ELFT>()->MipsGp0; 621 622 // The ABI says that the paired relocation is used only for REL. 623 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 624 if (RelTy::IsRela) 625 return 0; 626 627 RelType Type = Rel.getType(Config->IsMips64EL); 628 uint32_t PairTy = getMipsPairType(Type, IsLocal); 629 if (PairTy == R_MIPS_NONE) 630 return 0; 631 632 const uint8_t *Buf = Sec.data().data(); 633 uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); 634 635 // To make things worse, paired relocations might not be contiguous in 636 // the relocation table, so we need to do linear search. *sigh* 637 for (const RelTy *RI = &Rel; RI != End; ++RI) 638 if (RI->getType(Config->IsMips64EL) == PairTy && 639 RI->getSymbol(Config->IsMips64EL) == SymIndex) 640 return Target->getImplicitAddend(Buf + RI->r_offset, PairTy); 641 642 warn("can't find matching " + toString(PairTy) + " relocation for " + 643 toString(Type)); 644 return 0; 645 } 646 647 // Returns an addend of a given relocation. If it is RELA, an addend 648 // is in a relocation itself. If it is REL, we need to read it from an 649 // input section. 650 template <class ELFT, class RelTy> 651 static int64_t computeAddend(const RelTy &Rel, const RelTy *End, 652 InputSectionBase &Sec, RelExpr Expr, 653 bool IsLocal) { 654 int64_t Addend; 655 RelType Type = Rel.getType(Config->IsMips64EL); 656 657 if (RelTy::IsRela) { 658 Addend = getAddend<ELFT>(Rel); 659 } else { 660 const uint8_t *Buf = Sec.data().data(); 661 Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type); 662 } 663 664 if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC) 665 Addend += getPPC64TocBase(); 666 if (Config->EMachine == EM_MIPS) 667 Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal); 668 669 return Addend; 670 } 671 672 // Report an undefined symbol if necessary. 673 // Returns true if this function printed out an error message. 674 static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec, 675 uint64_t Offset) { 676 if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak()) 677 return false; 678 679 bool CanBeExternal = 680 Sym.computeBinding() != STB_LOCAL && Sym.Visibility == STV_DEFAULT; 681 if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal) 682 return false; 683 684 std::string Msg = "undefined "; 685 if (Sym.Visibility == STV_INTERNAL) 686 Msg += "internal "; 687 else if (Sym.Visibility == STV_HIDDEN) 688 Msg += "hidden "; 689 else if (Sym.Visibility == STV_PROTECTED) 690 Msg += "protected "; 691 Msg += "symbol: " + toString(Sym) + "\n>>> referenced by "; 692 693 std::string Src = Sec.getSrcMsg(Sym, Offset); 694 if (!Src.empty()) 695 Msg += Src + "\n>>> "; 696 Msg += Sec.getObjMsg(Offset); 697 698 if (Sym.getName().startswith("_ZTV")) 699 Msg += "\nthe vtable symbol may be undefined because the class is missing " 700 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 701 702 if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) || 703 Config->NoinhibitExec) { 704 warn(Msg); 705 return false; 706 } 707 708 error(Msg); 709 return true; 710 } 711 712 // MIPS N32 ABI treats series of successive relocations with the same offset 713 // as a single relocation. The similar approach used by N64 ABI, but this ABI 714 // packs all relocations into the single relocation record. Here we emulate 715 // this for the N32 ABI. Iterate over relocation with the same offset and put 716 // theirs types into the single bit-set. 717 template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) { 718 RelType Type = 0; 719 uint64_t Offset = Rel->r_offset; 720 721 int N = 0; 722 while (Rel != End && Rel->r_offset == Offset) 723 Type |= (Rel++)->getType(Config->IsMips64EL) << (8 * N++); 724 return Type; 725 } 726 727 // .eh_frame sections are mergeable input sections, so their input 728 // offsets are not linearly mapped to output section. For each input 729 // offset, we need to find a section piece containing the offset and 730 // add the piece's base address to the input offset to compute the 731 // output offset. That isn't cheap. 732 // 733 // This class is to speed up the offset computation. When we process 734 // relocations, we access offsets in the monotonically increasing 735 // order. So we can optimize for that access pattern. 736 // 737 // For sections other than .eh_frame, this class doesn't do anything. 738 namespace { 739 class OffsetGetter { 740 public: 741 explicit OffsetGetter(InputSectionBase &Sec) { 742 if (auto *Eh = dyn_cast<EhInputSection>(&Sec)) 743 Pieces = Eh->Pieces; 744 } 745 746 // Translates offsets in input sections to offsets in output sections. 747 // Given offset must increase monotonically. We assume that Piece is 748 // sorted by InputOff. 749 uint64_t get(uint64_t Off) { 750 if (Pieces.empty()) 751 return Off; 752 753 while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off) 754 ++I; 755 if (I == Pieces.size()) 756 fatal(".eh_frame: relocation is not in any piece"); 757 758 // Pieces must be contiguous, so there must be no holes in between. 759 assert(Pieces[I].InputOff <= Off && "Relocation not in any piece"); 760 761 // Offset -1 means that the piece is dead (i.e. garbage collected). 762 if (Pieces[I].OutputOff == -1) 763 return -1; 764 return Pieces[I].OutputOff + Off - Pieces[I].InputOff; 765 } 766 767 private: 768 ArrayRef<EhSectionPiece> Pieces; 769 size_t I = 0; 770 }; 771 } // namespace 772 773 static void addRelativeReloc(InputSectionBase *IS, uint64_t OffsetInSec, 774 Symbol *Sym, int64_t Addend, RelExpr Expr, 775 RelType Type) { 776 // Add a relative relocation. If RelrDyn section is enabled, and the 777 // relocation offset is guaranteed to be even, add the relocation to 778 // the RelrDyn section, otherwise add it to the RelaDyn section. 779 // RelrDyn sections don't support odd offsets. Also, RelrDyn sections 780 // don't store the addend values, so we must write it to the relocated 781 // address. 782 if (In.RelrDyn && IS->Alignment >= 2 && OffsetInSec % 2 == 0) { 783 IS->Relocations.push_back({Expr, Type, OffsetInSec, Addend, Sym}); 784 In.RelrDyn->Relocs.push_back({IS, OffsetInSec}); 785 return; 786 } 787 In.RelaDyn->addReloc(Target->RelativeRel, IS, OffsetInSec, Sym, Addend, Expr, 788 Type); 789 } 790 791 template <class ELFT, class GotPltSection> 792 static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt, 793 RelocationBaseSection *Rel, RelType Type, Symbol &Sym) { 794 Plt->addEntry<ELFT>(Sym); 795 GotPlt->addEntry(Sym); 796 Rel->addReloc( 797 {Type, GotPlt, Sym.getGotPltOffset(), !Sym.IsPreemptible, &Sym, 0}); 798 } 799 800 static void addGotEntry(Symbol &Sym) { 801 In.Got->addEntry(Sym); 802 803 RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS; 804 uint64_t Off = Sym.getGotOffset(); 805 806 // If a GOT slot value can be calculated at link-time, which is now, 807 // we can just fill that out. 808 // 809 // (We don't actually write a value to a GOT slot right now, but we 810 // add a static relocation to a Relocations vector so that 811 // InputSection::relocate will do the work for us. We may be able 812 // to just write a value now, but it is a TODO.) 813 bool IsLinkTimeConstant = 814 !Sym.IsPreemptible && (!Config->Pic || isAbsolute(Sym)); 815 if (IsLinkTimeConstant) { 816 In.Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym}); 817 return; 818 } 819 820 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 821 // the GOT slot will be fixed at load-time. 822 if (!Sym.isTls() && !Sym.IsPreemptible && Config->Pic && !isAbsolute(Sym)) { 823 addRelativeReloc(In.Got, Off, &Sym, 0, R_ABS, Target->GotRel); 824 return; 825 } 826 In.RelaDyn->addReloc(Sym.isTls() ? Target->TlsGotRel : Target->GotRel, In.Got, 827 Off, &Sym, 0, Sym.IsPreemptible ? R_ADDEND : R_ABS, 828 Target->GotRel); 829 } 830 831 // Return true if we can define a symbol in the executable that 832 // contains the value/function of a symbol defined in a shared 833 // library. 834 static bool canDefineSymbolInExecutable(Symbol &Sym) { 835 // If the symbol has default visibility the symbol defined in the 836 // executable will preempt it. 837 // Note that we want the visibility of the shared symbol itself, not 838 // the visibility of the symbol in the output file we are producing. That is 839 // why we use Sym.StOther. 840 if ((Sym.StOther & 0x3) == STV_DEFAULT) 841 return true; 842 843 // If we are allowed to break address equality of functions, defining 844 // a plt entry will allow the program to call the function in the 845 // .so, but the .so and the executable will no agree on the address 846 // of the function. Similar logic for objects. 847 return ((Sym.isFunc() && Config->IgnoreFunctionAddressEquality) || 848 (Sym.isObject() && Config->IgnoreDataAddressEquality)); 849 } 850 851 // The reason we have to do this early scan is as follows 852 // * To mmap the output file, we need to know the size 853 // * For that, we need to know how many dynamic relocs we will have. 854 // It might be possible to avoid this by outputting the file with write: 855 // * Write the allocated output sections, computing addresses. 856 // * Apply relocations, recording which ones require a dynamic reloc. 857 // * Write the dynamic relocations. 858 // * Write the rest of the file. 859 // This would have some drawbacks. For example, we would only know if .rela.dyn 860 // is needed after applying relocations. If it is, it will go after rw and rx 861 // sections. Given that it is ro, we will need an extra PT_LOAD. This 862 // complicates things for the dynamic linker and means we would have to reserve 863 // space for the extra PT_LOAD even if we end up not using it. 864 template <class ELFT, class RelTy> 865 static void processRelocAux(InputSectionBase &Sec, RelExpr Expr, RelType Type, 866 uint64_t Offset, Symbol &Sym, const RelTy &Rel, 867 int64_t Addend) { 868 if (isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Offset)) { 869 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 870 return; 871 } 872 bool CanWrite = (Sec.Flags & SHF_WRITE) || !Config->ZText; 873 if (CanWrite) { 874 // R_GOT refers to a position in the got, even if the symbol is preemptible. 875 bool IsPreemptibleValue = Sym.IsPreemptible && Expr != R_GOT; 876 877 if (!IsPreemptibleValue) { 878 addRelativeReloc(&Sec, Offset, &Sym, Addend, Expr, Type); 879 return; 880 } else if (RelType Rel = Target->getDynRel(Type)) { 881 In.RelaDyn->addReloc(Rel, &Sec, Offset, &Sym, Addend, R_ADDEND, Type); 882 883 // MIPS ABI turns using of GOT and dynamic relocations inside out. 884 // While regular ABI uses dynamic relocations to fill up GOT entries 885 // MIPS ABI requires dynamic linker to fills up GOT entries using 886 // specially sorted dynamic symbol table. This affects even dynamic 887 // relocations against symbols which do not require GOT entries 888 // creation explicitly, i.e. do not have any GOT-relocations. So if 889 // a preemptible symbol has a dynamic relocation we anyway have 890 // to create a GOT entry for it. 891 // If a non-preemptible symbol has a dynamic relocation against it, 892 // dynamic linker takes it st_value, adds offset and writes down 893 // result of the dynamic relocation. In case of preemptible symbol 894 // dynamic linker performs symbol resolution, writes the symbol value 895 // to the GOT entry and reads the GOT entry when it needs to perform 896 // a dynamic relocation. 897 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 898 if (Config->EMachine == EM_MIPS) 899 In.MipsGot->addEntry(*Sec.File, Sym, Addend, Expr); 900 return; 901 } 902 } 903 904 // If the relocation is to a weak undef, and we are producing 905 // executable, give up on it and produce a non preemptible 0. 906 if (!Config->Shared && Sym.isUndefWeak()) { 907 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 908 return; 909 } 910 911 if (!CanWrite && (Config->Pic && !isRelExpr(Expr))) { 912 error( 913 "can't create dynamic relocation " + toString(Type) + " against " + 914 (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) + 915 " in readonly segment; recompile object files with -fPIC " 916 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 917 getLocation(Sec, Sym, Offset)); 918 return; 919 } 920 921 // Copy relocations are only possible if we are creating an executable. 922 if (Config->Shared) { 923 errorOrWarn("relocation " + toString(Type) + 924 " cannot be used against symbol " + toString(Sym) + 925 "; recompile with -fPIC" + getLocation(Sec, Sym, Offset)); 926 return; 927 } 928 929 // If the symbol is undefined we already reported any relevant errors. 930 if (Sym.isUndefined()) 931 return; 932 933 if (!canDefineSymbolInExecutable(Sym)) { 934 error("cannot preempt symbol: " + toString(Sym) + 935 getLocation(Sec, Sym, Offset)); 936 return; 937 } 938 939 if (Sym.isObject()) { 940 // Produce a copy relocation. 941 if (auto *SS = dyn_cast<SharedSymbol>(&Sym)) { 942 if (!Config->ZCopyreloc) 943 error("unresolvable relocation " + toString(Type) + 944 " against symbol '" + toString(*SS) + 945 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 946 getLocation(Sec, Sym, Offset)); 947 addCopyRelSymbol<ELFT>(*SS); 948 } 949 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 950 return; 951 } 952 953 if (Sym.isFunc()) { 954 // This handles a non PIC program call to function in a shared library. In 955 // an ideal world, we could just report an error saying the relocation can 956 // overflow at runtime. In the real world with glibc, crt1.o has a 957 // R_X86_64_PC32 pointing to libc.so. 958 // 959 // The general idea on how to handle such cases is to create a PLT entry and 960 // use that as the function value. 961 // 962 // For the static linking part, we just return a plt expr and everything 963 // else will use the PLT entry as the address. 964 // 965 // The remaining problem is making sure pointer equality still works. We 966 // need the help of the dynamic linker for that. We let it know that we have 967 // a direct reference to a so symbol by creating an undefined symbol with a 968 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 969 // the value of the symbol we created. This is true even for got entries, so 970 // pointer equality is maintained. To avoid an infinite loop, the only entry 971 // that points to the real function is a dedicated got entry used by the 972 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 973 // R_386_JMP_SLOT, etc). 974 975 // For position independent executable on i386, the plt entry requires ebx 976 // to be set. This causes two problems: 977 // * If some code has a direct reference to a function, it was probably 978 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 979 // * If a library definition gets preempted to the executable, it will have 980 // the wrong ebx value. 981 if (Config->Pie && Config->EMachine == EM_386) 982 errorOrWarn("symbol '" + toString(Sym) + 983 "' cannot be preempted; recompile with -fPIE" + 984 getLocation(Sec, Sym, Offset)); 985 if (!Sym.isInPlt()) 986 addPltEntry<ELFT>(In.Plt, In.GotPlt, In.RelaPlt, Target->PltRel, Sym); 987 if (!Sym.isDefined()) 988 replaceWithDefined( 989 Sym, In.Plt, 990 Target->PltHeaderSize + Target->PltEntrySize * Sym.PltIndex, 0); 991 Sym.NeedsPltAddr = true; 992 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 993 return; 994 } 995 996 errorOrWarn("symbol '" + toString(Sym) + "' has no type" + 997 getLocation(Sec, Sym, Offset)); 998 } 999 1000 struct IRelativeReloc { 1001 RelType Type; 1002 InputSectionBase *Sec; 1003 uint64_t Offset; 1004 Symbol *Sym; 1005 }; 1006 1007 static std::vector<IRelativeReloc> IRelativeRelocs; 1008 1009 template <class ELFT, class RelTy> 1010 static void scanReloc(InputSectionBase &Sec, OffsetGetter &GetOffset, RelTy *&I, 1011 RelTy *End) { 1012 const RelTy &Rel = *I; 1013 Symbol &Sym = Sec.getFile<ELFT>()->getRelocTargetSym(Rel); 1014 RelType Type; 1015 1016 // Deal with MIPS oddity. 1017 if (Config->MipsN32Abi) { 1018 Type = getMipsN32RelType(I, End); 1019 } else { 1020 Type = Rel.getType(Config->IsMips64EL); 1021 ++I; 1022 } 1023 1024 // Get an offset in an output section this relocation is applied to. 1025 uint64_t Offset = GetOffset.get(Rel.r_offset); 1026 if (Offset == uint64_t(-1)) 1027 return; 1028 1029 // Skip if the target symbol is an erroneous undefined symbol. 1030 if (maybeReportUndefined(Sym, Sec, Rel.r_offset)) 1031 return; 1032 1033 const uint8_t *RelocatedAddr = Sec.data().begin() + Rel.r_offset; 1034 RelExpr Expr = Target->getRelExpr(Type, Sym, RelocatedAddr); 1035 1036 // Ignore "hint" relocations because they are only markers for relaxation. 1037 if (oneof<R_HINT, R_NONE>(Expr)) 1038 return; 1039 1040 // We can separate the small code model relocations into 2 categories: 1041 // 1) Those that access the compiler generated .toc sections. 1042 // 2) Those that access the linker allocated got entries. 1043 // lld allocates got entries to symbols on demand. Since we don't try to sort 1044 // the got entries in any way, we don't have to track which objects have 1045 // got-based small code model relocs. The .toc sections get placed after the 1046 // end of the linker allocated .got section and we do sort those so sections 1047 // addressed with small code model relocations come first. 1048 if (Config->EMachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(Type)) 1049 Sec.File->PPC64SmallCodeModelTocRelocs = true; 1050 1051 if (Sym.isGnuIFunc() && !Config->ZText && Config->WarnIfuncTextrel) { 1052 warn("using ifunc symbols when text relocations are allowed may produce " 1053 "a binary that will segfault, if the object file is linked with " 1054 "old version of glibc (glibc 2.28 and earlier). If this applies to " 1055 "you, consider recompiling the object files without -fPIC and " 1056 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " 1057 "turn off this warning." + 1058 getLocation(Sec, Sym, Offset)); 1059 } 1060 1061 // Relax relocations. 1062 // 1063 // If we know that a PLT entry will be resolved within the same ELF module, we 1064 // can skip PLT access and directly jump to the destination function. For 1065 // example, if we are linking a main exectuable, all dynamic symbols that can 1066 // be resolved within the executable will actually be resolved that way at 1067 // runtime, because the main exectuable is always at the beginning of a search 1068 // list. We can leverage that fact. 1069 if (!Sym.IsPreemptible && !Sym.isGnuIFunc()) { 1070 if (Expr == R_GOT_PC && !isAbsoluteValue(Sym)) 1071 Expr = Target->adjustRelaxExpr(Type, RelocatedAddr, Expr); 1072 else 1073 Expr = fromPlt(Expr); 1074 } 1075 1076 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1077 // uses their addresses, we need GOT or GOTPLT to be created. 1078 // 1079 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1080 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(Expr)) { 1081 In.GotPlt->HasGotPltOffRel = true; 1082 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC_TOC>(Expr)) { 1083 In.Got->HasGotOffRel = true; 1084 } 1085 1086 // Read an addend. 1087 int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal()); 1088 1089 // Process some TLS relocations, including relaxing TLS relocations. 1090 // Note that this function does not handle all TLS relocations. 1091 if (unsigned Processed = 1092 handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) { 1093 I += (Processed - 1); 1094 return; 1095 } 1096 1097 // Non-preemptible ifuncs require special handling. First, handle the usual 1098 // case where the symbol isn't one of these. 1099 if (!Sym.isGnuIFunc() || Sym.IsPreemptible) { 1100 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1101 if (needsPlt(Expr) && !Sym.isInPlt()) 1102 addPltEntry<ELFT>(In.Plt, In.GotPlt, In.RelaPlt, Target->PltRel, Sym); 1103 1104 // Create a GOT slot if a relocation needs GOT. 1105 if (needsGot(Expr)) { 1106 if (Config->EMachine == EM_MIPS) { 1107 // MIPS ABI has special rules to process GOT entries and doesn't 1108 // require relocation entries for them. A special case is TLS 1109 // relocations. In that case dynamic loader applies dynamic 1110 // relocations to initialize TLS GOT entries. 1111 // See "Global Offset Table" in Chapter 5 in the following document 1112 // for detailed description: 1113 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1114 In.MipsGot->addEntry(*Sec.File, Sym, Addend, Expr); 1115 } else if (!Sym.isInGot()) { 1116 addGotEntry(Sym); 1117 } 1118 } 1119 } else { 1120 // Handle a reference to a non-preemptible ifunc. These are special in a 1121 // few ways: 1122 // 1123 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1124 // a fixed value. But assuming that all references to the ifunc are 1125 // GOT-generating or PLT-generating, the handling of an ifunc is 1126 // relatively straightforward. We create a PLT entry in Iplt, which is 1127 // usually at the end of .plt, which makes an indirect call using a 1128 // matching GOT entry in IgotPlt, which is usually at the end of .got.plt. 1129 // The GOT entry is relocated using an IRELATIVE relocation in RelaIplt, 1130 // which is usually at the end of .rela.plt. Unlike most relocations in 1131 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1132 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1133 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1134 // .got.plt without requiring a separate GOT entry. 1135 // 1136 // - Despite the fact that an ifunc does not have a fixed value, compilers 1137 // that are not passed -fPIC will assume that they do, and will emit 1138 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1139 // symbol. This means that if a direct relocation to the symbol is 1140 // seen, the linker must set a value for the symbol, and this value must 1141 // be consistent no matter what type of reference is made to the symbol. 1142 // This can be done by creating a PLT entry for the symbol in the way 1143 // described above and making it canonical, that is, making all references 1144 // point to the PLT entry instead of the resolver. In lld we also store 1145 // the address of the PLT entry in the dynamic symbol table, which means 1146 // that the symbol will also have the same value in other modules. 1147 // Because the value loaded from the GOT needs to be consistent with 1148 // the value computed using a direct relocation, a non-preemptible ifunc 1149 // may end up with two GOT entries, one in .got.plt that points to the 1150 // address returned by the resolver and is used only by the PLT entry, 1151 // and another in .got that points to the PLT entry and is used by 1152 // GOT-generating relocations. 1153 // 1154 // - The fact that these symbols do not have a fixed value makes them an 1155 // exception to the general rule that a statically linked executable does 1156 // not require any form of dynamic relocation. To handle these relocations 1157 // correctly, the IRELATIVE relocations are stored in an array which a 1158 // statically linked executable's startup code must enumerate using the 1159 // linker-defined symbols __rela?_iplt_{start,end}. 1160 // 1161 // - An absolute relocation to a non-preemptible ifunc (such as a global 1162 // variable containing a pointer to the ifunc) needs to be relocated in 1163 // the exact same way as a GOT entry, so we can avoid needing to make the 1164 // PLT entry canonical by translating such relocations into IRELATIVE 1165 // relocations in the RelaIplt. 1166 if (!Sym.isInPlt()) { 1167 // Create PLT and GOTPLT slots for the symbol. 1168 Sym.IsInIplt = true; 1169 1170 // Create a copy of the symbol to use as the target of the IRELATIVE 1171 // relocation in the IgotPlt. This is in case we make the PLT canonical 1172 // later, which would overwrite the original symbol. 1173 // 1174 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1175 // that's really needed to create the IRELATIVE is the section and value, 1176 // so ideally we should just need to copy those. 1177 auto *DirectSym = make<Defined>(cast<Defined>(Sym)); 1178 addPltEntry<ELFT>(In.Iplt, In.IgotPlt, In.RelaIplt, Target->IRelativeRel, 1179 *DirectSym); 1180 Sym.PltIndex = DirectSym->PltIndex; 1181 } 1182 if (Expr == R_ABS && Addend == 0 && (Sec.Flags & SHF_WRITE)) { 1183 // We might be able to represent this as an IRELATIVE. But we don't know 1184 // yet whether some later relocation will make the symbol point to a 1185 // canonical PLT, which would make this either a dynamic RELATIVE (PIC) or 1186 // static (non-PIC) relocation. So we keep a record of the information 1187 // required to process the relocation, and after scanRelocs() has been 1188 // called on all relocations, the relocation is resolved by 1189 // addIRelativeRelocs(). 1190 IRelativeRelocs.push_back({Type, &Sec, Offset, &Sym}); 1191 return; 1192 } 1193 if (needsGot(Expr)) { 1194 // Redirect GOT accesses to point to the Igot. 1195 // 1196 // This field is also used to keep track of whether we ever needed a GOT 1197 // entry. If we did and we make the PLT canonical later, we'll need to 1198 // create a GOT entry pointing to the PLT entry for Sym. 1199 Sym.GotInIgot = true; 1200 } else if (!needsPlt(Expr)) { 1201 // Make the ifunc's PLT entry canonical by changing the value of its 1202 // symbol to redirect all references to point to it. 1203 unsigned EntryOffset = Sym.PltIndex * Target->PltEntrySize; 1204 if (Config->ZRetpolineplt) 1205 EntryOffset += Target->PltHeaderSize; 1206 1207 auto &D = cast<Defined>(Sym); 1208 D.Section = In.Iplt; 1209 D.Value = EntryOffset; 1210 D.Size = 0; 1211 // It's important to set the symbol type here so that dynamic loaders 1212 // don't try to call the PLT as if it were an ifunc resolver. 1213 D.Type = STT_FUNC; 1214 1215 if (Sym.GotInIgot) { 1216 // We previously encountered a GOT generating reference that we 1217 // redirected to the Igot. Now that the PLT entry is canonical we must 1218 // clear the redirection to the Igot and add a GOT entry. As we've 1219 // changed the symbol type to STT_FUNC future GOT generating references 1220 // will naturally use this GOT entry. 1221 // 1222 // We don't need to worry about creating a MIPS GOT here because ifuncs 1223 // aren't a thing on MIPS. 1224 Sym.GotInIgot = false; 1225 addGotEntry(Sym); 1226 } 1227 } 1228 } 1229 1230 processRelocAux<ELFT>(Sec, Expr, Type, Offset, Sym, Rel, Addend); 1231 } 1232 1233 template <class ELFT, class RelTy> 1234 static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) { 1235 OffsetGetter GetOffset(Sec); 1236 1237 // Not all relocations end up in Sec.Relocations, but a lot do. 1238 Sec.Relocations.reserve(Rels.size()); 1239 1240 for (auto I = Rels.begin(), End = Rels.end(); I != End;) 1241 scanReloc<ELFT>(Sec, GetOffset, I, End); 1242 1243 // Sort relocations by offset to binary search for R_RISCV_PCREL_HI20 1244 if (Config->EMachine == EM_RISCV) 1245 llvm::stable_sort(Sec.Relocations, 1246 [](const Relocation &LHS, const Relocation &RHS) { 1247 return LHS.Offset < RHS.Offset; 1248 }); 1249 } 1250 1251 template <class ELFT> void elf::scanRelocations(InputSectionBase &S) { 1252 if (S.AreRelocsRela) 1253 scanRelocs<ELFT>(S, S.relas<ELFT>()); 1254 else 1255 scanRelocs<ELFT>(S, S.rels<ELFT>()); 1256 } 1257 1258 // Figure out which representation to use for any absolute relocs to 1259 // non-preemptible ifuncs that we visited during scanRelocs(). 1260 void elf::addIRelativeRelocs() { 1261 for (IRelativeReloc &R : IRelativeRelocs) { 1262 if (R.Sym->Type == STT_GNU_IFUNC) 1263 In.RelaIplt->addReloc( 1264 {Target->IRelativeRel, R.Sec, R.Offset, true, R.Sym, 0}); 1265 else if (Config->Pic) 1266 addRelativeReloc(R.Sec, R.Offset, R.Sym, 0, R_ABS, R.Type); 1267 else 1268 R.Sec->Relocations.push_back({R_ABS, R.Type, R.Offset, 0, R.Sym}); 1269 } 1270 IRelativeRelocs.clear(); 1271 } 1272 1273 static bool mergeCmp(const InputSection *A, const InputSection *B) { 1274 // std::merge requires a strict weak ordering. 1275 if (A->OutSecOff < B->OutSecOff) 1276 return true; 1277 1278 if (A->OutSecOff == B->OutSecOff) { 1279 auto *TA = dyn_cast<ThunkSection>(A); 1280 auto *TB = dyn_cast<ThunkSection>(B); 1281 1282 // Check if Thunk is immediately before any specific Target 1283 // InputSection for example Mips LA25 Thunks. 1284 if (TA && TA->getTargetInputSection() == B) 1285 return true; 1286 1287 // Place Thunk Sections without specific targets before 1288 // non-Thunk Sections. 1289 if (TA && !TB && !TA->getTargetInputSection()) 1290 return true; 1291 } 1292 1293 return false; 1294 } 1295 1296 // Call Fn on every executable InputSection accessed via the linker script 1297 // InputSectionDescription::Sections. 1298 static void forEachInputSectionDescription( 1299 ArrayRef<OutputSection *> OutputSections, 1300 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> Fn) { 1301 for (OutputSection *OS : OutputSections) { 1302 if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) 1303 continue; 1304 for (BaseCommand *BC : OS->SectionCommands) 1305 if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) 1306 Fn(OS, ISD); 1307 } 1308 } 1309 1310 // Thunk Implementation 1311 // 1312 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1313 // of code that the linker inserts inbetween a caller and a callee. The thunks 1314 // are added at link time rather than compile time as the decision on whether 1315 // a thunk is needed, such as the caller and callee being out of range, can only 1316 // be made at link time. 1317 // 1318 // It is straightforward to tell given the current state of the program when a 1319 // thunk is needed for a particular call. The more difficult part is that 1320 // the thunk needs to be placed in the program such that the caller can reach 1321 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1322 // the program alters addresses, which can mean more thunks etc. 1323 // 1324 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1325 // The decision to have a ThunkSection act as a container means that we can 1326 // more easily handle the most common case of a single block of contiguous 1327 // Thunks by inserting just a single ThunkSection. 1328 // 1329 // The implementation of Thunks in lld is split across these areas 1330 // Relocations.cpp : Framework for creating and placing thunks 1331 // Thunks.cpp : The code generated for each supported thunk 1332 // Target.cpp : Target specific hooks that the framework uses to decide when 1333 // a thunk is used 1334 // Synthetic.cpp : Implementation of ThunkSection 1335 // Writer.cpp : Iteratively call framework until no more Thunks added 1336 // 1337 // Thunk placement requirements: 1338 // Mips LA25 thunks. These must be placed immediately before the callee section 1339 // We can assume that the caller is in range of the Thunk. These are modelled 1340 // by Thunks that return the section they must precede with 1341 // getTargetInputSection(). 1342 // 1343 // ARM interworking and range extension thunks. These thunks must be placed 1344 // within range of the caller. All implemented ARM thunks can always reach the 1345 // callee as they use an indirect jump via a register that has no range 1346 // restrictions. 1347 // 1348 // Thunk placement algorithm: 1349 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1350 // getTargetInputSection(). 1351 // 1352 // For thunks that must be placed within range of the caller there are many 1353 // possible choices given that the maximum range from the caller is usually 1354 // much larger than the average InputSection size. Desirable properties include: 1355 // - Maximize reuse of thunks by multiple callers 1356 // - Minimize number of ThunkSections to simplify insertion 1357 // - Handle impact of already added Thunks on addresses 1358 // - Simple to understand and implement 1359 // 1360 // In lld for the first pass, we pre-create one or more ThunkSections per 1361 // InputSectionDescription at Target specific intervals. A ThunkSection is 1362 // placed so that the estimated end of the ThunkSection is within range of the 1363 // start of the InputSectionDescription or the previous ThunkSection. For 1364 // example: 1365 // InputSectionDescription 1366 // Section 0 1367 // ... 1368 // Section N 1369 // ThunkSection 0 1370 // Section N + 1 1371 // ... 1372 // Section N + K 1373 // Thunk Section 1 1374 // 1375 // The intention is that we can add a Thunk to a ThunkSection that is well 1376 // spaced enough to service a number of callers without having to do a lot 1377 // of work. An important principle is that it is not an error if a Thunk cannot 1378 // be placed in a pre-created ThunkSection; when this happens we create a new 1379 // ThunkSection placed next to the caller. This allows us to handle the vast 1380 // majority of thunks simply, but also handle rare cases where the branch range 1381 // is smaller than the target specific spacing. 1382 // 1383 // The algorithm is expected to create all the thunks that are needed in a 1384 // single pass, with a small number of programs needing a second pass due to 1385 // the insertion of thunks in the first pass increasing the offset between 1386 // callers and callees that were only just in range. 1387 // 1388 // A consequence of allowing new ThunkSections to be created outside of the 1389 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1390 // range in pass K, are out of range in some pass > K due to the insertion of 1391 // more Thunks in between the caller and callee. When this happens we retarget 1392 // the relocation back to the original target and create another Thunk. 1393 1394 // Remove ThunkSections that are empty, this should only be the initial set 1395 // precreated on pass 0. 1396 1397 // Insert the Thunks for OutputSection OS into their designated place 1398 // in the Sections vector, and recalculate the InputSection output section 1399 // offsets. 1400 // This may invalidate any output section offsets stored outside of InputSection 1401 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) { 1402 forEachInputSectionDescription( 1403 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1404 if (ISD->ThunkSections.empty()) 1405 return; 1406 1407 // Remove any zero sized precreated Thunks. 1408 llvm::erase_if(ISD->ThunkSections, 1409 [](const std::pair<ThunkSection *, uint32_t> &TS) { 1410 return TS.first->getSize() == 0; 1411 }); 1412 1413 // ISD->ThunkSections contains all created ThunkSections, including 1414 // those inserted in previous passes. Extract the Thunks created this 1415 // pass and order them in ascending OutSecOff. 1416 std::vector<ThunkSection *> NewThunks; 1417 for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections) 1418 if (TS.second == Pass) 1419 NewThunks.push_back(TS.first); 1420 llvm::stable_sort(NewThunks, 1421 [](const ThunkSection *A, const ThunkSection *B) { 1422 return A->OutSecOff < B->OutSecOff; 1423 }); 1424 1425 // Merge sorted vectors of Thunks and InputSections by OutSecOff 1426 std::vector<InputSection *> Tmp; 1427 Tmp.reserve(ISD->Sections.size() + NewThunks.size()); 1428 1429 std::merge(ISD->Sections.begin(), ISD->Sections.end(), 1430 NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp), 1431 mergeCmp); 1432 1433 ISD->Sections = std::move(Tmp); 1434 }); 1435 } 1436 1437 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1438 // is in range of Src. An ISD maps to a range of InputSections described by a 1439 // linker script section pattern such as { .text .text.* }. 1440 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS, 1441 InputSectionDescription *ISD, 1442 uint32_t Type, uint64_t Src) { 1443 for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) { 1444 ThunkSection *TS = TP.first; 1445 uint64_t TSBase = OS->Addr + TS->OutSecOff; 1446 uint64_t TSLimit = TSBase + TS->getSize(); 1447 if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit)) 1448 return TS; 1449 } 1450 1451 // No suitable ThunkSection exists. This can happen when there is a branch 1452 // with lower range than the ThunkSection spacing or when there are too 1453 // many Thunks. Create a new ThunkSection as close to the InputSection as 1454 // possible. Error if InputSection is so large we cannot place ThunkSection 1455 // anywhere in Range. 1456 uint64_t ThunkSecOff = IS->OutSecOff; 1457 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) { 1458 ThunkSecOff = IS->OutSecOff + IS->getSize(); 1459 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) 1460 fatal("InputSection too large for range extension thunk " + 1461 IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff))); 1462 } 1463 return addThunkSection(OS, ISD, ThunkSecOff); 1464 } 1465 1466 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1467 // precedes its Target. 1468 ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) { 1469 ThunkSection *TS = ThunkedSections.lookup(IS); 1470 if (TS) 1471 return TS; 1472 1473 // Find InputSectionRange within Target Output Section (TOS) that the 1474 // InputSection (IS) that we need to precede is in. 1475 OutputSection *TOS = IS->getParent(); 1476 for (BaseCommand *BC : TOS->SectionCommands) { 1477 auto *ISD = dyn_cast<InputSectionDescription>(BC); 1478 if (!ISD || ISD->Sections.empty()) 1479 continue; 1480 1481 InputSection *First = ISD->Sections.front(); 1482 InputSection *Last = ISD->Sections.back(); 1483 1484 if (IS->OutSecOff < First->OutSecOff || Last->OutSecOff < IS->OutSecOff) 1485 continue; 1486 1487 TS = addThunkSection(TOS, ISD, IS->OutSecOff); 1488 ThunkedSections[IS] = TS; 1489 return TS; 1490 } 1491 1492 return nullptr; 1493 } 1494 1495 // Create one or more ThunkSections per OS that can be used to place Thunks. 1496 // We attempt to place the ThunkSections using the following desirable 1497 // properties: 1498 // - Within range of the maximum number of callers 1499 // - Minimise the number of ThunkSections 1500 // 1501 // We follow a simple but conservative heuristic to place ThunkSections at 1502 // offsets that are multiples of a Target specific branch range. 1503 // For an InputSectionDescription that is smaller than the range, a single 1504 // ThunkSection at the end of the range will do. 1505 // 1506 // For an InputSectionDescription that is more than twice the size of the range, 1507 // we place the last ThunkSection at range bytes from the end of the 1508 // InputSectionDescription in order to increase the likelihood that the 1509 // distance from a thunk to its target will be sufficiently small to 1510 // allow for the creation of a short thunk. 1511 void ThunkCreator::createInitialThunkSections( 1512 ArrayRef<OutputSection *> OutputSections) { 1513 uint32_t ThunkSectionSpacing = Target->getThunkSectionSpacing(); 1514 1515 forEachInputSectionDescription( 1516 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1517 if (ISD->Sections.empty()) 1518 return; 1519 1520 uint32_t ISDBegin = ISD->Sections.front()->OutSecOff; 1521 uint32_t ISDEnd = 1522 ISD->Sections.back()->OutSecOff + ISD->Sections.back()->getSize(); 1523 uint32_t LastThunkLowerBound = -1; 1524 if (ISDEnd - ISDBegin > ThunkSectionSpacing * 2) 1525 LastThunkLowerBound = ISDEnd - ThunkSectionSpacing; 1526 1527 uint32_t ISLimit; 1528 uint32_t PrevISLimit = ISDBegin; 1529 uint32_t ThunkUpperBound = ISDBegin + ThunkSectionSpacing; 1530 1531 for (const InputSection *IS : ISD->Sections) { 1532 ISLimit = IS->OutSecOff + IS->getSize(); 1533 if (ISLimit > ThunkUpperBound) { 1534 addThunkSection(OS, ISD, PrevISLimit); 1535 ThunkUpperBound = PrevISLimit + ThunkSectionSpacing; 1536 } 1537 if (ISLimit > LastThunkLowerBound) 1538 break; 1539 PrevISLimit = ISLimit; 1540 } 1541 addThunkSection(OS, ISD, ISLimit); 1542 }); 1543 } 1544 1545 ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS, 1546 InputSectionDescription *ISD, 1547 uint64_t Off) { 1548 auto *TS = make<ThunkSection>(OS, Off); 1549 ISD->ThunkSections.push_back({TS, Pass}); 1550 return TS; 1551 } 1552 1553 std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type, 1554 uint64_t Src) { 1555 std::vector<Thunk *> *ThunkVec = nullptr; 1556 1557 // We use (section, offset) pair to find the thunk position if possible so 1558 // that we create only one thunk for aliased symbols or ICFed sections. 1559 if (auto *D = dyn_cast<Defined>(&Sym)) 1560 if (!D->isInPlt() && D->Section) 1561 ThunkVec = &ThunkedSymbolsBySection[{D->Section->Repl, D->Value}]; 1562 if (!ThunkVec) 1563 ThunkVec = &ThunkedSymbols[&Sym]; 1564 1565 // Check existing Thunks for Sym to see if they can be reused 1566 for (Thunk *T : *ThunkVec) 1567 if (T->isCompatibleWith(Type) && 1568 Target->inBranchRange(Type, Src, T->getThunkTargetSym()->getVA())) 1569 return std::make_pair(T, false); 1570 1571 // No existing compatible Thunk in range, create a new one 1572 Thunk *T = addThunk(Type, Sym); 1573 ThunkVec->push_back(T); 1574 return std::make_pair(T, true); 1575 } 1576 1577 // Return true if the relocation target is an in range Thunk. 1578 // Return false if the relocation is not to a Thunk. If the relocation target 1579 // was originally to a Thunk, but is no longer in range we revert the 1580 // relocation back to its original non-Thunk target. 1581 bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) { 1582 if (Thunk *T = Thunks.lookup(Rel.Sym)) { 1583 if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA())) 1584 return true; 1585 Rel.Sym = &T->Destination; 1586 if (Rel.Sym->isInPlt()) 1587 Rel.Expr = toPlt(Rel.Expr); 1588 } 1589 return false; 1590 } 1591 1592 // Process all relocations from the InputSections that have been assigned 1593 // to InputSectionDescriptions and redirect through Thunks if needed. The 1594 // function should be called iteratively until it returns false. 1595 // 1596 // PreConditions: 1597 // All InputSections that may need a Thunk are reachable from 1598 // OutputSectionCommands. 1599 // 1600 // All OutputSections have an address and all InputSections have an offset 1601 // within the OutputSection. 1602 // 1603 // The offsets between caller (relocation place) and callee 1604 // (relocation target) will not be modified outside of createThunks(). 1605 // 1606 // PostConditions: 1607 // If return value is true then ThunkSections have been inserted into 1608 // OutputSections. All relocations that needed a Thunk based on the information 1609 // available to createThunks() on entry have been redirected to a Thunk. Note 1610 // that adding Thunks changes offsets between caller and callee so more Thunks 1611 // may be required. 1612 // 1613 // If return value is false then no more Thunks are needed, and createThunks has 1614 // made no changes. If the target requires range extension thunks, currently 1615 // ARM, then any future change in offset between caller and callee risks a 1616 // relocation out of range error. 1617 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) { 1618 bool AddressesChanged = false; 1619 1620 if (Pass == 0 && Target->getThunkSectionSpacing()) 1621 createInitialThunkSections(OutputSections); 1622 1623 // With Thunk Size much smaller than branch range we expect to 1624 // converge quickly; if we get to 10 something has gone wrong. 1625 if (Pass == 10) 1626 fatal("thunk creation not converged"); 1627 1628 // Create all the Thunks and insert them into synthetic ThunkSections. The 1629 // ThunkSections are later inserted back into InputSectionDescriptions. 1630 // We separate the creation of ThunkSections from the insertion of the 1631 // ThunkSections as ThunkSections are not always inserted into the same 1632 // InputSectionDescription as the caller. 1633 forEachInputSectionDescription( 1634 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1635 for (InputSection *IS : ISD->Sections) 1636 for (Relocation &Rel : IS->Relocations) { 1637 uint64_t Src = IS->getVA(Rel.Offset); 1638 1639 // If we are a relocation to an existing Thunk, check if it is 1640 // still in range. If not then Rel will be altered to point to its 1641 // original target so another Thunk can be generated. 1642 if (Pass > 0 && normalizeExistingThunk(Rel, Src)) 1643 continue; 1644 1645 if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src, 1646 *Rel.Sym)) 1647 continue; 1648 1649 Thunk *T; 1650 bool IsNew; 1651 std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src); 1652 1653 if (IsNew) { 1654 // Find or create a ThunkSection for the new Thunk 1655 ThunkSection *TS; 1656 if (auto *TIS = T->getTargetInputSection()) 1657 TS = getISThunkSec(TIS); 1658 else 1659 TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src); 1660 TS->addThunk(T); 1661 Thunks[T->getThunkTargetSym()] = T; 1662 } 1663 1664 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 1665 Rel.Sym = T->getThunkTargetSym(); 1666 Rel.Expr = fromPlt(Rel.Expr); 1667 } 1668 1669 for (auto &P : ISD->ThunkSections) 1670 AddressesChanged |= P.first->assignOffsets(); 1671 }); 1672 1673 for (auto &P : ThunkedSections) 1674 AddressesChanged |= P.second->assignOffsets(); 1675 1676 // Merge all created synthetic ThunkSections back into OutputSection 1677 mergeThunks(OutputSections); 1678 ++Pass; 1679 return AddressesChanged; 1680 } 1681 1682 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 1683 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 1684 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 1685 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 1686