1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (BaseCommand *base : script->sectionCommands) 70 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 71 if (cmd->sym == &sym) 72 return cmd->location; 73 return None; 74 } 75 76 static std::string getDefinedLocation(const Symbol &sym) { 77 std::string msg = "\n>>> defined in "; 78 if (sym.file) 79 msg += toString(sym.file); 80 else if (Optional<std::string> loc = getLinkerScriptLocation(sym)) 81 msg += *loc; 82 return msg; 83 } 84 85 // Construct a message in the following format. 86 // 87 // >>> defined in /home/alice/src/foo.o 88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 89 // >>> /home/alice/src/bar.o:(.text+0x1) 90 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 91 uint64_t off) { 92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 93 std::string src = s.getSrcMsg(sym, off); 94 if (!src.empty()) 95 msg += src + "\n>>> "; 96 return msg + s.getObjMsg(off); 97 } 98 99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 100 int64_t min, uint64_t max) { 101 ErrorPlace errPlace = getErrorPlace(loc); 102 std::string hint; 103 if (rel.sym && !rel.sym->isLocal()) 104 hint = "; references " + lld::toString(*rel.sym) + 105 getDefinedLocation(*rel.sym); 106 107 if (errPlace.isec && errPlace.isec->name.startswith(".debug")) 108 hint += "; consider recompiling with -fdebug-types-section to reduce size " 109 "of debug sections"; 110 111 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 112 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 113 ", " + Twine(max).str() + "]" + hint); 114 } 115 116 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 117 const Twine &msg) { 118 ErrorPlace errPlace = getErrorPlace(loc); 119 std::string hint; 120 if (!sym.getName().empty()) 121 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym); 122 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 123 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 124 Twine(llvm::maxIntN(n)) + "]" + hint); 125 } 126 127 namespace { 128 // Build a bitmask with one bit set for each RelExpr. 129 // 130 // Constexpr function arguments can't be used in static asserts, so we 131 // use template arguments to build the mask. 132 // But function template partial specializations don't exist (needed 133 // for base case of the recursion), so we need a dummy struct. 134 template <RelExpr... Exprs> struct RelExprMaskBuilder { 135 static inline uint64_t build() { return 0; } 136 }; 137 138 // Specialization for recursive case. 139 template <RelExpr Head, RelExpr... Tail> 140 struct RelExprMaskBuilder<Head, Tail...> { 141 static inline uint64_t build() { 142 static_assert(0 <= Head && Head < 64, 143 "RelExpr is too large for 64-bit mask!"); 144 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 145 } 146 }; 147 } // namespace 148 149 // Return true if `Expr` is one of `Exprs`. 150 // There are fewer than 64 RelExpr's, so we can represent any set of 151 // RelExpr's as a constant bit mask and test for membership with a 152 // couple cheap bitwise operations. 153 template <RelExpr... Exprs> bool oneof(RelExpr expr) { 154 assert(0 <= expr && (int)expr < 64 && 155 "RelExpr is too large for 64-bit mask!"); 156 return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build(); 157 } 158 159 // This function is similar to the `handleTlsRelocation`. MIPS does not 160 // support any relaxations for TLS relocations so by factoring out MIPS 161 // handling in to the separate function we can simplify the code and do not 162 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 163 // Mips has a custom MipsGotSection that handles the writing of GOT entries 164 // without dynamic relocations. 165 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 166 InputSectionBase &c, uint64_t offset, 167 int64_t addend, RelExpr expr) { 168 if (expr == R_MIPS_TLSLD) { 169 in.mipsGot->addTlsIndex(*c.file); 170 c.relocations.push_back({expr, type, offset, addend, &sym}); 171 return 1; 172 } 173 if (expr == R_MIPS_TLSGD) { 174 in.mipsGot->addDynTlsEntry(*c.file, sym); 175 c.relocations.push_back({expr, type, offset, addend, &sym}); 176 return 1; 177 } 178 return 0; 179 } 180 181 // Notes about General Dynamic and Local Dynamic TLS models below. They may 182 // require the generation of a pair of GOT entries that have associated dynamic 183 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 184 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 185 // symbol in TLS block. 186 // 187 // Returns the number of relocations processed. 188 template <class ELFT> 189 static unsigned 190 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, 191 typename ELFT::uint offset, int64_t addend, RelExpr expr) { 192 if (!sym.isTls()) 193 return 0; 194 195 if (config->emachine == EM_MIPS) 196 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 197 198 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>( 199 expr) && 200 config->shared) { 201 if (in.got->addDynTlsEntry(sym)) { 202 uint64_t off = in.got->getGlobalDynOffset(sym); 203 mainPart->relaDyn->addReloc( 204 {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0}); 205 } 206 if (expr != R_TLSDESC_CALL) 207 c.relocations.push_back({expr, type, offset, addend, &sym}); 208 return 1; 209 } 210 211 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For 212 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable 213 // relaxation as well. 214 bool toExecRelax = !config->shared && config->emachine != EM_ARM && 215 config->emachine != EM_HEXAGON && 216 config->emachine != EM_RISCV && 217 !c.file->ppc64DisableTLSRelax; 218 219 // If we are producing an executable and the symbol is non-preemptable, it 220 // must be defined and the code sequence can be relaxed to use Local-Exec. 221 // 222 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 223 // we can omit the DTPMOD dynamic relocations and resolve them at link time 224 // because them are always 1. This may be necessary for static linking as 225 // DTPMOD may not be expected at load time. 226 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 227 228 // Local Dynamic is for access to module local TLS variables, while still 229 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 230 // module index, with a special value of 0 for the current module. GOT[e1] is 231 // unused. There only needs to be one module index entry. 232 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 233 expr)) { 234 // Local-Dynamic relocs can be relaxed to Local-Exec. 235 if (toExecRelax) { 236 c.relocations.push_back( 237 {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset, 238 addend, &sym}); 239 return target->getTlsGdRelaxSkip(type); 240 } 241 if (expr == R_TLSLD_HINT) 242 return 1; 243 if (in.got->addTlsIndex()) { 244 if (isLocalInExecutable) 245 in.got->relocations.push_back( 246 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); 247 else 248 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, 249 in.got->getTlsIndexOff(), nullptr); 250 } 251 c.relocations.push_back({expr, type, offset, addend, &sym}); 252 return 1; 253 } 254 255 // Local-Dynamic relocs can be relaxed to Local-Exec. 256 if (expr == R_DTPREL && toExecRelax) { 257 c.relocations.push_back({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), 258 type, offset, addend, &sym}); 259 return 1; 260 } 261 262 // Local-Dynamic sequence where offset of tls variable relative to dynamic 263 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 264 if (expr == R_TLSLD_GOT_OFF) { 265 if (!sym.isInGot()) { 266 in.got->addEntry(sym); 267 uint64_t off = sym.getGotOffset(); 268 in.got->relocations.push_back( 269 {R_ABS, target->tlsOffsetRel, off, 0, &sym}); 270 } 271 c.relocations.push_back({expr, type, offset, addend, &sym}); 272 return 1; 273 } 274 275 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 276 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 277 if (!toExecRelax) { 278 if (in.got->addDynTlsEntry(sym)) { 279 uint64_t off = in.got->getGlobalDynOffset(sym); 280 281 if (isLocalInExecutable) 282 // Write one to the GOT slot. 283 in.got->relocations.push_back( 284 {R_ADDEND, target->symbolicRel, off, 1, &sym}); 285 else 286 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym); 287 288 // If the symbol is preemptible we need the dynamic linker to write 289 // the offset too. 290 uint64_t offsetOff = off + config->wordsize; 291 if (sym.isPreemptible) 292 mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff, 293 &sym); 294 else 295 in.got->relocations.push_back( 296 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 297 } 298 c.relocations.push_back({expr, type, offset, addend, &sym}); 299 return 1; 300 } 301 302 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 303 // depending on the symbol being locally defined or not. 304 if (sym.isPreemptible) { 305 c.relocations.push_back( 306 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset, 307 addend, &sym}); 308 if (!sym.isInGot()) { 309 in.got->addEntry(sym); 310 mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(), 311 &sym); 312 } 313 } else { 314 c.relocations.push_back( 315 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset, 316 addend, &sym}); 317 } 318 return target->getTlsGdRelaxSkip(type); 319 } 320 321 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 322 // defined. 323 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 324 R_TLSIE_HINT>(expr) && 325 toExecRelax && isLocalInExecutable) { 326 c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 327 return 1; 328 } 329 330 if (expr == R_TLSIE_HINT) 331 return 1; 332 return 0; 333 } 334 335 static RelType getMipsPairType(RelType type, bool isLocal) { 336 switch (type) { 337 case R_MIPS_HI16: 338 return R_MIPS_LO16; 339 case R_MIPS_GOT16: 340 // In case of global symbol, the R_MIPS_GOT16 relocation does not 341 // have a pair. Each global symbol has a unique entry in the GOT 342 // and a corresponding instruction with help of the R_MIPS_GOT16 343 // relocation loads an address of the symbol. In case of local 344 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 345 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 346 // relocations handle low 16 bits of the address. That allows 347 // to allocate only one GOT entry for every 64 KBytes of local data. 348 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 349 case R_MICROMIPS_GOT16: 350 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 351 case R_MIPS_PCHI16: 352 return R_MIPS_PCLO16; 353 case R_MICROMIPS_HI16: 354 return R_MICROMIPS_LO16; 355 default: 356 return R_MIPS_NONE; 357 } 358 } 359 360 // True if non-preemptable symbol always has the same value regardless of where 361 // the DSO is loaded. 362 static bool isAbsolute(const Symbol &sym) { 363 if (sym.isUndefWeak()) 364 return true; 365 if (const auto *dr = dyn_cast<Defined>(&sym)) 366 return dr->section == nullptr; // Absolute symbol. 367 return false; 368 } 369 370 static bool isAbsoluteValue(const Symbol &sym) { 371 return isAbsolute(sym) || sym.isTls(); 372 } 373 374 // Returns true if Expr refers a PLT entry. 375 static bool needsPlt(RelExpr expr) { 376 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr); 377 } 378 379 // Returns true if Expr refers a GOT entry. Note that this function 380 // returns false for TLS variables even though they need GOT, because 381 // TLS variables uses GOT differently than the regular variables. 382 static bool needsGot(RelExpr expr) { 383 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 384 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>( 385 expr); 386 } 387 388 // True if this expression is of the form Sym - X, where X is a position in the 389 // file (PC, or GOT for example). 390 static bool isRelExpr(RelExpr expr) { 391 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 392 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 393 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr); 394 } 395 396 // Returns true if a given relocation can be computed at link-time. 397 // 398 // For instance, we know the offset from a relocation to its target at 399 // link-time if the relocation is PC-relative and refers a 400 // non-interposable function in the same executable. This function 401 // will return true for such relocation. 402 // 403 // If this function returns false, that means we need to emit a 404 // dynamic relocation so that the relocation will be fixed at load-time. 405 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 406 InputSectionBase &s, uint64_t relOff) { 407 // These expressions always compute a constant 408 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF, 409 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 410 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 411 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 412 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL, 413 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL, 414 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT>( 415 e)) 416 return true; 417 418 // These never do, except if the entire file is position dependent or if 419 // only the low bits are used. 420 if (e == R_GOT || e == R_PLT || e == R_TLSDESC) 421 return target->usesOnlyLowPageBits(type) || !config->isPic; 422 423 if (sym.isPreemptible) 424 return false; 425 if (!config->isPic) 426 return true; 427 428 // The size of a non preemptible symbol is a constant. 429 if (e == R_SIZE) 430 return true; 431 432 // For the target and the relocation, we want to know if they are 433 // absolute or relative. 434 bool absVal = isAbsoluteValue(sym); 435 bool relE = isRelExpr(e); 436 if (absVal && !relE) 437 return true; 438 if (!absVal && relE) 439 return true; 440 if (!absVal && !relE) 441 return target->usesOnlyLowPageBits(type); 442 443 assert(absVal && relE); 444 445 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 446 // in PIC mode. This is a little strange, but it allows us to link function 447 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 448 // Normally such a call will be guarded with a comparison, which will load a 449 // zero from the GOT. 450 if (sym.isUndefWeak()) 451 return true; 452 453 // We set the final symbols values for linker script defined symbols later. 454 // They always can be computed as a link time constant. 455 if (sym.scriptDefined) 456 return true; 457 458 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 459 toString(sym) + getLocation(s, sym, relOff)); 460 return true; 461 } 462 463 static RelExpr toPlt(RelExpr expr) { 464 switch (expr) { 465 case R_PPC64_CALL: 466 return R_PPC64_CALL_PLT; 467 case R_PC: 468 return R_PLT_PC; 469 case R_ABS: 470 return R_PLT; 471 default: 472 return expr; 473 } 474 } 475 476 static RelExpr fromPlt(RelExpr expr) { 477 // We decided not to use a plt. Optimize a reference to the plt to a 478 // reference to the symbol itself. 479 switch (expr) { 480 case R_PLT_PC: 481 case R_PPC32_PLTREL: 482 return R_PC; 483 case R_PPC64_CALL_PLT: 484 return R_PPC64_CALL; 485 case R_PLT: 486 return R_ABS; 487 default: 488 return expr; 489 } 490 } 491 492 // Returns true if a given shared symbol is in a read-only segment in a DSO. 493 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 494 using Elf_Phdr = typename ELFT::Phdr; 495 496 // Determine if the symbol is read-only by scanning the DSO's program headers. 497 const SharedFile &file = ss.getFile(); 498 for (const Elf_Phdr &phdr : 499 check(file.template getObj<ELFT>().program_headers())) 500 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 501 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 502 ss.value < phdr.p_vaddr + phdr.p_memsz) 503 return true; 504 return false; 505 } 506 507 // Returns symbols at the same offset as a given symbol, including SS itself. 508 // 509 // If two or more symbols are at the same offset, and at least one of 510 // them are copied by a copy relocation, all of them need to be copied. 511 // Otherwise, they would refer to different places at runtime. 512 template <class ELFT> 513 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 514 using Elf_Sym = typename ELFT::Sym; 515 516 SharedFile &file = ss.getFile(); 517 518 SmallSet<SharedSymbol *, 4> ret; 519 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 520 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 521 s.getType() == STT_TLS || s.st_value != ss.value) 522 continue; 523 StringRef name = check(s.getName(file.getStringTable())); 524 Symbol *sym = symtab->find(name); 525 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 526 ret.insert(alias); 527 } 528 return ret; 529 } 530 531 // When a symbol is copy relocated or we create a canonical plt entry, it is 532 // effectively a defined symbol. In the case of copy relocation the symbol is 533 // in .bss and in the case of a canonical plt entry it is in .plt. This function 534 // replaces the existing symbol with a Defined pointing to the appropriate 535 // location. 536 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, 537 uint64_t size) { 538 Symbol old = sym; 539 540 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, 541 sym.type, value, size, sec}); 542 543 sym.pltIndex = old.pltIndex; 544 sym.gotIndex = old.gotIndex; 545 sym.verdefIndex = old.verdefIndex; 546 sym.exportDynamic = true; 547 sym.isUsedInRegularObj = true; 548 } 549 550 // Reserve space in .bss or .bss.rel.ro for copy relocation. 551 // 552 // The copy relocation is pretty much a hack. If you use a copy relocation 553 // in your program, not only the symbol name but the symbol's size, RW/RO 554 // bit and alignment become part of the ABI. In addition to that, if the 555 // symbol has aliases, the aliases become part of the ABI. That's subtle, 556 // but if you violate that implicit ABI, that can cause very counter- 557 // intuitive consequences. 558 // 559 // So, what is the copy relocation? It's for linking non-position 560 // independent code to DSOs. In an ideal world, all references to data 561 // exported by DSOs should go indirectly through GOT. But if object files 562 // are compiled as non-PIC, all data references are direct. There is no 563 // way for the linker to transform the code to use GOT, as machine 564 // instructions are already set in stone in object files. This is where 565 // the copy relocation takes a role. 566 // 567 // A copy relocation instructs the dynamic linker to copy data from a DSO 568 // to a specified address (which is usually in .bss) at load-time. If the 569 // static linker (that's us) finds a direct data reference to a DSO 570 // symbol, it creates a copy relocation, so that the symbol can be 571 // resolved as if it were in .bss rather than in a DSO. 572 // 573 // As you can see in this function, we create a copy relocation for the 574 // dynamic linker, and the relocation contains not only symbol name but 575 // various other information about the symbol. So, such attributes become a 576 // part of the ABI. 577 // 578 // Note for application developers: I can give you a piece of advice if 579 // you are writing a shared library. You probably should export only 580 // functions from your library. You shouldn't export variables. 581 // 582 // As an example what can happen when you export variables without knowing 583 // the semantics of copy relocations, assume that you have an exported 584 // variable of type T. It is an ABI-breaking change to add new members at 585 // end of T even though doing that doesn't change the layout of the 586 // existing members. That's because the space for the new members are not 587 // reserved in .bss unless you recompile the main program. That means they 588 // are likely to overlap with other data that happens to be laid out next 589 // to the variable in .bss. This kind of issue is sometimes very hard to 590 // debug. What's a solution? Instead of exporting a variable V from a DSO, 591 // define an accessor getV(). 592 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 593 // Copy relocation against zero-sized symbol doesn't make sense. 594 uint64_t symSize = ss.getSize(); 595 if (symSize == 0 || ss.alignment == 0) 596 fatal("cannot create a copy relocation for symbol " + toString(ss)); 597 598 // See if this symbol is in a read-only segment. If so, preserve the symbol's 599 // memory protection by reserving space in the .bss.rel.ro section. 600 bool isRO = isReadOnly<ELFT>(ss); 601 BssSection *sec = 602 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 603 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 604 605 // At this point, sectionBases has been migrated to sections. Append sec to 606 // sections. 607 if (osec->sectionCommands.empty() || 608 !isa<InputSectionDescription>(osec->sectionCommands.back())) 609 osec->sectionCommands.push_back(make<InputSectionDescription>("")); 610 auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back()); 611 isd->sections.push_back(sec); 612 osec->commitSection(sec); 613 614 // Look through the DSO's dynamic symbol table for aliases and create a 615 // dynamic symbol for each one. This causes the copy relocation to correctly 616 // interpose any aliases. 617 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 618 replaceWithDefined(*sym, sec, 0, sym->size); 619 620 mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss); 621 } 622 623 // MIPS has an odd notion of "paired" relocations to calculate addends. 624 // For example, if a relocation is of R_MIPS_HI16, there must be a 625 // R_MIPS_LO16 relocation after that, and an addend is calculated using 626 // the two relocations. 627 template <class ELFT, class RelTy> 628 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, 629 InputSectionBase &sec, RelExpr expr, 630 bool isLocal) { 631 if (expr == R_MIPS_GOTREL && isLocal) 632 return sec.getFile<ELFT>()->mipsGp0; 633 634 // The ABI says that the paired relocation is used only for REL. 635 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 636 if (RelTy::IsRela) 637 return 0; 638 639 RelType type = rel.getType(config->isMips64EL); 640 uint32_t pairTy = getMipsPairType(type, isLocal); 641 if (pairTy == R_MIPS_NONE) 642 return 0; 643 644 const uint8_t *buf = sec.data().data(); 645 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 646 647 // To make things worse, paired relocations might not be contiguous in 648 // the relocation table, so we need to do linear search. *sigh* 649 for (const RelTy *ri = &rel; ri != end; ++ri) 650 if (ri->getType(config->isMips64EL) == pairTy && 651 ri->getSymbol(config->isMips64EL) == symIndex) 652 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 653 654 warn("can't find matching " + toString(pairTy) + " relocation for " + 655 toString(type)); 656 return 0; 657 } 658 659 // Returns an addend of a given relocation. If it is RELA, an addend 660 // is in a relocation itself. If it is REL, we need to read it from an 661 // input section. 662 template <class ELFT, class RelTy> 663 static int64_t computeAddend(const RelTy &rel, const RelTy *end, 664 InputSectionBase &sec, RelExpr expr, 665 bool isLocal) { 666 int64_t addend; 667 RelType type = rel.getType(config->isMips64EL); 668 669 if (RelTy::IsRela) { 670 addend = getAddend<ELFT>(rel); 671 } else { 672 const uint8_t *buf = sec.data().data(); 673 addend = target->getImplicitAddend(buf + rel.r_offset, type); 674 } 675 676 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 677 addend += getPPC64TocBase(); 678 if (config->emachine == EM_MIPS) 679 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); 680 681 return addend; 682 } 683 684 // Custom error message if Sym is defined in a discarded section. 685 template <class ELFT> 686 static std::string maybeReportDiscarded(Undefined &sym) { 687 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 688 if (!file || !sym.discardedSecIdx || 689 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 690 return ""; 691 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = 692 CHECK(file->getObj().sections(), file); 693 694 std::string msg; 695 if (sym.type == ELF::STT_SECTION) { 696 msg = "relocation refers to a discarded section: "; 697 msg += CHECK( 698 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 699 } else { 700 msg = "relocation refers to a symbol in a discarded section: " + 701 toString(sym); 702 } 703 msg += "\n>>> defined in " + toString(file); 704 705 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 706 if (elfSec.sh_type != SHT_GROUP) 707 return msg; 708 709 // If the discarded section is a COMDAT. 710 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 711 if (const InputFile *prevailing = 712 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) 713 msg += "\n>>> section group signature: " + signature.str() + 714 "\n>>> prevailing definition is in " + toString(prevailing); 715 return msg; 716 } 717 718 // Undefined diagnostics are collected in a vector and emitted once all of 719 // them are known, so that some postprocessing on the list of undefined symbols 720 // can happen before lld emits diagnostics. 721 struct UndefinedDiag { 722 Symbol *sym; 723 struct Loc { 724 InputSectionBase *sec; 725 uint64_t offset; 726 }; 727 std::vector<Loc> locs; 728 bool isWarning; 729 }; 730 731 static std::vector<UndefinedDiag> undefs; 732 733 // Check whether the definition name def is a mangled function name that matches 734 // the reference name ref. 735 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 736 llvm::ItaniumPartialDemangler d; 737 std::string name = def.str(); 738 if (d.partialDemangle(name.c_str())) 739 return false; 740 char *buf = d.getFunctionName(nullptr, nullptr); 741 if (!buf) 742 return false; 743 bool ret = ref == buf; 744 free(buf); 745 return ret; 746 } 747 748 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 749 // the suggested symbol, which is either in the symbol table, or in the same 750 // file of sym. 751 template <class ELFT> 752 static const Symbol *getAlternativeSpelling(const Undefined &sym, 753 std::string &pre_hint, 754 std::string &post_hint) { 755 DenseMap<StringRef, const Symbol *> map; 756 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) { 757 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 758 // will give an error. Don't suggest an alternative spelling. 759 if (file && sym.discardedSecIdx != 0 && 760 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 761 return nullptr; 762 763 // Build a map of local defined symbols. 764 for (const Symbol *s : sym.file->getSymbols()) 765 if (s->isLocal() && s->isDefined()) 766 map.try_emplace(s->getName(), s); 767 } 768 769 auto suggest = [&](StringRef newName) -> const Symbol * { 770 // If defined locally. 771 if (const Symbol *s = map.lookup(newName)) 772 return s; 773 774 // If in the symbol table and not undefined. 775 if (const Symbol *s = symtab->find(newName)) 776 if (!s->isUndefined()) 777 return s; 778 779 return nullptr; 780 }; 781 782 // This loop enumerates all strings of Levenshtein distance 1 as typo 783 // correction candidates and suggests the one that exists as a non-undefined 784 // symbol. 785 StringRef name = sym.getName(); 786 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 787 // Insert a character before name[i]. 788 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 789 for (char c = '0'; c <= 'z'; ++c) { 790 newName[i] = c; 791 if (const Symbol *s = suggest(newName)) 792 return s; 793 } 794 if (i == e) 795 break; 796 797 // Substitute name[i]. 798 newName = std::string(name); 799 for (char c = '0'; c <= 'z'; ++c) { 800 newName[i] = c; 801 if (const Symbol *s = suggest(newName)) 802 return s; 803 } 804 805 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 806 // common. 807 if (i + 1 < e) { 808 newName[i] = name[i + 1]; 809 newName[i + 1] = name[i]; 810 if (const Symbol *s = suggest(newName)) 811 return s; 812 } 813 814 // Delete name[i]. 815 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 816 if (const Symbol *s = suggest(newName)) 817 return s; 818 } 819 820 // Case mismatch, e.g. Foo vs FOO. 821 for (auto &it : map) 822 if (name.equals_lower(it.first)) 823 return it.second; 824 for (Symbol *sym : symtab->symbols()) 825 if (!sym->isUndefined() && name.equals_lower(sym->getName())) 826 return sym; 827 828 // The reference may be a mangled name while the definition is not. Suggest a 829 // missing extern "C". 830 if (name.startswith("_Z")) { 831 std::string buf = name.str(); 832 llvm::ItaniumPartialDemangler d; 833 if (!d.partialDemangle(buf.c_str())) 834 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 835 const Symbol *s = suggest(buf); 836 free(buf); 837 if (s) { 838 pre_hint = ": extern \"C\" "; 839 return s; 840 } 841 } 842 } else { 843 const Symbol *s = nullptr; 844 for (auto &it : map) 845 if (canSuggestExternCForCXX(name, it.first)) { 846 s = it.second; 847 break; 848 } 849 if (!s) 850 for (Symbol *sym : symtab->symbols()) 851 if (canSuggestExternCForCXX(name, sym->getName())) { 852 s = sym; 853 break; 854 } 855 if (s) { 856 pre_hint = " to declare "; 857 post_hint = " as extern \"C\"?"; 858 return s; 859 } 860 } 861 862 return nullptr; 863 } 864 865 template <class ELFT> 866 static void reportUndefinedSymbol(const UndefinedDiag &undef, 867 bool correctSpelling) { 868 Symbol &sym = *undef.sym; 869 870 auto visibility = [&]() -> std::string { 871 switch (sym.visibility) { 872 case STV_INTERNAL: 873 return "internal "; 874 case STV_HIDDEN: 875 return "hidden "; 876 case STV_PROTECTED: 877 return "protected "; 878 default: 879 return ""; 880 } 881 }; 882 883 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); 884 if (msg.empty()) 885 msg = "undefined " + visibility() + "symbol: " + toString(sym); 886 887 const size_t maxUndefReferences = 3; 888 size_t i = 0; 889 for (UndefinedDiag::Loc l : undef.locs) { 890 if (i >= maxUndefReferences) 891 break; 892 InputSectionBase &sec = *l.sec; 893 uint64_t offset = l.offset; 894 895 msg += "\n>>> referenced by "; 896 std::string src = sec.getSrcMsg(sym, offset); 897 if (!src.empty()) 898 msg += src + "\n>>> "; 899 msg += sec.getObjMsg(offset); 900 i++; 901 } 902 903 if (i < undef.locs.size()) 904 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 905 .str(); 906 907 if (correctSpelling) { 908 std::string pre_hint = ": ", post_hint; 909 if (const Symbol *corrected = getAlternativeSpelling<ELFT>( 910 cast<Undefined>(sym), pre_hint, post_hint)) { 911 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 912 if (corrected->file) 913 msg += "\n>>> defined in: " + toString(corrected->file); 914 } 915 } 916 917 if (sym.getName().startswith("_ZTV")) 918 msg += 919 "\n>>> the vtable symbol may be undefined because the class is missing " 920 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 921 922 if (undef.isWarning) 923 warn(msg); 924 else 925 error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); 926 } 927 928 template <class ELFT> void elf::reportUndefinedSymbols() { 929 // Find the first "undefined symbol" diagnostic for each diagnostic, and 930 // collect all "referenced from" lines at the first diagnostic. 931 DenseMap<Symbol *, UndefinedDiag *> firstRef; 932 for (UndefinedDiag &undef : undefs) { 933 assert(undef.locs.size() == 1); 934 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 935 canon->locs.push_back(undef.locs[0]); 936 undef.locs.clear(); 937 } else 938 firstRef[undef.sym] = &undef; 939 } 940 941 // Enable spell corrector for the first 2 diagnostics. 942 for (auto it : enumerate(undefs)) 943 if (!it.value().locs.empty()) 944 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); 945 undefs.clear(); 946 } 947 948 // Report an undefined symbol if necessary. 949 // Returns true if the undefined symbol will produce an error message. 950 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, 951 uint64_t offset) { 952 if (!sym.isUndefined()) 953 return false; 954 // If versioned, issue an error (even if the symbol is weak) because we don't 955 // know the defining filename which is required to construct a Verneed entry. 956 if (*sym.getVersionSuffix() == '@') { 957 undefs.push_back({&sym, {{&sec, offset}}, false}); 958 return true; 959 } 960 if (sym.isWeak()) 961 return false; 962 963 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; 964 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 965 return false; 966 967 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 968 // which references a switch table in a discarded .rodata/.text section. The 969 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 970 // spec says references from outside the group to a STB_LOCAL symbol are not 971 // allowed. Work around the bug. 972 // 973 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 974 // because .LC0-.LTOC is not representable if the two labels are in different 975 // .got2 976 if (cast<Undefined>(sym).discardedSecIdx != 0 && 977 (sec.name == ".got2" || sec.name == ".toc")) 978 return false; 979 980 bool isWarning = 981 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 982 config->noinhibitExec; 983 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 984 return !isWarning; 985 } 986 987 // MIPS N32 ABI treats series of successive relocations with the same offset 988 // as a single relocation. The similar approach used by N64 ABI, but this ABI 989 // packs all relocations into the single relocation record. Here we emulate 990 // this for the N32 ABI. Iterate over relocation with the same offset and put 991 // theirs types into the single bit-set. 992 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { 993 RelType type = 0; 994 uint64_t offset = rel->r_offset; 995 996 int n = 0; 997 while (rel != end && rel->r_offset == offset) 998 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 999 return type; 1000 } 1001 1002 // .eh_frame sections are mergeable input sections, so their input 1003 // offsets are not linearly mapped to output section. For each input 1004 // offset, we need to find a section piece containing the offset and 1005 // add the piece's base address to the input offset to compute the 1006 // output offset. That isn't cheap. 1007 // 1008 // This class is to speed up the offset computation. When we process 1009 // relocations, we access offsets in the monotonically increasing 1010 // order. So we can optimize for that access pattern. 1011 // 1012 // For sections other than .eh_frame, this class doesn't do anything. 1013 namespace { 1014 class OffsetGetter { 1015 public: 1016 explicit OffsetGetter(InputSectionBase &sec) { 1017 if (auto *eh = dyn_cast<EhInputSection>(&sec)) 1018 pieces = eh->pieces; 1019 } 1020 1021 // Translates offsets in input sections to offsets in output sections. 1022 // Given offset must increase monotonically. We assume that Piece is 1023 // sorted by inputOff. 1024 uint64_t get(uint64_t off) { 1025 if (pieces.empty()) 1026 return off; 1027 1028 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) 1029 ++i; 1030 if (i == pieces.size()) 1031 fatal(".eh_frame: relocation is not in any piece"); 1032 1033 // Pieces must be contiguous, so there must be no holes in between. 1034 assert(pieces[i].inputOff <= off && "Relocation not in any piece"); 1035 1036 // Offset -1 means that the piece is dead (i.e. garbage collected). 1037 if (pieces[i].outputOff == -1) 1038 return -1; 1039 return pieces[i].outputOff + off - pieces[i].inputOff; 1040 } 1041 1042 private: 1043 ArrayRef<EhSectionPiece> pieces; 1044 size_t i = 0; 1045 }; 1046 } // namespace 1047 1048 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, 1049 Symbol *sym, int64_t addend, RelExpr expr, 1050 RelType type) { 1051 Partition &part = isec->getPartition(); 1052 1053 // Add a relative relocation. If relrDyn section is enabled, and the 1054 // relocation offset is guaranteed to be even, add the relocation to 1055 // the relrDyn section, otherwise add it to the relaDyn section. 1056 // relrDyn sections don't support odd offsets. Also, relrDyn sections 1057 // don't store the addend values, so we must write it to the relocated 1058 // address. 1059 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { 1060 isec->relocations.push_back({expr, type, offsetInSec, addend, sym}); 1061 part.relrDyn->relocs.push_back({isec, offsetInSec}); 1062 return; 1063 } 1064 part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend, 1065 expr, type); 1066 } 1067 1068 template <class PltSection, class GotPltSection> 1069 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, 1070 RelocationBaseSection *rel, RelType type, Symbol &sym) { 1071 plt->addEntry(sym); 1072 gotPlt->addEntry(sym); 1073 rel->addReloc( 1074 {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0}); 1075 } 1076 1077 static void addGotEntry(Symbol &sym) { 1078 in.got->addEntry(sym); 1079 1080 RelExpr expr = sym.isTls() ? R_TPREL : R_ABS; 1081 uint64_t off = sym.getGotOffset(); 1082 1083 // If a GOT slot value can be calculated at link-time, which is now, 1084 // we can just fill that out. 1085 // 1086 // (We don't actually write a value to a GOT slot right now, but we 1087 // add a static relocation to a Relocations vector so that 1088 // InputSection::relocate will do the work for us. We may be able 1089 // to just write a value now, but it is a TODO.) 1090 bool isLinkTimeConstant = 1091 !sym.isPreemptible && (!config->isPic || isAbsolute(sym)); 1092 if (isLinkTimeConstant) { 1093 in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym}); 1094 return; 1095 } 1096 1097 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 1098 // the GOT slot will be fixed at load-time. 1099 if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) { 1100 addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel); 1101 return; 1102 } 1103 mainPart->relaDyn->addReloc( 1104 sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0, 1105 sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel); 1106 } 1107 1108 // Return true if we can define a symbol in the executable that 1109 // contains the value/function of a symbol defined in a shared 1110 // library. 1111 static bool canDefineSymbolInExecutable(Symbol &sym) { 1112 // If the symbol has default visibility the symbol defined in the 1113 // executable will preempt it. 1114 // Note that we want the visibility of the shared symbol itself, not 1115 // the visibility of the symbol in the output file we are producing. That is 1116 // why we use Sym.stOther. 1117 if ((sym.stOther & 0x3) == STV_DEFAULT) 1118 return true; 1119 1120 // If we are allowed to break address equality of functions, defining 1121 // a plt entry will allow the program to call the function in the 1122 // .so, but the .so and the executable will no agree on the address 1123 // of the function. Similar logic for objects. 1124 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 1125 (sym.isObject() && config->ignoreDataAddressEquality)); 1126 } 1127 1128 // The reason we have to do this early scan is as follows 1129 // * To mmap the output file, we need to know the size 1130 // * For that, we need to know how many dynamic relocs we will have. 1131 // It might be possible to avoid this by outputting the file with write: 1132 // * Write the allocated output sections, computing addresses. 1133 // * Apply relocations, recording which ones require a dynamic reloc. 1134 // * Write the dynamic relocations. 1135 // * Write the rest of the file. 1136 // This would have some drawbacks. For example, we would only know if .rela.dyn 1137 // is needed after applying relocations. If it is, it will go after rw and rx 1138 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1139 // complicates things for the dynamic linker and means we would have to reserve 1140 // space for the extra PT_LOAD even if we end up not using it. 1141 template <class ELFT, class RelTy> 1142 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, 1143 uint64_t offset, Symbol &sym, const RelTy &rel, 1144 int64_t addend) { 1145 // If the relocation is known to be a link-time constant, we know no dynamic 1146 // relocation will be created, pass the control to relocateAlloc() or 1147 // relocateNonAlloc() to resolve it. 1148 // 1149 // The behavior of an undefined weak reference is implementation defined. If 1150 // the relocation is to a weak undef, and we are producing an executable, let 1151 // relocate{,Non}Alloc() resolve it. 1152 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || 1153 (!config->shared && sym.isUndefWeak())) { 1154 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1155 return; 1156 } 1157 1158 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; 1159 if (canWrite) { 1160 RelType rel = target->getDynRel(type); 1161 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 1162 addRelativeReloc(&sec, offset, &sym, addend, expr, type); 1163 return; 1164 } else if (rel != 0) { 1165 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1166 rel = target->relativeRel; 1167 sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend, 1168 R_ADDEND, type); 1169 1170 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1171 // While regular ABI uses dynamic relocations to fill up GOT entries 1172 // MIPS ABI requires dynamic linker to fills up GOT entries using 1173 // specially sorted dynamic symbol table. This affects even dynamic 1174 // relocations against symbols which do not require GOT entries 1175 // creation explicitly, i.e. do not have any GOT-relocations. So if 1176 // a preemptible symbol has a dynamic relocation we anyway have 1177 // to create a GOT entry for it. 1178 // If a non-preemptible symbol has a dynamic relocation against it, 1179 // dynamic linker takes it st_value, adds offset and writes down 1180 // result of the dynamic relocation. In case of preemptible symbol 1181 // dynamic linker performs symbol resolution, writes the symbol value 1182 // to the GOT entry and reads the GOT entry when it needs to perform 1183 // a dynamic relocation. 1184 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1185 if (config->emachine == EM_MIPS) 1186 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1187 return; 1188 } 1189 } 1190 1191 // When producing an executable, we can perform copy relocations (for 1192 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1193 if (!config->shared) { 1194 if (!canDefineSymbolInExecutable(sym)) { 1195 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1196 getLocation(sec, sym, offset)); 1197 return; 1198 } 1199 1200 if (sym.isObject()) { 1201 // Produce a copy relocation. 1202 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1203 if (!config->zCopyreloc) 1204 error("unresolvable relocation " + toString(type) + 1205 " against symbol '" + toString(*ss) + 1206 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1207 getLocation(sec, sym, offset)); 1208 addCopyRelSymbol<ELFT>(*ss); 1209 } 1210 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1211 return; 1212 } 1213 1214 // This handles a non PIC program call to function in a shared library. In 1215 // an ideal world, we could just report an error saying the relocation can 1216 // overflow at runtime. In the real world with glibc, crt1.o has a 1217 // R_X86_64_PC32 pointing to libc.so. 1218 // 1219 // The general idea on how to handle such cases is to create a PLT entry and 1220 // use that as the function value. 1221 // 1222 // For the static linking part, we just return a plt expr and everything 1223 // else will use the PLT entry as the address. 1224 // 1225 // The remaining problem is making sure pointer equality still works. We 1226 // need the help of the dynamic linker for that. We let it know that we have 1227 // a direct reference to a so symbol by creating an undefined symbol with a 1228 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1229 // the value of the symbol we created. This is true even for got entries, so 1230 // pointer equality is maintained. To avoid an infinite loop, the only entry 1231 // that points to the real function is a dedicated got entry used by the 1232 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1233 // R_386_JMP_SLOT, etc). 1234 1235 // For position independent executable on i386, the plt entry requires ebx 1236 // to be set. This causes two problems: 1237 // * If some code has a direct reference to a function, it was probably 1238 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1239 // * If a library definition gets preempted to the executable, it will have 1240 // the wrong ebx value. 1241 if (sym.isFunc()) { 1242 if (config->pie && config->emachine == EM_386) 1243 errorOrWarn("symbol '" + toString(sym) + 1244 "' cannot be preempted; recompile with -fPIE" + 1245 getLocation(sec, sym, offset)); 1246 if (!sym.isInPlt()) 1247 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1248 if (!sym.isDefined()) { 1249 replaceWithDefined( 1250 sym, in.plt, 1251 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); 1252 if (config->emachine == EM_PPC) { 1253 // PPC32 canonical PLT entries are at the beginning of .glink 1254 cast<Defined>(sym).value = in.plt->headerSize; 1255 in.plt->headerSize += 16; 1256 cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym); 1257 } 1258 } 1259 sym.needsPltAddr = true; 1260 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1261 return; 1262 } 1263 } 1264 1265 if (config->isPic) { 1266 if (!canWrite && !isRelExpr(expr)) 1267 errorOrWarn( 1268 "can't create dynamic relocation " + toString(type) + " against " + 1269 (sym.getName().empty() ? "local symbol" 1270 : "symbol: " + toString(sym)) + 1271 " in readonly segment; recompile object files with -fPIC " 1272 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 1273 getLocation(sec, sym, offset)); 1274 else 1275 errorOrWarn( 1276 "relocation " + toString(type) + " cannot be used against " + 1277 (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) + 1278 "; recompile with -fPIC" + getLocation(sec, sym, offset)); 1279 return; 1280 } 1281 1282 errorOrWarn("symbol '" + toString(sym) + "' has no type" + 1283 getLocation(sec, sym, offset)); 1284 } 1285 1286 template <class ELFT, class RelTy> 1287 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, 1288 RelTy *start, RelTy *end) { 1289 const RelTy &rel = *i; 1290 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1291 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); 1292 RelType type; 1293 1294 // Deal with MIPS oddity. 1295 if (config->mipsN32Abi) { 1296 type = getMipsN32RelType(i, end); 1297 } else { 1298 type = rel.getType(config->isMips64EL); 1299 ++i; 1300 } 1301 1302 // Get an offset in an output section this relocation is applied to. 1303 uint64_t offset = getOffset.get(rel.r_offset); 1304 if (offset == uint64_t(-1)) 1305 return; 1306 1307 // Error if the target symbol is undefined. Symbol index 0 may be used by 1308 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1309 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) 1310 return; 1311 1312 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; 1313 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); 1314 1315 // Ignore R_*_NONE and other marker relocations. 1316 if (expr == R_NONE) 1317 return; 1318 1319 if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) { 1320 warn("using ifunc symbols when text relocations are allowed may produce " 1321 "a binary that will segfault, if the object file is linked with " 1322 "old version of glibc (glibc 2.28 and earlier). If this applies to " 1323 "you, consider recompiling the object files without -fPIC and " 1324 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " 1325 "turn off this warning." + 1326 getLocation(sec, sym, offset)); 1327 } 1328 1329 // Read an addend. 1330 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); 1331 1332 if (config->emachine == EM_PPC64) { 1333 // We can separate the small code model relocations into 2 categories: 1334 // 1) Those that access the compiler generated .toc sections. 1335 // 2) Those that access the linker allocated got entries. 1336 // lld allocates got entries to symbols on demand. Since we don't try to 1337 // sort the got entries in any way, we don't have to track which objects 1338 // have got-based small code model relocs. The .toc sections get placed 1339 // after the end of the linker allocated .got section and we do sort those 1340 // so sections addressed with small code model relocations come first. 1341 if (isPPC64SmallCodeModelTocReloc(type)) 1342 sec.file->ppc64SmallCodeModelTocRelocs = true; 1343 1344 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1345 // InputSectionBase::relocateAlloc(). 1346 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1347 cast<Defined>(sym).section->name == ".toc") 1348 ppc64noTocRelax.insert({&sym, addend}); 1349 1350 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || 1351 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { 1352 if (i == end) { 1353 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " 1354 "relocation" + 1355 getLocation(sec, sym, offset)); 1356 return; 1357 } 1358 1359 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, 1360 // so we can discern it later from the toc-case. 1361 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1362 ++offset; 1363 } 1364 } 1365 1366 // Relax relocations. 1367 // 1368 // If we know that a PLT entry will be resolved within the same ELF module, we 1369 // can skip PLT access and directly jump to the destination function. For 1370 // example, if we are linking a main executable, all dynamic symbols that can 1371 // be resolved within the executable will actually be resolved that way at 1372 // runtime, because the main executable is always at the beginning of a search 1373 // list. We can leverage that fact. 1374 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { 1375 if (expr != R_GOT_PC) { 1376 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1377 // stub type. It should be ignored if optimized to R_PC. 1378 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1379 addend &= ~0x8000; 1380 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1381 // call __tls_get_addr even if the symbol is non-preemptible. 1382 if (!(config->emachine == EM_HEXAGON && 1383 (type == R_HEX_GD_PLT_B22_PCREL || 1384 type == R_HEX_GD_PLT_B22_PCREL_X || 1385 type == R_HEX_GD_PLT_B32_PCREL_X))) 1386 expr = fromPlt(expr); 1387 } else if (!isAbsoluteValue(sym)) { 1388 expr = target->adjustGotPcExpr(type, addend, relocatedAddr); 1389 } 1390 } 1391 1392 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1393 // uses their addresses, we need GOT or GOTPLT to be created. 1394 // 1395 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1396 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1397 in.gotPlt->hasGotPltOffRel = true; 1398 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( 1399 expr)) { 1400 in.got->hasGotOffRel = true; 1401 } 1402 1403 // Process TLS relocations, including relaxing TLS relocations. Note that 1404 // R_TPREL and R_TPREL_NEG relocations are resolved in processRelocAux. 1405 if (expr == R_TPREL || expr == R_TPREL_NEG) { 1406 if (config->shared) { 1407 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + 1408 " cannot be used with -shared" + 1409 getLocation(sec, sym, offset)); 1410 return; 1411 } 1412 } else if (unsigned processed = handleTlsRelocation<ELFT>( 1413 type, sym, sec, offset, addend, expr)) { 1414 i += (processed - 1); 1415 return; 1416 } 1417 1418 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1419 // direct relocation on through. 1420 if (sym.isGnuIFunc() && config->zIfuncNoplt) { 1421 sym.exportDynamic = true; 1422 mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type); 1423 return; 1424 } 1425 1426 // Non-preemptible ifuncs require special handling. First, handle the usual 1427 // case where the symbol isn't one of these. 1428 if (!sym.isGnuIFunc() || sym.isPreemptible) { 1429 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1430 if (needsPlt(expr) && !sym.isInPlt()) 1431 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1432 1433 // Create a GOT slot if a relocation needs GOT. 1434 if (needsGot(expr)) { 1435 if (config->emachine == EM_MIPS) { 1436 // MIPS ABI has special rules to process GOT entries and doesn't 1437 // require relocation entries for them. A special case is TLS 1438 // relocations. In that case dynamic loader applies dynamic 1439 // relocations to initialize TLS GOT entries. 1440 // See "Global Offset Table" in Chapter 5 in the following document 1441 // for detailed description: 1442 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1443 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1444 } else if (!sym.isInGot()) { 1445 addGotEntry(sym); 1446 } 1447 } 1448 } else { 1449 // Handle a reference to a non-preemptible ifunc. These are special in a 1450 // few ways: 1451 // 1452 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1453 // a fixed value. But assuming that all references to the ifunc are 1454 // GOT-generating or PLT-generating, the handling of an ifunc is 1455 // relatively straightforward. We create a PLT entry in Iplt, which is 1456 // usually at the end of .plt, which makes an indirect call using a 1457 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1458 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1459 // which is usually at the end of .rela.plt. Unlike most relocations in 1460 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1461 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1462 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1463 // .got.plt without requiring a separate GOT entry. 1464 // 1465 // - Despite the fact that an ifunc does not have a fixed value, compilers 1466 // that are not passed -fPIC will assume that they do, and will emit 1467 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1468 // symbol. This means that if a direct relocation to the symbol is 1469 // seen, the linker must set a value for the symbol, and this value must 1470 // be consistent no matter what type of reference is made to the symbol. 1471 // This can be done by creating a PLT entry for the symbol in the way 1472 // described above and making it canonical, that is, making all references 1473 // point to the PLT entry instead of the resolver. In lld we also store 1474 // the address of the PLT entry in the dynamic symbol table, which means 1475 // that the symbol will also have the same value in other modules. 1476 // Because the value loaded from the GOT needs to be consistent with 1477 // the value computed using a direct relocation, a non-preemptible ifunc 1478 // may end up with two GOT entries, one in .got.plt that points to the 1479 // address returned by the resolver and is used only by the PLT entry, 1480 // and another in .got that points to the PLT entry and is used by 1481 // GOT-generating relocations. 1482 // 1483 // - The fact that these symbols do not have a fixed value makes them an 1484 // exception to the general rule that a statically linked executable does 1485 // not require any form of dynamic relocation. To handle these relocations 1486 // correctly, the IRELATIVE relocations are stored in an array which a 1487 // statically linked executable's startup code must enumerate using the 1488 // linker-defined symbols __rela?_iplt_{start,end}. 1489 if (!sym.isInPlt()) { 1490 // Create PLT and GOTPLT slots for the symbol. 1491 sym.isInIplt = true; 1492 1493 // Create a copy of the symbol to use as the target of the IRELATIVE 1494 // relocation in the igotPlt. This is in case we make the PLT canonical 1495 // later, which would overwrite the original symbol. 1496 // 1497 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1498 // that's really needed to create the IRELATIVE is the section and value, 1499 // so ideally we should just need to copy those. 1500 auto *directSym = make<Defined>(cast<Defined>(sym)); 1501 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, 1502 *directSym); 1503 sym.pltIndex = directSym->pltIndex; 1504 } 1505 if (needsGot(expr)) { 1506 // Redirect GOT accesses to point to the Igot. 1507 // 1508 // This field is also used to keep track of whether we ever needed a GOT 1509 // entry. If we did and we make the PLT canonical later, we'll need to 1510 // create a GOT entry pointing to the PLT entry for Sym. 1511 sym.gotInIgot = true; 1512 } else if (!needsPlt(expr)) { 1513 // Make the ifunc's PLT entry canonical by changing the value of its 1514 // symbol to redirect all references to point to it. 1515 auto &d = cast<Defined>(sym); 1516 d.section = in.iplt; 1517 d.value = sym.pltIndex * target->ipltEntrySize; 1518 d.size = 0; 1519 // It's important to set the symbol type here so that dynamic loaders 1520 // don't try to call the PLT as if it were an ifunc resolver. 1521 d.type = STT_FUNC; 1522 1523 if (sym.gotInIgot) { 1524 // We previously encountered a GOT generating reference that we 1525 // redirected to the Igot. Now that the PLT entry is canonical we must 1526 // clear the redirection to the Igot and add a GOT entry. As we've 1527 // changed the symbol type to STT_FUNC future GOT generating references 1528 // will naturally use this GOT entry. 1529 // 1530 // We don't need to worry about creating a MIPS GOT here because ifuncs 1531 // aren't a thing on MIPS. 1532 sym.gotInIgot = false; 1533 addGotEntry(sym); 1534 } 1535 } 1536 } 1537 1538 processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend); 1539 } 1540 1541 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for 1542 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is 1543 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the 1544 // instructions are generated by very old IBM XL compilers. Work around the 1545 // issue by disabling GD/LD to IE/LE relaxation. 1546 template <class RelTy> 1547 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1548 // Skip if sec is synthetic (sec.file is null) or if sec has been marked. 1549 if (!sec.file || sec.file->ppc64DisableTLSRelax) 1550 return; 1551 bool hasGDLD = false; 1552 for (const RelTy &rel : rels) { 1553 RelType type = rel.getType(false); 1554 switch (type) { 1555 case R_PPC64_TLSGD: 1556 case R_PPC64_TLSLD: 1557 return; // Found a marker 1558 case R_PPC64_GOT_TLSGD16: 1559 case R_PPC64_GOT_TLSGD16_HA: 1560 case R_PPC64_GOT_TLSGD16_HI: 1561 case R_PPC64_GOT_TLSGD16_LO: 1562 case R_PPC64_GOT_TLSLD16: 1563 case R_PPC64_GOT_TLSLD16_HA: 1564 case R_PPC64_GOT_TLSLD16_HI: 1565 case R_PPC64_GOT_TLSLD16_LO: 1566 hasGDLD = true; 1567 break; 1568 } 1569 } 1570 if (hasGDLD) { 1571 sec.file->ppc64DisableTLSRelax = true; 1572 warn(toString(sec.file) + 1573 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " 1574 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); 1575 } 1576 } 1577 1578 template <class ELFT, class RelTy> 1579 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1580 OffsetGetter getOffset(sec); 1581 1582 // Not all relocations end up in Sec.Relocations, but a lot do. 1583 sec.relocations.reserve(rels.size()); 1584 1585 if (config->emachine == EM_PPC64) 1586 checkPPC64TLSRelax<RelTy>(sec, rels); 1587 1588 for (auto i = rels.begin(), end = rels.end(); i != end;) 1589 scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end); 1590 1591 // Sort relocations by offset for more efficient searching for 1592 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1593 if (config->emachine == EM_RISCV || 1594 (config->emachine == EM_PPC64 && sec.name == ".toc")) 1595 llvm::stable_sort(sec.relocations, 1596 [](const Relocation &lhs, const Relocation &rhs) { 1597 return lhs.offset < rhs.offset; 1598 }); 1599 } 1600 1601 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) { 1602 if (s.areRelocsRela) 1603 scanRelocs<ELFT>(s, s.relas<ELFT>()); 1604 else 1605 scanRelocs<ELFT>(s, s.rels<ELFT>()); 1606 } 1607 1608 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1609 // std::merge requires a strict weak ordering. 1610 if (a->outSecOff < b->outSecOff) 1611 return true; 1612 1613 if (a->outSecOff == b->outSecOff) { 1614 auto *ta = dyn_cast<ThunkSection>(a); 1615 auto *tb = dyn_cast<ThunkSection>(b); 1616 1617 // Check if Thunk is immediately before any specific Target 1618 // InputSection for example Mips LA25 Thunks. 1619 if (ta && ta->getTargetInputSection() == b) 1620 return true; 1621 1622 // Place Thunk Sections without specific targets before 1623 // non-Thunk Sections. 1624 if (ta && !tb && !ta->getTargetInputSection()) 1625 return true; 1626 } 1627 1628 return false; 1629 } 1630 1631 // Call Fn on every executable InputSection accessed via the linker script 1632 // InputSectionDescription::Sections. 1633 static void forEachInputSectionDescription( 1634 ArrayRef<OutputSection *> outputSections, 1635 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1636 for (OutputSection *os : outputSections) { 1637 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1638 continue; 1639 for (BaseCommand *bc : os->sectionCommands) 1640 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1641 fn(os, isd); 1642 } 1643 } 1644 1645 // Thunk Implementation 1646 // 1647 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1648 // of code that the linker inserts inbetween a caller and a callee. The thunks 1649 // are added at link time rather than compile time as the decision on whether 1650 // a thunk is needed, such as the caller and callee being out of range, can only 1651 // be made at link time. 1652 // 1653 // It is straightforward to tell given the current state of the program when a 1654 // thunk is needed for a particular call. The more difficult part is that 1655 // the thunk needs to be placed in the program such that the caller can reach 1656 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1657 // the program alters addresses, which can mean more thunks etc. 1658 // 1659 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1660 // The decision to have a ThunkSection act as a container means that we can 1661 // more easily handle the most common case of a single block of contiguous 1662 // Thunks by inserting just a single ThunkSection. 1663 // 1664 // The implementation of Thunks in lld is split across these areas 1665 // Relocations.cpp : Framework for creating and placing thunks 1666 // Thunks.cpp : The code generated for each supported thunk 1667 // Target.cpp : Target specific hooks that the framework uses to decide when 1668 // a thunk is used 1669 // Synthetic.cpp : Implementation of ThunkSection 1670 // Writer.cpp : Iteratively call framework until no more Thunks added 1671 // 1672 // Thunk placement requirements: 1673 // Mips LA25 thunks. These must be placed immediately before the callee section 1674 // We can assume that the caller is in range of the Thunk. These are modelled 1675 // by Thunks that return the section they must precede with 1676 // getTargetInputSection(). 1677 // 1678 // ARM interworking and range extension thunks. These thunks must be placed 1679 // within range of the caller. All implemented ARM thunks can always reach the 1680 // callee as they use an indirect jump via a register that has no range 1681 // restrictions. 1682 // 1683 // Thunk placement algorithm: 1684 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1685 // getTargetInputSection(). 1686 // 1687 // For thunks that must be placed within range of the caller there are many 1688 // possible choices given that the maximum range from the caller is usually 1689 // much larger than the average InputSection size. Desirable properties include: 1690 // - Maximize reuse of thunks by multiple callers 1691 // - Minimize number of ThunkSections to simplify insertion 1692 // - Handle impact of already added Thunks on addresses 1693 // - Simple to understand and implement 1694 // 1695 // In lld for the first pass, we pre-create one or more ThunkSections per 1696 // InputSectionDescription at Target specific intervals. A ThunkSection is 1697 // placed so that the estimated end of the ThunkSection is within range of the 1698 // start of the InputSectionDescription or the previous ThunkSection. For 1699 // example: 1700 // InputSectionDescription 1701 // Section 0 1702 // ... 1703 // Section N 1704 // ThunkSection 0 1705 // Section N + 1 1706 // ... 1707 // Section N + K 1708 // Thunk Section 1 1709 // 1710 // The intention is that we can add a Thunk to a ThunkSection that is well 1711 // spaced enough to service a number of callers without having to do a lot 1712 // of work. An important principle is that it is not an error if a Thunk cannot 1713 // be placed in a pre-created ThunkSection; when this happens we create a new 1714 // ThunkSection placed next to the caller. This allows us to handle the vast 1715 // majority of thunks simply, but also handle rare cases where the branch range 1716 // is smaller than the target specific spacing. 1717 // 1718 // The algorithm is expected to create all the thunks that are needed in a 1719 // single pass, with a small number of programs needing a second pass due to 1720 // the insertion of thunks in the first pass increasing the offset between 1721 // callers and callees that were only just in range. 1722 // 1723 // A consequence of allowing new ThunkSections to be created outside of the 1724 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1725 // range in pass K, are out of range in some pass > K due to the insertion of 1726 // more Thunks in between the caller and callee. When this happens we retarget 1727 // the relocation back to the original target and create another Thunk. 1728 1729 // Remove ThunkSections that are empty, this should only be the initial set 1730 // precreated on pass 0. 1731 1732 // Insert the Thunks for OutputSection OS into their designated place 1733 // in the Sections vector, and recalculate the InputSection output section 1734 // offsets. 1735 // This may invalidate any output section offsets stored outside of InputSection 1736 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1737 forEachInputSectionDescription( 1738 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1739 if (isd->thunkSections.empty()) 1740 return; 1741 1742 // Remove any zero sized precreated Thunks. 1743 llvm::erase_if(isd->thunkSections, 1744 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1745 return ts.first->getSize() == 0; 1746 }); 1747 1748 // ISD->ThunkSections contains all created ThunkSections, including 1749 // those inserted in previous passes. Extract the Thunks created this 1750 // pass and order them in ascending outSecOff. 1751 std::vector<ThunkSection *> newThunks; 1752 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1753 if (ts.second == pass) 1754 newThunks.push_back(ts.first); 1755 llvm::stable_sort(newThunks, 1756 [](const ThunkSection *a, const ThunkSection *b) { 1757 return a->outSecOff < b->outSecOff; 1758 }); 1759 1760 // Merge sorted vectors of Thunks and InputSections by outSecOff 1761 std::vector<InputSection *> tmp; 1762 tmp.reserve(isd->sections.size() + newThunks.size()); 1763 1764 std::merge(isd->sections.begin(), isd->sections.end(), 1765 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1766 mergeCmp); 1767 1768 isd->sections = std::move(tmp); 1769 }); 1770 } 1771 1772 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1773 // is in range of Src. An ISD maps to a range of InputSections described by a 1774 // linker script section pattern such as { .text .text.* }. 1775 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec, 1776 InputSectionDescription *isd, 1777 uint32_t type, uint64_t src) { 1778 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1779 ThunkSection *ts = tp.first; 1780 uint64_t tsBase = os->addr + ts->outSecOff; 1781 uint64_t tsLimit = tsBase + ts->getSize(); 1782 if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit)) 1783 return ts; 1784 } 1785 1786 // No suitable ThunkSection exists. This can happen when there is a branch 1787 // with lower range than the ThunkSection spacing or when there are too 1788 // many Thunks. Create a new ThunkSection as close to the InputSection as 1789 // possible. Error if InputSection is so large we cannot place ThunkSection 1790 // anywhere in Range. 1791 uint64_t thunkSecOff = isec->outSecOff; 1792 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) { 1793 thunkSecOff = isec->outSecOff + isec->getSize(); 1794 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) 1795 fatal("InputSection too large for range extension thunk " + 1796 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1797 } 1798 return addThunkSection(os, isd, thunkSecOff); 1799 } 1800 1801 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1802 // precedes its Target. 1803 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1804 ThunkSection *ts = thunkedSections.lookup(isec); 1805 if (ts) 1806 return ts; 1807 1808 // Find InputSectionRange within Target Output Section (TOS) that the 1809 // InputSection (IS) that we need to precede is in. 1810 OutputSection *tos = isec->getParent(); 1811 for (BaseCommand *bc : tos->sectionCommands) { 1812 auto *isd = dyn_cast<InputSectionDescription>(bc); 1813 if (!isd || isd->sections.empty()) 1814 continue; 1815 1816 InputSection *first = isd->sections.front(); 1817 InputSection *last = isd->sections.back(); 1818 1819 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1820 continue; 1821 1822 ts = addThunkSection(tos, isd, isec->outSecOff); 1823 thunkedSections[isec] = ts; 1824 return ts; 1825 } 1826 1827 return nullptr; 1828 } 1829 1830 // Create one or more ThunkSections per OS that can be used to place Thunks. 1831 // We attempt to place the ThunkSections using the following desirable 1832 // properties: 1833 // - Within range of the maximum number of callers 1834 // - Minimise the number of ThunkSections 1835 // 1836 // We follow a simple but conservative heuristic to place ThunkSections at 1837 // offsets that are multiples of a Target specific branch range. 1838 // For an InputSectionDescription that is smaller than the range, a single 1839 // ThunkSection at the end of the range will do. 1840 // 1841 // For an InputSectionDescription that is more than twice the size of the range, 1842 // we place the last ThunkSection at range bytes from the end of the 1843 // InputSectionDescription in order to increase the likelihood that the 1844 // distance from a thunk to its target will be sufficiently small to 1845 // allow for the creation of a short thunk. 1846 void ThunkCreator::createInitialThunkSections( 1847 ArrayRef<OutputSection *> outputSections) { 1848 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 1849 1850 forEachInputSectionDescription( 1851 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1852 if (isd->sections.empty()) 1853 return; 1854 1855 uint32_t isdBegin = isd->sections.front()->outSecOff; 1856 uint32_t isdEnd = 1857 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 1858 uint32_t lastThunkLowerBound = -1; 1859 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 1860 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 1861 1862 uint32_t isecLimit; 1863 uint32_t prevIsecLimit = isdBegin; 1864 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 1865 1866 for (const InputSection *isec : isd->sections) { 1867 isecLimit = isec->outSecOff + isec->getSize(); 1868 if (isecLimit > thunkUpperBound) { 1869 addThunkSection(os, isd, prevIsecLimit); 1870 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 1871 } 1872 if (isecLimit > lastThunkLowerBound) 1873 break; 1874 prevIsecLimit = isecLimit; 1875 } 1876 addThunkSection(os, isd, isecLimit); 1877 }); 1878 } 1879 1880 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 1881 InputSectionDescription *isd, 1882 uint64_t off) { 1883 auto *ts = make<ThunkSection>(os, off); 1884 ts->partition = os->partition; 1885 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 1886 !isd->sections.empty()) { 1887 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 1888 // thunks we disturb the base addresses of sections placed after the thunks 1889 // this makes patches we have generated redundant, and may cause us to 1890 // generate more patches as different instructions are now in sensitive 1891 // locations. When we generate more patches we may force more branches to 1892 // go out of range, causing more thunks to be generated. In pathological 1893 // cases this can cause the address dependent content pass not to converge. 1894 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 1895 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 1896 // which means that adding Thunks to the section does not invalidate 1897 // errata patches for following code. 1898 // Rounding up the size to 4KiB has consequences for code-size and can 1899 // trip up linker script defined assertions. For example the linux kernel 1900 // has an assertion that what LLD represents as an InputSectionDescription 1901 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 1902 // We use the heuristic of rounding up the size when both of the following 1903 // conditions are true: 1904 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 1905 // accounts for the case where no single InputSectionDescription is 1906 // larger than the OutputSection size. This is conservative but simple. 1907 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 1908 // any assertion failures that an InputSectionDescription is < 4 KiB 1909 // in size. 1910 uint64_t isdSize = isd->sections.back()->outSecOff + 1911 isd->sections.back()->getSize() - 1912 isd->sections.front()->outSecOff; 1913 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 1914 ts->roundUpSizeForErrata = true; 1915 } 1916 isd->thunkSections.push_back({ts, pass}); 1917 return ts; 1918 } 1919 1920 static bool isThunkSectionCompatible(InputSection *source, 1921 SectionBase *target) { 1922 // We can't reuse thunks in different loadable partitions because they might 1923 // not be loaded. But partition 1 (the main partition) will always be loaded. 1924 if (source->partition != target->partition) 1925 return target->partition == 1; 1926 return true; 1927 } 1928 1929 static int64_t getPCBias(RelType type) { 1930 if (config->emachine != EM_ARM) 1931 return 0; 1932 switch (type) { 1933 case R_ARM_THM_JUMP19: 1934 case R_ARM_THM_JUMP24: 1935 case R_ARM_THM_CALL: 1936 return 4; 1937 default: 1938 return 8; 1939 } 1940 } 1941 1942 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 1943 Relocation &rel, uint64_t src) { 1944 std::vector<Thunk *> *thunkVec = nullptr; 1945 int64_t addend = rel.addend + getPCBias(rel.type); 1946 1947 // We use a ((section, offset), addend) pair to find the thunk position if 1948 // possible so that we create only one thunk for aliased symbols or ICFed 1949 // sections. There may be multiple relocations sharing the same (section, 1950 // offset + addend) pair. We may revert the relocation back to its original 1951 // non-Thunk target, so we cannot fold offset + addend. 1952 if (auto *d = dyn_cast<Defined>(rel.sym)) 1953 if (!d->isInPlt() && d->section) 1954 thunkVec = &thunkedSymbolsBySectionAndAddend[{ 1955 {d->section->repl, d->value}, addend}]; 1956 if (!thunkVec) 1957 thunkVec = &thunkedSymbols[{rel.sym, addend}]; 1958 1959 // Check existing Thunks for Sym to see if they can be reused 1960 for (Thunk *t : *thunkVec) 1961 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 1962 t->isCompatibleWith(*isec, rel) && 1963 target->inBranchRange(rel.type, src, 1964 t->getThunkTargetSym()->getVA(rel.addend) + 1965 getPCBias(rel.type))) 1966 return std::make_pair(t, false); 1967 1968 // No existing compatible Thunk in range, create a new one 1969 Thunk *t = addThunk(*isec, rel); 1970 thunkVec->push_back(t); 1971 return std::make_pair(t, true); 1972 } 1973 1974 // Return true if the relocation target is an in range Thunk. 1975 // Return false if the relocation is not to a Thunk. If the relocation target 1976 // was originally to a Thunk, but is no longer in range we revert the 1977 // relocation back to its original non-Thunk target. 1978 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 1979 if (Thunk *t = thunks.lookup(rel.sym)) { 1980 if (target->inBranchRange(rel.type, src, 1981 rel.sym->getVA(rel.addend) + getPCBias(rel.type))) 1982 return true; 1983 rel.sym = &t->destination; 1984 rel.addend = t->addend; 1985 if (rel.sym->isInPlt()) 1986 rel.expr = toPlt(rel.expr); 1987 } 1988 return false; 1989 } 1990 1991 // Process all relocations from the InputSections that have been assigned 1992 // to InputSectionDescriptions and redirect through Thunks if needed. The 1993 // function should be called iteratively until it returns false. 1994 // 1995 // PreConditions: 1996 // All InputSections that may need a Thunk are reachable from 1997 // OutputSectionCommands. 1998 // 1999 // All OutputSections have an address and all InputSections have an offset 2000 // within the OutputSection. 2001 // 2002 // The offsets between caller (relocation place) and callee 2003 // (relocation target) will not be modified outside of createThunks(). 2004 // 2005 // PostConditions: 2006 // If return value is true then ThunkSections have been inserted into 2007 // OutputSections. All relocations that needed a Thunk based on the information 2008 // available to createThunks() on entry have been redirected to a Thunk. Note 2009 // that adding Thunks changes offsets between caller and callee so more Thunks 2010 // may be required. 2011 // 2012 // If return value is false then no more Thunks are needed, and createThunks has 2013 // made no changes. If the target requires range extension thunks, currently 2014 // ARM, then any future change in offset between caller and callee risks a 2015 // relocation out of range error. 2016 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { 2017 bool addressesChanged = false; 2018 2019 if (pass == 0 && target->getThunkSectionSpacing()) 2020 createInitialThunkSections(outputSections); 2021 2022 // Create all the Thunks and insert them into synthetic ThunkSections. The 2023 // ThunkSections are later inserted back into InputSectionDescriptions. 2024 // We separate the creation of ThunkSections from the insertion of the 2025 // ThunkSections as ThunkSections are not always inserted into the same 2026 // InputSectionDescription as the caller. 2027 forEachInputSectionDescription( 2028 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2029 for (InputSection *isec : isd->sections) 2030 for (Relocation &rel : isec->relocations) { 2031 uint64_t src = isec->getVA(rel.offset); 2032 2033 // If we are a relocation to an existing Thunk, check if it is 2034 // still in range. If not then Rel will be altered to point to its 2035 // original target so another Thunk can be generated. 2036 if (pass > 0 && normalizeExistingThunk(rel, src)) 2037 continue; 2038 2039 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2040 *rel.sym, rel.addend)) 2041 continue; 2042 2043 Thunk *t; 2044 bool isNew; 2045 std::tie(t, isNew) = getThunk(isec, rel, src); 2046 2047 if (isNew) { 2048 // Find or create a ThunkSection for the new Thunk 2049 ThunkSection *ts; 2050 if (auto *tis = t->getTargetInputSection()) 2051 ts = getISThunkSec(tis); 2052 else 2053 ts = getISDThunkSec(os, isec, isd, rel.type, src); 2054 ts->addThunk(t); 2055 thunks[t->getThunkTargetSym()] = t; 2056 } 2057 2058 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2059 rel.sym = t->getThunkTargetSym(); 2060 rel.expr = fromPlt(rel.expr); 2061 2062 // On AArch64 and PPC, a jump/call relocation may be encoded as 2063 // STT_SECTION + non-zero addend, clear the addend after 2064 // redirection. 2065 if (config->emachine != EM_MIPS) 2066 rel.addend = -getPCBias(rel.type); 2067 } 2068 2069 for (auto &p : isd->thunkSections) 2070 addressesChanged |= p.first->assignOffsets(); 2071 }); 2072 2073 for (auto &p : thunkedSections) 2074 addressesChanged |= p.second->assignOffsets(); 2075 2076 // Merge all created synthetic ThunkSections back into OutputSection 2077 mergeThunks(outputSections); 2078 ++pass; 2079 return addressesChanged; 2080 } 2081 2082 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2083 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2084 // __tls_get_addr. 2085 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2086 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2087 bool needTlsSymbol = false; 2088 forEachInputSectionDescription( 2089 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2090 for (InputSection *isec : isd->sections) 2091 for (Relocation &rel : isec->relocations) 2092 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2093 needTlsSymbol = true; 2094 return; 2095 } 2096 }); 2097 return needTlsSymbol; 2098 } 2099 2100 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2101 Symbol *sym = symtab->find("__tls_get_addr"); 2102 if (!sym) 2103 return; 2104 bool needEntry = true; 2105 forEachInputSectionDescription( 2106 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2107 for (InputSection *isec : isd->sections) 2108 for (Relocation &rel : isec->relocations) 2109 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2110 if (needEntry) { 2111 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, 2112 *sym); 2113 needEntry = false; 2114 } 2115 rel.sym = sym; 2116 } 2117 }); 2118 } 2119 2120 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 2121 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 2122 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 2123 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 2124 template void elf::reportUndefinedSymbols<ELF32LE>(); 2125 template void elf::reportUndefinedSymbols<ELF32BE>(); 2126 template void elf::reportUndefinedSymbols<ELF64LE>(); 2127 template void elf::reportUndefinedSymbols<ELF64BE>(); 2128