1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (BaseCommand *base : script->sectionCommands) 70 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 71 if (cmd->sym == &sym) 72 return cmd->location; 73 return None; 74 } 75 76 static std::string getDefinedLocation(const Symbol &sym) { 77 const char msg[] = "\n>>> defined in "; 78 if (sym.file) 79 return msg + toString(sym.file); 80 if (Optional<std::string> loc = getLinkerScriptLocation(sym)) 81 return msg + *loc; 82 return ""; 83 } 84 85 // Construct a message in the following format. 86 // 87 // >>> defined in /home/alice/src/foo.o 88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 89 // >>> /home/alice/src/bar.o:(.text+0x1) 90 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 91 uint64_t off) { 92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 93 std::string src = s.getSrcMsg(sym, off); 94 if (!src.empty()) 95 msg += src + "\n>>> "; 96 return msg + s.getObjMsg(off); 97 } 98 99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 100 int64_t min, uint64_t max) { 101 ErrorPlace errPlace = getErrorPlace(loc); 102 std::string hint; 103 if (rel.sym && !rel.sym->isLocal()) 104 hint = "; references " + lld::toString(*rel.sym) + 105 getDefinedLocation(*rel.sym); 106 107 if (errPlace.isec && errPlace.isec->name.startswith(".debug")) 108 hint += "; consider recompiling with -fdebug-types-section to reduce size " 109 "of debug sections"; 110 111 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 112 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 113 ", " + Twine(max).str() + "]" + hint); 114 } 115 116 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 117 const Twine &msg) { 118 ErrorPlace errPlace = getErrorPlace(loc); 119 std::string hint; 120 if (!sym.getName().empty()) 121 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym); 122 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 123 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 124 Twine(llvm::maxIntN(n)) + "]" + hint); 125 } 126 127 namespace { 128 // Build a bitmask with one bit set for each RelExpr. 129 // 130 // Constexpr function arguments can't be used in static asserts, so we 131 // use template arguments to build the mask. 132 // But function template partial specializations don't exist (needed 133 // for base case of the recursion), so we need a dummy struct. 134 template <RelExpr... Exprs> struct RelExprMaskBuilder { 135 static inline uint64_t build() { return 0; } 136 }; 137 138 // Specialization for recursive case. 139 template <RelExpr Head, RelExpr... Tail> 140 struct RelExprMaskBuilder<Head, Tail...> { 141 static inline uint64_t build() { 142 static_assert(0 <= Head && Head < 64, 143 "RelExpr is too large for 64-bit mask!"); 144 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 145 } 146 }; 147 } // namespace 148 149 // Return true if `Expr` is one of `Exprs`. 150 // There are fewer than 64 RelExpr's, so we can represent any set of 151 // RelExpr's as a constant bit mask and test for membership with a 152 // couple cheap bitwise operations. 153 template <RelExpr... Exprs> bool oneof(RelExpr expr) { 154 assert(0 <= expr && (int)expr < 64 && 155 "RelExpr is too large for 64-bit mask!"); 156 return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build(); 157 } 158 159 static RelType getMipsPairType(RelType type, bool isLocal) { 160 switch (type) { 161 case R_MIPS_HI16: 162 return R_MIPS_LO16; 163 case R_MIPS_GOT16: 164 // In case of global symbol, the R_MIPS_GOT16 relocation does not 165 // have a pair. Each global symbol has a unique entry in the GOT 166 // and a corresponding instruction with help of the R_MIPS_GOT16 167 // relocation loads an address of the symbol. In case of local 168 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 169 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 170 // relocations handle low 16 bits of the address. That allows 171 // to allocate only one GOT entry for every 64 KBytes of local data. 172 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 173 case R_MICROMIPS_GOT16: 174 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 175 case R_MIPS_PCHI16: 176 return R_MIPS_PCLO16; 177 case R_MICROMIPS_HI16: 178 return R_MICROMIPS_LO16; 179 default: 180 return R_MIPS_NONE; 181 } 182 } 183 184 // True if non-preemptable symbol always has the same value regardless of where 185 // the DSO is loaded. 186 static bool isAbsolute(const Symbol &sym) { 187 if (sym.isUndefWeak()) 188 return true; 189 if (const auto *dr = dyn_cast<Defined>(&sym)) 190 return dr->section == nullptr; // Absolute symbol. 191 return false; 192 } 193 194 static bool isAbsoluteValue(const Symbol &sym) { 195 return isAbsolute(sym) || sym.isTls(); 196 } 197 198 // Returns true if Expr refers a PLT entry. 199 static bool needsPlt(RelExpr expr) { 200 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr); 201 } 202 203 // Returns true if Expr refers a GOT entry. Note that this function 204 // returns false for TLS variables even though they need GOT, because 205 // TLS variables uses GOT differently than the regular variables. 206 static bool needsGot(RelExpr expr) { 207 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 208 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT, 209 R_AARCH64_GOT_PAGE>(expr); 210 } 211 212 // True if this expression is of the form Sym - X, where X is a position in the 213 // file (PC, or GOT for example). 214 static bool isRelExpr(RelExpr expr) { 215 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 216 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 217 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr); 218 } 219 220 // Returns true if a given relocation can be computed at link-time. 221 // 222 // For instance, we know the offset from a relocation to its target at 223 // link-time if the relocation is PC-relative and refers a 224 // non-interposable function in the same executable. This function 225 // will return true for such relocation. 226 // 227 // If this function returns false, that means we need to emit a 228 // dynamic relocation so that the relocation will be fixed at load-time. 229 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 230 InputSectionBase &s, uint64_t relOff) { 231 // These expressions always compute a constant 232 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF, 233 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 234 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 235 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 236 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL, 237 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL, 238 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT, 239 R_AARCH64_GOT_PAGE>( 240 e)) 241 return true; 242 243 // These never do, except if the entire file is position dependent or if 244 // only the low bits are used. 245 if (e == R_GOT || e == R_PLT || e == R_TLSDESC) 246 return target->usesOnlyLowPageBits(type) || !config->isPic; 247 248 if (sym.isPreemptible) 249 return false; 250 if (!config->isPic) 251 return true; 252 253 // The size of a non preemptible symbol is a constant. 254 if (e == R_SIZE) 255 return true; 256 257 // For the target and the relocation, we want to know if they are 258 // absolute or relative. 259 bool absVal = isAbsoluteValue(sym); 260 bool relE = isRelExpr(e); 261 if (absVal && !relE) 262 return true; 263 if (!absVal && relE) 264 return true; 265 if (!absVal && !relE) 266 return target->usesOnlyLowPageBits(type); 267 268 assert(absVal && relE); 269 270 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 271 // in PIC mode. This is a little strange, but it allows us to link function 272 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 273 // Normally such a call will be guarded with a comparison, which will load a 274 // zero from the GOT. 275 if (sym.isUndefWeak()) 276 return true; 277 278 // We set the final symbols values for linker script defined symbols later. 279 // They always can be computed as a link time constant. 280 if (sym.scriptDefined) 281 return true; 282 283 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 284 toString(sym) + getLocation(s, sym, relOff)); 285 return true; 286 } 287 288 static RelExpr toPlt(RelExpr expr) { 289 switch (expr) { 290 case R_PPC64_CALL: 291 return R_PPC64_CALL_PLT; 292 case R_PC: 293 return R_PLT_PC; 294 case R_ABS: 295 return R_PLT; 296 default: 297 return expr; 298 } 299 } 300 301 static RelExpr fromPlt(RelExpr expr) { 302 // We decided not to use a plt. Optimize a reference to the plt to a 303 // reference to the symbol itself. 304 switch (expr) { 305 case R_PLT_PC: 306 case R_PPC32_PLTREL: 307 return R_PC; 308 case R_PPC64_CALL_PLT: 309 return R_PPC64_CALL; 310 case R_PLT: 311 return R_ABS; 312 default: 313 return expr; 314 } 315 } 316 317 // Returns true if a given shared symbol is in a read-only segment in a DSO. 318 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 319 using Elf_Phdr = typename ELFT::Phdr; 320 321 // Determine if the symbol is read-only by scanning the DSO's program headers. 322 const SharedFile &file = ss.getFile(); 323 for (const Elf_Phdr &phdr : 324 check(file.template getObj<ELFT>().program_headers())) 325 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 326 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 327 ss.value < phdr.p_vaddr + phdr.p_memsz) 328 return true; 329 return false; 330 } 331 332 // Returns symbols at the same offset as a given symbol, including SS itself. 333 // 334 // If two or more symbols are at the same offset, and at least one of 335 // them are copied by a copy relocation, all of them need to be copied. 336 // Otherwise, they would refer to different places at runtime. 337 template <class ELFT> 338 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 339 using Elf_Sym = typename ELFT::Sym; 340 341 SharedFile &file = ss.getFile(); 342 343 SmallSet<SharedSymbol *, 4> ret; 344 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 345 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 346 s.getType() == STT_TLS || s.st_value != ss.value) 347 continue; 348 StringRef name = check(s.getName(file.getStringTable())); 349 Symbol *sym = symtab->find(name); 350 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 351 ret.insert(alias); 352 } 353 354 // The loop does not check SHT_GNU_verneed, so ret does not contain 355 // non-default version symbols. If ss has a non-default version, ret won't 356 // contain ss. Just add ss unconditionally. If a non-default version alias is 357 // separately copy relocated, it and ss will have different addresses. 358 // Fortunately this case is impractical and fails with GNU ld as well. 359 ret.insert(&ss); 360 return ret; 361 } 362 363 // When a symbol is copy relocated or we create a canonical plt entry, it is 364 // effectively a defined symbol. In the case of copy relocation the symbol is 365 // in .bss and in the case of a canonical plt entry it is in .plt. This function 366 // replaces the existing symbol with a Defined pointing to the appropriate 367 // location. 368 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, 369 uint64_t size) { 370 Symbol old = sym; 371 372 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, 373 sym.type, value, size, sec}); 374 375 sym.pltIndex = old.pltIndex; 376 sym.gotIndex = old.gotIndex; 377 sym.verdefIndex = old.verdefIndex; 378 sym.exportDynamic = true; 379 sym.isUsedInRegularObj = true; 380 } 381 382 // Reserve space in .bss or .bss.rel.ro for copy relocation. 383 // 384 // The copy relocation is pretty much a hack. If you use a copy relocation 385 // in your program, not only the symbol name but the symbol's size, RW/RO 386 // bit and alignment become part of the ABI. In addition to that, if the 387 // symbol has aliases, the aliases become part of the ABI. That's subtle, 388 // but if you violate that implicit ABI, that can cause very counter- 389 // intuitive consequences. 390 // 391 // So, what is the copy relocation? It's for linking non-position 392 // independent code to DSOs. In an ideal world, all references to data 393 // exported by DSOs should go indirectly through GOT. But if object files 394 // are compiled as non-PIC, all data references are direct. There is no 395 // way for the linker to transform the code to use GOT, as machine 396 // instructions are already set in stone in object files. This is where 397 // the copy relocation takes a role. 398 // 399 // A copy relocation instructs the dynamic linker to copy data from a DSO 400 // to a specified address (which is usually in .bss) at load-time. If the 401 // static linker (that's us) finds a direct data reference to a DSO 402 // symbol, it creates a copy relocation, so that the symbol can be 403 // resolved as if it were in .bss rather than in a DSO. 404 // 405 // As you can see in this function, we create a copy relocation for the 406 // dynamic linker, and the relocation contains not only symbol name but 407 // various other information about the symbol. So, such attributes become a 408 // part of the ABI. 409 // 410 // Note for application developers: I can give you a piece of advice if 411 // you are writing a shared library. You probably should export only 412 // functions from your library. You shouldn't export variables. 413 // 414 // As an example what can happen when you export variables without knowing 415 // the semantics of copy relocations, assume that you have an exported 416 // variable of type T. It is an ABI-breaking change to add new members at 417 // end of T even though doing that doesn't change the layout of the 418 // existing members. That's because the space for the new members are not 419 // reserved in .bss unless you recompile the main program. That means they 420 // are likely to overlap with other data that happens to be laid out next 421 // to the variable in .bss. This kind of issue is sometimes very hard to 422 // debug. What's a solution? Instead of exporting a variable V from a DSO, 423 // define an accessor getV(). 424 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 425 // Copy relocation against zero-sized symbol doesn't make sense. 426 uint64_t symSize = ss.getSize(); 427 if (symSize == 0 || ss.alignment == 0) 428 fatal("cannot create a copy relocation for symbol " + toString(ss)); 429 430 // See if this symbol is in a read-only segment. If so, preserve the symbol's 431 // memory protection by reserving space in the .bss.rel.ro section. 432 bool isRO = isReadOnly<ELFT>(ss); 433 BssSection *sec = 434 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 435 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 436 437 // At this point, sectionBases has been migrated to sections. Append sec to 438 // sections. 439 if (osec->sectionCommands.empty() || 440 !isa<InputSectionDescription>(osec->sectionCommands.back())) 441 osec->sectionCommands.push_back(make<InputSectionDescription>("")); 442 auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back()); 443 isd->sections.push_back(sec); 444 osec->commitSection(sec); 445 446 // Look through the DSO's dynamic symbol table for aliases and create a 447 // dynamic symbol for each one. This causes the copy relocation to correctly 448 // interpose any aliases. 449 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 450 replaceWithDefined(*sym, sec, 0, sym->size); 451 452 mainPart->relaDyn->addSymbolReloc(target->copyRel, sec, 0, ss); 453 } 454 455 // MIPS has an odd notion of "paired" relocations to calculate addends. 456 // For example, if a relocation is of R_MIPS_HI16, there must be a 457 // R_MIPS_LO16 relocation after that, and an addend is calculated using 458 // the two relocations. 459 template <class ELFT, class RelTy> 460 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, 461 InputSectionBase &sec, RelExpr expr, 462 bool isLocal) { 463 if (expr == R_MIPS_GOTREL && isLocal) 464 return sec.getFile<ELFT>()->mipsGp0; 465 466 // The ABI says that the paired relocation is used only for REL. 467 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 468 if (RelTy::IsRela) 469 return 0; 470 471 RelType type = rel.getType(config->isMips64EL); 472 uint32_t pairTy = getMipsPairType(type, isLocal); 473 if (pairTy == R_MIPS_NONE) 474 return 0; 475 476 const uint8_t *buf = sec.data().data(); 477 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 478 479 // To make things worse, paired relocations might not be contiguous in 480 // the relocation table, so we need to do linear search. *sigh* 481 for (const RelTy *ri = &rel; ri != end; ++ri) 482 if (ri->getType(config->isMips64EL) == pairTy && 483 ri->getSymbol(config->isMips64EL) == symIndex) 484 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 485 486 warn("can't find matching " + toString(pairTy) + " relocation for " + 487 toString(type)); 488 return 0; 489 } 490 491 // Returns an addend of a given relocation. If it is RELA, an addend 492 // is in a relocation itself. If it is REL, we need to read it from an 493 // input section. 494 template <class ELFT, class RelTy> 495 static int64_t computeAddend(const RelTy &rel, const RelTy *end, 496 InputSectionBase &sec, RelExpr expr, 497 bool isLocal) { 498 int64_t addend; 499 RelType type = rel.getType(config->isMips64EL); 500 501 if (RelTy::IsRela) { 502 addend = getAddend<ELFT>(rel); 503 } else { 504 const uint8_t *buf = sec.data().data(); 505 addend = target->getImplicitAddend(buf + rel.r_offset, type); 506 } 507 508 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 509 addend += getPPC64TocBase(); 510 if (config->emachine == EM_MIPS) 511 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); 512 513 return addend; 514 } 515 516 // Custom error message if Sym is defined in a discarded section. 517 template <class ELFT> 518 static std::string maybeReportDiscarded(Undefined &sym) { 519 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 520 if (!file || !sym.discardedSecIdx || 521 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 522 return ""; 523 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = 524 CHECK(file->getObj().sections(), file); 525 526 std::string msg; 527 if (sym.type == ELF::STT_SECTION) { 528 msg = "relocation refers to a discarded section: "; 529 msg += CHECK( 530 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 531 } else { 532 msg = "relocation refers to a symbol in a discarded section: " + 533 toString(sym); 534 } 535 msg += "\n>>> defined in " + toString(file); 536 537 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 538 if (elfSec.sh_type != SHT_GROUP) 539 return msg; 540 541 // If the discarded section is a COMDAT. 542 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 543 if (const InputFile *prevailing = 544 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) 545 msg += "\n>>> section group signature: " + signature.str() + 546 "\n>>> prevailing definition is in " + toString(prevailing); 547 return msg; 548 } 549 550 // Undefined diagnostics are collected in a vector and emitted once all of 551 // them are known, so that some postprocessing on the list of undefined symbols 552 // can happen before lld emits diagnostics. 553 struct UndefinedDiag { 554 Symbol *sym; 555 struct Loc { 556 InputSectionBase *sec; 557 uint64_t offset; 558 }; 559 std::vector<Loc> locs; 560 bool isWarning; 561 }; 562 563 static std::vector<UndefinedDiag> undefs; 564 565 // Check whether the definition name def is a mangled function name that matches 566 // the reference name ref. 567 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 568 llvm::ItaniumPartialDemangler d; 569 std::string name = def.str(); 570 if (d.partialDemangle(name.c_str())) 571 return false; 572 char *buf = d.getFunctionName(nullptr, nullptr); 573 if (!buf) 574 return false; 575 bool ret = ref == buf; 576 free(buf); 577 return ret; 578 } 579 580 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 581 // the suggested symbol, which is either in the symbol table, or in the same 582 // file of sym. 583 template <class ELFT> 584 static const Symbol *getAlternativeSpelling(const Undefined &sym, 585 std::string &pre_hint, 586 std::string &post_hint) { 587 DenseMap<StringRef, const Symbol *> map; 588 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) { 589 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 590 // will give an error. Don't suggest an alternative spelling. 591 if (file && sym.discardedSecIdx != 0 && 592 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 593 return nullptr; 594 595 // Build a map of local defined symbols. 596 for (const Symbol *s : sym.file->getSymbols()) 597 if (s->isLocal() && s->isDefined() && !s->getName().empty()) 598 map.try_emplace(s->getName(), s); 599 } 600 601 auto suggest = [&](StringRef newName) -> const Symbol * { 602 // If defined locally. 603 if (const Symbol *s = map.lookup(newName)) 604 return s; 605 606 // If in the symbol table and not undefined. 607 if (const Symbol *s = symtab->find(newName)) 608 if (!s->isUndefined()) 609 return s; 610 611 return nullptr; 612 }; 613 614 // This loop enumerates all strings of Levenshtein distance 1 as typo 615 // correction candidates and suggests the one that exists as a non-undefined 616 // symbol. 617 StringRef name = sym.getName(); 618 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 619 // Insert a character before name[i]. 620 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 621 for (char c = '0'; c <= 'z'; ++c) { 622 newName[i] = c; 623 if (const Symbol *s = suggest(newName)) 624 return s; 625 } 626 if (i == e) 627 break; 628 629 // Substitute name[i]. 630 newName = std::string(name); 631 for (char c = '0'; c <= 'z'; ++c) { 632 newName[i] = c; 633 if (const Symbol *s = suggest(newName)) 634 return s; 635 } 636 637 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 638 // common. 639 if (i + 1 < e) { 640 newName[i] = name[i + 1]; 641 newName[i + 1] = name[i]; 642 if (const Symbol *s = suggest(newName)) 643 return s; 644 } 645 646 // Delete name[i]. 647 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 648 if (const Symbol *s = suggest(newName)) 649 return s; 650 } 651 652 // Case mismatch, e.g. Foo vs FOO. 653 for (auto &it : map) 654 if (name.equals_insensitive(it.first)) 655 return it.second; 656 for (Symbol *sym : symtab->symbols()) 657 if (!sym->isUndefined() && name.equals_insensitive(sym->getName())) 658 return sym; 659 660 // The reference may be a mangled name while the definition is not. Suggest a 661 // missing extern "C". 662 if (name.startswith("_Z")) { 663 std::string buf = name.str(); 664 llvm::ItaniumPartialDemangler d; 665 if (!d.partialDemangle(buf.c_str())) 666 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 667 const Symbol *s = suggest(buf); 668 free(buf); 669 if (s) { 670 pre_hint = ": extern \"C\" "; 671 return s; 672 } 673 } 674 } else { 675 const Symbol *s = nullptr; 676 for (auto &it : map) 677 if (canSuggestExternCForCXX(name, it.first)) { 678 s = it.second; 679 break; 680 } 681 if (!s) 682 for (Symbol *sym : symtab->symbols()) 683 if (canSuggestExternCForCXX(name, sym->getName())) { 684 s = sym; 685 break; 686 } 687 if (s) { 688 pre_hint = " to declare "; 689 post_hint = " as extern \"C\"?"; 690 return s; 691 } 692 } 693 694 return nullptr; 695 } 696 697 template <class ELFT> 698 static void reportUndefinedSymbol(const UndefinedDiag &undef, 699 bool correctSpelling) { 700 Symbol &sym = *undef.sym; 701 702 auto visibility = [&]() -> std::string { 703 switch (sym.visibility) { 704 case STV_INTERNAL: 705 return "internal "; 706 case STV_HIDDEN: 707 return "hidden "; 708 case STV_PROTECTED: 709 return "protected "; 710 default: 711 return ""; 712 } 713 }; 714 715 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); 716 if (msg.empty()) 717 msg = "undefined " + visibility() + "symbol: " + toString(sym); 718 719 const size_t maxUndefReferences = 3; 720 size_t i = 0; 721 for (UndefinedDiag::Loc l : undef.locs) { 722 if (i >= maxUndefReferences) 723 break; 724 InputSectionBase &sec = *l.sec; 725 uint64_t offset = l.offset; 726 727 msg += "\n>>> referenced by "; 728 std::string src = sec.getSrcMsg(sym, offset); 729 if (!src.empty()) 730 msg += src + "\n>>> "; 731 msg += sec.getObjMsg(offset); 732 i++; 733 } 734 735 if (i < undef.locs.size()) 736 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 737 .str(); 738 739 if (correctSpelling) { 740 std::string pre_hint = ": ", post_hint; 741 if (const Symbol *corrected = getAlternativeSpelling<ELFT>( 742 cast<Undefined>(sym), pre_hint, post_hint)) { 743 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 744 if (corrected->file) 745 msg += "\n>>> defined in: " + toString(corrected->file); 746 } 747 } 748 749 if (sym.getName().startswith("_ZTV")) 750 msg += 751 "\n>>> the vtable symbol may be undefined because the class is missing " 752 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 753 754 if (undef.isWarning) 755 warn(msg); 756 else 757 error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); 758 } 759 760 template <class ELFT> void elf::reportUndefinedSymbols() { 761 // Find the first "undefined symbol" diagnostic for each diagnostic, and 762 // collect all "referenced from" lines at the first diagnostic. 763 DenseMap<Symbol *, UndefinedDiag *> firstRef; 764 for (UndefinedDiag &undef : undefs) { 765 assert(undef.locs.size() == 1); 766 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 767 canon->locs.push_back(undef.locs[0]); 768 undef.locs.clear(); 769 } else 770 firstRef[undef.sym] = &undef; 771 } 772 773 // Enable spell corrector for the first 2 diagnostics. 774 for (auto it : enumerate(undefs)) 775 if (!it.value().locs.empty()) 776 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); 777 undefs.clear(); 778 } 779 780 // Report an undefined symbol if necessary. 781 // Returns true if the undefined symbol will produce an error message. 782 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, 783 uint64_t offset) { 784 if (!sym.isUndefined()) 785 return false; 786 // If versioned, issue an error (even if the symbol is weak) because we don't 787 // know the defining filename which is required to construct a Verneed entry. 788 if (*sym.getVersionSuffix() == '@') { 789 undefs.push_back({&sym, {{&sec, offset}}, false}); 790 return true; 791 } 792 if (sym.isWeak()) 793 return false; 794 795 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; 796 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 797 return false; 798 799 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 800 // which references a switch table in a discarded .rodata/.text section. The 801 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 802 // spec says references from outside the group to a STB_LOCAL symbol are not 803 // allowed. Work around the bug. 804 // 805 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 806 // because .LC0-.LTOC is not representable if the two labels are in different 807 // .got2 808 if (cast<Undefined>(sym).discardedSecIdx != 0 && 809 (sec.name == ".got2" || sec.name == ".toc")) 810 return false; 811 812 bool isWarning = 813 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 814 config->noinhibitExec; 815 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 816 return !isWarning; 817 } 818 819 // MIPS N32 ABI treats series of successive relocations with the same offset 820 // as a single relocation. The similar approach used by N64 ABI, but this ABI 821 // packs all relocations into the single relocation record. Here we emulate 822 // this for the N32 ABI. Iterate over relocation with the same offset and put 823 // theirs types into the single bit-set. 824 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { 825 RelType type = 0; 826 uint64_t offset = rel->r_offset; 827 828 int n = 0; 829 while (rel != end && rel->r_offset == offset) 830 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 831 return type; 832 } 833 834 // .eh_frame sections are mergeable input sections, so their input 835 // offsets are not linearly mapped to output section. For each input 836 // offset, we need to find a section piece containing the offset and 837 // add the piece's base address to the input offset to compute the 838 // output offset. That isn't cheap. 839 // 840 // This class is to speed up the offset computation. When we process 841 // relocations, we access offsets in the monotonically increasing 842 // order. So we can optimize for that access pattern. 843 // 844 // For sections other than .eh_frame, this class doesn't do anything. 845 namespace { 846 class OffsetGetter { 847 public: 848 explicit OffsetGetter(InputSectionBase &sec) { 849 if (auto *eh = dyn_cast<EhInputSection>(&sec)) 850 pieces = eh->pieces; 851 } 852 853 // Translates offsets in input sections to offsets in output sections. 854 // Given offset must increase monotonically. We assume that Piece is 855 // sorted by inputOff. 856 uint64_t get(uint64_t off) { 857 if (pieces.empty()) 858 return off; 859 860 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) 861 ++i; 862 if (i == pieces.size()) 863 fatal(".eh_frame: relocation is not in any piece"); 864 865 // Pieces must be contiguous, so there must be no holes in between. 866 assert(pieces[i].inputOff <= off && "Relocation not in any piece"); 867 868 // Offset -1 means that the piece is dead (i.e. garbage collected). 869 if (pieces[i].outputOff == -1) 870 return -1; 871 return pieces[i].outputOff + off - pieces[i].inputOff; 872 } 873 874 private: 875 ArrayRef<EhSectionPiece> pieces; 876 size_t i = 0; 877 }; 878 } // namespace 879 880 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, 881 Symbol &sym, int64_t addend, RelExpr expr, 882 RelType type) { 883 Partition &part = isec->getPartition(); 884 885 // Add a relative relocation. If relrDyn section is enabled, and the 886 // relocation offset is guaranteed to be even, add the relocation to 887 // the relrDyn section, otherwise add it to the relaDyn section. 888 // relrDyn sections don't support odd offsets. Also, relrDyn sections 889 // don't store the addend values, so we must write it to the relocated 890 // address. 891 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { 892 isec->relocations.push_back({expr, type, offsetInSec, addend, &sym}); 893 part.relrDyn->relocs.push_back({isec, offsetInSec}); 894 return; 895 } 896 part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym, 897 addend, type, expr); 898 } 899 900 template <class PltSection, class GotPltSection> 901 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, 902 RelocationBaseSection *rel, RelType type, Symbol &sym) { 903 plt->addEntry(sym); 904 gotPlt->addEntry(sym); 905 rel->addReloc({type, gotPlt, sym.getGotPltOffset(), 906 sym.isPreemptible ? DynamicReloc::AgainstSymbol 907 : DynamicReloc::AddendOnlyWithTargetVA, 908 sym, 0, R_ABS}); 909 } 910 911 static void addGotEntry(Symbol &sym) { 912 in.got->addEntry(sym); 913 uint64_t off = sym.getGotOffset(); 914 915 // If preemptible, emit a GLOB_DAT relocation. 916 if (sym.isPreemptible) { 917 mainPart->relaDyn->addReloc({target->gotRel, in.got, off, 918 DynamicReloc::AgainstSymbol, sym, 0, R_ABS}); 919 return; 920 } 921 922 // Otherwise, the value is either a link-time constant or the load base 923 // plus a constant. 924 if (!config->isPic || isAbsolute(sym)) 925 in.got->relocations.push_back({R_ABS, target->symbolicRel, off, 0, &sym}); 926 else 927 addRelativeReloc(in.got, off, sym, 0, R_ABS, target->symbolicRel); 928 } 929 930 static void addTpOffsetGotEntry(Symbol &sym) { 931 in.got->addEntry(sym); 932 uint64_t off = sym.getGotOffset(); 933 if (!sym.isPreemptible && !config->isPic) { 934 in.got->relocations.push_back({R_TPREL, target->symbolicRel, off, 0, &sym}); 935 return; 936 } 937 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 938 target->tlsGotRel, in.got, off, sym, target->symbolicRel); 939 } 940 941 // Return true if we can define a symbol in the executable that 942 // contains the value/function of a symbol defined in a shared 943 // library. 944 static bool canDefineSymbolInExecutable(Symbol &sym) { 945 // If the symbol has default visibility the symbol defined in the 946 // executable will preempt it. 947 // Note that we want the visibility of the shared symbol itself, not 948 // the visibility of the symbol in the output file we are producing. That is 949 // why we use Sym.stOther. 950 if ((sym.stOther & 0x3) == STV_DEFAULT) 951 return true; 952 953 // If we are allowed to break address equality of functions, defining 954 // a plt entry will allow the program to call the function in the 955 // .so, but the .so and the executable will no agree on the address 956 // of the function. Similar logic for objects. 957 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 958 (sym.isObject() && config->ignoreDataAddressEquality)); 959 } 960 961 // The reason we have to do this early scan is as follows 962 // * To mmap the output file, we need to know the size 963 // * For that, we need to know how many dynamic relocs we will have. 964 // It might be possible to avoid this by outputting the file with write: 965 // * Write the allocated output sections, computing addresses. 966 // * Apply relocations, recording which ones require a dynamic reloc. 967 // * Write the dynamic relocations. 968 // * Write the rest of the file. 969 // This would have some drawbacks. For example, we would only know if .rela.dyn 970 // is needed after applying relocations. If it is, it will go after rw and rx 971 // sections. Given that it is ro, we will need an extra PT_LOAD. This 972 // complicates things for the dynamic linker and means we would have to reserve 973 // space for the extra PT_LOAD even if we end up not using it. 974 template <class ELFT> 975 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, 976 uint64_t offset, Symbol &sym, int64_t addend) { 977 // If the relocation is known to be a link-time constant, we know no dynamic 978 // relocation will be created, pass the control to relocateAlloc() or 979 // relocateNonAlloc() to resolve it. 980 // 981 // The behavior of an undefined weak reference is implementation defined. For 982 // non-link-time constants, we resolve relocations statically (let 983 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic 984 // relocations for -pie and -shared. 985 // 986 // The general expectation of -no-pie static linking is that there is no 987 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for 988 // -shared matches the spirit of its -z undefs default. -pie has freedom on 989 // choices, and we choose dynamic relocations to be consistent with the 990 // handling of GOT-generating relocations. 991 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || 992 (!config->isPic && sym.isUndefWeak())) { 993 sec.relocations.push_back({expr, type, offset, addend, &sym}); 994 return; 995 } 996 997 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; 998 if (canWrite) { 999 RelType rel = target->getDynRel(type); 1000 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 1001 addRelativeReloc(&sec, offset, sym, addend, expr, type); 1002 return; 1003 } else if (rel != 0) { 1004 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1005 rel = target->relativeRel; 1006 sec.getPartition().relaDyn->addSymbolReloc(rel, &sec, offset, sym, addend, 1007 type); 1008 1009 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1010 // While regular ABI uses dynamic relocations to fill up GOT entries 1011 // MIPS ABI requires dynamic linker to fills up GOT entries using 1012 // specially sorted dynamic symbol table. This affects even dynamic 1013 // relocations against symbols which do not require GOT entries 1014 // creation explicitly, i.e. do not have any GOT-relocations. So if 1015 // a preemptible symbol has a dynamic relocation we anyway have 1016 // to create a GOT entry for it. 1017 // If a non-preemptible symbol has a dynamic relocation against it, 1018 // dynamic linker takes it st_value, adds offset and writes down 1019 // result of the dynamic relocation. In case of preemptible symbol 1020 // dynamic linker performs symbol resolution, writes the symbol value 1021 // to the GOT entry and reads the GOT entry when it needs to perform 1022 // a dynamic relocation. 1023 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1024 if (config->emachine == EM_MIPS) 1025 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1026 return; 1027 } 1028 } 1029 1030 // When producing an executable, we can perform copy relocations (for 1031 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1032 if (!config->shared) { 1033 if (!canDefineSymbolInExecutable(sym)) { 1034 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1035 getLocation(sec, sym, offset)); 1036 return; 1037 } 1038 1039 if (sym.isObject()) { 1040 // Produce a copy relocation. 1041 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1042 if (!config->zCopyreloc) 1043 error("unresolvable relocation " + toString(type) + 1044 " against symbol '" + toString(*ss) + 1045 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1046 getLocation(sec, sym, offset)); 1047 addCopyRelSymbol<ELFT>(*ss); 1048 } 1049 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1050 return; 1051 } 1052 1053 // This handles a non PIC program call to function in a shared library. In 1054 // an ideal world, we could just report an error saying the relocation can 1055 // overflow at runtime. In the real world with glibc, crt1.o has a 1056 // R_X86_64_PC32 pointing to libc.so. 1057 // 1058 // The general idea on how to handle such cases is to create a PLT entry and 1059 // use that as the function value. 1060 // 1061 // For the static linking part, we just return a plt expr and everything 1062 // else will use the PLT entry as the address. 1063 // 1064 // The remaining problem is making sure pointer equality still works. We 1065 // need the help of the dynamic linker for that. We let it know that we have 1066 // a direct reference to a so symbol by creating an undefined symbol with a 1067 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1068 // the value of the symbol we created. This is true even for got entries, so 1069 // pointer equality is maintained. To avoid an infinite loop, the only entry 1070 // that points to the real function is a dedicated got entry used by the 1071 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1072 // R_386_JMP_SLOT, etc). 1073 1074 // For position independent executable on i386, the plt entry requires ebx 1075 // to be set. This causes two problems: 1076 // * If some code has a direct reference to a function, it was probably 1077 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1078 // * If a library definition gets preempted to the executable, it will have 1079 // the wrong ebx value. 1080 if (sym.isFunc()) { 1081 if (config->pie && config->emachine == EM_386) 1082 errorOrWarn("symbol '" + toString(sym) + 1083 "' cannot be preempted; recompile with -fPIE" + 1084 getLocation(sec, sym, offset)); 1085 if (!sym.isInPlt()) 1086 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1087 if (!sym.isDefined()) { 1088 replaceWithDefined( 1089 sym, in.plt, 1090 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); 1091 if (config->emachine == EM_PPC) { 1092 // PPC32 canonical PLT entries are at the beginning of .glink 1093 cast<Defined>(sym).value = in.plt->headerSize; 1094 in.plt->headerSize += 16; 1095 cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym); 1096 } 1097 } 1098 sym.needsPltAddr = true; 1099 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1100 return; 1101 } 1102 } 1103 1104 if (config->isPic) { 1105 if (!canWrite && !isRelExpr(expr)) 1106 errorOrWarn( 1107 "can't create dynamic relocation " + toString(type) + " against " + 1108 (sym.getName().empty() ? "local symbol" 1109 : "symbol: " + toString(sym)) + 1110 " in readonly segment; recompile object files with -fPIC " 1111 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 1112 getLocation(sec, sym, offset)); 1113 else 1114 errorOrWarn( 1115 "relocation " + toString(type) + " cannot be used against " + 1116 (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) + 1117 "; recompile with -fPIC" + getLocation(sec, sym, offset)); 1118 return; 1119 } 1120 1121 errorOrWarn("symbol '" + toString(sym) + "' has no type" + 1122 getLocation(sec, sym, offset)); 1123 } 1124 1125 // This function is similar to the `handleTlsRelocation`. MIPS does not 1126 // support any relaxations for TLS relocations so by factoring out MIPS 1127 // handling in to the separate function we can simplify the code and do not 1128 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 1129 // Mips has a custom MipsGotSection that handles the writing of GOT entries 1130 // without dynamic relocations. 1131 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 1132 InputSectionBase &c, uint64_t offset, 1133 int64_t addend, RelExpr expr) { 1134 if (expr == R_MIPS_TLSLD) { 1135 in.mipsGot->addTlsIndex(*c.file); 1136 c.relocations.push_back({expr, type, offset, addend, &sym}); 1137 return 1; 1138 } 1139 if (expr == R_MIPS_TLSGD) { 1140 in.mipsGot->addDynTlsEntry(*c.file, sym); 1141 c.relocations.push_back({expr, type, offset, addend, &sym}); 1142 return 1; 1143 } 1144 return 0; 1145 } 1146 1147 // Notes about General Dynamic and Local Dynamic TLS models below. They may 1148 // require the generation of a pair of GOT entries that have associated dynamic 1149 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 1150 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 1151 // symbol in TLS block. 1152 // 1153 // Returns the number of relocations processed. 1154 template <class ELFT> 1155 static unsigned 1156 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, 1157 typename ELFT::uint offset, int64_t addend, RelExpr expr) { 1158 if (!sym.isTls()) 1159 return 0; 1160 1161 if (config->emachine == EM_MIPS) 1162 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 1163 1164 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>( 1165 expr) && 1166 config->shared) { 1167 if (in.got->addDynTlsEntry(sym)) { 1168 uint64_t off = in.got->getGlobalDynOffset(sym); 1169 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 1170 target->tlsDescRel, in.got, off, sym, target->tlsDescRel); 1171 } 1172 if (expr != R_TLSDESC_CALL) 1173 c.relocations.push_back({expr, type, offset, addend, &sym}); 1174 return 1; 1175 } 1176 1177 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For 1178 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable 1179 // relaxation as well. 1180 bool toExecRelax = !config->shared && config->emachine != EM_ARM && 1181 config->emachine != EM_HEXAGON && 1182 config->emachine != EM_RISCV && 1183 !c.file->ppc64DisableTLSRelax; 1184 1185 // If we are producing an executable and the symbol is non-preemptable, it 1186 // must be defined and the code sequence can be relaxed to use Local-Exec. 1187 // 1188 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 1189 // we can omit the DTPMOD dynamic relocations and resolve them at link time 1190 // because them are always 1. This may be necessary for static linking as 1191 // DTPMOD may not be expected at load time. 1192 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1193 1194 // Local Dynamic is for access to module local TLS variables, while still 1195 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 1196 // module index, with a special value of 0 for the current module. GOT[e1] is 1197 // unused. There only needs to be one module index entry. 1198 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 1199 expr)) { 1200 // Local-Dynamic relocs can be relaxed to Local-Exec. 1201 if (toExecRelax) { 1202 c.relocations.push_back( 1203 {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset, 1204 addend, &sym}); 1205 return target->getTlsGdRelaxSkip(type); 1206 } 1207 if (expr == R_TLSLD_HINT) 1208 return 1; 1209 if (in.got->addTlsIndex()) { 1210 if (isLocalInExecutable) 1211 in.got->relocations.push_back( 1212 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); 1213 else 1214 mainPart->relaDyn->addReloc( 1215 {target->tlsModuleIndexRel, in.got, in.got->getTlsIndexOff()}); 1216 } 1217 c.relocations.push_back({expr, type, offset, addend, &sym}); 1218 return 1; 1219 } 1220 1221 // Local-Dynamic relocs can be relaxed to Local-Exec. 1222 if (expr == R_DTPREL && toExecRelax) { 1223 c.relocations.push_back({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), 1224 type, offset, addend, &sym}); 1225 return 1; 1226 } 1227 1228 // Local-Dynamic sequence where offset of tls variable relative to dynamic 1229 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 1230 if (expr == R_TLSLD_GOT_OFF) { 1231 if (!sym.isInGot()) { 1232 in.got->addEntry(sym); 1233 uint64_t off = sym.getGotOffset(); 1234 in.got->relocations.push_back( 1235 {R_ABS, target->tlsOffsetRel, off, 0, &sym}); 1236 } 1237 c.relocations.push_back({expr, type, offset, addend, &sym}); 1238 return 1; 1239 } 1240 1241 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1242 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 1243 if (!toExecRelax) { 1244 if (in.got->addDynTlsEntry(sym)) { 1245 uint64_t off = in.got->getGlobalDynOffset(sym); 1246 1247 if (isLocalInExecutable) 1248 // Write one to the GOT slot. 1249 in.got->relocations.push_back( 1250 {R_ADDEND, target->symbolicRel, off, 1, &sym}); 1251 else 1252 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, in.got, 1253 off, sym); 1254 1255 // If the symbol is preemptible we need the dynamic linker to write 1256 // the offset too. 1257 uint64_t offsetOff = off + config->wordsize; 1258 if (sym.isPreemptible) 1259 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, in.got, 1260 offsetOff, sym); 1261 else 1262 in.got->relocations.push_back( 1263 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 1264 } 1265 c.relocations.push_back({expr, type, offset, addend, &sym}); 1266 return 1; 1267 } 1268 1269 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 1270 // depending on the symbol being locally defined or not. 1271 if (sym.isPreemptible) { 1272 c.relocations.push_back( 1273 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset, 1274 addend, &sym}); 1275 if (!sym.isInGot()) { 1276 in.got->addEntry(sym); 1277 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, in.got, 1278 sym.getGotOffset(), sym); 1279 } 1280 } else { 1281 c.relocations.push_back( 1282 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset, 1283 addend, &sym}); 1284 } 1285 return target->getTlsGdRelaxSkip(type); 1286 } 1287 1288 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 1289 R_TLSIE_HINT>(expr)) { 1290 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 1291 // defined. 1292 if (toExecRelax && isLocalInExecutable) { 1293 c.relocations.push_back( 1294 {R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 1295 } else if (expr != R_TLSIE_HINT) { 1296 if (!sym.isInGot()) 1297 addTpOffsetGotEntry(sym); 1298 // R_GOT may not be a link-time constant. 1299 processRelocAux<ELFT>(c, expr, type, offset, sym, addend); 1300 } 1301 return 1; 1302 } 1303 1304 return 0; 1305 } 1306 1307 template <class ELFT, class RelTy> 1308 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, 1309 RelTy *start, RelTy *end) { 1310 const RelTy &rel = *i; 1311 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1312 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); 1313 RelType type; 1314 1315 // Deal with MIPS oddity. 1316 if (config->mipsN32Abi) { 1317 type = getMipsN32RelType(i, end); 1318 } else { 1319 type = rel.getType(config->isMips64EL); 1320 ++i; 1321 } 1322 1323 // Get an offset in an output section this relocation is applied to. 1324 uint64_t offset = getOffset.get(rel.r_offset); 1325 if (offset == uint64_t(-1)) 1326 return; 1327 1328 // Error if the target symbol is undefined. Symbol index 0 may be used by 1329 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1330 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) 1331 return; 1332 1333 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; 1334 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); 1335 1336 // Ignore R_*_NONE and other marker relocations. 1337 if (expr == R_NONE) 1338 return; 1339 1340 // Read an addend. 1341 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); 1342 1343 if (config->emachine == EM_PPC64) { 1344 // We can separate the small code model relocations into 2 categories: 1345 // 1) Those that access the compiler generated .toc sections. 1346 // 2) Those that access the linker allocated got entries. 1347 // lld allocates got entries to symbols on demand. Since we don't try to 1348 // sort the got entries in any way, we don't have to track which objects 1349 // have got-based small code model relocs. The .toc sections get placed 1350 // after the end of the linker allocated .got section and we do sort those 1351 // so sections addressed with small code model relocations come first. 1352 if (isPPC64SmallCodeModelTocReloc(type)) 1353 sec.file->ppc64SmallCodeModelTocRelocs = true; 1354 1355 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1356 // InputSectionBase::relocateAlloc(). 1357 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1358 cast<Defined>(sym).section->name == ".toc") 1359 ppc64noTocRelax.insert({&sym, addend}); 1360 1361 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || 1362 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { 1363 if (i == end) { 1364 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " 1365 "relocation" + 1366 getLocation(sec, sym, offset)); 1367 return; 1368 } 1369 1370 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, 1371 // so we can discern it later from the toc-case. 1372 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1373 ++offset; 1374 } 1375 } 1376 1377 // Relax relocations. 1378 // 1379 // If we know that a PLT entry will be resolved within the same ELF module, we 1380 // can skip PLT access and directly jump to the destination function. For 1381 // example, if we are linking a main executable, all dynamic symbols that can 1382 // be resolved within the executable will actually be resolved that way at 1383 // runtime, because the main executable is always at the beginning of a search 1384 // list. We can leverage that fact. 1385 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { 1386 if (expr != R_GOT_PC) { 1387 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1388 // stub type. It should be ignored if optimized to R_PC. 1389 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1390 addend &= ~0x8000; 1391 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1392 // call __tls_get_addr even if the symbol is non-preemptible. 1393 if (!(config->emachine == EM_HEXAGON && 1394 (type == R_HEX_GD_PLT_B22_PCREL || 1395 type == R_HEX_GD_PLT_B22_PCREL_X || 1396 type == R_HEX_GD_PLT_B32_PCREL_X))) 1397 expr = fromPlt(expr); 1398 } else if (!isAbsoluteValue(sym)) { 1399 expr = target->adjustGotPcExpr(type, addend, relocatedAddr); 1400 } 1401 } 1402 1403 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1404 // uses their addresses, we need GOT or GOTPLT to be created. 1405 // 1406 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1407 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1408 in.gotPlt->hasGotPltOffRel = true; 1409 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( 1410 expr)) { 1411 in.got->hasGotOffRel = true; 1412 } 1413 1414 // Process TLS relocations, including relaxing TLS relocations. Note that 1415 // R_TPREL and R_TPREL_NEG relocations are resolved in processRelocAux. 1416 if (expr == R_TPREL || expr == R_TPREL_NEG) { 1417 if (config->shared) { 1418 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + 1419 " cannot be used with -shared" + 1420 getLocation(sec, sym, offset)); 1421 return; 1422 } 1423 } else if (unsigned processed = handleTlsRelocation<ELFT>( 1424 type, sym, sec, offset, addend, expr)) { 1425 i += (processed - 1); 1426 return; 1427 } 1428 1429 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1430 // direct relocation on through. 1431 if (sym.isGnuIFunc() && config->zIfuncNoplt) { 1432 sym.exportDynamic = true; 1433 mainPart->relaDyn->addSymbolReloc(type, &sec, offset, sym, addend, type); 1434 return; 1435 } 1436 1437 // Non-preemptible ifuncs require special handling. First, handle the usual 1438 // case where the symbol isn't one of these. 1439 if (!sym.isGnuIFunc() || sym.isPreemptible) { 1440 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1441 if (needsPlt(expr) && !sym.isInPlt()) 1442 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1443 1444 // Create a GOT slot if a relocation needs GOT. 1445 if (needsGot(expr)) { 1446 if (config->emachine == EM_MIPS) { 1447 // MIPS ABI has special rules to process GOT entries and doesn't 1448 // require relocation entries for them. A special case is TLS 1449 // relocations. In that case dynamic loader applies dynamic 1450 // relocations to initialize TLS GOT entries. 1451 // See "Global Offset Table" in Chapter 5 in the following document 1452 // for detailed description: 1453 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1454 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1455 } else if (!sym.isInGot()) { 1456 addGotEntry(sym); 1457 } 1458 } 1459 } else { 1460 // Handle a reference to a non-preemptible ifunc. These are special in a 1461 // few ways: 1462 // 1463 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1464 // a fixed value. But assuming that all references to the ifunc are 1465 // GOT-generating or PLT-generating, the handling of an ifunc is 1466 // relatively straightforward. We create a PLT entry in Iplt, which is 1467 // usually at the end of .plt, which makes an indirect call using a 1468 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1469 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1470 // which is usually at the end of .rela.plt. Unlike most relocations in 1471 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1472 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1473 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1474 // .got.plt without requiring a separate GOT entry. 1475 // 1476 // - Despite the fact that an ifunc does not have a fixed value, compilers 1477 // that are not passed -fPIC will assume that they do, and will emit 1478 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1479 // symbol. This means that if a direct relocation to the symbol is 1480 // seen, the linker must set a value for the symbol, and this value must 1481 // be consistent no matter what type of reference is made to the symbol. 1482 // This can be done by creating a PLT entry for the symbol in the way 1483 // described above and making it canonical, that is, making all references 1484 // point to the PLT entry instead of the resolver. In lld we also store 1485 // the address of the PLT entry in the dynamic symbol table, which means 1486 // that the symbol will also have the same value in other modules. 1487 // Because the value loaded from the GOT needs to be consistent with 1488 // the value computed using a direct relocation, a non-preemptible ifunc 1489 // may end up with two GOT entries, one in .got.plt that points to the 1490 // address returned by the resolver and is used only by the PLT entry, 1491 // and another in .got that points to the PLT entry and is used by 1492 // GOT-generating relocations. 1493 // 1494 // - The fact that these symbols do not have a fixed value makes them an 1495 // exception to the general rule that a statically linked executable does 1496 // not require any form of dynamic relocation. To handle these relocations 1497 // correctly, the IRELATIVE relocations are stored in an array which a 1498 // statically linked executable's startup code must enumerate using the 1499 // linker-defined symbols __rela?_iplt_{start,end}. 1500 if (!sym.isInPlt()) { 1501 // Create PLT and GOTPLT slots for the symbol. 1502 sym.isInIplt = true; 1503 1504 // Create a copy of the symbol to use as the target of the IRELATIVE 1505 // relocation in the igotPlt. This is in case we make the PLT canonical 1506 // later, which would overwrite the original symbol. 1507 // 1508 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1509 // that's really needed to create the IRELATIVE is the section and value, 1510 // so ideally we should just need to copy those. 1511 auto *directSym = make<Defined>(cast<Defined>(sym)); 1512 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, 1513 *directSym); 1514 sym.pltIndex = directSym->pltIndex; 1515 } 1516 if (needsGot(expr)) { 1517 // Redirect GOT accesses to point to the Igot. 1518 // 1519 // This field is also used to keep track of whether we ever needed a GOT 1520 // entry. If we did and we make the PLT canonical later, we'll need to 1521 // create a GOT entry pointing to the PLT entry for Sym. 1522 sym.gotInIgot = true; 1523 } else if (!needsPlt(expr)) { 1524 // Make the ifunc's PLT entry canonical by changing the value of its 1525 // symbol to redirect all references to point to it. 1526 auto &d = cast<Defined>(sym); 1527 d.section = in.iplt; 1528 d.value = sym.pltIndex * target->ipltEntrySize; 1529 d.size = 0; 1530 // It's important to set the symbol type here so that dynamic loaders 1531 // don't try to call the PLT as if it were an ifunc resolver. 1532 d.type = STT_FUNC; 1533 1534 if (sym.gotInIgot) { 1535 // We previously encountered a GOT generating reference that we 1536 // redirected to the Igot. Now that the PLT entry is canonical we must 1537 // clear the redirection to the Igot and add a GOT entry. As we've 1538 // changed the symbol type to STT_FUNC future GOT generating references 1539 // will naturally use this GOT entry. 1540 // 1541 // We don't need to worry about creating a MIPS GOT here because ifuncs 1542 // aren't a thing on MIPS. 1543 sym.gotInIgot = false; 1544 addGotEntry(sym); 1545 } 1546 } 1547 } 1548 1549 processRelocAux<ELFT>(sec, expr, type, offset, sym, addend); 1550 } 1551 1552 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for 1553 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is 1554 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the 1555 // instructions are generated by very old IBM XL compilers. Work around the 1556 // issue by disabling GD/LD to IE/LE relaxation. 1557 template <class RelTy> 1558 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1559 // Skip if sec is synthetic (sec.file is null) or if sec has been marked. 1560 if (!sec.file || sec.file->ppc64DisableTLSRelax) 1561 return; 1562 bool hasGDLD = false; 1563 for (const RelTy &rel : rels) { 1564 RelType type = rel.getType(false); 1565 switch (type) { 1566 case R_PPC64_TLSGD: 1567 case R_PPC64_TLSLD: 1568 return; // Found a marker 1569 case R_PPC64_GOT_TLSGD16: 1570 case R_PPC64_GOT_TLSGD16_HA: 1571 case R_PPC64_GOT_TLSGD16_HI: 1572 case R_PPC64_GOT_TLSGD16_LO: 1573 case R_PPC64_GOT_TLSLD16: 1574 case R_PPC64_GOT_TLSLD16_HA: 1575 case R_PPC64_GOT_TLSLD16_HI: 1576 case R_PPC64_GOT_TLSLD16_LO: 1577 hasGDLD = true; 1578 break; 1579 } 1580 } 1581 if (hasGDLD) { 1582 sec.file->ppc64DisableTLSRelax = true; 1583 warn(toString(sec.file) + 1584 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " 1585 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); 1586 } 1587 } 1588 1589 template <class ELFT, class RelTy> 1590 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1591 OffsetGetter getOffset(sec); 1592 1593 // Not all relocations end up in Sec.Relocations, but a lot do. 1594 sec.relocations.reserve(rels.size()); 1595 1596 if (config->emachine == EM_PPC64) 1597 checkPPC64TLSRelax<RelTy>(sec, rels); 1598 1599 // For EhInputSection, OffsetGetter expects the relocations to be sorted by 1600 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker 1601 // script), the relocations may be unordered. 1602 SmallVector<RelTy, 0> storage; 1603 if (isa<EhInputSection>(sec)) 1604 rels = sortRels(rels, storage); 1605 1606 for (auto i = rels.begin(), end = rels.end(); i != end;) 1607 scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end); 1608 1609 // Sort relocations by offset for more efficient searching for 1610 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1611 if (config->emachine == EM_RISCV || 1612 (config->emachine == EM_PPC64 && sec.name == ".toc")) 1613 llvm::stable_sort(sec.relocations, 1614 [](const Relocation &lhs, const Relocation &rhs) { 1615 return lhs.offset < rhs.offset; 1616 }); 1617 } 1618 1619 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) { 1620 if (s.areRelocsRela) 1621 scanRelocs<ELFT>(s, s.relas<ELFT>()); 1622 else 1623 scanRelocs<ELFT>(s, s.rels<ELFT>()); 1624 } 1625 1626 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1627 // std::merge requires a strict weak ordering. 1628 if (a->outSecOff < b->outSecOff) 1629 return true; 1630 1631 if (a->outSecOff == b->outSecOff) { 1632 auto *ta = dyn_cast<ThunkSection>(a); 1633 auto *tb = dyn_cast<ThunkSection>(b); 1634 1635 // Check if Thunk is immediately before any specific Target 1636 // InputSection for example Mips LA25 Thunks. 1637 if (ta && ta->getTargetInputSection() == b) 1638 return true; 1639 1640 // Place Thunk Sections without specific targets before 1641 // non-Thunk Sections. 1642 if (ta && !tb && !ta->getTargetInputSection()) 1643 return true; 1644 } 1645 1646 return false; 1647 } 1648 1649 // Call Fn on every executable InputSection accessed via the linker script 1650 // InputSectionDescription::Sections. 1651 static void forEachInputSectionDescription( 1652 ArrayRef<OutputSection *> outputSections, 1653 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1654 for (OutputSection *os : outputSections) { 1655 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1656 continue; 1657 for (BaseCommand *bc : os->sectionCommands) 1658 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1659 fn(os, isd); 1660 } 1661 } 1662 1663 // Thunk Implementation 1664 // 1665 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1666 // of code that the linker inserts inbetween a caller and a callee. The thunks 1667 // are added at link time rather than compile time as the decision on whether 1668 // a thunk is needed, such as the caller and callee being out of range, can only 1669 // be made at link time. 1670 // 1671 // It is straightforward to tell given the current state of the program when a 1672 // thunk is needed for a particular call. The more difficult part is that 1673 // the thunk needs to be placed in the program such that the caller can reach 1674 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1675 // the program alters addresses, which can mean more thunks etc. 1676 // 1677 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1678 // The decision to have a ThunkSection act as a container means that we can 1679 // more easily handle the most common case of a single block of contiguous 1680 // Thunks by inserting just a single ThunkSection. 1681 // 1682 // The implementation of Thunks in lld is split across these areas 1683 // Relocations.cpp : Framework for creating and placing thunks 1684 // Thunks.cpp : The code generated for each supported thunk 1685 // Target.cpp : Target specific hooks that the framework uses to decide when 1686 // a thunk is used 1687 // Synthetic.cpp : Implementation of ThunkSection 1688 // Writer.cpp : Iteratively call framework until no more Thunks added 1689 // 1690 // Thunk placement requirements: 1691 // Mips LA25 thunks. These must be placed immediately before the callee section 1692 // We can assume that the caller is in range of the Thunk. These are modelled 1693 // by Thunks that return the section they must precede with 1694 // getTargetInputSection(). 1695 // 1696 // ARM interworking and range extension thunks. These thunks must be placed 1697 // within range of the caller. All implemented ARM thunks can always reach the 1698 // callee as they use an indirect jump via a register that has no range 1699 // restrictions. 1700 // 1701 // Thunk placement algorithm: 1702 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1703 // getTargetInputSection(). 1704 // 1705 // For thunks that must be placed within range of the caller there are many 1706 // possible choices given that the maximum range from the caller is usually 1707 // much larger than the average InputSection size. Desirable properties include: 1708 // - Maximize reuse of thunks by multiple callers 1709 // - Minimize number of ThunkSections to simplify insertion 1710 // - Handle impact of already added Thunks on addresses 1711 // - Simple to understand and implement 1712 // 1713 // In lld for the first pass, we pre-create one or more ThunkSections per 1714 // InputSectionDescription at Target specific intervals. A ThunkSection is 1715 // placed so that the estimated end of the ThunkSection is within range of the 1716 // start of the InputSectionDescription or the previous ThunkSection. For 1717 // example: 1718 // InputSectionDescription 1719 // Section 0 1720 // ... 1721 // Section N 1722 // ThunkSection 0 1723 // Section N + 1 1724 // ... 1725 // Section N + K 1726 // Thunk Section 1 1727 // 1728 // The intention is that we can add a Thunk to a ThunkSection that is well 1729 // spaced enough to service a number of callers without having to do a lot 1730 // of work. An important principle is that it is not an error if a Thunk cannot 1731 // be placed in a pre-created ThunkSection; when this happens we create a new 1732 // ThunkSection placed next to the caller. This allows us to handle the vast 1733 // majority of thunks simply, but also handle rare cases where the branch range 1734 // is smaller than the target specific spacing. 1735 // 1736 // The algorithm is expected to create all the thunks that are needed in a 1737 // single pass, with a small number of programs needing a second pass due to 1738 // the insertion of thunks in the first pass increasing the offset between 1739 // callers and callees that were only just in range. 1740 // 1741 // A consequence of allowing new ThunkSections to be created outside of the 1742 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1743 // range in pass K, are out of range in some pass > K due to the insertion of 1744 // more Thunks in between the caller and callee. When this happens we retarget 1745 // the relocation back to the original target and create another Thunk. 1746 1747 // Remove ThunkSections that are empty, this should only be the initial set 1748 // precreated on pass 0. 1749 1750 // Insert the Thunks for OutputSection OS into their designated place 1751 // in the Sections vector, and recalculate the InputSection output section 1752 // offsets. 1753 // This may invalidate any output section offsets stored outside of InputSection 1754 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1755 forEachInputSectionDescription( 1756 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1757 if (isd->thunkSections.empty()) 1758 return; 1759 1760 // Remove any zero sized precreated Thunks. 1761 llvm::erase_if(isd->thunkSections, 1762 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1763 return ts.first->getSize() == 0; 1764 }); 1765 1766 // ISD->ThunkSections contains all created ThunkSections, including 1767 // those inserted in previous passes. Extract the Thunks created this 1768 // pass and order them in ascending outSecOff. 1769 std::vector<ThunkSection *> newThunks; 1770 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1771 if (ts.second == pass) 1772 newThunks.push_back(ts.first); 1773 llvm::stable_sort(newThunks, 1774 [](const ThunkSection *a, const ThunkSection *b) { 1775 return a->outSecOff < b->outSecOff; 1776 }); 1777 1778 // Merge sorted vectors of Thunks and InputSections by outSecOff 1779 std::vector<InputSection *> tmp; 1780 tmp.reserve(isd->sections.size() + newThunks.size()); 1781 1782 std::merge(isd->sections.begin(), isd->sections.end(), 1783 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1784 mergeCmp); 1785 1786 isd->sections = std::move(tmp); 1787 }); 1788 } 1789 1790 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1791 // is in range of Src. An ISD maps to a range of InputSections described by a 1792 // linker script section pattern such as { .text .text.* }. 1793 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, 1794 InputSection *isec, 1795 InputSectionDescription *isd, 1796 const Relocation &rel, 1797 uint64_t src) { 1798 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1799 ThunkSection *ts = tp.first; 1800 uint64_t tsBase = os->addr + ts->outSecOff + rel.addend; 1801 uint64_t tsLimit = tsBase + ts->getSize() + rel.addend; 1802 if (target->inBranchRange(rel.type, src, 1803 (src > tsLimit) ? tsBase : tsLimit)) 1804 return ts; 1805 } 1806 1807 // No suitable ThunkSection exists. This can happen when there is a branch 1808 // with lower range than the ThunkSection spacing or when there are too 1809 // many Thunks. Create a new ThunkSection as close to the InputSection as 1810 // possible. Error if InputSection is so large we cannot place ThunkSection 1811 // anywhere in Range. 1812 uint64_t thunkSecOff = isec->outSecOff; 1813 if (!target->inBranchRange(rel.type, src, 1814 os->addr + thunkSecOff + rel.addend)) { 1815 thunkSecOff = isec->outSecOff + isec->getSize(); 1816 if (!target->inBranchRange(rel.type, src, 1817 os->addr + thunkSecOff + rel.addend)) 1818 fatal("InputSection too large for range extension thunk " + 1819 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1820 } 1821 return addThunkSection(os, isd, thunkSecOff); 1822 } 1823 1824 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1825 // precedes its Target. 1826 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1827 ThunkSection *ts = thunkedSections.lookup(isec); 1828 if (ts) 1829 return ts; 1830 1831 // Find InputSectionRange within Target Output Section (TOS) that the 1832 // InputSection (IS) that we need to precede is in. 1833 OutputSection *tos = isec->getParent(); 1834 for (BaseCommand *bc : tos->sectionCommands) { 1835 auto *isd = dyn_cast<InputSectionDescription>(bc); 1836 if (!isd || isd->sections.empty()) 1837 continue; 1838 1839 InputSection *first = isd->sections.front(); 1840 InputSection *last = isd->sections.back(); 1841 1842 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1843 continue; 1844 1845 ts = addThunkSection(tos, isd, isec->outSecOff); 1846 thunkedSections[isec] = ts; 1847 return ts; 1848 } 1849 1850 return nullptr; 1851 } 1852 1853 // Create one or more ThunkSections per OS that can be used to place Thunks. 1854 // We attempt to place the ThunkSections using the following desirable 1855 // properties: 1856 // - Within range of the maximum number of callers 1857 // - Minimise the number of ThunkSections 1858 // 1859 // We follow a simple but conservative heuristic to place ThunkSections at 1860 // offsets that are multiples of a Target specific branch range. 1861 // For an InputSectionDescription that is smaller than the range, a single 1862 // ThunkSection at the end of the range will do. 1863 // 1864 // For an InputSectionDescription that is more than twice the size of the range, 1865 // we place the last ThunkSection at range bytes from the end of the 1866 // InputSectionDescription in order to increase the likelihood that the 1867 // distance from a thunk to its target will be sufficiently small to 1868 // allow for the creation of a short thunk. 1869 void ThunkCreator::createInitialThunkSections( 1870 ArrayRef<OutputSection *> outputSections) { 1871 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 1872 1873 forEachInputSectionDescription( 1874 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1875 if (isd->sections.empty()) 1876 return; 1877 1878 uint32_t isdBegin = isd->sections.front()->outSecOff; 1879 uint32_t isdEnd = 1880 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 1881 uint32_t lastThunkLowerBound = -1; 1882 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 1883 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 1884 1885 uint32_t isecLimit; 1886 uint32_t prevIsecLimit = isdBegin; 1887 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 1888 1889 for (const InputSection *isec : isd->sections) { 1890 isecLimit = isec->outSecOff + isec->getSize(); 1891 if (isecLimit > thunkUpperBound) { 1892 addThunkSection(os, isd, prevIsecLimit); 1893 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 1894 } 1895 if (isecLimit > lastThunkLowerBound) 1896 break; 1897 prevIsecLimit = isecLimit; 1898 } 1899 addThunkSection(os, isd, isecLimit); 1900 }); 1901 } 1902 1903 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 1904 InputSectionDescription *isd, 1905 uint64_t off) { 1906 auto *ts = make<ThunkSection>(os, off); 1907 ts->partition = os->partition; 1908 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 1909 !isd->sections.empty()) { 1910 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 1911 // thunks we disturb the base addresses of sections placed after the thunks 1912 // this makes patches we have generated redundant, and may cause us to 1913 // generate more patches as different instructions are now in sensitive 1914 // locations. When we generate more patches we may force more branches to 1915 // go out of range, causing more thunks to be generated. In pathological 1916 // cases this can cause the address dependent content pass not to converge. 1917 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 1918 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 1919 // which means that adding Thunks to the section does not invalidate 1920 // errata patches for following code. 1921 // Rounding up the size to 4KiB has consequences for code-size and can 1922 // trip up linker script defined assertions. For example the linux kernel 1923 // has an assertion that what LLD represents as an InputSectionDescription 1924 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 1925 // We use the heuristic of rounding up the size when both of the following 1926 // conditions are true: 1927 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 1928 // accounts for the case where no single InputSectionDescription is 1929 // larger than the OutputSection size. This is conservative but simple. 1930 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 1931 // any assertion failures that an InputSectionDescription is < 4 KiB 1932 // in size. 1933 uint64_t isdSize = isd->sections.back()->outSecOff + 1934 isd->sections.back()->getSize() - 1935 isd->sections.front()->outSecOff; 1936 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 1937 ts->roundUpSizeForErrata = true; 1938 } 1939 isd->thunkSections.push_back({ts, pass}); 1940 return ts; 1941 } 1942 1943 static bool isThunkSectionCompatible(InputSection *source, 1944 SectionBase *target) { 1945 // We can't reuse thunks in different loadable partitions because they might 1946 // not be loaded. But partition 1 (the main partition) will always be loaded. 1947 if (source->partition != target->partition) 1948 return target->partition == 1; 1949 return true; 1950 } 1951 1952 static int64_t getPCBias(RelType type) { 1953 if (config->emachine != EM_ARM) 1954 return 0; 1955 switch (type) { 1956 case R_ARM_THM_JUMP19: 1957 case R_ARM_THM_JUMP24: 1958 case R_ARM_THM_CALL: 1959 return 4; 1960 default: 1961 return 8; 1962 } 1963 } 1964 1965 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 1966 Relocation &rel, uint64_t src) { 1967 std::vector<Thunk *> *thunkVec = nullptr; 1968 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled 1969 // out in the relocation addend. We compensate for the PC bias so that 1970 // an Arm and Thumb relocation to the same destination get the same keyAddend, 1971 // which is usually 0. 1972 int64_t keyAddend = rel.addend + getPCBias(rel.type); 1973 1974 // We use a ((section, offset), addend) pair to find the thunk position if 1975 // possible so that we create only one thunk for aliased symbols or ICFed 1976 // sections. There may be multiple relocations sharing the same (section, 1977 // offset + addend) pair. We may revert the relocation back to its original 1978 // non-Thunk target, so we cannot fold offset + addend. 1979 if (auto *d = dyn_cast<Defined>(rel.sym)) 1980 if (!d->isInPlt() && d->section) 1981 thunkVec = &thunkedSymbolsBySectionAndAddend[{ 1982 {d->section->repl, d->value}, keyAddend}]; 1983 if (!thunkVec) 1984 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}]; 1985 1986 // Check existing Thunks for Sym to see if they can be reused 1987 for (Thunk *t : *thunkVec) 1988 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 1989 t->isCompatibleWith(*isec, rel) && 1990 target->inBranchRange(rel.type, src, 1991 t->getThunkTargetSym()->getVA(rel.addend))) 1992 return std::make_pair(t, false); 1993 1994 // No existing compatible Thunk in range, create a new one 1995 Thunk *t = addThunk(*isec, rel); 1996 thunkVec->push_back(t); 1997 return std::make_pair(t, true); 1998 } 1999 2000 // Return true if the relocation target is an in range Thunk. 2001 // Return false if the relocation is not to a Thunk. If the relocation target 2002 // was originally to a Thunk, but is no longer in range we revert the 2003 // relocation back to its original non-Thunk target. 2004 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 2005 if (Thunk *t = thunks.lookup(rel.sym)) { 2006 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend))) 2007 return true; 2008 rel.sym = &t->destination; 2009 rel.addend = t->addend; 2010 if (rel.sym->isInPlt()) 2011 rel.expr = toPlt(rel.expr); 2012 } 2013 return false; 2014 } 2015 2016 // Process all relocations from the InputSections that have been assigned 2017 // to InputSectionDescriptions and redirect through Thunks if needed. The 2018 // function should be called iteratively until it returns false. 2019 // 2020 // PreConditions: 2021 // All InputSections that may need a Thunk are reachable from 2022 // OutputSectionCommands. 2023 // 2024 // All OutputSections have an address and all InputSections have an offset 2025 // within the OutputSection. 2026 // 2027 // The offsets between caller (relocation place) and callee 2028 // (relocation target) will not be modified outside of createThunks(). 2029 // 2030 // PostConditions: 2031 // If return value is true then ThunkSections have been inserted into 2032 // OutputSections. All relocations that needed a Thunk based on the information 2033 // available to createThunks() on entry have been redirected to a Thunk. Note 2034 // that adding Thunks changes offsets between caller and callee so more Thunks 2035 // may be required. 2036 // 2037 // If return value is false then no more Thunks are needed, and createThunks has 2038 // made no changes. If the target requires range extension thunks, currently 2039 // ARM, then any future change in offset between caller and callee risks a 2040 // relocation out of range error. 2041 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { 2042 bool addressesChanged = false; 2043 2044 if (pass == 0 && target->getThunkSectionSpacing()) 2045 createInitialThunkSections(outputSections); 2046 2047 // Create all the Thunks and insert them into synthetic ThunkSections. The 2048 // ThunkSections are later inserted back into InputSectionDescriptions. 2049 // We separate the creation of ThunkSections from the insertion of the 2050 // ThunkSections as ThunkSections are not always inserted into the same 2051 // InputSectionDescription as the caller. 2052 forEachInputSectionDescription( 2053 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2054 for (InputSection *isec : isd->sections) 2055 for (Relocation &rel : isec->relocations) { 2056 uint64_t src = isec->getVA(rel.offset); 2057 2058 // If we are a relocation to an existing Thunk, check if it is 2059 // still in range. If not then Rel will be altered to point to its 2060 // original target so another Thunk can be generated. 2061 if (pass > 0 && normalizeExistingThunk(rel, src)) 2062 continue; 2063 2064 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2065 *rel.sym, rel.addend)) 2066 continue; 2067 2068 Thunk *t; 2069 bool isNew; 2070 std::tie(t, isNew) = getThunk(isec, rel, src); 2071 2072 if (isNew) { 2073 // Find or create a ThunkSection for the new Thunk 2074 ThunkSection *ts; 2075 if (auto *tis = t->getTargetInputSection()) 2076 ts = getISThunkSec(tis); 2077 else 2078 ts = getISDThunkSec(os, isec, isd, rel, src); 2079 ts->addThunk(t); 2080 thunks[t->getThunkTargetSym()] = t; 2081 } 2082 2083 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2084 rel.sym = t->getThunkTargetSym(); 2085 rel.expr = fromPlt(rel.expr); 2086 2087 // On AArch64 and PPC, a jump/call relocation may be encoded as 2088 // STT_SECTION + non-zero addend, clear the addend after 2089 // redirection. 2090 if (config->emachine != EM_MIPS) 2091 rel.addend = -getPCBias(rel.type); 2092 } 2093 2094 for (auto &p : isd->thunkSections) 2095 addressesChanged |= p.first->assignOffsets(); 2096 }); 2097 2098 for (auto &p : thunkedSections) 2099 addressesChanged |= p.second->assignOffsets(); 2100 2101 // Merge all created synthetic ThunkSections back into OutputSection 2102 mergeThunks(outputSections); 2103 ++pass; 2104 return addressesChanged; 2105 } 2106 2107 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2108 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2109 // __tls_get_addr. 2110 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2111 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2112 bool needTlsSymbol = false; 2113 forEachInputSectionDescription( 2114 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2115 for (InputSection *isec : isd->sections) 2116 for (Relocation &rel : isec->relocations) 2117 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2118 needTlsSymbol = true; 2119 return; 2120 } 2121 }); 2122 return needTlsSymbol; 2123 } 2124 2125 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2126 Symbol *sym = symtab->find("__tls_get_addr"); 2127 if (!sym) 2128 return; 2129 bool needEntry = true; 2130 forEachInputSectionDescription( 2131 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2132 for (InputSection *isec : isd->sections) 2133 for (Relocation &rel : isec->relocations) 2134 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2135 if (needEntry) { 2136 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, 2137 *sym); 2138 needEntry = false; 2139 } 2140 rel.sym = sym; 2141 } 2142 }); 2143 } 2144 2145 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 2146 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 2147 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 2148 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 2149 template void elf::reportUndefinedSymbols<ELF32LE>(); 2150 template void elf::reportUndefinedSymbols<ELF32BE>(); 2151 template void elf::reportUndefinedSymbols<ELF64LE>(); 2152 template void elf::reportUndefinedSymbols<ELF64BE>(); 2153