1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains platform-independent functions to process relocations.
11 // I'll describe the overview of this file here.
12 //
13 // Simple relocations are easy to handle for the linker. For example,
14 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
15 // with the relative offsets to the target symbols. It would just be
16 // reading records from relocation sections and applying them to output.
17 //
18 // But not all relocations are that easy to handle. For example, for
19 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
20 // symbols if they don't exist, and fix up locations with GOT entry
21 // offsets from the beginning of GOT section. So there is more than
22 // fixing addresses in relocation processing.
23 //
24 // ELF defines a large number of complex relocations.
25 //
26 // The functions in this file analyze relocations and do whatever needs
27 // to be done. It includes, but not limited to, the following.
28 //
29 //  - create GOT/PLT entries
30 //  - create new relocations in .dynsym to let the dynamic linker resolve
31 //    them at runtime (since ELF supports dynamic linking, not all
32 //    relocations can be resolved at link-time)
33 //  - create COPY relocs and reserve space in .bss
34 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
35 //  - error out infeasible combinations such as PIC and non-relative relocs
36 //
37 // Note that the functions in this file don't actually apply relocations
38 // because it doesn't know about the output file nor the output file buffer.
39 // It instead stores Relocation objects to InputSection's Relocations
40 // vector to let it apply later in InputSection::writeTo.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "Relocations.h"
45 #include "Config.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
49 #include "Symbols.h"
50 #include "SyntheticSections.h"
51 #include "Target.h"
52 #include "Thunks.h"
53 #include "lld/Common/Memory.h"
54 #include "lld/Common/Strings.h"
55 #include "llvm/Support/Endian.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 
59 using namespace llvm;
60 using namespace llvm::ELF;
61 using namespace llvm::object;
62 using namespace llvm::support::endian;
63 
64 using namespace lld;
65 using namespace lld::elf;
66 
67 // Construct a message in the following format.
68 //
69 // >>> defined in /home/alice/src/foo.o
70 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
71 // >>>               /home/alice/src/bar.o:(.text+0x1)
72 static std::string getLocation(InputSectionBase &S, const Symbol &Sym,
73                                uint64_t Off) {
74   std::string Msg =
75       "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by ";
76   std::string Src = S.getSrcMsg(Sym, Off);
77   if (!Src.empty())
78     Msg += Src + "\n>>>               ";
79   return Msg + S.getObjMsg(Off);
80 }
81 
82 // This function is similar to the `handleTlsRelocation`. MIPS does not
83 // support any relaxations for TLS relocations so by factoring out MIPS
84 // handling in to the separate function we can simplify the code and do not
85 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
86 // Mips has a custom MipsGotSection that handles the writing of GOT entries
87 // without dynamic relocations.
88 template <class ELFT>
89 static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym,
90                                         InputSectionBase &C, uint64_t Offset,
91                                         int64_t Addend, RelExpr Expr) {
92   if (Expr == R_MIPS_TLSLD) {
93     if (InX::MipsGot->addTlsIndex() && Config->Pic)
94       InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::MipsGot,
95                              InX::MipsGot->getTlsIndexOff(), nullptr);
96     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
97     return 1;
98   }
99 
100   if (Expr == R_MIPS_TLSGD) {
101     if (InX::MipsGot->addDynTlsEntry(Sym) && Sym.IsPreemptible) {
102       uint64_t Off = InX::MipsGot->getGlobalDynOffset(Sym);
103       InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::MipsGot, Off,
104                              &Sym);
105       if (Sym.IsPreemptible)
106         InX::RelaDyn->addReloc(Target->TlsOffsetRel, InX::MipsGot,
107                                Off + Config->Wordsize, &Sym);
108     }
109     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
110     return 1;
111   }
112   return 0;
113 }
114 
115 // This function is similar to the `handleMipsTlsRelocation`. ARM also does not
116 // support any relaxations for TLS relocations. ARM is logically similar to Mips
117 // in how it handles TLS, but Mips uses its own custom GOT which handles some
118 // of the cases that ARM uses GOT relocations for.
119 //
120 // We look for TLS global dynamic and local dynamic relocations, these may
121 // require the generation of a pair of GOT entries that have associated
122 // dynamic relocations. When the results of the dynamic relocations can be
123 // resolved at static link time we do so. This is necessary for static linking
124 // as there will be no dynamic loader to resolve them at load-time.
125 //
126 // The pair of GOT entries created are of the form
127 // GOT[e0] Module Index (Used to find pointer to TLS block at run-time)
128 // GOT[e1] Offset of symbol in TLS block
129 template <class ELFT>
130 static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym,
131                                        InputSectionBase &C, uint64_t Offset,
132                                        int64_t Addend, RelExpr Expr) {
133   // The Dynamic TLS Module Index Relocation for a symbol defined in an
134   // executable is always 1. If the target Symbol is not preemptible then
135   // we know the offset into the TLS block at static link time.
136   bool NeedDynId = Sym.IsPreemptible || Config->Shared;
137   bool NeedDynOff = Sym.IsPreemptible;
138 
139   auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) {
140     if (Dyn)
141       InX::RelaDyn->addReloc(Type, InX::Got, Off, Dest);
142     else
143       InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest});
144   };
145 
146   // Local Dynamic is for access to module local TLS variables, while still
147   // being suitable for being dynamically loaded via dlopen.
148   // GOT[e0] is the module index, with a special value of 0 for the current
149   // module. GOT[e1] is unused. There only needs to be one module index entry.
150   if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) {
151     AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel,
152                 NeedDynId ? nullptr : &Sym, NeedDynId);
153     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
154     return 1;
155   }
156 
157   // Global Dynamic is the most general purpose access model. When we know
158   // the module index and offset of symbol in TLS block we can fill these in
159   // using static GOT relocations.
160   if (Expr == R_TLSGD_PC) {
161     if (InX::Got->addDynTlsEntry(Sym)) {
162       uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
163       AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId);
164       AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym,
165                   NeedDynOff);
166     }
167     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
168     return 1;
169   }
170   return 0;
171 }
172 
173 // Returns the number of relocations processed.
174 template <class ELFT>
175 static unsigned
176 handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C,
177                     typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) {
178   if (!(C.Flags & SHF_ALLOC))
179     return 0;
180 
181   if (!Sym.isTls())
182     return 0;
183 
184   if (Config->EMachine == EM_ARM)
185     return handleARMTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);
186   if (Config->EMachine == EM_MIPS)
187     return handleMipsTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);
188 
189   if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) &&
190       Config->Shared) {
191     if (InX::Got->addDynTlsEntry(Sym)) {
192       uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
193       InX::RelaDyn->addReloc(
194           {Target->TlsDescRel, InX::Got, Off, !Sym.IsPreemptible, &Sym, 0});
195     }
196     if (Expr != R_TLSDESC_CALL)
197       C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
198     return 1;
199   }
200 
201   if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) {
202     // Local-Dynamic relocs can be relaxed to Local-Exec.
203     if (!Config->Shared) {
204       C.Relocations.push_back(
205           {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
206       return 2;
207     }
208     if (InX::Got->addTlsIndex())
209       InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got,
210                              InX::Got->getTlsIndexOff(), nullptr);
211     C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
212     return 1;
213   }
214 
215   // Local-Dynamic relocs can be relaxed to Local-Exec.
216   if (isRelExprOneOf<R_ABS, R_TLSLD, R_TLSLD_PC>(Expr) && !Config->Shared) {
217     C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
218     return 1;
219   }
220 
221   if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD,
222                      R_TLSGD_PC>(Expr)) {
223     if (Config->Shared) {
224       if (InX::Got->addDynTlsEntry(Sym)) {
225         uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
226         InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got, Off, &Sym);
227 
228         // If the symbol is preemptible we need the dynamic linker to write
229         // the offset too.
230         uint64_t OffsetOff = Off + Config->Wordsize;
231         if (Sym.IsPreemptible)
232           InX::RelaDyn->addReloc(Target->TlsOffsetRel, InX::Got, OffsetOff,
233                                  &Sym);
234         else
235           InX::Got->Relocations.push_back(
236               {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym});
237       }
238       C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
239       return 1;
240     }
241 
242     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
243     // depending on the symbol being locally defined or not.
244     if (Sym.IsPreemptible) {
245       C.Relocations.push_back(
246           {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
247            Offset, Addend, &Sym});
248       if (!Sym.isInGot()) {
249         InX::Got->addEntry(Sym);
250         InX::RelaDyn->addReloc(Target->TlsGotRel, InX::Got, Sym.getGotOffset(),
251                                &Sym);
252       }
253     } else {
254       C.Relocations.push_back(
255           {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type,
256            Offset, Addend, &Sym});
257     }
258     return Target->TlsGdRelaxSkip;
259   }
260 
261   // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
262   // defined.
263   if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) &&
264       !Config->Shared && !Sym.IsPreemptible) {
265     C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym});
266     return 1;
267   }
268 
269   if (Expr == R_TLSDESC_CALL)
270     return 1;
271   return 0;
272 }
273 
274 static RelType getMipsPairType(RelType Type, bool IsLocal) {
275   switch (Type) {
276   case R_MIPS_HI16:
277     return R_MIPS_LO16;
278   case R_MIPS_GOT16:
279     // In case of global symbol, the R_MIPS_GOT16 relocation does not
280     // have a pair. Each global symbol has a unique entry in the GOT
281     // and a corresponding instruction with help of the R_MIPS_GOT16
282     // relocation loads an address of the symbol. In case of local
283     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
284     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
285     // relocations handle low 16 bits of the address. That allows
286     // to allocate only one GOT entry for every 64 KBytes of local data.
287     return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE;
288   case R_MICROMIPS_GOT16:
289     return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
290   case R_MIPS_PCHI16:
291     return R_MIPS_PCLO16;
292   case R_MICROMIPS_HI16:
293     return R_MICROMIPS_LO16;
294   default:
295     return R_MIPS_NONE;
296   }
297 }
298 
299 // True if non-preemptable symbol always has the same value regardless of where
300 // the DSO is loaded.
301 static bool isAbsolute(const Symbol &Sym) {
302   if (Sym.isUndefWeak())
303     return true;
304   if (const auto *DR = dyn_cast<Defined>(&Sym))
305     return DR->Section == nullptr; // Absolute symbol.
306   return false;
307 }
308 
309 static bool isAbsoluteValue(const Symbol &Sym) {
310   return isAbsolute(Sym) || Sym.isTls();
311 }
312 
313 // Returns true if Expr refers a PLT entry.
314 static bool needsPlt(RelExpr Expr) {
315   return isRelExprOneOf<R_PLT_PC, R_PPC_PLT_OPD, R_PLT, R_PLT_PAGE_PC>(Expr);
316 }
317 
318 // Returns true if Expr refers a GOT entry. Note that this function
319 // returns false for TLS variables even though they need GOT, because
320 // TLS variables uses GOT differently than the regular variables.
321 static bool needsGot(RelExpr Expr) {
322   return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
323                         R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC,
324                         R_GOT_FROM_END>(Expr);
325 }
326 
327 // True if this expression is of the form Sym - X, where X is a position in the
328 // file (PC, or GOT for example).
329 static bool isRelExpr(RelExpr Expr) {
330   return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL,
331                         R_PAGE_PC, R_RELAX_GOT_PC>(Expr);
332 }
333 
334 // Returns true if a given relocation can be computed at link-time.
335 //
336 // For instance, we know the offset from a relocation to its target at
337 // link-time if the relocation is PC-relative and refers a
338 // non-interposable function in the same executable. This function
339 // will return true for such relocation.
340 //
341 // If this function returns false, that means we need to emit a
342 // dynamic relocation so that the relocation will be fixed at load-time.
343 static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym,
344                                      InputSectionBase &S, uint64_t RelOff) {
345   // These expressions always compute a constant
346   if (isRelExprOneOf<R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE,
347                      R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32,
348                      R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC,
349                      R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_PC,
350                      R_TLSGD, R_PPC_PLT_OPD, R_TLSDESC_CALL, R_TLSDESC_PAGE,
351                      R_HINT>(E))
352     return true;
353 
354   // These never do, except if the entire file is position dependent or if
355   // only the low bits are used.
356   if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
357     return Target->usesOnlyLowPageBits(Type) || !Config->Pic;
358 
359   if (Sym.IsPreemptible)
360     return false;
361   if (!Config->Pic)
362     return true;
363 
364   // The size of a non preemptible symbol is a constant.
365   if (E == R_SIZE)
366     return true;
367 
368   // For the target and the relocation, we want to know if they are
369   // absolute or relative.
370   bool AbsVal = isAbsoluteValue(Sym);
371   bool RelE = isRelExpr(E);
372   if (AbsVal && !RelE)
373     return true;
374   if (!AbsVal && RelE)
375     return true;
376   if (!AbsVal && !RelE)
377     return Target->usesOnlyLowPageBits(Type);
378 
379   // Relative relocation to an absolute value. This is normally unrepresentable,
380   // but if the relocation refers to a weak undefined symbol, we allow it to
381   // resolve to the image base. This is a little strange, but it allows us to
382   // link function calls to such symbols. Normally such a call will be guarded
383   // with a comparison, which will load a zero from the GOT.
384   // Another special case is MIPS _gp_disp symbol which represents offset
385   // between start of a function and '_gp' value and defined as absolute just
386   // to simplify the code.
387   assert(AbsVal && RelE);
388   if (Sym.isUndefWeak())
389     return true;
390 
391   error("relocation " + toString(Type) + " cannot refer to absolute symbol: " +
392         toString(Sym) + getLocation(S, Sym, RelOff));
393   return true;
394 }
395 
396 static RelExpr toPlt(RelExpr Expr) {
397   switch (Expr) {
398   case R_PPC_OPD:
399     return R_PPC_PLT_OPD;
400   case R_PC:
401     return R_PLT_PC;
402   case R_PAGE_PC:
403     return R_PLT_PAGE_PC;
404   case R_ABS:
405     return R_PLT;
406   default:
407     return Expr;
408   }
409 }
410 
411 static RelExpr fromPlt(RelExpr Expr) {
412   // We decided not to use a plt. Optimize a reference to the plt to a
413   // reference to the symbol itself.
414   switch (Expr) {
415   case R_PLT_PC:
416     return R_PC;
417   case R_PPC_PLT_OPD:
418     return R_PPC_OPD;
419   case R_PLT:
420     return R_ABS;
421   default:
422     return Expr;
423   }
424 }
425 
426 // Returns true if a given shared symbol is in a read-only segment in a DSO.
427 template <class ELFT> static bool isReadOnly(SharedSymbol &SS) {
428   typedef typename ELFT::Phdr Elf_Phdr;
429 
430   // Determine if the symbol is read-only by scanning the DSO's program headers.
431   const SharedFile<ELFT> &File = SS.getFile<ELFT>();
432   for (const Elf_Phdr &Phdr : check(File.getObj().program_headers()))
433     if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) &&
434         !(Phdr.p_flags & ELF::PF_W) && SS.Value >= Phdr.p_vaddr &&
435         SS.Value < Phdr.p_vaddr + Phdr.p_memsz)
436       return true;
437   return false;
438 }
439 
440 // Returns symbols at the same offset as a given symbol, including SS itself.
441 //
442 // If two or more symbols are at the same offset, and at least one of
443 // them are copied by a copy relocation, all of them need to be copied.
444 // Otherwise, they would refer different places at runtime.
445 template <class ELFT>
446 static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol &SS) {
447   typedef typename ELFT::Sym Elf_Sym;
448 
449   SharedFile<ELFT> &File = SS.getFile<ELFT>();
450 
451   std::vector<SharedSymbol *> Ret;
452   for (const Elf_Sym &S : File.getGlobalELFSyms()) {
453     if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS ||
454         S.st_value != SS.Value)
455       continue;
456     StringRef Name = check(S.getName(File.getStringTable()));
457     Symbol *Sym = Symtab->find(Name);
458     if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym))
459       Ret.push_back(Alias);
460   }
461   return Ret;
462 }
463 
464 // Reserve space in .bss or .bss.rel.ro for copy relocation.
465 //
466 // The copy relocation is pretty much a hack. If you use a copy relocation
467 // in your program, not only the symbol name but the symbol's size, RW/RO
468 // bit and alignment become part of the ABI. In addition to that, if the
469 // symbol has aliases, the aliases become part of the ABI. That's subtle,
470 // but if you violate that implicit ABI, that can cause very counter-
471 // intuitive consequences.
472 //
473 // So, what is the copy relocation? It's for linking non-position
474 // independent code to DSOs. In an ideal world, all references to data
475 // exported by DSOs should go indirectly through GOT. But if object files
476 // are compiled as non-PIC, all data references are direct. There is no
477 // way for the linker to transform the code to use GOT, as machine
478 // instructions are already set in stone in object files. This is where
479 // the copy relocation takes a role.
480 //
481 // A copy relocation instructs the dynamic linker to copy data from a DSO
482 // to a specified address (which is usually in .bss) at load-time. If the
483 // static linker (that's us) finds a direct data reference to a DSO
484 // symbol, it creates a copy relocation, so that the symbol can be
485 // resolved as if it were in .bss rather than in a DSO.
486 //
487 // As you can see in this function, we create a copy relocation for the
488 // dynamic linker, and the relocation contains not only symbol name but
489 // various other informtion about the symbol. So, such attributes become a
490 // part of the ABI.
491 //
492 // Note for application developers: I can give you a piece of advice if
493 // you are writing a shared library. You probably should export only
494 // functions from your library. You shouldn't export variables.
495 //
496 // As an example what can happen when you export variables without knowing
497 // the semantics of copy relocations, assume that you have an exported
498 // variable of type T. It is an ABI-breaking change to add new members at
499 // end of T even though doing that doesn't change the layout of the
500 // existing members. That's because the space for the new members are not
501 // reserved in .bss unless you recompile the main program. That means they
502 // are likely to overlap with other data that happens to be laid out next
503 // to the variable in .bss. This kind of issue is sometimes very hard to
504 // debug. What's a solution? Instead of exporting a varaible V from a DSO,
505 // define an accessor getV().
506 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &SS) {
507   // Copy relocation against zero-sized symbol doesn't make sense.
508   uint64_t SymSize = SS.getSize();
509   if (SymSize == 0)
510     fatal("cannot create a copy relocation for symbol " + toString(SS));
511 
512   // See if this symbol is in a read-only segment. If so, preserve the symbol's
513   // memory protection by reserving space in the .bss.rel.ro section.
514   bool IsReadOnly = isReadOnly<ELFT>(SS);
515   BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss",
516                                      SymSize, SS.Alignment);
517   if (IsReadOnly)
518     InX::BssRelRo->getParent()->addSection(Sec);
519   else
520     InX::Bss->getParent()->addSection(Sec);
521 
522   // Look through the DSO's dynamic symbol table for aliases and create a
523   // dynamic symbol for each one. This causes the copy relocation to correctly
524   // interpose any aliases.
525   for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) {
526     Sym->CopyRelSec = Sec;
527     Sym->IsUsedInRegularObj = true;
528     Sym->Used = true;
529   }
530 
531   InX::RelaDyn->addReloc(Target->CopyRel, Sec, 0, &SS);
532 }
533 
534 // MIPS has an odd notion of "paired" relocations to calculate addends.
535 // For example, if a relocation is of R_MIPS_HI16, there must be a
536 // R_MIPS_LO16 relocation after that, and an addend is calculated using
537 // the two relocations.
538 template <class ELFT, class RelTy>
539 static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End,
540                                  InputSectionBase &Sec, RelExpr Expr,
541                                  bool IsLocal) {
542   if (Expr == R_MIPS_GOTREL && IsLocal)
543     return Sec.getFile<ELFT>()->MipsGp0;
544 
545   // The ABI says that the paired relocation is used only for REL.
546   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
547   if (RelTy::IsRela)
548     return 0;
549 
550   RelType Type = Rel.getType(Config->IsMips64EL);
551   uint32_t PairTy = getMipsPairType(Type, IsLocal);
552   if (PairTy == R_MIPS_NONE)
553     return 0;
554 
555   const uint8_t *Buf = Sec.Data.data();
556   uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);
557 
558   // To make things worse, paired relocations might not be contiguous in
559   // the relocation table, so we need to do linear search. *sigh*
560   for (const RelTy *RI = &Rel; RI != End; ++RI)
561     if (RI->getType(Config->IsMips64EL) == PairTy &&
562         RI->getSymbol(Config->IsMips64EL) == SymIndex)
563       return Target->getImplicitAddend(Buf + RI->r_offset, PairTy);
564 
565   warn("can't find matching " + toString(PairTy) + " relocation for " +
566        toString(Type));
567   return 0;
568 }
569 
570 // Returns an addend of a given relocation. If it is RELA, an addend
571 // is in a relocation itself. If it is REL, we need to read it from an
572 // input section.
573 template <class ELFT, class RelTy>
574 static int64_t computeAddend(const RelTy &Rel, const RelTy *End,
575                              InputSectionBase &Sec, RelExpr Expr,
576                              bool IsLocal) {
577   int64_t Addend;
578   RelType Type = Rel.getType(Config->IsMips64EL);
579 
580   if (RelTy::IsRela) {
581     Addend = getAddend<ELFT>(Rel);
582   } else {
583     const uint8_t *Buf = Sec.Data.data();
584     Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type);
585   }
586 
587   if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC)
588     Addend += getPPC64TocBase();
589   if (Config->EMachine == EM_MIPS)
590     Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal);
591 
592   return Addend;
593 }
594 
595 // Report an undefined symbol if necessary.
596 // Returns true if this function printed out an error message.
597 static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec,
598                                  uint64_t Offset) {
599   if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll)
600     return false;
601 
602   if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak())
603     return false;
604 
605   bool CanBeExternal =
606       Sym.computeBinding() != STB_LOCAL && Sym.Visibility == STV_DEFAULT;
607   if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)
608     return false;
609 
610   std::string Msg =
611       "undefined symbol: " + toString(Sym) + "\n>>> referenced by ";
612 
613   std::string Src = Sec.getSrcMsg(Sym, Offset);
614   if (!Src.empty())
615     Msg += Src + "\n>>>               ";
616   Msg += Sec.getObjMsg(Offset);
617 
618   if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) ||
619       Config->NoinhibitExec) {
620     warn(Msg);
621     return false;
622   }
623 
624   error(Msg);
625   return true;
626 }
627 
628 // MIPS N32 ABI treats series of successive relocations with the same offset
629 // as a single relocation. The similar approach used by N64 ABI, but this ABI
630 // packs all relocations into the single relocation record. Here we emulate
631 // this for the N32 ABI. Iterate over relocation with the same offset and put
632 // theirs types into the single bit-set.
633 template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) {
634   RelType Type = 0;
635   uint64_t Offset = Rel->r_offset;
636 
637   int N = 0;
638   while (Rel != End && Rel->r_offset == Offset)
639     Type |= (Rel++)->getType(Config->IsMips64EL) << (8 * N++);
640   return Type;
641 }
642 
643 // .eh_frame sections are mergeable input sections, so their input
644 // offsets are not linearly mapped to output section. For each input
645 // offset, we need to find a section piece containing the offset and
646 // add the piece's base address to the input offset to compute the
647 // output offset. That isn't cheap.
648 //
649 // This class is to speed up the offset computation. When we process
650 // relocations, we access offsets in the monotonically increasing
651 // order. So we can optimize for that access pattern.
652 //
653 // For sections other than .eh_frame, this class doesn't do anything.
654 namespace {
655 class OffsetGetter {
656 public:
657   explicit OffsetGetter(InputSectionBase &Sec) {
658     if (auto *Eh = dyn_cast<EhInputSection>(&Sec))
659       Pieces = Eh->Pieces;
660   }
661 
662   // Translates offsets in input sections to offsets in output sections.
663   // Given offset must increase monotonically. We assume that Piece is
664   // sorted by InputOff.
665   uint64_t get(uint64_t Off) {
666     if (Pieces.empty())
667       return Off;
668 
669     while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off)
670       ++I;
671     if (I == Pieces.size())
672       return Off;
673 
674     // Pieces must be contiguous, so there must be no holes in between.
675     assert(Pieces[I].InputOff <= Off && "Relocation not in any piece");
676 
677     // Offset -1 means that the piece is dead (i.e. garbage collected).
678     if (Pieces[I].OutputOff == -1)
679       return -1;
680     return Pieces[I].OutputOff + Off - Pieces[I].InputOff;
681   }
682 
683 private:
684   ArrayRef<EhSectionPiece> Pieces;
685   size_t I = 0;
686 };
687 } // namespace
688 
689 template <class ELFT, class GotPltSection>
690 static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt,
691                         RelocationBaseSection *Rel, RelType Type, Symbol &Sym) {
692   Plt->addEntry<ELFT>(Sym);
693   GotPlt->addEntry(Sym);
694   Rel->addReloc(
695       {Type, GotPlt, Sym.getGotPltOffset(), !Sym.IsPreemptible, &Sym, 0});
696 }
697 
698 template <class ELFT> static void addGotEntry(Symbol &Sym) {
699   InX::Got->addEntry(Sym);
700 
701   RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS;
702   uint64_t Off = Sym.getGotOffset();
703 
704   // If a GOT slot value can be calculated at link-time, which is now,
705   // we can just fill that out.
706   //
707   // (We don't actually write a value to a GOT slot right now, but we
708   // add a static relocation to a Relocations vector so that
709   // InputSection::relocate will do the work for us. We may be able
710   // to just write a value now, but it is a TODO.)
711   bool IsLinkTimeConstant =
712       !Sym.IsPreemptible && (!Config->Pic || isAbsolute(Sym));
713   if (IsLinkTimeConstant) {
714     InX::Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym});
715     return;
716   }
717 
718   // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
719   // the GOT slot will be fixed at load-time.
720   RelType Type;
721   if (Sym.isTls())
722     Type = Target->TlsGotRel;
723   else if (!Sym.IsPreemptible && Config->Pic && !isAbsolute(Sym))
724     Type = Target->RelativeRel;
725   else
726     Type = Target->GotRel;
727   InX::RelaDyn->addReloc(Type, InX::Got, Off, &Sym, 0,
728                          Sym.IsPreemptible ? R_ADDEND : R_ABS, Target->GotRel);
729 }
730 
731 // Return true if we can define a symbol in the executable that
732 // contains the value/function of a symbol defined in a shared
733 // library.
734 static bool canDefineSymbolInExecutable(Symbol &Sym) {
735   // If the symbol has default visibility the symbol defined in the
736   // executable will preempt it.
737   // Note that we want the visibility of the shared symbol itself, not
738   // the visibility of the symbol in the output file we are producing. That is
739   // why we use Sym.StOther.
740   if ((Sym.StOther & 0x3) == STV_DEFAULT)
741     return true;
742 
743   // If we are allowed to break address equality of functions, defining
744   // a plt entry will allow the program to call the function in the
745   // .so, but the .so and the executable will no agree on the address
746   // of the function. Similar logic for objects.
747   return ((Sym.isFunc() && Config->IgnoreFunctionAddressEquality) ||
748           (Sym.isObject() && Config->IgnoreDataAddressEquality));
749 }
750 
751 // The reason we have to do this early scan is as follows
752 // * To mmap the output file, we need to know the size
753 // * For that, we need to know how many dynamic relocs we will have.
754 // It might be possible to avoid this by outputting the file with write:
755 // * Write the allocated output sections, computing addresses.
756 // * Apply relocations, recording which ones require a dynamic reloc.
757 // * Write the dynamic relocations.
758 // * Write the rest of the file.
759 // This would have some drawbacks. For example, we would only know if .rela.dyn
760 // is needed after applying relocations. If it is, it will go after rw and rx
761 // sections. Given that it is ro, we will need an extra PT_LOAD. This
762 // complicates things for the dynamic linker and means we would have to reserve
763 // space for the extra PT_LOAD even if we end up not using it.
764 template <class ELFT, class RelTy>
765 static RelExpr processRelocAux(InputSectionBase &Sec, RelExpr Expr,
766                                RelType Type, uint64_t Offset, Symbol &Sym,
767                                const RelTy &Rel, int64_t Addend) {
768   if (isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Offset)) {
769     Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
770     return Expr;
771   }
772   bool CanWrite = (Sec.Flags & SHF_WRITE) || !Config->ZText;
773   if (CanWrite) {
774     // R_GOT refers to a position in the got, even if the symbol is preemptible.
775     bool IsPreemptibleValue = Sym.IsPreemptible && Expr != R_GOT;
776 
777     if (!IsPreemptibleValue) {
778       InX::RelaDyn->addReloc(Target->RelativeRel, &Sec, Offset, &Sym, Addend,
779                              Expr, Type);
780       return Expr;
781     } else if (RelType Rel = Target->getDynRel(Type)) {
782       InX::RelaDyn->addReloc(Rel, &Sec, Offset, &Sym, Addend, R_ADDEND, Type);
783 
784       // MIPS ABI turns using of GOT and dynamic relocations inside out.
785       // While regular ABI uses dynamic relocations to fill up GOT entries
786       // MIPS ABI requires dynamic linker to fills up GOT entries using
787       // specially sorted dynamic symbol table. This affects even dynamic
788       // relocations against symbols which do not require GOT entries
789       // creation explicitly, i.e. do not have any GOT-relocations. So if
790       // a preemptible symbol has a dynamic relocation we anyway have
791       // to create a GOT entry for it.
792       // If a non-preemptible symbol has a dynamic relocation against it,
793       // dynamic linker takes it st_value, adds offset and writes down
794       // result of the dynamic relocation. In case of preemptible symbol
795       // dynamic linker performs symbol resolution, writes the symbol value
796       // to the GOT entry and reads the GOT entry when it needs to perform
797       // a dynamic relocation.
798       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
799       if (Config->EMachine == EM_MIPS)
800         InX::MipsGot->addEntry(Sym, Addend, Expr);
801       return Expr;
802     }
803   }
804 
805   // If the relocation is to a weak undef, and we are producing
806   // executable, give up on it and produce a non preemptible 0.
807   if (!Config->Shared && Sym.isUndefWeak()) {
808     Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
809     return Expr;
810   }
811 
812   if (!CanWrite && (Config->Pic && !isRelExpr(Expr))) {
813     error(
814         "can't create dynamic relocation " + toString(Type) + " against " +
815         (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) +
816         " in readonly segment; recompile object files with -fPIC "
817         "or pass '-Wl,-z,notext' to allow text relocations in the output" +
818         getLocation(Sec, Sym, Offset));
819     return Expr;
820   }
821 
822   // Copy relocations are only possible if we are creating an executable.
823   if (Config->Shared) {
824     errorOrWarn("relocation " + toString(Type) +
825                 " cannot be used against symbol " + toString(Sym) +
826                 "; recompile with -fPIC" + getLocation(Sec, Sym, Offset));
827     return Expr;
828   }
829 
830   // If the symbol is undefined we already reported any relevant errors.
831   if (!Sym.isShared()) {
832     assert(Sym.isUndefined());
833     return Expr;
834   }
835 
836   if (!canDefineSymbolInExecutable(Sym)) {
837     error("cannot preempt symbol: " + toString(Sym) +
838           getLocation(Sec, Sym, Offset));
839     return Expr;
840   }
841 
842   if (Sym.isObject()) {
843     // Produce a copy relocation.
844     auto &SS = cast<SharedSymbol>(Sym);
845     if (!SS.CopyRelSec) {
846       if (Config->ZNocopyreloc)
847         error("unresolvable relocation " + toString(Type) +
848               " against symbol '" + toString(SS) +
849               "'; recompile with -fPIC or remove '-z nocopyreloc'" +
850               getLocation(Sec, Sym, Offset));
851       addCopyRelSymbol<ELFT>(SS);
852     }
853     Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
854     return Expr;
855   }
856 
857   if (Sym.isFunc()) {
858     // This handles a non PIC program call to function in a shared library. In
859     // an ideal world, we could just report an error saying the relocation can
860     // overflow at runtime. In the real world with glibc, crt1.o has a
861     // R_X86_64_PC32 pointing to libc.so.
862     //
863     // The general idea on how to handle such cases is to create a PLT entry and
864     // use that as the function value.
865     //
866     // For the static linking part, we just return a plt expr and everything
867     // else will use the PLT entry as the address.
868     //
869     // The remaining problem is making sure pointer equality still works. We
870     // need the help of the dynamic linker for that. We let it know that we have
871     // a direct reference to a so symbol by creating an undefined symbol with a
872     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
873     // the value of the symbol we created. This is true even for got entries, so
874     // pointer equality is maintained. To avoid an infinite loop, the only entry
875     // that points to the real function is a dedicated got entry used by the
876     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
877     // R_386_JMP_SLOT, etc).
878 
879     // For position independent executable on i386, the plt entry requires ebx
880     // to be set. This causes two problems:
881     // * If some code has a direct reference to a function, it was probably
882     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
883     // * If a library definition gets preempted to the executable, it will have
884     //   the wrong ebx value.
885     if (Config->Pie && Config->EMachine == EM_386)
886       errorOrWarn("symbol '" + toString(Sym) +
887                   "' cannot be preempted; recompile with -fPIE" +
888                   getLocation(Sec, Sym, Offset));
889     Sym.NeedsPltAddr = true;
890     Expr = toPlt(Expr);
891     Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
892     return Expr;
893   }
894 
895   errorOrWarn("symbol '" + toString(Sym) + "' has no type" +
896               getLocation(Sec, Sym, Offset));
897   return Expr;
898 }
899 
900 template <class ELFT, class RelTy>
901 static void scanReloc(InputSectionBase &Sec, OffsetGetter &GetOffset, RelTy *&I,
902                       RelTy *End) {
903   const RelTy &Rel = *I;
904   Symbol &Sym = Sec.getFile<ELFT>()->getRelocTargetSym(Rel);
905   RelType Type;
906 
907   // Deal with MIPS oddity.
908   if (Config->MipsN32Abi) {
909     Type = getMipsN32RelType(I, End);
910   } else {
911     Type = Rel.getType(Config->IsMips64EL);
912     ++I;
913   }
914 
915   // Get an offset in an output section this relocation is applied to.
916   uint64_t Offset = GetOffset.get(Rel.r_offset);
917   if (Offset == uint64_t(-1))
918     return;
919 
920   // Skip if the target symbol is an erroneous undefined symbol.
921   if (maybeReportUndefined(Sym, Sec, Rel.r_offset))
922     return;
923 
924   const uint8_t *RelocatedAddr = Sec.Data.begin() + Rel.r_offset;
925   RelExpr Expr = Target->getRelExpr(Type, Sym, RelocatedAddr);
926 
927   // Ignore "hint" relocations because they are only markers for relaxation.
928   if (isRelExprOneOf<R_HINT, R_NONE>(Expr))
929     return;
930 
931   // Strenghten or relax relocations.
932   //
933   // GNU ifunc symbols must be accessed via PLT because their addresses
934   // are determined by runtime.
935   //
936   // On the other hand, if we know that a PLT entry will be resolved within
937   // the same ELF module, we can skip PLT access and directly jump to the
938   // destination function. For example, if we are linking a main exectuable,
939   // all dynamic symbols that can be resolved within the executable will
940   // actually be resolved that way at runtime, because the main exectuable
941   // is always at the beginning of a search list. We can leverage that fact.
942   if (Sym.isGnuIFunc())
943     Expr = toPlt(Expr);
944   else if (!Sym.IsPreemptible && Expr == R_GOT_PC && !isAbsoluteValue(Sym))
945     Expr = Target->adjustRelaxExpr(Type, RelocatedAddr, Expr);
946   else if (!Sym.IsPreemptible)
947     Expr = fromPlt(Expr);
948 
949   // This relocation does not require got entry, but it is relative to got and
950   // needs it to be created. Here we request for that.
951   if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL,
952                      R_GOTREL_FROM_END, R_PPC_TOC>(Expr))
953     InX::Got->HasGotOffRel = true;
954 
955   // Read an addend.
956   int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());
957 
958   // Process some TLS relocations, including relaxing TLS relocations.
959   // Note that this function does not handle all TLS relocations.
960   if (unsigned Processed =
961           handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) {
962     I += (Processed - 1);
963     return;
964   }
965 
966   Expr = processRelocAux<ELFT>(Sec, Expr, Type, Offset, Sym, Rel, Addend);
967   // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
968   if (needsPlt(Expr) && !Sym.isInPlt()) {
969     if (Sym.isGnuIFunc() && !Sym.IsPreemptible)
970       addPltEntry<ELFT>(InX::Iplt, InX::IgotPlt, InX::RelaIplt,
971                         Target->IRelativeRel, Sym);
972     else
973       addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel,
974                         Sym);
975   }
976 
977   // Create a GOT slot if a relocation needs GOT.
978   if (needsGot(Expr)) {
979     if (Config->EMachine == EM_MIPS) {
980       // MIPS ABI has special rules to process GOT entries and doesn't
981       // require relocation entries for them. A special case is TLS
982       // relocations. In that case dynamic loader applies dynamic
983       // relocations to initialize TLS GOT entries.
984       // See "Global Offset Table" in Chapter 5 in the following document
985       // for detailed description:
986       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
987       InX::MipsGot->addEntry(Sym, Addend, Expr);
988       if (Sym.isTls() && Sym.IsPreemptible)
989         InX::RelaDyn->addReloc(Target->TlsGotRel, InX::MipsGot,
990                                Sym.getGotOffset(), &Sym);
991     } else if (!Sym.isInGot()) {
992       addGotEntry<ELFT>(Sym);
993     }
994   }
995 }
996 
997 template <class ELFT, class RelTy>
998 static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) {
999   OffsetGetter GetOffset(Sec);
1000 
1001   // Not all relocations end up in Sec.Relocations, but a lot do.
1002   Sec.Relocations.reserve(Rels.size());
1003 
1004   for (auto I = Rels.begin(), End = Rels.end(); I != End;)
1005     scanReloc<ELFT>(Sec, GetOffset, I, End);
1006 }
1007 
1008 template <class ELFT> void elf::scanRelocations(InputSectionBase &S) {
1009   if (S.AreRelocsRela)
1010     scanRelocs<ELFT>(S, S.relas<ELFT>());
1011   else
1012     scanRelocs<ELFT>(S, S.rels<ELFT>());
1013 }
1014 
1015 // Thunk Implementation
1016 //
1017 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1018 // of code that the linker inserts inbetween a caller and a callee. The thunks
1019 // are added at link time rather than compile time as the decision on whether
1020 // a thunk is needed, such as the caller and callee being out of range, can only
1021 // be made at link time.
1022 //
1023 // It is straightforward to tell given the current state of the program when a
1024 // thunk is needed for a particular call. The more difficult part is that
1025 // the thunk needs to be placed in the program such that the caller can reach
1026 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1027 // the program alters addresses, which can mean more thunks etc.
1028 //
1029 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1030 // The decision to have a ThunkSection act as a container means that we can
1031 // more easily handle the most common case of a single block of contiguous
1032 // Thunks by inserting just a single ThunkSection.
1033 //
1034 // The implementation of Thunks in lld is split across these areas
1035 // Relocations.cpp : Framework for creating and placing thunks
1036 // Thunks.cpp : The code generated for each supported thunk
1037 // Target.cpp : Target specific hooks that the framework uses to decide when
1038 //              a thunk is used
1039 // Synthetic.cpp : Implementation of ThunkSection
1040 // Writer.cpp : Iteratively call framework until no more Thunks added
1041 //
1042 // Thunk placement requirements:
1043 // Mips LA25 thunks. These must be placed immediately before the callee section
1044 // We can assume that the caller is in range of the Thunk. These are modelled
1045 // by Thunks that return the section they must precede with
1046 // getTargetInputSection().
1047 //
1048 // ARM interworking and range extension thunks. These thunks must be placed
1049 // within range of the caller. All implemented ARM thunks can always reach the
1050 // callee as they use an indirect jump via a register that has no range
1051 // restrictions.
1052 //
1053 // Thunk placement algorithm:
1054 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1055 // getTargetInputSection().
1056 //
1057 // For thunks that must be placed within range of the caller there are many
1058 // possible choices given that the maximum range from the caller is usually
1059 // much larger than the average InputSection size. Desirable properties include:
1060 // - Maximize reuse of thunks by multiple callers
1061 // - Minimize number of ThunkSections to simplify insertion
1062 // - Handle impact of already added Thunks on addresses
1063 // - Simple to understand and implement
1064 //
1065 // In lld for the first pass, we pre-create one or more ThunkSections per
1066 // InputSectionDescription at Target specific intervals. A ThunkSection is
1067 // placed so that the estimated end of the ThunkSection is within range of the
1068 // start of the InputSectionDescription or the previous ThunkSection. For
1069 // example:
1070 // InputSectionDescription
1071 // Section 0
1072 // ...
1073 // Section N
1074 // ThunkSection 0
1075 // Section N + 1
1076 // ...
1077 // Section N + K
1078 // Thunk Section 1
1079 //
1080 // The intention is that we can add a Thunk to a ThunkSection that is well
1081 // spaced enough to service a number of callers without having to do a lot
1082 // of work. An important principle is that it is not an error if a Thunk cannot
1083 // be placed in a pre-created ThunkSection; when this happens we create a new
1084 // ThunkSection placed next to the caller. This allows us to handle the vast
1085 // majority of thunks simply, but also handle rare cases where the branch range
1086 // is smaller than the target specific spacing.
1087 //
1088 // The algorithm is expected to create all the thunks that are needed in a
1089 // single pass, with a small number of programs needing a second pass due to
1090 // the insertion of thunks in the first pass increasing the offset between
1091 // callers and callees that were only just in range.
1092 //
1093 // A consequence of allowing new ThunkSections to be created outside of the
1094 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1095 // range in pass K, are out of range in some pass > K due to the insertion of
1096 // more Thunks in between the caller and callee. When this happens we retarget
1097 // the relocation back to the original target and create another Thunk.
1098 
1099 // Remove ThunkSections that are empty, this should only be the initial set
1100 // precreated on pass 0.
1101 
1102 // Insert the Thunks for OutputSection OS into their designated place
1103 // in the Sections vector, and recalculate the InputSection output section
1104 // offsets.
1105 // This may invalidate any output section offsets stored outside of InputSection
1106 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) {
1107   forEachInputSectionDescription(
1108       OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
1109         if (ISD->ThunkSections.empty())
1110           return;
1111 
1112         // Remove any zero sized precreated Thunks.
1113         llvm::erase_if(ISD->ThunkSections,
1114                        [](const std::pair<ThunkSection *, uint32_t> &TS) {
1115                          return TS.first->getSize() == 0;
1116                        });
1117         // ISD->ThunkSections contains all created ThunkSections, including
1118         // those inserted in previous passes. Extract the Thunks created this
1119         // pass and order them in ascending OutSecOff.
1120         std::vector<ThunkSection *> NewThunks;
1121         for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections)
1122           if (TS.second == Pass)
1123             NewThunks.push_back(TS.first);
1124         std::stable_sort(NewThunks.begin(), NewThunks.end(),
1125                          [](const ThunkSection *A, const ThunkSection *B) {
1126                            return A->OutSecOff < B->OutSecOff;
1127                          });
1128 
1129         // Merge sorted vectors of Thunks and InputSections by OutSecOff
1130         std::vector<InputSection *> Tmp;
1131         Tmp.reserve(ISD->Sections.size() + NewThunks.size());
1132         auto MergeCmp = [](const InputSection *A, const InputSection *B) {
1133           // std::merge requires a strict weak ordering.
1134           if (A->OutSecOff < B->OutSecOff)
1135             return true;
1136           if (A->OutSecOff == B->OutSecOff) {
1137             auto *TA = dyn_cast<ThunkSection>(A);
1138             auto *TB = dyn_cast<ThunkSection>(B);
1139             // Check if Thunk is immediately before any specific Target
1140             // InputSection for example Mips LA25 Thunks.
1141             if (TA && TA->getTargetInputSection() == B)
1142               return true;
1143             if (TA && !TB && !TA->getTargetInputSection())
1144               // Place Thunk Sections without specific targets before
1145               // non-Thunk Sections.
1146               return true;
1147           }
1148           return false;
1149         };
1150         std::merge(ISD->Sections.begin(), ISD->Sections.end(),
1151                    NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp),
1152                    MergeCmp);
1153         ISD->Sections = std::move(Tmp);
1154       });
1155 }
1156 
1157 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1158 // is in range of Src. An ISD maps to a range of InputSections described by a
1159 // linker script section pattern such as { .text .text.* }.
1160 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS,
1161                                            InputSectionDescription *ISD,
1162                                            uint32_t Type, uint64_t Src) {
1163   for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) {
1164     ThunkSection *TS = TP.first;
1165     uint64_t TSBase = OS->Addr + TS->OutSecOff;
1166     uint64_t TSLimit = TSBase + TS->getSize();
1167     if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit))
1168       return TS;
1169   }
1170 
1171   // No suitable ThunkSection exists. This can happen when there is a branch
1172   // with lower range than the ThunkSection spacing or when there are too
1173   // many Thunks. Create a new ThunkSection as close to the InputSection as
1174   // possible. Error if InputSection is so large we cannot place ThunkSection
1175   // anywhere in Range.
1176   uint64_t ThunkSecOff = IS->OutSecOff;
1177   if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) {
1178     ThunkSecOff = IS->OutSecOff + IS->getSize();
1179     if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff))
1180       fatal("InputSection too large for range extension thunk " +
1181             IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff)));
1182   }
1183   return addThunkSection(OS, ISD, ThunkSecOff);
1184 }
1185 
1186 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1187 // precedes its Target.
1188 ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) {
1189   ThunkSection *TS = ThunkedSections.lookup(IS);
1190   if (TS)
1191     return TS;
1192 
1193   // Find InputSectionRange within Target Output Section (TOS) that the
1194   // InputSection (IS) that we need to precede is in.
1195   OutputSection *TOS = IS->getParent();
1196   for (BaseCommand *BC : TOS->SectionCommands)
1197     if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
1198       if (ISD->Sections.empty())
1199         continue;
1200       InputSection *first = ISD->Sections.front();
1201       InputSection *last = ISD->Sections.back();
1202       if (IS->OutSecOff >= first->OutSecOff &&
1203           IS->OutSecOff <= last->OutSecOff) {
1204         TS = addThunkSection(TOS, ISD, IS->OutSecOff);
1205         ThunkedSections[IS] = TS;
1206         break;
1207       }
1208     }
1209   return TS;
1210 }
1211 
1212 // Create one or more ThunkSections per OS that can be used to place Thunks.
1213 // We attempt to place the ThunkSections using the following desirable
1214 // properties:
1215 // - Within range of the maximum number of callers
1216 // - Minimise the number of ThunkSections
1217 //
1218 // We follow a simple but conservative heuristic to place ThunkSections at
1219 // offsets that are multiples of a Target specific branch range.
1220 // For an InputSectionDescription that is smaller than the range, a single
1221 // ThunkSection at the end of the range will do.
1222 //
1223 // For an InputSectionDescription that is more than twice the size of the range,
1224 // we place the last ThunkSection at range bytes from the end of the
1225 // InputSectionDescription in order to increase the likelihood that the
1226 // distance from a thunk to its target will be sufficiently small to
1227 // allow for the creation of a short thunk.
1228 void ThunkCreator::createInitialThunkSections(
1229     ArrayRef<OutputSection *> OutputSections) {
1230   forEachInputSectionDescription(
1231       OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
1232         if (ISD->Sections.empty())
1233           return;
1234         uint32_t ISDBegin = ISD->Sections.front()->OutSecOff;
1235         uint32_t ISDEnd =
1236             ISD->Sections.back()->OutSecOff + ISD->Sections.back()->getSize();
1237         uint32_t LastThunkLowerBound = -1;
1238         if (ISDEnd - ISDBegin > Target->ThunkSectionSpacing * 2)
1239           LastThunkLowerBound = ISDEnd - Target->ThunkSectionSpacing;
1240 
1241         uint32_t ISLimit;
1242         uint32_t PrevISLimit = ISDBegin;
1243         uint32_t ThunkUpperBound = ISDBegin + Target->ThunkSectionSpacing;
1244 
1245         for (const InputSection *IS : ISD->Sections) {
1246           ISLimit = IS->OutSecOff + IS->getSize();
1247           if (ISLimit > ThunkUpperBound) {
1248             addThunkSection(OS, ISD, PrevISLimit);
1249             ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
1250           }
1251           if (ISLimit > LastThunkLowerBound)
1252             break;
1253           PrevISLimit = ISLimit;
1254         }
1255         addThunkSection(OS, ISD, ISLimit);
1256       });
1257 }
1258 
1259 ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS,
1260                                             InputSectionDescription *ISD,
1261                                             uint64_t Off) {
1262   auto *TS = make<ThunkSection>(OS, Off);
1263   ISD->ThunkSections.push_back(std::make_pair(TS, Pass));
1264   return TS;
1265 }
1266 
1267 std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type,
1268                                                 uint64_t Src) {
1269   std::vector<Thunk *> *ThunkVec = nullptr;
1270   // We use (section, offset) pair to find the thunk position if possible so
1271   // that we create only one thunk for aliased symbols or ICFed sections.
1272   if (auto *D = dyn_cast<Defined>(&Sym))
1273     if (!D->isInPlt() && D->Section)
1274       ThunkVec = &ThunkedSymbolsBySection[{D->Section->Repl, D->Value}];
1275   if (!ThunkVec)
1276     ThunkVec = &ThunkedSymbols[&Sym];
1277   // Check existing Thunks for Sym to see if they can be reused
1278   for (Thunk *ET : *ThunkVec)
1279     if (ET->isCompatibleWith(Type) &&
1280         Target->inBranchRange(Type, Src, ET->getThunkTargetSym()->getVA()))
1281       return std::make_pair(ET, false);
1282   // No existing compatible Thunk in range, create a new one
1283   Thunk *T = addThunk(Type, Sym);
1284   ThunkVec->push_back(T);
1285   return std::make_pair(T, true);
1286 }
1287 
1288 // Call Fn on every executable InputSection accessed via the linker script
1289 // InputSectionDescription::Sections.
1290 void ThunkCreator::forEachInputSectionDescription(
1291     ArrayRef<OutputSection *> OutputSections,
1292     std::function<void(OutputSection *, InputSectionDescription *)> Fn) {
1293   for (OutputSection *OS : OutputSections) {
1294     if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
1295       continue;
1296     for (BaseCommand *BC : OS->SectionCommands)
1297       if (auto *ISD = dyn_cast<InputSectionDescription>(BC))
1298         Fn(OS, ISD);
1299   }
1300 }
1301 
1302 // Return true if the relocation target is an in range Thunk.
1303 // Return false if the relocation is not to a Thunk. If the relocation target
1304 // was originally to a Thunk, but is no longer in range we revert the
1305 // relocation back to its original non-Thunk target.
1306 bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) {
1307   if (Thunk *ET = Thunks.lookup(Rel.Sym)) {
1308     if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA()))
1309       return true;
1310     Rel.Sym = &ET->Destination;
1311     if (Rel.Sym->isInPlt())
1312       Rel.Expr = toPlt(Rel.Expr);
1313   }
1314   return false;
1315 }
1316 
1317 // Process all relocations from the InputSections that have been assigned
1318 // to InputSectionDescriptions and redirect through Thunks if needed. The
1319 // function should be called iteratively until it returns false.
1320 //
1321 // PreConditions:
1322 // All InputSections that may need a Thunk are reachable from
1323 // OutputSectionCommands.
1324 //
1325 // All OutputSections have an address and all InputSections have an offset
1326 // within the OutputSection.
1327 //
1328 // The offsets between caller (relocation place) and callee
1329 // (relocation target) will not be modified outside of createThunks().
1330 //
1331 // PostConditions:
1332 // If return value is true then ThunkSections have been inserted into
1333 // OutputSections. All relocations that needed a Thunk based on the information
1334 // available to createThunks() on entry have been redirected to a Thunk. Note
1335 // that adding Thunks changes offsets between caller and callee so more Thunks
1336 // may be required.
1337 //
1338 // If return value is false then no more Thunks are needed, and createThunks has
1339 // made no changes. If the target requires range extension thunks, currently
1340 // ARM, then any future change in offset between caller and callee risks a
1341 // relocation out of range error.
1342 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) {
1343   bool AddressesChanged = false;
1344   if (Pass == 0 && Target->ThunkSectionSpacing)
1345     createInitialThunkSections(OutputSections);
1346   else if (Pass == 10)
1347     // With Thunk Size much smaller than branch range we expect to
1348     // converge quickly; if we get to 10 something has gone wrong.
1349     fatal("thunk creation not converged");
1350 
1351   // Create all the Thunks and insert them into synthetic ThunkSections. The
1352   // ThunkSections are later inserted back into InputSectionDescriptions.
1353   // We separate the creation of ThunkSections from the insertion of the
1354   // ThunkSections as ThunkSections are not always inserted into the same
1355   // InputSectionDescription as the caller.
1356   forEachInputSectionDescription(
1357       OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
1358         for (InputSection *IS : ISD->Sections)
1359           for (Relocation &Rel : IS->Relocations) {
1360             uint64_t Src = IS->getVA(Rel.Offset);
1361 
1362             // If we are a relocation to an existing Thunk, check if it is
1363             // still in range. If not then Rel will be altered to point to its
1364             // original target so another Thunk can be generated.
1365             if (Pass > 0 && normalizeExistingThunk(Rel, Src))
1366               continue;
1367 
1368             if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src,
1369                                     *Rel.Sym))
1370               continue;
1371             Thunk *T;
1372             bool IsNew;
1373             std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src);
1374             if (IsNew) {
1375               // Find or create a ThunkSection for the new Thunk
1376               ThunkSection *TS;
1377               if (auto *TIS = T->getTargetInputSection())
1378                 TS = getISThunkSec(TIS);
1379               else
1380                 TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src);
1381               TS->addThunk(T);
1382               Thunks[T->getThunkTargetSym()] = T;
1383             }
1384             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
1385             Rel.Sym = T->getThunkTargetSym();
1386             Rel.Expr = fromPlt(Rel.Expr);
1387           }
1388         for (auto &P : ISD->ThunkSections)
1389           AddressesChanged |= P.first->assignOffsets();
1390       });
1391   for (auto &P : ThunkedSections)
1392     AddressesChanged |= P.second->assignOffsets();
1393 
1394   // Merge all created synthetic ThunkSections back into OutputSection
1395   mergeThunks(OutputSections);
1396   ++Pass;
1397   return AddressesChanged;
1398 }
1399 
1400 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
1401 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
1402 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
1403 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
1404