1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "LinkerScript.h"
46 #include "OutputSections.h"
47 #include "SymbolTable.h"
48 #include "Symbols.h"
49 #include "SyntheticSections.h"
50 #include "Target.h"
51 #include "Thunks.h"
52 #include "lld/Common/ErrorHandler.h"
53 #include "lld/Common/Memory.h"
54 #include "llvm/ADT/SmallSet.h"
55 #include "llvm/Demangle/Demangle.h"
56 #include "llvm/Support/Endian.h"
57 #include <algorithm>
58 
59 using namespace llvm;
60 using namespace llvm::ELF;
61 using namespace llvm::object;
62 using namespace llvm::support::endian;
63 using namespace lld;
64 using namespace lld::elf;
65 
66 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
67   for (SectionCommand *cmd : script->sectionCommands)
68     if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
69       if (assign->sym == &sym)
70         return assign->location;
71   return None;
72 }
73 
74 static std::string getDefinedLocation(const Symbol &sym) {
75   const char msg[] = "\n>>> defined in ";
76   if (sym.file)
77     return msg + toString(sym.file);
78   if (Optional<std::string> loc = getLinkerScriptLocation(sym))
79     return msg + *loc;
80   return "";
81 }
82 
83 // Construct a message in the following format.
84 //
85 // >>> defined in /home/alice/src/foo.o
86 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
87 // >>>               /home/alice/src/bar.o:(.text+0x1)
88 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
89                                uint64_t off) {
90   std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
91   std::string src = s.getSrcMsg(sym, off);
92   if (!src.empty())
93     msg += src + "\n>>>               ";
94   return msg + s.getObjMsg(off);
95 }
96 
97 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
98                            int64_t min, uint64_t max) {
99   ErrorPlace errPlace = getErrorPlace(loc);
100   std::string hint;
101   if (rel.sym && !rel.sym->isSection())
102     hint = "; references " + lld::toString(*rel.sym);
103   if (!errPlace.srcLoc.empty())
104     hint += "\n>>> referenced by " + errPlace.srcLoc;
105   if (rel.sym && !rel.sym->isSection())
106     hint += getDefinedLocation(*rel.sym);
107 
108   if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
109     hint += "; consider recompiling with -fdebug-types-section to reduce size "
110             "of debug sections";
111 
112   errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
113               " out of range: " + v.str() + " is not in [" + Twine(min).str() +
114               ", " + Twine(max).str() + "]" + hint);
115 }
116 
117 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
118                            const Twine &msg) {
119   ErrorPlace errPlace = getErrorPlace(loc);
120   std::string hint;
121   if (!sym.getName().empty())
122     hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
123   errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
124               " is not in [" + Twine(llvm::minIntN(n)) + ", " +
125               Twine(llvm::maxIntN(n)) + "]" + hint);
126 }
127 
128 // Build a bitmask with one bit set for each 64 subset of RelExpr.
129 static constexpr uint64_t buildMask() { return 0; }
130 
131 template <typename... Tails>
132 static constexpr uint64_t buildMask(int head, Tails... tails) {
133   return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
134          buildMask(tails...);
135 }
136 
137 // Return true if `Expr` is one of `Exprs`.
138 // There are more than 64 but less than 128 RelExprs, so we divide the set of
139 // exprs into [0, 64) and [64, 128) and represent each range as a constant
140 // 64-bit mask. Then we decide which mask to test depending on the value of
141 // expr and use a simple shift and bitwise-and to test for membership.
142 template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
143   assert(0 <= expr && (int)expr < 128 &&
144          "RelExpr is too large for 128-bit mask!");
145 
146   if (expr >= 64)
147     return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
148   return (uint64_t(1) << expr) & buildMask(Exprs...);
149 }
150 
151 static RelType getMipsPairType(RelType type, bool isLocal) {
152   switch (type) {
153   case R_MIPS_HI16:
154     return R_MIPS_LO16;
155   case R_MIPS_GOT16:
156     // In case of global symbol, the R_MIPS_GOT16 relocation does not
157     // have a pair. Each global symbol has a unique entry in the GOT
158     // and a corresponding instruction with help of the R_MIPS_GOT16
159     // relocation loads an address of the symbol. In case of local
160     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
161     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
162     // relocations handle low 16 bits of the address. That allows
163     // to allocate only one GOT entry for every 64 KBytes of local data.
164     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
165   case R_MICROMIPS_GOT16:
166     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
167   case R_MIPS_PCHI16:
168     return R_MIPS_PCLO16;
169   case R_MICROMIPS_HI16:
170     return R_MICROMIPS_LO16;
171   default:
172     return R_MIPS_NONE;
173   }
174 }
175 
176 // True if non-preemptable symbol always has the same value regardless of where
177 // the DSO is loaded.
178 static bool isAbsolute(const Symbol &sym) {
179   if (sym.isUndefWeak())
180     return true;
181   if (const auto *dr = dyn_cast<Defined>(&sym))
182     return dr->section == nullptr; // Absolute symbol.
183   return false;
184 }
185 
186 static bool isAbsoluteValue(const Symbol &sym) {
187   return isAbsolute(sym) || sym.isTls();
188 }
189 
190 // Returns true if Expr refers a PLT entry.
191 static bool needsPlt(RelExpr expr) {
192   return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>(
193       expr);
194 }
195 
196 // Returns true if Expr refers a GOT entry. Note that this function
197 // returns false for TLS variables even though they need GOT, because
198 // TLS variables uses GOT differently than the regular variables.
199 static bool needsGot(RelExpr expr) {
200   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
201                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
202                R_AARCH64_GOT_PAGE>(expr);
203 }
204 
205 // True if this expression is of the form Sym - X, where X is a position in the
206 // file (PC, or GOT for example).
207 static bool isRelExpr(RelExpr expr) {
208   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
209                R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
210                R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
211 }
212 
213 
214 static RelExpr toPlt(RelExpr expr) {
215   switch (expr) {
216   case R_PPC64_CALL:
217     return R_PPC64_CALL_PLT;
218   case R_PC:
219     return R_PLT_PC;
220   case R_ABS:
221     return R_PLT;
222   default:
223     return expr;
224   }
225 }
226 
227 static RelExpr fromPlt(RelExpr expr) {
228   // We decided not to use a plt. Optimize a reference to the plt to a
229   // reference to the symbol itself.
230   switch (expr) {
231   case R_PLT_PC:
232   case R_PPC32_PLTREL:
233     return R_PC;
234   case R_PPC64_CALL_PLT:
235     return R_PPC64_CALL;
236   case R_PLT:
237     return R_ABS;
238   case R_PLT_GOTPLT:
239     return R_GOTPLTREL;
240   default:
241     return expr;
242   }
243 }
244 
245 // Returns true if a given shared symbol is in a read-only segment in a DSO.
246 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
247   using Elf_Phdr = typename ELFT::Phdr;
248 
249   // Determine if the symbol is read-only by scanning the DSO's program headers.
250   const SharedFile &file = ss.getFile();
251   for (const Elf_Phdr &phdr :
252        check(file.template getObj<ELFT>().program_headers()))
253     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
254         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
255         ss.value < phdr.p_vaddr + phdr.p_memsz)
256       return true;
257   return false;
258 }
259 
260 // Returns symbols at the same offset as a given symbol, including SS itself.
261 //
262 // If two or more symbols are at the same offset, and at least one of
263 // them are copied by a copy relocation, all of them need to be copied.
264 // Otherwise, they would refer to different places at runtime.
265 template <class ELFT>
266 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
267   using Elf_Sym = typename ELFT::Sym;
268 
269   SharedFile &file = ss.getFile();
270 
271   SmallSet<SharedSymbol *, 4> ret;
272   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
273     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
274         s.getType() == STT_TLS || s.st_value != ss.value)
275       continue;
276     StringRef name = check(s.getName(file.getStringTable()));
277     Symbol *sym = symtab->find(name);
278     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
279       ret.insert(alias);
280   }
281 
282   // The loop does not check SHT_GNU_verneed, so ret does not contain
283   // non-default version symbols. If ss has a non-default version, ret won't
284   // contain ss. Just add ss unconditionally. If a non-default version alias is
285   // separately copy relocated, it and ss will have different addresses.
286   // Fortunately this case is impractical and fails with GNU ld as well.
287   ret.insert(&ss);
288   return ret;
289 }
290 
291 // When a symbol is copy relocated or we create a canonical plt entry, it is
292 // effectively a defined symbol. In the case of copy relocation the symbol is
293 // in .bss and in the case of a canonical plt entry it is in .plt. This function
294 // replaces the existing symbol with a Defined pointing to the appropriate
295 // location.
296 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
297                                uint64_t size) {
298   Symbol old = sym;
299 
300   sym.replace(Defined{sym.file, StringRef(), sym.binding, sym.stOther,
301                       sym.type, value, size, &sec});
302 
303   sym.auxIdx = old.auxIdx;
304   sym.verdefIndex = old.verdefIndex;
305   sym.exportDynamic = true;
306   sym.isUsedInRegularObj = true;
307   // A copy relocated alias may need a GOT entry.
308   sym.needsGot = old.needsGot;
309 }
310 
311 // Reserve space in .bss or .bss.rel.ro for copy relocation.
312 //
313 // The copy relocation is pretty much a hack. If you use a copy relocation
314 // in your program, not only the symbol name but the symbol's size, RW/RO
315 // bit and alignment become part of the ABI. In addition to that, if the
316 // symbol has aliases, the aliases become part of the ABI. That's subtle,
317 // but if you violate that implicit ABI, that can cause very counter-
318 // intuitive consequences.
319 //
320 // So, what is the copy relocation? It's for linking non-position
321 // independent code to DSOs. In an ideal world, all references to data
322 // exported by DSOs should go indirectly through GOT. But if object files
323 // are compiled as non-PIC, all data references are direct. There is no
324 // way for the linker to transform the code to use GOT, as machine
325 // instructions are already set in stone in object files. This is where
326 // the copy relocation takes a role.
327 //
328 // A copy relocation instructs the dynamic linker to copy data from a DSO
329 // to a specified address (which is usually in .bss) at load-time. If the
330 // static linker (that's us) finds a direct data reference to a DSO
331 // symbol, it creates a copy relocation, so that the symbol can be
332 // resolved as if it were in .bss rather than in a DSO.
333 //
334 // As you can see in this function, we create a copy relocation for the
335 // dynamic linker, and the relocation contains not only symbol name but
336 // various other information about the symbol. So, such attributes become a
337 // part of the ABI.
338 //
339 // Note for application developers: I can give you a piece of advice if
340 // you are writing a shared library. You probably should export only
341 // functions from your library. You shouldn't export variables.
342 //
343 // As an example what can happen when you export variables without knowing
344 // the semantics of copy relocations, assume that you have an exported
345 // variable of type T. It is an ABI-breaking change to add new members at
346 // end of T even though doing that doesn't change the layout of the
347 // existing members. That's because the space for the new members are not
348 // reserved in .bss unless you recompile the main program. That means they
349 // are likely to overlap with other data that happens to be laid out next
350 // to the variable in .bss. This kind of issue is sometimes very hard to
351 // debug. What's a solution? Instead of exporting a variable V from a DSO,
352 // define an accessor getV().
353 template <class ELFT> static void addCopyRelSymbolImpl(SharedSymbol &ss) {
354   // Copy relocation against zero-sized symbol doesn't make sense.
355   uint64_t symSize = ss.getSize();
356   if (symSize == 0 || ss.alignment == 0)
357     fatal("cannot create a copy relocation for symbol " + toString(ss));
358 
359   // See if this symbol is in a read-only segment. If so, preserve the symbol's
360   // memory protection by reserving space in the .bss.rel.ro section.
361   bool isRO = isReadOnly<ELFT>(ss);
362   BssSection *sec =
363       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
364   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
365 
366   // At this point, sectionBases has been migrated to sections. Append sec to
367   // sections.
368   if (osec->commands.empty() ||
369       !isa<InputSectionDescription>(osec->commands.back()))
370     osec->commands.push_back(make<InputSectionDescription>(""));
371   auto *isd = cast<InputSectionDescription>(osec->commands.back());
372   isd->sections.push_back(sec);
373   osec->commitSection(sec);
374 
375   // Look through the DSO's dynamic symbol table for aliases and create a
376   // dynamic symbol for each one. This causes the copy relocation to correctly
377   // interpose any aliases.
378   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
379     replaceWithDefined(*sym, *sec, 0, sym->size);
380 
381   mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
382 }
383 
384 static void addCopyRelSymbol(SharedSymbol &ss) {
385   const SharedFile &file = ss.getFile();
386   switch (file.ekind) {
387   case ELF32LEKind:
388     addCopyRelSymbolImpl<ELF32LE>(ss);
389     break;
390   case ELF32BEKind:
391     addCopyRelSymbolImpl<ELF32BE>(ss);
392     break;
393   case ELF64LEKind:
394     addCopyRelSymbolImpl<ELF64LE>(ss);
395     break;
396   case ELF64BEKind:
397     addCopyRelSymbolImpl<ELF64BE>(ss);
398     break;
399   default:
400     llvm_unreachable("");
401   }
402 }
403 
404 // .eh_frame sections are mergeable input sections, so their input
405 // offsets are not linearly mapped to output section. For each input
406 // offset, we need to find a section piece containing the offset and
407 // add the piece's base address to the input offset to compute the
408 // output offset. That isn't cheap.
409 //
410 // This class is to speed up the offset computation. When we process
411 // relocations, we access offsets in the monotonically increasing
412 // order. So we can optimize for that access pattern.
413 //
414 // For sections other than .eh_frame, this class doesn't do anything.
415 namespace {
416 class OffsetGetter {
417 public:
418   explicit OffsetGetter(InputSectionBase &sec) {
419     if (auto *eh = dyn_cast<EhInputSection>(&sec))
420       pieces = eh->pieces;
421   }
422 
423   // Translates offsets in input sections to offsets in output sections.
424   // Given offset must increase monotonically. We assume that Piece is
425   // sorted by inputOff.
426   uint64_t get(uint64_t off) {
427     if (pieces.empty())
428       return off;
429 
430     while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
431       ++i;
432     if (i == pieces.size())
433       fatal(".eh_frame: relocation is not in any piece");
434 
435     // Pieces must be contiguous, so there must be no holes in between.
436     assert(pieces[i].inputOff <= off && "Relocation not in any piece");
437 
438     // Offset -1 means that the piece is dead (i.e. garbage collected).
439     if (pieces[i].outputOff == -1)
440       return -1;
441     return pieces[i].outputOff + off - pieces[i].inputOff;
442   }
443 
444 private:
445   ArrayRef<EhSectionPiece> pieces;
446   size_t i = 0;
447 };
448 
449 // This class encapsulates states needed to scan relocations for one
450 // InputSectionBase.
451 class RelocationScanner {
452 public:
453   explicit RelocationScanner(InputSectionBase &sec)
454       : sec(sec), getter(sec), config(elf::config.get()), target(*elf::target) {
455   }
456   template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels);
457 
458 private:
459   InputSectionBase &sec;
460   OffsetGetter getter;
461   const Configuration *const config;
462   const TargetInfo &target;
463 
464   // End of relocations, used by Mips/PPC64.
465   const void *end = nullptr;
466 
467   template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
468   template <class ELFT, class RelTy>
469   int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
470   template <class ELFT, class RelTy>
471   int64_t computeAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
472   bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
473                                 uint64_t relOff) const;
474   void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
475                   int64_t addend) const;
476   template <class ELFT, class RelTy> void scanOne(RelTy *&i);
477 };
478 } // namespace
479 
480 // MIPS has an odd notion of "paired" relocations to calculate addends.
481 // For example, if a relocation is of R_MIPS_HI16, there must be a
482 // R_MIPS_LO16 relocation after that, and an addend is calculated using
483 // the two relocations.
484 template <class ELFT, class RelTy>
485 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
486                                              bool isLocal) const {
487   if (expr == R_MIPS_GOTREL && isLocal)
488     return sec.getFile<ELFT>()->mipsGp0;
489 
490   // The ABI says that the paired relocation is used only for REL.
491   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
492   if (RelTy::IsRela)
493     return 0;
494 
495   RelType type = rel.getType(config->isMips64EL);
496   uint32_t pairTy = getMipsPairType(type, isLocal);
497   if (pairTy == R_MIPS_NONE)
498     return 0;
499 
500   const uint8_t *buf = sec.data().data();
501   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
502 
503   // To make things worse, paired relocations might not be contiguous in
504   // the relocation table, so we need to do linear search. *sigh*
505   for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
506     if (ri->getType(config->isMips64EL) == pairTy &&
507         ri->getSymbol(config->isMips64EL) == symIndex)
508       return target.getImplicitAddend(buf + ri->r_offset, pairTy);
509 
510   warn("can't find matching " + toString(pairTy) + " relocation for " +
511        toString(type));
512   return 0;
513 }
514 
515 // Returns an addend of a given relocation. If it is RELA, an addend
516 // is in a relocation itself. If it is REL, we need to read it from an
517 // input section.
518 template <class ELFT, class RelTy>
519 int64_t RelocationScanner::computeAddend(const RelTy &rel, RelExpr expr,
520                                          bool isLocal) const {
521   int64_t addend;
522   RelType type = rel.getType(config->isMips64EL);
523 
524   if (RelTy::IsRela) {
525     addend = getAddend<ELFT>(rel);
526   } else {
527     const uint8_t *buf = sec.data().data();
528     addend = target.getImplicitAddend(buf + rel.r_offset, type);
529   }
530 
531   if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
532     addend += getPPC64TocBase();
533   if (config->emachine == EM_MIPS)
534     addend += computeMipsAddend<ELFT>(rel, expr, isLocal);
535 
536   return addend;
537 }
538 
539 // Custom error message if Sym is defined in a discarded section.
540 template <class ELFT>
541 static std::string maybeReportDiscarded(Undefined &sym) {
542   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
543   if (!file || !sym.discardedSecIdx ||
544       file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
545     return "";
546   ArrayRef<typename ELFT::Shdr> objSections =
547       file->template getELFShdrs<ELFT>();
548 
549   std::string msg;
550   if (sym.type == ELF::STT_SECTION) {
551     msg = "relocation refers to a discarded section: ";
552     msg += CHECK(
553         file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
554   } else {
555     msg = "relocation refers to a symbol in a discarded section: " +
556           toString(sym);
557   }
558   msg += "\n>>> defined in " + toString(file);
559 
560   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
561   if (elfSec.sh_type != SHT_GROUP)
562     return msg;
563 
564   // If the discarded section is a COMDAT.
565   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
566   if (const InputFile *prevailing =
567           symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
568     msg += "\n>>> section group signature: " + signature.str() +
569            "\n>>> prevailing definition is in " + toString(prevailing);
570   return msg;
571 }
572 
573 // Undefined diagnostics are collected in a vector and emitted once all of
574 // them are known, so that some postprocessing on the list of undefined symbols
575 // can happen before lld emits diagnostics.
576 struct UndefinedDiag {
577   Undefined *sym;
578   struct Loc {
579     InputSectionBase *sec;
580     uint64_t offset;
581   };
582   std::vector<Loc> locs;
583   bool isWarning;
584 };
585 
586 static std::vector<UndefinedDiag> undefs;
587 
588 // Check whether the definition name def is a mangled function name that matches
589 // the reference name ref.
590 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
591   llvm::ItaniumPartialDemangler d;
592   std::string name = def.str();
593   if (d.partialDemangle(name.c_str()))
594     return false;
595   char *buf = d.getFunctionName(nullptr, nullptr);
596   if (!buf)
597     return false;
598   bool ret = ref == buf;
599   free(buf);
600   return ret;
601 }
602 
603 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
604 // the suggested symbol, which is either in the symbol table, or in the same
605 // file of sym.
606 static const Symbol *getAlternativeSpelling(const Undefined &sym,
607                                             std::string &pre_hint,
608                                             std::string &post_hint) {
609   DenseMap<StringRef, const Symbol *> map;
610   if (sym.file && sym.file->kind() == InputFile::ObjKind) {
611     auto *file = cast<ELFFileBase>(sym.file);
612     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
613     // will give an error. Don't suggest an alternative spelling.
614     if (file && sym.discardedSecIdx != 0 &&
615         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
616       return nullptr;
617 
618     // Build a map of local defined symbols.
619     for (const Symbol *s : sym.file->getSymbols())
620       if (s->isLocal() && s->isDefined() && !s->getName().empty())
621         map.try_emplace(s->getName(), s);
622   }
623 
624   auto suggest = [&](StringRef newName) -> const Symbol * {
625     // If defined locally.
626     if (const Symbol *s = map.lookup(newName))
627       return s;
628 
629     // If in the symbol table and not undefined.
630     if (const Symbol *s = symtab->find(newName))
631       if (!s->isUndefined())
632         return s;
633 
634     return nullptr;
635   };
636 
637   // This loop enumerates all strings of Levenshtein distance 1 as typo
638   // correction candidates and suggests the one that exists as a non-undefined
639   // symbol.
640   StringRef name = sym.getName();
641   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
642     // Insert a character before name[i].
643     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
644     for (char c = '0'; c <= 'z'; ++c) {
645       newName[i] = c;
646       if (const Symbol *s = suggest(newName))
647         return s;
648     }
649     if (i == e)
650       break;
651 
652     // Substitute name[i].
653     newName = std::string(name);
654     for (char c = '0'; c <= 'z'; ++c) {
655       newName[i] = c;
656       if (const Symbol *s = suggest(newName))
657         return s;
658     }
659 
660     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
661     // common.
662     if (i + 1 < e) {
663       newName[i] = name[i + 1];
664       newName[i + 1] = name[i];
665       if (const Symbol *s = suggest(newName))
666         return s;
667     }
668 
669     // Delete name[i].
670     newName = (name.substr(0, i) + name.substr(i + 1)).str();
671     if (const Symbol *s = suggest(newName))
672       return s;
673   }
674 
675   // Case mismatch, e.g. Foo vs FOO.
676   for (auto &it : map)
677     if (name.equals_insensitive(it.first))
678       return it.second;
679   for (Symbol *sym : symtab->symbols())
680     if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
681       return sym;
682 
683   // The reference may be a mangled name while the definition is not. Suggest a
684   // missing extern "C".
685   if (name.startswith("_Z")) {
686     std::string buf = name.str();
687     llvm::ItaniumPartialDemangler d;
688     if (!d.partialDemangle(buf.c_str()))
689       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
690         const Symbol *s = suggest(buf);
691         free(buf);
692         if (s) {
693           pre_hint = ": extern \"C\" ";
694           return s;
695         }
696       }
697   } else {
698     const Symbol *s = nullptr;
699     for (auto &it : map)
700       if (canSuggestExternCForCXX(name, it.first)) {
701         s = it.second;
702         break;
703       }
704     if (!s)
705       for (Symbol *sym : symtab->symbols())
706         if (canSuggestExternCForCXX(name, sym->getName())) {
707           s = sym;
708           break;
709         }
710     if (s) {
711       pre_hint = " to declare ";
712       post_hint = " as extern \"C\"?";
713       return s;
714     }
715   }
716 
717   return nullptr;
718 }
719 
720 static void reportUndefinedSymbol(const UndefinedDiag &undef,
721                                   bool correctSpelling) {
722   Undefined &sym = *undef.sym;
723 
724   auto visibility = [&]() -> std::string {
725     switch (sym.visibility) {
726     case STV_INTERNAL:
727       return "internal ";
728     case STV_HIDDEN:
729       return "hidden ";
730     case STV_PROTECTED:
731       return "protected ";
732     default:
733       return "";
734     }
735   };
736 
737   std::string msg;
738   switch (config->ekind) {
739   case ELF32LEKind:
740     msg = maybeReportDiscarded<ELF32LE>(sym);
741     break;
742   case ELF32BEKind:
743     msg = maybeReportDiscarded<ELF32BE>(sym);
744     break;
745   case ELF64LEKind:
746     msg = maybeReportDiscarded<ELF64LE>(sym);
747     break;
748   case ELF64BEKind:
749     msg = maybeReportDiscarded<ELF64BE>(sym);
750     break;
751   default:
752     llvm_unreachable("");
753   }
754   if (msg.empty())
755     msg = "undefined " + visibility() + "symbol: " + toString(sym);
756 
757   const size_t maxUndefReferences = 3;
758   size_t i = 0;
759   for (UndefinedDiag::Loc l : undef.locs) {
760     if (i >= maxUndefReferences)
761       break;
762     InputSectionBase &sec = *l.sec;
763     uint64_t offset = l.offset;
764 
765     msg += "\n>>> referenced by ";
766     std::string src = sec.getSrcMsg(sym, offset);
767     if (!src.empty())
768       msg += src + "\n>>>               ";
769     msg += sec.getObjMsg(offset);
770     i++;
771   }
772 
773   if (i < undef.locs.size())
774     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
775                .str();
776 
777   if (correctSpelling) {
778     std::string pre_hint = ": ", post_hint;
779     if (const Symbol *corrected =
780             getAlternativeSpelling(sym, pre_hint, post_hint)) {
781       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
782       if (corrected->file)
783         msg += "\n>>> defined in: " + toString(corrected->file);
784     }
785   }
786 
787   if (sym.getName().startswith("_ZTV"))
788     msg +=
789         "\n>>> the vtable symbol may be undefined because the class is missing "
790         "its key function (see https://lld.llvm.org/missingkeyfunction)";
791   if (config->gcSections && config->zStartStopGC &&
792       sym.getName().startswith("__start_")) {
793     msg += "\n>>> the encapsulation symbol needs to be retained under "
794            "--gc-sections properly; consider -z nostart-stop-gc "
795            "(see https://lld.llvm.org/ELF/start-stop-gc)";
796   }
797 
798   if (undef.isWarning)
799     warn(msg);
800   else
801     error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
802 }
803 
804 void elf::reportUndefinedSymbols() {
805   // Find the first "undefined symbol" diagnostic for each diagnostic, and
806   // collect all "referenced from" lines at the first diagnostic.
807   DenseMap<Symbol *, UndefinedDiag *> firstRef;
808   for (UndefinedDiag &undef : undefs) {
809     assert(undef.locs.size() == 1);
810     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
811       canon->locs.push_back(undef.locs[0]);
812       undef.locs.clear();
813     } else
814       firstRef[undef.sym] = &undef;
815   }
816 
817   // Enable spell corrector for the first 2 diagnostics.
818   for (auto it : enumerate(undefs))
819     if (!it.value().locs.empty())
820       reportUndefinedSymbol(it.value(), it.index() < 2);
821   undefs.clear();
822 }
823 
824 // Report an undefined symbol if necessary.
825 // Returns true if the undefined symbol will produce an error message.
826 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
827                                  uint64_t offset) {
828   // If versioned, issue an error (even if the symbol is weak) because we don't
829   // know the defining filename which is required to construct a Verneed entry.
830   if (sym.hasVersionSuffix) {
831     undefs.push_back({&sym, {{&sec, offset}}, false});
832     return true;
833   }
834   if (sym.isWeak())
835     return false;
836 
837   bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
838   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
839     return false;
840 
841   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
842   // which references a switch table in a discarded .rodata/.text section. The
843   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
844   // spec says references from outside the group to a STB_LOCAL symbol are not
845   // allowed. Work around the bug.
846   //
847   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
848   // because .LC0-.LTOC is not representable if the two labels are in different
849   // .got2
850   if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
851     return false;
852 
853   bool isWarning =
854       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
855       config->noinhibitExec;
856   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
857   return !isWarning;
858 }
859 
860 // MIPS N32 ABI treats series of successive relocations with the same offset
861 // as a single relocation. The similar approach used by N64 ABI, but this ABI
862 // packs all relocations into the single relocation record. Here we emulate
863 // this for the N32 ABI. Iterate over relocation with the same offset and put
864 // theirs types into the single bit-set.
865 template <class RelTy>
866 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
867   RelType type = 0;
868   uint64_t offset = rel->r_offset;
869 
870   int n = 0;
871   while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
872     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
873   return type;
874 }
875 
876 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
877                              Symbol &sym, int64_t addend, RelExpr expr,
878                              RelType type) {
879   Partition &part = isec.getPartition();
880 
881   // Add a relative relocation. If relrDyn section is enabled, and the
882   // relocation offset is guaranteed to be even, add the relocation to
883   // the relrDyn section, otherwise add it to the relaDyn section.
884   // relrDyn sections don't support odd offsets. Also, relrDyn sections
885   // don't store the addend values, so we must write it to the relocated
886   // address.
887   if (part.relrDyn && isec.alignment >= 2 && offsetInSec % 2 == 0) {
888     isec.relocations.push_back({expr, type, offsetInSec, addend, &sym});
889     part.relrDyn->relocs.push_back({&isec, offsetInSec});
890     return;
891   }
892   part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
893                                  addend, type, expr);
894 }
895 
896 template <class PltSection, class GotPltSection>
897 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
898                         RelocationBaseSection &rel, RelType type, Symbol &sym) {
899   plt.addEntry(sym);
900   gotPlt.addEntry(sym);
901   rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
902                 sym.isPreemptible ? DynamicReloc::AgainstSymbol
903                                   : DynamicReloc::AddendOnlyWithTargetVA,
904                 sym, 0, R_ABS});
905 }
906 
907 static void addGotEntry(Symbol &sym) {
908   in.got->addEntry(sym);
909   uint64_t off = sym.getGotOffset();
910 
911   // If preemptible, emit a GLOB_DAT relocation.
912   if (sym.isPreemptible) {
913     mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
914                                  DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
915     return;
916   }
917 
918   // Otherwise, the value is either a link-time constant or the load base
919   // plus a constant.
920   if (!config->isPic || isAbsolute(sym))
921     in.got->relocations.push_back({R_ABS, target->symbolicRel, off, 0, &sym});
922   else
923     addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
924 }
925 
926 static void addTpOffsetGotEntry(Symbol &sym) {
927   in.got->addEntry(sym);
928   uint64_t off = sym.getGotOffset();
929   if (!sym.isPreemptible && !config->isPic) {
930     in.got->relocations.push_back({R_TPREL, target->symbolicRel, off, 0, &sym});
931     return;
932   }
933   mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
934       target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
935 }
936 
937 // Return true if we can define a symbol in the executable that
938 // contains the value/function of a symbol defined in a shared
939 // library.
940 static bool canDefineSymbolInExecutable(Symbol &sym) {
941   // If the symbol has default visibility the symbol defined in the
942   // executable will preempt it.
943   // Note that we want the visibility of the shared symbol itself, not
944   // the visibility of the symbol in the output file we are producing. That is
945   // why we use Sym.stOther.
946   if ((sym.stOther & 0x3) == STV_DEFAULT)
947     return true;
948 
949   // If we are allowed to break address equality of functions, defining
950   // a plt entry will allow the program to call the function in the
951   // .so, but the .so and the executable will no agree on the address
952   // of the function. Similar logic for objects.
953   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
954           (sym.isObject() && config->ignoreDataAddressEquality));
955 }
956 
957 // Returns true if a given relocation can be computed at link-time.
958 // This only handles relocation types expected in processRelocAux.
959 //
960 // For instance, we know the offset from a relocation to its target at
961 // link-time if the relocation is PC-relative and refers a
962 // non-interposable function in the same executable. This function
963 // will return true for such relocation.
964 //
965 // If this function returns false, that means we need to emit a
966 // dynamic relocation so that the relocation will be fixed at load-time.
967 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
968                                                  const Symbol &sym,
969                                                  uint64_t relOff) const {
970   // These expressions always compute a constant
971   if (oneof<R_GOTPLT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL,
972             R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
973             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
974             R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT,
975             R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e))
976     return true;
977 
978   // These never do, except if the entire file is position dependent or if
979   // only the low bits are used.
980   if (e == R_GOT || e == R_PLT)
981     return target.usesOnlyLowPageBits(type) || !config->isPic;
982 
983   if (sym.isPreemptible)
984     return false;
985   if (!config->isPic)
986     return true;
987 
988   // The size of a non preemptible symbol is a constant.
989   if (e == R_SIZE)
990     return true;
991 
992   // For the target and the relocation, we want to know if they are
993   // absolute or relative.
994   bool absVal = isAbsoluteValue(sym);
995   bool relE = isRelExpr(e);
996   if (absVal && !relE)
997     return true;
998   if (!absVal && relE)
999     return true;
1000   if (!absVal && !relE)
1001     return target.usesOnlyLowPageBits(type);
1002 
1003   assert(absVal && relE);
1004 
1005   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
1006   // in PIC mode. This is a little strange, but it allows us to link function
1007   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
1008   // Normally such a call will be guarded with a comparison, which will load a
1009   // zero from the GOT.
1010   if (sym.isUndefWeak())
1011     return true;
1012 
1013   // We set the final symbols values for linker script defined symbols later.
1014   // They always can be computed as a link time constant.
1015   if (sym.scriptDefined)
1016       return true;
1017 
1018   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
1019         toString(sym) + getLocation(sec, sym, relOff));
1020   return true;
1021 }
1022 
1023 // The reason we have to do this early scan is as follows
1024 // * To mmap the output file, we need to know the size
1025 // * For that, we need to know how many dynamic relocs we will have.
1026 // It might be possible to avoid this by outputting the file with write:
1027 // * Write the allocated output sections, computing addresses.
1028 // * Apply relocations, recording which ones require a dynamic reloc.
1029 // * Write the dynamic relocations.
1030 // * Write the rest of the file.
1031 // This would have some drawbacks. For example, we would only know if .rela.dyn
1032 // is needed after applying relocations. If it is, it will go after rw and rx
1033 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1034 // complicates things for the dynamic linker and means we would have to reserve
1035 // space for the extra PT_LOAD even if we end up not using it.
1036 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1037                                    Symbol &sym, int64_t addend) const {
1038   // If the relocation is known to be a link-time constant, we know no dynamic
1039   // relocation will be created, pass the control to relocateAlloc() or
1040   // relocateNonAlloc() to resolve it.
1041   //
1042   // The behavior of an undefined weak reference is implementation defined. For
1043   // non-link-time constants, we resolve relocations statically (let
1044   // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1045   // relocations for -pie and -shared.
1046   //
1047   // The general expectation of -no-pie static linking is that there is no
1048   // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1049   // -shared matches the spirit of its -z undefs default. -pie has freedom on
1050   // choices, and we choose dynamic relocations to be consistent with the
1051   // handling of GOT-generating relocations.
1052   if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1053       (!config->isPic && sym.isUndefWeak())) {
1054     sec.relocations.push_back({expr, type, offset, addend, &sym});
1055     return;
1056   }
1057 
1058   bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1059   if (canWrite) {
1060     RelType rel = target.getDynRel(type);
1061     if (expr == R_GOT || (rel == target.symbolicRel && !sym.isPreemptible)) {
1062       addRelativeReloc(sec, offset, sym, addend, expr, type);
1063       return;
1064     } else if (rel != 0) {
1065       if (config->emachine == EM_MIPS && rel == target.symbolicRel)
1066         rel = target.relativeRel;
1067       sec.getPartition().relaDyn->addSymbolReloc(rel, sec, offset, sym, addend,
1068                                                  type);
1069 
1070       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1071       // While regular ABI uses dynamic relocations to fill up GOT entries
1072       // MIPS ABI requires dynamic linker to fills up GOT entries using
1073       // specially sorted dynamic symbol table. This affects even dynamic
1074       // relocations against symbols which do not require GOT entries
1075       // creation explicitly, i.e. do not have any GOT-relocations. So if
1076       // a preemptible symbol has a dynamic relocation we anyway have
1077       // to create a GOT entry for it.
1078       // If a non-preemptible symbol has a dynamic relocation against it,
1079       // dynamic linker takes it st_value, adds offset and writes down
1080       // result of the dynamic relocation. In case of preemptible symbol
1081       // dynamic linker performs symbol resolution, writes the symbol value
1082       // to the GOT entry and reads the GOT entry when it needs to perform
1083       // a dynamic relocation.
1084       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1085       if (config->emachine == EM_MIPS)
1086         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1087       return;
1088     }
1089   }
1090 
1091   // When producing an executable, we can perform copy relocations (for
1092   // STT_OBJECT) and canonical PLT (for STT_FUNC).
1093   if (!config->shared) {
1094     if (!canDefineSymbolInExecutable(sym)) {
1095       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1096                   getLocation(sec, sym, offset));
1097       return;
1098     }
1099 
1100     if (sym.isObject()) {
1101       // Produce a copy relocation.
1102       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1103         if (!config->zCopyreloc)
1104           error("unresolvable relocation " + toString(type) +
1105                 " against symbol '" + toString(*ss) +
1106                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1107                 getLocation(sec, sym, offset));
1108         sym.needsCopy = true;
1109       }
1110       sec.relocations.push_back({expr, type, offset, addend, &sym});
1111       return;
1112     }
1113 
1114     // This handles a non PIC program call to function in a shared library. In
1115     // an ideal world, we could just report an error saying the relocation can
1116     // overflow at runtime. In the real world with glibc, crt1.o has a
1117     // R_X86_64_PC32 pointing to libc.so.
1118     //
1119     // The general idea on how to handle such cases is to create a PLT entry and
1120     // use that as the function value.
1121     //
1122     // For the static linking part, we just return a plt expr and everything
1123     // else will use the PLT entry as the address.
1124     //
1125     // The remaining problem is making sure pointer equality still works. We
1126     // need the help of the dynamic linker for that. We let it know that we have
1127     // a direct reference to a so symbol by creating an undefined symbol with a
1128     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1129     // the value of the symbol we created. This is true even for got entries, so
1130     // pointer equality is maintained. To avoid an infinite loop, the only entry
1131     // that points to the real function is a dedicated got entry used by the
1132     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1133     // R_386_JMP_SLOT, etc).
1134 
1135     // For position independent executable on i386, the plt entry requires ebx
1136     // to be set. This causes two problems:
1137     // * If some code has a direct reference to a function, it was probably
1138     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1139     // * If a library definition gets preempted to the executable, it will have
1140     //   the wrong ebx value.
1141     if (sym.isFunc()) {
1142       if (config->pie && config->emachine == EM_386)
1143         errorOrWarn("symbol '" + toString(sym) +
1144                     "' cannot be preempted; recompile with -fPIE" +
1145                     getLocation(sec, sym, offset));
1146       sym.needsCopy = true;
1147       sym.needsPlt = true;
1148       sec.relocations.push_back({expr, type, offset, addend, &sym});
1149       return;
1150     }
1151   }
1152 
1153   errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1154               (sym.getName().empty() ? "local symbol"
1155                                      : "symbol '" + toString(sym) + "'") +
1156               "; recompile with -fPIC" + getLocation(sec, sym, offset));
1157 }
1158 
1159 // This function is similar to the `handleTlsRelocation`. MIPS does not
1160 // support any relaxations for TLS relocations so by factoring out MIPS
1161 // handling in to the separate function we can simplify the code and do not
1162 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1163 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1164 // without dynamic relocations.
1165 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1166                                         InputSectionBase &c, uint64_t offset,
1167                                         int64_t addend, RelExpr expr) {
1168   if (expr == R_MIPS_TLSLD) {
1169     in.mipsGot->addTlsIndex(*c.file);
1170     c.relocations.push_back({expr, type, offset, addend, &sym});
1171     return 1;
1172   }
1173   if (expr == R_MIPS_TLSGD) {
1174     in.mipsGot->addDynTlsEntry(*c.file, sym);
1175     c.relocations.push_back({expr, type, offset, addend, &sym});
1176     return 1;
1177   }
1178   return 0;
1179 }
1180 
1181 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1182 // require the generation of a pair of GOT entries that have associated dynamic
1183 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1184 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1185 // symbol in TLS block.
1186 //
1187 // Returns the number of relocations processed.
1188 static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1189                                     InputSectionBase &c, uint64_t offset,
1190                                     int64_t addend, RelExpr expr) {
1191   if (!sym.isTls())
1192     return 0;
1193 
1194   if (config->emachine == EM_MIPS)
1195     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1196 
1197   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1198             R_TLSDESC_GOTPLT>(expr) &&
1199       config->shared) {
1200     if (expr != R_TLSDESC_CALL) {
1201       sym.needsTlsDesc = true;
1202       c.relocations.push_back({expr, type, offset, addend, &sym});
1203     }
1204     return 1;
1205   }
1206 
1207   // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation.  For
1208   // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1209   // relaxation as well.
1210   bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
1211                      config->emachine != EM_HEXAGON &&
1212                      config->emachine != EM_RISCV &&
1213                      !c.file->ppc64DisableTLSRelax;
1214 
1215   // If we are producing an executable and the symbol is non-preemptable, it
1216   // must be defined and the code sequence can be relaxed to use Local-Exec.
1217   //
1218   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1219   // we can omit the DTPMOD dynamic relocations and resolve them at link time
1220   // because them are always 1. This may be necessary for static linking as
1221   // DTPMOD may not be expected at load time.
1222   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1223 
1224   // Local Dynamic is for access to module local TLS variables, while still
1225   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1226   // module index, with a special value of 0 for the current module. GOT[e1] is
1227   // unused. There only needs to be one module index entry.
1228   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
1229           expr)) {
1230     // Local-Dynamic relocs can be relaxed to Local-Exec.
1231     if (toExecRelax) {
1232       c.relocations.push_back(
1233           {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset,
1234            addend, &sym});
1235       return target->getTlsGdRelaxSkip(type);
1236     }
1237     if (expr == R_TLSLD_HINT)
1238       return 1;
1239     config->needsTlsLd = true;
1240     c.relocations.push_back({expr, type, offset, addend, &sym});
1241     return 1;
1242   }
1243 
1244   // Local-Dynamic relocs can be relaxed to Local-Exec.
1245   if (expr == R_DTPREL) {
1246     if (toExecRelax)
1247       expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1248     c.relocations.push_back({expr, type, offset, addend, &sym});
1249     return 1;
1250   }
1251 
1252   // Local-Dynamic sequence where offset of tls variable relative to dynamic
1253   // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1254   if (expr == R_TLSLD_GOT_OFF) {
1255     sym.needsGotDtprel = true;
1256     c.relocations.push_back({expr, type, offset, addend, &sym});
1257     return 1;
1258   }
1259 
1260   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1261             R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
1262     if (!toExecRelax) {
1263       sym.needsTlsGd = true;
1264       c.relocations.push_back({expr, type, offset, addend, &sym});
1265       return 1;
1266     }
1267 
1268     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1269     // depending on the symbol being locally defined or not.
1270     if (sym.isPreemptible) {
1271       sym.needsTlsGdToIe = true;
1272       c.relocations.push_back(
1273           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset,
1274            addend, &sym});
1275     } else {
1276       c.relocations.push_back(
1277           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset,
1278            addend, &sym});
1279     }
1280     return target->getTlsGdRelaxSkip(type);
1281   }
1282 
1283   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
1284             R_TLSIE_HINT>(expr)) {
1285     // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1286     // defined.
1287     if (toExecRelax && isLocalInExecutable) {
1288       c.relocations.push_back(
1289           {R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1290     } else if (expr != R_TLSIE_HINT) {
1291       sym.needsTlsIe = true;
1292       // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1293       if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1294         addRelativeReloc(c, offset, sym, addend, expr, type);
1295       else
1296         c.relocations.push_back({expr, type, offset, addend, &sym});
1297     }
1298     return 1;
1299   }
1300 
1301   return 0;
1302 }
1303 
1304 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) {
1305   const RelTy &rel = *i;
1306   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1307   Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1308   RelType type;
1309 
1310   // Deal with MIPS oddity.
1311   if (config->mipsN32Abi) {
1312     type = getMipsN32RelType(i);
1313   } else {
1314     type = rel.getType(config->isMips64EL);
1315     ++i;
1316   }
1317 
1318   // Get an offset in an output section this relocation is applied to.
1319   uint64_t offset = getter.get(rel.r_offset);
1320   if (offset == uint64_t(-1))
1321     return;
1322 
1323   // Error if the target symbol is undefined. Symbol index 0 may be used by
1324   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1325   if (sym.isUndefined() && symIndex != 0 &&
1326       maybeReportUndefined(cast<Undefined>(sym), sec, offset))
1327     return;
1328 
1329   const uint8_t *relocatedAddr = sec.data().begin() + offset;
1330   RelExpr expr = target.getRelExpr(type, sym, relocatedAddr);
1331 
1332   // Ignore R_*_NONE and other marker relocations.
1333   if (expr == R_NONE)
1334     return;
1335 
1336   // Read an addend.
1337   int64_t addend = computeAddend<ELFT>(rel, expr, sym.isLocal());
1338 
1339   if (config->emachine == EM_PPC64) {
1340     // We can separate the small code model relocations into 2 categories:
1341     // 1) Those that access the compiler generated .toc sections.
1342     // 2) Those that access the linker allocated got entries.
1343     // lld allocates got entries to symbols on demand. Since we don't try to
1344     // sort the got entries in any way, we don't have to track which objects
1345     // have got-based small code model relocs. The .toc sections get placed
1346     // after the end of the linker allocated .got section and we do sort those
1347     // so sections addressed with small code model relocations come first.
1348     if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1349       sec.file->ppc64SmallCodeModelTocRelocs = true;
1350 
1351     // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1352     // InputSectionBase::relocateAlloc().
1353     if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1354         cast<Defined>(sym).section->name == ".toc")
1355       ppc64noTocRelax.insert({&sym, addend});
1356 
1357     if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1358         (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1359       if (i == end) {
1360         errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1361                     "relocation" +
1362                     getLocation(sec, sym, offset));
1363         return;
1364       }
1365 
1366       // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1367       // so we can discern it later from the toc-case.
1368       if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1369         ++offset;
1370     }
1371   }
1372 
1373   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1374   // uses their addresses, we need GOT or GOTPLT to be created.
1375   //
1376   // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1377   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1378             R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1379     in.gotPlt->hasGotPltOffRel = true;
1380   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1381                    R_PPC64_RELAX_TOC>(expr)) {
1382     in.got->hasGotOffRel = true;
1383   }
1384 
1385   // Process TLS relocations, including relaxing TLS relocations. Note that
1386   // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1387   if (expr == R_TPREL || expr == R_TPREL_NEG) {
1388     if (config->shared) {
1389       errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1390                   " cannot be used with -shared" +
1391                   getLocation(sec, sym, offset));
1392       return;
1393     }
1394   } else if (unsigned processed =
1395                  handleTlsRelocation(type, sym, sec, offset, addend, expr)) {
1396     i += (processed - 1);
1397     return;
1398   }
1399 
1400   // Relax relocations.
1401   //
1402   // If we know that a PLT entry will be resolved within the same ELF module, we
1403   // can skip PLT access and directly jump to the destination function. For
1404   // example, if we are linking a main executable, all dynamic symbols that can
1405   // be resolved within the executable will actually be resolved that way at
1406   // runtime, because the main executable is always at the beginning of a search
1407   // list. We can leverage that fact.
1408   if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1409     if (expr != R_GOT_PC) {
1410       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1411       // stub type. It should be ignored if optimized to R_PC.
1412       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1413         addend &= ~0x8000;
1414       // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1415       // call __tls_get_addr even if the symbol is non-preemptible.
1416       if (!(config->emachine == EM_HEXAGON &&
1417            (type == R_HEX_GD_PLT_B22_PCREL ||
1418             type == R_HEX_GD_PLT_B22_PCREL_X ||
1419             type == R_HEX_GD_PLT_B32_PCREL_X)))
1420       expr = fromPlt(expr);
1421     } else if (!isAbsoluteValue(sym)) {
1422       expr = target.adjustGotPcExpr(type, addend, relocatedAddr);
1423     }
1424   }
1425 
1426   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1427   // direct relocation on through.
1428   if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1429     sym.exportDynamic = true;
1430     mainPart->relaDyn->addSymbolReloc(type, sec, offset, sym, addend, type);
1431     return;
1432   }
1433 
1434   if (needsGot(expr)) {
1435     if (config->emachine == EM_MIPS) {
1436       // MIPS ABI has special rules to process GOT entries and doesn't
1437       // require relocation entries for them. A special case is TLS
1438       // relocations. In that case dynamic loader applies dynamic
1439       // relocations to initialize TLS GOT entries.
1440       // See "Global Offset Table" in Chapter 5 in the following document
1441       // for detailed description:
1442       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1443       in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1444     } else {
1445       sym.needsGot = true;
1446     }
1447   } else if (needsPlt(expr)) {
1448     sym.needsPlt = true;
1449   } else {
1450     sym.hasDirectReloc = true;
1451   }
1452 
1453   processAux(expr, type, offset, sym, addend);
1454 }
1455 
1456 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1457 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1458 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1459 // instructions are generated by very old IBM XL compilers. Work around the
1460 // issue by disabling GD/LD to IE/LE relaxation.
1461 template <class RelTy>
1462 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1463   // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1464   if (!sec.file || sec.file->ppc64DisableTLSRelax)
1465     return;
1466   bool hasGDLD = false;
1467   for (const RelTy &rel : rels) {
1468     RelType type = rel.getType(false);
1469     switch (type) {
1470     case R_PPC64_TLSGD:
1471     case R_PPC64_TLSLD:
1472       return; // Found a marker
1473     case R_PPC64_GOT_TLSGD16:
1474     case R_PPC64_GOT_TLSGD16_HA:
1475     case R_PPC64_GOT_TLSGD16_HI:
1476     case R_PPC64_GOT_TLSGD16_LO:
1477     case R_PPC64_GOT_TLSLD16:
1478     case R_PPC64_GOT_TLSLD16_HA:
1479     case R_PPC64_GOT_TLSLD16_HI:
1480     case R_PPC64_GOT_TLSLD16_LO:
1481       hasGDLD = true;
1482       break;
1483     }
1484   }
1485   if (hasGDLD) {
1486     sec.file->ppc64DisableTLSRelax = true;
1487     warn(toString(sec.file) +
1488          ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1489          "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1490   }
1491 }
1492 
1493 template <class ELFT, class RelTy>
1494 void RelocationScanner::scan(ArrayRef<RelTy> rels) {
1495   // Not all relocations end up in Sec.Relocations, but a lot do.
1496   sec.relocations.reserve(rels.size());
1497 
1498   if (config->emachine == EM_PPC64)
1499     checkPPC64TLSRelax<RelTy>(sec, rels);
1500 
1501   // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1502   // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1503   // script), the relocations may be unordered.
1504   SmallVector<RelTy, 0> storage;
1505   if (isa<EhInputSection>(sec))
1506     rels = sortRels(rels, storage);
1507 
1508   end = static_cast<const void *>(rels.end());
1509   for (auto i = rels.begin(); i != end;)
1510     scanOne<ELFT>(i);
1511 
1512   // Sort relocations by offset for more efficient searching for
1513   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1514   if (config->emachine == EM_RISCV ||
1515       (config->emachine == EM_PPC64 && sec.name == ".toc"))
1516     llvm::stable_sort(sec.relocations,
1517                       [](const Relocation &lhs, const Relocation &rhs) {
1518                         return lhs.offset < rhs.offset;
1519                       });
1520 }
1521 
1522 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1523   RelocationScanner scanner(s);
1524   const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>();
1525   if (rels.areRelocsRel())
1526     scanner.template scan<ELFT>(rels.rels);
1527   else
1528     scanner.template scan<ELFT>(rels.relas);
1529 }
1530 
1531 static bool handleNonPreemptibleIfunc(Symbol &sym) {
1532   // Handle a reference to a non-preemptible ifunc. These are special in a
1533   // few ways:
1534   //
1535   // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1536   //   a fixed value. But assuming that all references to the ifunc are
1537   //   GOT-generating or PLT-generating, the handling of an ifunc is
1538   //   relatively straightforward. We create a PLT entry in Iplt, which is
1539   //   usually at the end of .plt, which makes an indirect call using a
1540   //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1541   //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1542   //   which is usually at the end of .rela.plt. Unlike most relocations in
1543   //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1544   //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1545   //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1546   //   .got.plt without requiring a separate GOT entry.
1547   //
1548   // - Despite the fact that an ifunc does not have a fixed value, compilers
1549   //   that are not passed -fPIC will assume that they do, and will emit
1550   //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1551   //   symbol. This means that if a direct relocation to the symbol is
1552   //   seen, the linker must set a value for the symbol, and this value must
1553   //   be consistent no matter what type of reference is made to the symbol.
1554   //   This can be done by creating a PLT entry for the symbol in the way
1555   //   described above and making it canonical, that is, making all references
1556   //   point to the PLT entry instead of the resolver. In lld we also store
1557   //   the address of the PLT entry in the dynamic symbol table, which means
1558   //   that the symbol will also have the same value in other modules.
1559   //   Because the value loaded from the GOT needs to be consistent with
1560   //   the value computed using a direct relocation, a non-preemptible ifunc
1561   //   may end up with two GOT entries, one in .got.plt that points to the
1562   //   address returned by the resolver and is used only by the PLT entry,
1563   //   and another in .got that points to the PLT entry and is used by
1564   //   GOT-generating relocations.
1565   //
1566   // - The fact that these symbols do not have a fixed value makes them an
1567   //   exception to the general rule that a statically linked executable does
1568   //   not require any form of dynamic relocation. To handle these relocations
1569   //   correctly, the IRELATIVE relocations are stored in an array which a
1570   //   statically linked executable's startup code must enumerate using the
1571   //   linker-defined symbols __rela?_iplt_{start,end}.
1572   if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1573     return false;
1574   // Skip unreferenced non-preemptible ifunc.
1575   if (!(sym.needsGot || sym.needsPlt || sym.hasDirectReloc))
1576     return true;
1577 
1578   sym.isInIplt = true;
1579 
1580   // Create an Iplt and the associated IRELATIVE relocation pointing to the
1581   // original section/value pairs. For non-GOT non-PLT relocation case below, we
1582   // may alter section/value, so create a copy of the symbol to make
1583   // section/value fixed.
1584   auto *directSym = makeDefined(cast<Defined>(sym));
1585   directSym->allocateAux();
1586   addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel,
1587               *directSym);
1588   sym.allocateAux();
1589   symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1590 
1591   if (sym.hasDirectReloc) {
1592     // Change the value to the IPLT and redirect all references to it.
1593     auto &d = cast<Defined>(sym);
1594     d.section = in.iplt.get();
1595     d.value = d.getPltIdx() * target->ipltEntrySize;
1596     d.size = 0;
1597     // It's important to set the symbol type here so that dynamic loaders
1598     // don't try to call the PLT as if it were an ifunc resolver.
1599     d.type = STT_FUNC;
1600 
1601     if (sym.needsGot)
1602       addGotEntry(sym);
1603   } else if (sym.needsGot) {
1604     // Redirect GOT accesses to point to the Igot.
1605     sym.gotInIgot = true;
1606   }
1607   return true;
1608 }
1609 
1610 void elf::postScanRelocations() {
1611   auto fn = [](Symbol &sym) {
1612     if (handleNonPreemptibleIfunc(sym))
1613       return;
1614     if (!sym.needsDynReloc())
1615       return;
1616     sym.allocateAux();
1617 
1618     if (sym.needsGot)
1619       addGotEntry(sym);
1620     if (sym.needsPlt)
1621       addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1622     if (sym.needsCopy) {
1623       if (sym.isObject()) {
1624         addCopyRelSymbol(cast<SharedSymbol>(sym));
1625         // needsCopy is cleared for sym and its aliases so that in later
1626         // iterations aliases won't cause redundant copies.
1627         assert(!sym.needsCopy);
1628       } else {
1629         assert(sym.isFunc() && sym.needsPlt);
1630         if (!sym.isDefined()) {
1631           replaceWithDefined(sym, *in.plt,
1632                              target->pltHeaderSize +
1633                                  target->pltEntrySize * sym.getPltIdx(),
1634                              0);
1635           sym.needsCopy = true;
1636           if (config->emachine == EM_PPC) {
1637             // PPC32 canonical PLT entries are at the beginning of .glink
1638             cast<Defined>(sym).value = in.plt->headerSize;
1639             in.plt->headerSize += 16;
1640             cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1641           }
1642         }
1643       }
1644     }
1645 
1646     if (!sym.isTls())
1647       return;
1648     bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1649 
1650     if (sym.needsTlsDesc) {
1651       in.got->addTlsDescEntry(sym);
1652       mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1653           target->tlsDescRel, *in.got, in.got->getTlsDescOffset(sym), sym,
1654           target->tlsDescRel);
1655     }
1656     if (sym.needsTlsGd) {
1657       in.got->addDynTlsEntry(sym);
1658       uint64_t off = in.got->getGlobalDynOffset(sym);
1659       if (isLocalInExecutable)
1660         // Write one to the GOT slot.
1661         in.got->relocations.push_back(
1662             {R_ADDEND, target->symbolicRel, off, 1, &sym});
1663       else
1664         mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *in.got,
1665                                           off, sym);
1666 
1667       // If the symbol is preemptible we need the dynamic linker to write
1668       // the offset too.
1669       uint64_t offsetOff = off + config->wordsize;
1670       if (sym.isPreemptible)
1671         mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *in.got,
1672                                           offsetOff, sym);
1673       else
1674         in.got->relocations.push_back(
1675             {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1676     }
1677     if (sym.needsTlsGdToIe) {
1678       in.got->addEntry(sym);
1679       mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *in.got,
1680                                         sym.getGotOffset(), sym);
1681     }
1682     if (sym.needsGotDtprel) {
1683       in.got->addEntry(sym);
1684       in.got->relocations.push_back(
1685           {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1686     }
1687 
1688     if (sym.needsTlsIe && !sym.needsTlsGdToIe)
1689       addTpOffsetGotEntry(sym);
1690   };
1691 
1692   if (config->needsTlsLd && in.got->addTlsIndex()) {
1693     static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0);
1694     if (config->shared)
1695       mainPart->relaDyn->addReloc(
1696           {target->tlsModuleIndexRel, in.got.get(), in.got->getTlsIndexOff()});
1697     else
1698       in.got->relocations.push_back(
1699           {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &dummy});
1700   }
1701 
1702   assert(symAux.empty());
1703   for (Symbol *sym : symtab->symbols())
1704     fn(*sym);
1705 
1706   // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1707   // handling. They don't need regular PLT.
1708   for (ELFFileBase *file : objectFiles)
1709     for (Symbol *sym : file->getLocalSymbols())
1710       fn(*sym);
1711 }
1712 
1713 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1714   // std::merge requires a strict weak ordering.
1715   if (a->outSecOff < b->outSecOff)
1716     return true;
1717 
1718   if (a->outSecOff == b->outSecOff) {
1719     auto *ta = dyn_cast<ThunkSection>(a);
1720     auto *tb = dyn_cast<ThunkSection>(b);
1721 
1722     // Check if Thunk is immediately before any specific Target
1723     // InputSection for example Mips LA25 Thunks.
1724     if (ta && ta->getTargetInputSection() == b)
1725       return true;
1726 
1727     // Place Thunk Sections without specific targets before
1728     // non-Thunk Sections.
1729     if (ta && !tb && !ta->getTargetInputSection())
1730       return true;
1731   }
1732 
1733   return false;
1734 }
1735 
1736 // Call Fn on every executable InputSection accessed via the linker script
1737 // InputSectionDescription::Sections.
1738 static void forEachInputSectionDescription(
1739     ArrayRef<OutputSection *> outputSections,
1740     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1741   for (OutputSection *os : outputSections) {
1742     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1743       continue;
1744     for (SectionCommand *bc : os->commands)
1745       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1746         fn(os, isd);
1747   }
1748 }
1749 
1750 // Thunk Implementation
1751 //
1752 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1753 // of code that the linker inserts inbetween a caller and a callee. The thunks
1754 // are added at link time rather than compile time as the decision on whether
1755 // a thunk is needed, such as the caller and callee being out of range, can only
1756 // be made at link time.
1757 //
1758 // It is straightforward to tell given the current state of the program when a
1759 // thunk is needed for a particular call. The more difficult part is that
1760 // the thunk needs to be placed in the program such that the caller can reach
1761 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1762 // the program alters addresses, which can mean more thunks etc.
1763 //
1764 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1765 // The decision to have a ThunkSection act as a container means that we can
1766 // more easily handle the most common case of a single block of contiguous
1767 // Thunks by inserting just a single ThunkSection.
1768 //
1769 // The implementation of Thunks in lld is split across these areas
1770 // Relocations.cpp : Framework for creating and placing thunks
1771 // Thunks.cpp : The code generated for each supported thunk
1772 // Target.cpp : Target specific hooks that the framework uses to decide when
1773 //              a thunk is used
1774 // Synthetic.cpp : Implementation of ThunkSection
1775 // Writer.cpp : Iteratively call framework until no more Thunks added
1776 //
1777 // Thunk placement requirements:
1778 // Mips LA25 thunks. These must be placed immediately before the callee section
1779 // We can assume that the caller is in range of the Thunk. These are modelled
1780 // by Thunks that return the section they must precede with
1781 // getTargetInputSection().
1782 //
1783 // ARM interworking and range extension thunks. These thunks must be placed
1784 // within range of the caller. All implemented ARM thunks can always reach the
1785 // callee as they use an indirect jump via a register that has no range
1786 // restrictions.
1787 //
1788 // Thunk placement algorithm:
1789 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1790 // getTargetInputSection().
1791 //
1792 // For thunks that must be placed within range of the caller there are many
1793 // possible choices given that the maximum range from the caller is usually
1794 // much larger than the average InputSection size. Desirable properties include:
1795 // - Maximize reuse of thunks by multiple callers
1796 // - Minimize number of ThunkSections to simplify insertion
1797 // - Handle impact of already added Thunks on addresses
1798 // - Simple to understand and implement
1799 //
1800 // In lld for the first pass, we pre-create one or more ThunkSections per
1801 // InputSectionDescription at Target specific intervals. A ThunkSection is
1802 // placed so that the estimated end of the ThunkSection is within range of the
1803 // start of the InputSectionDescription or the previous ThunkSection. For
1804 // example:
1805 // InputSectionDescription
1806 // Section 0
1807 // ...
1808 // Section N
1809 // ThunkSection 0
1810 // Section N + 1
1811 // ...
1812 // Section N + K
1813 // Thunk Section 1
1814 //
1815 // The intention is that we can add a Thunk to a ThunkSection that is well
1816 // spaced enough to service a number of callers without having to do a lot
1817 // of work. An important principle is that it is not an error if a Thunk cannot
1818 // be placed in a pre-created ThunkSection; when this happens we create a new
1819 // ThunkSection placed next to the caller. This allows us to handle the vast
1820 // majority of thunks simply, but also handle rare cases where the branch range
1821 // is smaller than the target specific spacing.
1822 //
1823 // The algorithm is expected to create all the thunks that are needed in a
1824 // single pass, with a small number of programs needing a second pass due to
1825 // the insertion of thunks in the first pass increasing the offset between
1826 // callers and callees that were only just in range.
1827 //
1828 // A consequence of allowing new ThunkSections to be created outside of the
1829 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1830 // range in pass K, are out of range in some pass > K due to the insertion of
1831 // more Thunks in between the caller and callee. When this happens we retarget
1832 // the relocation back to the original target and create another Thunk.
1833 
1834 // Remove ThunkSections that are empty, this should only be the initial set
1835 // precreated on pass 0.
1836 
1837 // Insert the Thunks for OutputSection OS into their designated place
1838 // in the Sections vector, and recalculate the InputSection output section
1839 // offsets.
1840 // This may invalidate any output section offsets stored outside of InputSection
1841 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1842   forEachInputSectionDescription(
1843       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1844         if (isd->thunkSections.empty())
1845           return;
1846 
1847         // Remove any zero sized precreated Thunks.
1848         llvm::erase_if(isd->thunkSections,
1849                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
1850                          return ts.first->getSize() == 0;
1851                        });
1852 
1853         // ISD->ThunkSections contains all created ThunkSections, including
1854         // those inserted in previous passes. Extract the Thunks created this
1855         // pass and order them in ascending outSecOff.
1856         std::vector<ThunkSection *> newThunks;
1857         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1858           if (ts.second == pass)
1859             newThunks.push_back(ts.first);
1860         llvm::stable_sort(newThunks,
1861                           [](const ThunkSection *a, const ThunkSection *b) {
1862                             return a->outSecOff < b->outSecOff;
1863                           });
1864 
1865         // Merge sorted vectors of Thunks and InputSections by outSecOff
1866         SmallVector<InputSection *, 0> tmp;
1867         tmp.reserve(isd->sections.size() + newThunks.size());
1868 
1869         std::merge(isd->sections.begin(), isd->sections.end(),
1870                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1871                    mergeCmp);
1872 
1873         isd->sections = std::move(tmp);
1874       });
1875 }
1876 
1877 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1878 // is in range of Src. An ISD maps to a range of InputSections described by a
1879 // linker script section pattern such as { .text .text.* }.
1880 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1881                                            InputSection *isec,
1882                                            InputSectionDescription *isd,
1883                                            const Relocation &rel,
1884                                            uint64_t src) {
1885   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1886     ThunkSection *ts = tp.first;
1887     uint64_t tsBase = os->addr + ts->outSecOff + rel.addend;
1888     uint64_t tsLimit = tsBase + ts->getSize() + rel.addend;
1889     if (target->inBranchRange(rel.type, src,
1890                               (src > tsLimit) ? tsBase : tsLimit))
1891       return ts;
1892   }
1893 
1894   // No suitable ThunkSection exists. This can happen when there is a branch
1895   // with lower range than the ThunkSection spacing or when there are too
1896   // many Thunks. Create a new ThunkSection as close to the InputSection as
1897   // possible. Error if InputSection is so large we cannot place ThunkSection
1898   // anywhere in Range.
1899   uint64_t thunkSecOff = isec->outSecOff;
1900   if (!target->inBranchRange(rel.type, src,
1901                              os->addr + thunkSecOff + rel.addend)) {
1902     thunkSecOff = isec->outSecOff + isec->getSize();
1903     if (!target->inBranchRange(rel.type, src,
1904                                os->addr + thunkSecOff + rel.addend))
1905       fatal("InputSection too large for range extension thunk " +
1906             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1907   }
1908   return addThunkSection(os, isd, thunkSecOff);
1909 }
1910 
1911 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1912 // precedes its Target.
1913 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1914   ThunkSection *ts = thunkedSections.lookup(isec);
1915   if (ts)
1916     return ts;
1917 
1918   // Find InputSectionRange within Target Output Section (TOS) that the
1919   // InputSection (IS) that we need to precede is in.
1920   OutputSection *tos = isec->getParent();
1921   for (SectionCommand *bc : tos->commands) {
1922     auto *isd = dyn_cast<InputSectionDescription>(bc);
1923     if (!isd || isd->sections.empty())
1924       continue;
1925 
1926     InputSection *first = isd->sections.front();
1927     InputSection *last = isd->sections.back();
1928 
1929     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1930       continue;
1931 
1932     ts = addThunkSection(tos, isd, isec->outSecOff);
1933     thunkedSections[isec] = ts;
1934     return ts;
1935   }
1936 
1937   return nullptr;
1938 }
1939 
1940 // Create one or more ThunkSections per OS that can be used to place Thunks.
1941 // We attempt to place the ThunkSections using the following desirable
1942 // properties:
1943 // - Within range of the maximum number of callers
1944 // - Minimise the number of ThunkSections
1945 //
1946 // We follow a simple but conservative heuristic to place ThunkSections at
1947 // offsets that are multiples of a Target specific branch range.
1948 // For an InputSectionDescription that is smaller than the range, a single
1949 // ThunkSection at the end of the range will do.
1950 //
1951 // For an InputSectionDescription that is more than twice the size of the range,
1952 // we place the last ThunkSection at range bytes from the end of the
1953 // InputSectionDescription in order to increase the likelihood that the
1954 // distance from a thunk to its target will be sufficiently small to
1955 // allow for the creation of a short thunk.
1956 void ThunkCreator::createInitialThunkSections(
1957     ArrayRef<OutputSection *> outputSections) {
1958   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1959 
1960   forEachInputSectionDescription(
1961       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1962         if (isd->sections.empty())
1963           return;
1964 
1965         uint32_t isdBegin = isd->sections.front()->outSecOff;
1966         uint32_t isdEnd =
1967             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1968         uint32_t lastThunkLowerBound = -1;
1969         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1970           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1971 
1972         uint32_t isecLimit;
1973         uint32_t prevIsecLimit = isdBegin;
1974         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1975 
1976         for (const InputSection *isec : isd->sections) {
1977           isecLimit = isec->outSecOff + isec->getSize();
1978           if (isecLimit > thunkUpperBound) {
1979             addThunkSection(os, isd, prevIsecLimit);
1980             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1981           }
1982           if (isecLimit > lastThunkLowerBound)
1983             break;
1984           prevIsecLimit = isecLimit;
1985         }
1986         addThunkSection(os, isd, isecLimit);
1987       });
1988 }
1989 
1990 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1991                                             InputSectionDescription *isd,
1992                                             uint64_t off) {
1993   auto *ts = make<ThunkSection>(os, off);
1994   ts->partition = os->partition;
1995   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1996       !isd->sections.empty()) {
1997     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1998     // thunks we disturb the base addresses of sections placed after the thunks
1999     // this makes patches we have generated redundant, and may cause us to
2000     // generate more patches as different instructions are now in sensitive
2001     // locations. When we generate more patches we may force more branches to
2002     // go out of range, causing more thunks to be generated. In pathological
2003     // cases this can cause the address dependent content pass not to converge.
2004     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2005     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2006     // which means that adding Thunks to the section does not invalidate
2007     // errata patches for following code.
2008     // Rounding up the size to 4KiB has consequences for code-size and can
2009     // trip up linker script defined assertions. For example the linux kernel
2010     // has an assertion that what LLD represents as an InputSectionDescription
2011     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2012     // We use the heuristic of rounding up the size when both of the following
2013     // conditions are true:
2014     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2015     //     accounts for the case where no single InputSectionDescription is
2016     //     larger than the OutputSection size. This is conservative but simple.
2017     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2018     //     any assertion failures that an InputSectionDescription is < 4 KiB
2019     //     in size.
2020     uint64_t isdSize = isd->sections.back()->outSecOff +
2021                        isd->sections.back()->getSize() -
2022                        isd->sections.front()->outSecOff;
2023     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2024       ts->roundUpSizeForErrata = true;
2025   }
2026   isd->thunkSections.push_back({ts, pass});
2027   return ts;
2028 }
2029 
2030 static bool isThunkSectionCompatible(InputSection *source,
2031                                      SectionBase *target) {
2032   // We can't reuse thunks in different loadable partitions because they might
2033   // not be loaded. But partition 1 (the main partition) will always be loaded.
2034   if (source->partition != target->partition)
2035     return target->partition == 1;
2036   return true;
2037 }
2038 
2039 static int64_t getPCBias(RelType type) {
2040   if (config->emachine != EM_ARM)
2041     return 0;
2042   switch (type) {
2043   case R_ARM_THM_JUMP19:
2044   case R_ARM_THM_JUMP24:
2045   case R_ARM_THM_CALL:
2046     return 4;
2047   default:
2048     return 8;
2049   }
2050 }
2051 
2052 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2053                                                 Relocation &rel, uint64_t src) {
2054   std::vector<Thunk *> *thunkVec = nullptr;
2055   // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2056   // out in the relocation addend. We compensate for the PC bias so that
2057   // an Arm and Thumb relocation to the same destination get the same keyAddend,
2058   // which is usually 0.
2059   const int64_t pcBias = getPCBias(rel.type);
2060   const int64_t keyAddend = rel.addend + pcBias;
2061 
2062   // We use a ((section, offset), addend) pair to find the thunk position if
2063   // possible so that we create only one thunk for aliased symbols or ICFed
2064   // sections. There may be multiple relocations sharing the same (section,
2065   // offset + addend) pair. We may revert the relocation back to its original
2066   // non-Thunk target, so we cannot fold offset + addend.
2067   if (auto *d = dyn_cast<Defined>(rel.sym))
2068     if (!d->isInPlt() && d->section)
2069       thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2070                                                     keyAddend}];
2071   if (!thunkVec)
2072     thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2073 
2074   // Check existing Thunks for Sym to see if they can be reused
2075   for (Thunk *t : *thunkVec)
2076     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2077         t->isCompatibleWith(*isec, rel) &&
2078         target->inBranchRange(rel.type, src,
2079                               t->getThunkTargetSym()->getVA(-pcBias)))
2080       return std::make_pair(t, false);
2081 
2082   // No existing compatible Thunk in range, create a new one
2083   Thunk *t = addThunk(*isec, rel);
2084   thunkVec->push_back(t);
2085   return std::make_pair(t, true);
2086 }
2087 
2088 // Return true if the relocation target is an in range Thunk.
2089 // Return false if the relocation is not to a Thunk. If the relocation target
2090 // was originally to a Thunk, but is no longer in range we revert the
2091 // relocation back to its original non-Thunk target.
2092 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2093   if (Thunk *t = thunks.lookup(rel.sym)) {
2094     if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2095       return true;
2096     rel.sym = &t->destination;
2097     rel.addend = t->addend;
2098     if (rel.sym->isInPlt())
2099       rel.expr = toPlt(rel.expr);
2100   }
2101   return false;
2102 }
2103 
2104 // Process all relocations from the InputSections that have been assigned
2105 // to InputSectionDescriptions and redirect through Thunks if needed. The
2106 // function should be called iteratively until it returns false.
2107 //
2108 // PreConditions:
2109 // All InputSections that may need a Thunk are reachable from
2110 // OutputSectionCommands.
2111 //
2112 // All OutputSections have an address and all InputSections have an offset
2113 // within the OutputSection.
2114 //
2115 // The offsets between caller (relocation place) and callee
2116 // (relocation target) will not be modified outside of createThunks().
2117 //
2118 // PostConditions:
2119 // If return value is true then ThunkSections have been inserted into
2120 // OutputSections. All relocations that needed a Thunk based on the information
2121 // available to createThunks() on entry have been redirected to a Thunk. Note
2122 // that adding Thunks changes offsets between caller and callee so more Thunks
2123 // may be required.
2124 //
2125 // If return value is false then no more Thunks are needed, and createThunks has
2126 // made no changes. If the target requires range extension thunks, currently
2127 // ARM, then any future change in offset between caller and callee risks a
2128 // relocation out of range error.
2129 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
2130   bool addressesChanged = false;
2131 
2132   if (pass == 0 && target->getThunkSectionSpacing())
2133     createInitialThunkSections(outputSections);
2134 
2135   // Create all the Thunks and insert them into synthetic ThunkSections. The
2136   // ThunkSections are later inserted back into InputSectionDescriptions.
2137   // We separate the creation of ThunkSections from the insertion of the
2138   // ThunkSections as ThunkSections are not always inserted into the same
2139   // InputSectionDescription as the caller.
2140   forEachInputSectionDescription(
2141       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2142         for (InputSection *isec : isd->sections)
2143           for (Relocation &rel : isec->relocations) {
2144             uint64_t src = isec->getVA(rel.offset);
2145 
2146             // If we are a relocation to an existing Thunk, check if it is
2147             // still in range. If not then Rel will be altered to point to its
2148             // original target so another Thunk can be generated.
2149             if (pass > 0 && normalizeExistingThunk(rel, src))
2150               continue;
2151 
2152             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2153                                     *rel.sym, rel.addend))
2154               continue;
2155 
2156             Thunk *t;
2157             bool isNew;
2158             std::tie(t, isNew) = getThunk(isec, rel, src);
2159 
2160             if (isNew) {
2161               // Find or create a ThunkSection for the new Thunk
2162               ThunkSection *ts;
2163               if (auto *tis = t->getTargetInputSection())
2164                 ts = getISThunkSec(tis);
2165               else
2166                 ts = getISDThunkSec(os, isec, isd, rel, src);
2167               ts->addThunk(t);
2168               thunks[t->getThunkTargetSym()] = t;
2169             }
2170 
2171             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2172             rel.sym = t->getThunkTargetSym();
2173             rel.expr = fromPlt(rel.expr);
2174 
2175             // On AArch64 and PPC, a jump/call relocation may be encoded as
2176             // STT_SECTION + non-zero addend, clear the addend after
2177             // redirection.
2178             if (config->emachine != EM_MIPS)
2179               rel.addend = -getPCBias(rel.type);
2180           }
2181 
2182         for (auto &p : isd->thunkSections)
2183           addressesChanged |= p.first->assignOffsets();
2184       });
2185 
2186   for (auto &p : thunkedSections)
2187     addressesChanged |= p.second->assignOffsets();
2188 
2189   // Merge all created synthetic ThunkSections back into OutputSection
2190   mergeThunks(outputSections);
2191   ++pass;
2192   return addressesChanged;
2193 }
2194 
2195 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2196 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2197 // __tls_get_addr.
2198 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2199 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2200   bool needTlsSymbol = false;
2201   forEachInputSectionDescription(
2202       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2203         for (InputSection *isec : isd->sections)
2204           for (Relocation &rel : isec->relocations)
2205             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2206               needTlsSymbol = true;
2207               return;
2208             }
2209       });
2210   return needTlsSymbol;
2211 }
2212 
2213 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2214   Symbol *sym = symtab->find("__tls_get_addr");
2215   if (!sym)
2216     return;
2217   bool needEntry = true;
2218   forEachInputSectionDescription(
2219       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2220         for (InputSection *isec : isd->sections)
2221           for (Relocation &rel : isec->relocations)
2222             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2223               if (needEntry) {
2224                 sym->allocateAux();
2225                 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2226                             *sym);
2227                 needEntry = false;
2228               }
2229               rel.sym = sym;
2230             }
2231       });
2232 }
2233 
2234 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2235 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2236 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2237 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2238