1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (SectionCommand *cmd : script->sectionCommands) 70 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 71 if (assign->sym == &sym) 72 return assign->location; 73 return None; 74 } 75 76 static std::string getDefinedLocation(const Symbol &sym) { 77 const char msg[] = "\n>>> defined in "; 78 if (sym.file) 79 return msg + toString(sym.file); 80 if (Optional<std::string> loc = getLinkerScriptLocation(sym)) 81 return msg + *loc; 82 return ""; 83 } 84 85 // Construct a message in the following format. 86 // 87 // >>> defined in /home/alice/src/foo.o 88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 89 // >>> /home/alice/src/bar.o:(.text+0x1) 90 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 91 uint64_t off) { 92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 93 std::string src = s.getSrcMsg(sym, off); 94 if (!src.empty()) 95 msg += src + "\n>>> "; 96 return msg + s.getObjMsg(off); 97 } 98 99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 100 int64_t min, uint64_t max) { 101 ErrorPlace errPlace = getErrorPlace(loc); 102 std::string hint; 103 if (rel.sym && !rel.sym->isLocal()) 104 hint = "; references " + lld::toString(*rel.sym); 105 if (!errPlace.srcLoc.empty()) 106 hint += "\n>>> referenced by " + errPlace.srcLoc; 107 if (rel.sym && !rel.sym->isLocal()) 108 hint += getDefinedLocation(*rel.sym); 109 110 if (errPlace.isec && errPlace.isec->name.startswith(".debug")) 111 hint += "; consider recompiling with -fdebug-types-section to reduce size " 112 "of debug sections"; 113 114 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 115 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 116 ", " + Twine(max).str() + "]" + hint); 117 } 118 119 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 120 const Twine &msg) { 121 ErrorPlace errPlace = getErrorPlace(loc); 122 std::string hint; 123 if (!sym.getName().empty()) 124 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym); 125 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 126 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 127 Twine(llvm::maxIntN(n)) + "]" + hint); 128 } 129 130 // Build a bitmask with one bit set for each 64 subset of RelExpr. 131 static constexpr uint64_t buildMask() { return 0; } 132 133 template <typename... Tails> 134 static constexpr uint64_t buildMask(int head, Tails... tails) { 135 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) | 136 buildMask(tails...); 137 } 138 139 // Return true if `Expr` is one of `Exprs`. 140 // There are more than 64 but less than 128 RelExprs, so we divide the set of 141 // exprs into [0, 64) and [64, 128) and represent each range as a constant 142 // 64-bit mask. Then we decide which mask to test depending on the value of 143 // expr and use a simple shift and bitwise-and to test for membership. 144 template <RelExpr... Exprs> static bool oneof(RelExpr expr) { 145 assert(0 <= expr && (int)expr < 128 && 146 "RelExpr is too large for 128-bit mask!"); 147 148 if (expr >= 64) 149 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...); 150 return (uint64_t(1) << expr) & buildMask(Exprs...); 151 } 152 153 static RelType getMipsPairType(RelType type, bool isLocal) { 154 switch (type) { 155 case R_MIPS_HI16: 156 return R_MIPS_LO16; 157 case R_MIPS_GOT16: 158 // In case of global symbol, the R_MIPS_GOT16 relocation does not 159 // have a pair. Each global symbol has a unique entry in the GOT 160 // and a corresponding instruction with help of the R_MIPS_GOT16 161 // relocation loads an address of the symbol. In case of local 162 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 163 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 164 // relocations handle low 16 bits of the address. That allows 165 // to allocate only one GOT entry for every 64 KBytes of local data. 166 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 167 case R_MICROMIPS_GOT16: 168 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 169 case R_MIPS_PCHI16: 170 return R_MIPS_PCLO16; 171 case R_MICROMIPS_HI16: 172 return R_MICROMIPS_LO16; 173 default: 174 return R_MIPS_NONE; 175 } 176 } 177 178 // True if non-preemptable symbol always has the same value regardless of where 179 // the DSO is loaded. 180 static bool isAbsolute(const Symbol &sym) { 181 if (sym.isUndefWeak()) 182 return true; 183 if (const auto *dr = dyn_cast<Defined>(&sym)) 184 return dr->section == nullptr; // Absolute symbol. 185 return false; 186 } 187 188 static bool isAbsoluteValue(const Symbol &sym) { 189 return isAbsolute(sym) || sym.isTls(); 190 } 191 192 // Returns true if Expr refers a PLT entry. 193 static bool needsPlt(RelExpr expr) { 194 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>( 195 expr); 196 } 197 198 // Returns true if Expr refers a GOT entry. Note that this function 199 // returns false for TLS variables even though they need GOT, because 200 // TLS variables uses GOT differently than the regular variables. 201 static bool needsGot(RelExpr expr) { 202 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 203 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT, 204 R_AARCH64_GOT_PAGE>(expr); 205 } 206 207 // True if this expression is of the form Sym - X, where X is a position in the 208 // file (PC, or GOT for example). 209 static bool isRelExpr(RelExpr expr) { 210 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 211 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 212 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr); 213 } 214 215 216 static RelExpr toPlt(RelExpr expr) { 217 switch (expr) { 218 case R_PPC64_CALL: 219 return R_PPC64_CALL_PLT; 220 case R_PC: 221 return R_PLT_PC; 222 case R_ABS: 223 return R_PLT; 224 default: 225 return expr; 226 } 227 } 228 229 static RelExpr fromPlt(RelExpr expr) { 230 // We decided not to use a plt. Optimize a reference to the plt to a 231 // reference to the symbol itself. 232 switch (expr) { 233 case R_PLT_PC: 234 case R_PPC32_PLTREL: 235 return R_PC; 236 case R_PPC64_CALL_PLT: 237 return R_PPC64_CALL; 238 case R_PLT: 239 return R_ABS; 240 case R_PLT_GOTPLT: 241 return R_GOTPLTREL; 242 default: 243 return expr; 244 } 245 } 246 247 // Returns true if a given shared symbol is in a read-only segment in a DSO. 248 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 249 using Elf_Phdr = typename ELFT::Phdr; 250 251 // Determine if the symbol is read-only by scanning the DSO's program headers. 252 const SharedFile &file = ss.getFile(); 253 for (const Elf_Phdr &phdr : 254 check(file.template getObj<ELFT>().program_headers())) 255 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 256 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 257 ss.value < phdr.p_vaddr + phdr.p_memsz) 258 return true; 259 return false; 260 } 261 262 // Returns symbols at the same offset as a given symbol, including SS itself. 263 // 264 // If two or more symbols are at the same offset, and at least one of 265 // them are copied by a copy relocation, all of them need to be copied. 266 // Otherwise, they would refer to different places at runtime. 267 template <class ELFT> 268 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 269 using Elf_Sym = typename ELFT::Sym; 270 271 SharedFile &file = ss.getFile(); 272 273 SmallSet<SharedSymbol *, 4> ret; 274 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 275 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 276 s.getType() == STT_TLS || s.st_value != ss.value) 277 continue; 278 StringRef name = check(s.getName(file.getStringTable())); 279 Symbol *sym = symtab->find(name); 280 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 281 ret.insert(alias); 282 } 283 284 // The loop does not check SHT_GNU_verneed, so ret does not contain 285 // non-default version symbols. If ss has a non-default version, ret won't 286 // contain ss. Just add ss unconditionally. If a non-default version alias is 287 // separately copy relocated, it and ss will have different addresses. 288 // Fortunately this case is impractical and fails with GNU ld as well. 289 ret.insert(&ss); 290 return ret; 291 } 292 293 // When a symbol is copy relocated or we create a canonical plt entry, it is 294 // effectively a defined symbol. In the case of copy relocation the symbol is 295 // in .bss and in the case of a canonical plt entry it is in .plt. This function 296 // replaces the existing symbol with a Defined pointing to the appropriate 297 // location. 298 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, 299 uint64_t size) { 300 Symbol old = sym; 301 302 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, 303 sym.type, value, size, sec}); 304 305 sym.pltIndex = old.pltIndex; 306 sym.gotIndex = old.gotIndex; 307 sym.verdefIndex = old.verdefIndex; 308 sym.exportDynamic = true; 309 sym.isUsedInRegularObj = true; 310 } 311 312 // Reserve space in .bss or .bss.rel.ro for copy relocation. 313 // 314 // The copy relocation is pretty much a hack. If you use a copy relocation 315 // in your program, not only the symbol name but the symbol's size, RW/RO 316 // bit and alignment become part of the ABI. In addition to that, if the 317 // symbol has aliases, the aliases become part of the ABI. That's subtle, 318 // but if you violate that implicit ABI, that can cause very counter- 319 // intuitive consequences. 320 // 321 // So, what is the copy relocation? It's for linking non-position 322 // independent code to DSOs. In an ideal world, all references to data 323 // exported by DSOs should go indirectly through GOT. But if object files 324 // are compiled as non-PIC, all data references are direct. There is no 325 // way for the linker to transform the code to use GOT, as machine 326 // instructions are already set in stone in object files. This is where 327 // the copy relocation takes a role. 328 // 329 // A copy relocation instructs the dynamic linker to copy data from a DSO 330 // to a specified address (which is usually in .bss) at load-time. If the 331 // static linker (that's us) finds a direct data reference to a DSO 332 // symbol, it creates a copy relocation, so that the symbol can be 333 // resolved as if it were in .bss rather than in a DSO. 334 // 335 // As you can see in this function, we create a copy relocation for the 336 // dynamic linker, and the relocation contains not only symbol name but 337 // various other information about the symbol. So, such attributes become a 338 // part of the ABI. 339 // 340 // Note for application developers: I can give you a piece of advice if 341 // you are writing a shared library. You probably should export only 342 // functions from your library. You shouldn't export variables. 343 // 344 // As an example what can happen when you export variables without knowing 345 // the semantics of copy relocations, assume that you have an exported 346 // variable of type T. It is an ABI-breaking change to add new members at 347 // end of T even though doing that doesn't change the layout of the 348 // existing members. That's because the space for the new members are not 349 // reserved in .bss unless you recompile the main program. That means they 350 // are likely to overlap with other data that happens to be laid out next 351 // to the variable in .bss. This kind of issue is sometimes very hard to 352 // debug. What's a solution? Instead of exporting a variable V from a DSO, 353 // define an accessor getV(). 354 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 355 // Copy relocation against zero-sized symbol doesn't make sense. 356 uint64_t symSize = ss.getSize(); 357 if (symSize == 0 || ss.alignment == 0) 358 fatal("cannot create a copy relocation for symbol " + toString(ss)); 359 360 // See if this symbol is in a read-only segment. If so, preserve the symbol's 361 // memory protection by reserving space in the .bss.rel.ro section. 362 bool isRO = isReadOnly<ELFT>(ss); 363 BssSection *sec = 364 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 365 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 366 367 // At this point, sectionBases has been migrated to sections. Append sec to 368 // sections. 369 if (osec->commands.empty() || 370 !isa<InputSectionDescription>(osec->commands.back())) 371 osec->commands.push_back(make<InputSectionDescription>("")); 372 auto *isd = cast<InputSectionDescription>(osec->commands.back()); 373 isd->sections.push_back(sec); 374 osec->commitSection(sec); 375 376 // Look through the DSO's dynamic symbol table for aliases and create a 377 // dynamic symbol for each one. This causes the copy relocation to correctly 378 // interpose any aliases. 379 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 380 replaceWithDefined(*sym, sec, 0, sym->size); 381 382 mainPart->relaDyn->addSymbolReloc(target->copyRel, sec, 0, ss); 383 } 384 385 // MIPS has an odd notion of "paired" relocations to calculate addends. 386 // For example, if a relocation is of R_MIPS_HI16, there must be a 387 // R_MIPS_LO16 relocation after that, and an addend is calculated using 388 // the two relocations. 389 template <class ELFT, class RelTy> 390 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, 391 InputSectionBase &sec, RelExpr expr, 392 bool isLocal) { 393 if (expr == R_MIPS_GOTREL && isLocal) 394 return sec.getFile<ELFT>()->mipsGp0; 395 396 // The ABI says that the paired relocation is used only for REL. 397 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 398 if (RelTy::IsRela) 399 return 0; 400 401 RelType type = rel.getType(config->isMips64EL); 402 uint32_t pairTy = getMipsPairType(type, isLocal); 403 if (pairTy == R_MIPS_NONE) 404 return 0; 405 406 const uint8_t *buf = sec.data().data(); 407 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 408 409 // To make things worse, paired relocations might not be contiguous in 410 // the relocation table, so we need to do linear search. *sigh* 411 for (const RelTy *ri = &rel; ri != end; ++ri) 412 if (ri->getType(config->isMips64EL) == pairTy && 413 ri->getSymbol(config->isMips64EL) == symIndex) 414 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 415 416 warn("can't find matching " + toString(pairTy) + " relocation for " + 417 toString(type)); 418 return 0; 419 } 420 421 // Returns an addend of a given relocation. If it is RELA, an addend 422 // is in a relocation itself. If it is REL, we need to read it from an 423 // input section. 424 template <class ELFT, class RelTy> 425 static int64_t computeAddend(const RelTy &rel, const RelTy *end, 426 InputSectionBase &sec, RelExpr expr, 427 bool isLocal) { 428 int64_t addend; 429 RelType type = rel.getType(config->isMips64EL); 430 431 if (RelTy::IsRela) { 432 addend = getAddend<ELFT>(rel); 433 } else { 434 const uint8_t *buf = sec.data().data(); 435 addend = target->getImplicitAddend(buf + rel.r_offset, type); 436 } 437 438 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 439 addend += getPPC64TocBase(); 440 if (config->emachine == EM_MIPS) 441 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); 442 443 return addend; 444 } 445 446 // Custom error message if Sym is defined in a discarded section. 447 template <class ELFT> 448 static std::string maybeReportDiscarded(Undefined &sym) { 449 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 450 if (!file || !sym.discardedSecIdx || 451 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 452 return ""; 453 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = 454 CHECK(file->getObj().sections(), file); 455 456 std::string msg; 457 if (sym.type == ELF::STT_SECTION) { 458 msg = "relocation refers to a discarded section: "; 459 msg += CHECK( 460 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 461 } else { 462 msg = "relocation refers to a symbol in a discarded section: " + 463 toString(sym); 464 } 465 msg += "\n>>> defined in " + toString(file); 466 467 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 468 if (elfSec.sh_type != SHT_GROUP) 469 return msg; 470 471 // If the discarded section is a COMDAT. 472 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 473 if (const InputFile *prevailing = 474 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) 475 msg += "\n>>> section group signature: " + signature.str() + 476 "\n>>> prevailing definition is in " + toString(prevailing); 477 return msg; 478 } 479 480 // Undefined diagnostics are collected in a vector and emitted once all of 481 // them are known, so that some postprocessing on the list of undefined symbols 482 // can happen before lld emits diagnostics. 483 struct UndefinedDiag { 484 Symbol *sym; 485 struct Loc { 486 InputSectionBase *sec; 487 uint64_t offset; 488 }; 489 std::vector<Loc> locs; 490 bool isWarning; 491 }; 492 493 static std::vector<UndefinedDiag> undefs; 494 495 // Check whether the definition name def is a mangled function name that matches 496 // the reference name ref. 497 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 498 llvm::ItaniumPartialDemangler d; 499 std::string name = def.str(); 500 if (d.partialDemangle(name.c_str())) 501 return false; 502 char *buf = d.getFunctionName(nullptr, nullptr); 503 if (!buf) 504 return false; 505 bool ret = ref == buf; 506 free(buf); 507 return ret; 508 } 509 510 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 511 // the suggested symbol, which is either in the symbol table, or in the same 512 // file of sym. 513 template <class ELFT> 514 static const Symbol *getAlternativeSpelling(const Undefined &sym, 515 std::string &pre_hint, 516 std::string &post_hint) { 517 DenseMap<StringRef, const Symbol *> map; 518 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) { 519 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 520 // will give an error. Don't suggest an alternative spelling. 521 if (file && sym.discardedSecIdx != 0 && 522 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 523 return nullptr; 524 525 // Build a map of local defined symbols. 526 for (const Symbol *s : sym.file->getSymbols()) 527 if (s->isLocal() && s->isDefined() && !s->getName().empty()) 528 map.try_emplace(s->getName(), s); 529 } 530 531 auto suggest = [&](StringRef newName) -> const Symbol * { 532 // If defined locally. 533 if (const Symbol *s = map.lookup(newName)) 534 return s; 535 536 // If in the symbol table and not undefined. 537 if (const Symbol *s = symtab->find(newName)) 538 if (!s->isUndefined()) 539 return s; 540 541 return nullptr; 542 }; 543 544 // This loop enumerates all strings of Levenshtein distance 1 as typo 545 // correction candidates and suggests the one that exists as a non-undefined 546 // symbol. 547 StringRef name = sym.getName(); 548 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 549 // Insert a character before name[i]. 550 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 551 for (char c = '0'; c <= 'z'; ++c) { 552 newName[i] = c; 553 if (const Symbol *s = suggest(newName)) 554 return s; 555 } 556 if (i == e) 557 break; 558 559 // Substitute name[i]. 560 newName = std::string(name); 561 for (char c = '0'; c <= 'z'; ++c) { 562 newName[i] = c; 563 if (const Symbol *s = suggest(newName)) 564 return s; 565 } 566 567 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 568 // common. 569 if (i + 1 < e) { 570 newName[i] = name[i + 1]; 571 newName[i + 1] = name[i]; 572 if (const Symbol *s = suggest(newName)) 573 return s; 574 } 575 576 // Delete name[i]. 577 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 578 if (const Symbol *s = suggest(newName)) 579 return s; 580 } 581 582 // Case mismatch, e.g. Foo vs FOO. 583 for (auto &it : map) 584 if (name.equals_insensitive(it.first)) 585 return it.second; 586 for (Symbol *sym : symtab->symbols()) 587 if (!sym->isUndefined() && name.equals_insensitive(sym->getName())) 588 return sym; 589 590 // The reference may be a mangled name while the definition is not. Suggest a 591 // missing extern "C". 592 if (name.startswith("_Z")) { 593 std::string buf = name.str(); 594 llvm::ItaniumPartialDemangler d; 595 if (!d.partialDemangle(buf.c_str())) 596 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 597 const Symbol *s = suggest(buf); 598 free(buf); 599 if (s) { 600 pre_hint = ": extern \"C\" "; 601 return s; 602 } 603 } 604 } else { 605 const Symbol *s = nullptr; 606 for (auto &it : map) 607 if (canSuggestExternCForCXX(name, it.first)) { 608 s = it.second; 609 break; 610 } 611 if (!s) 612 for (Symbol *sym : symtab->symbols()) 613 if (canSuggestExternCForCXX(name, sym->getName())) { 614 s = sym; 615 break; 616 } 617 if (s) { 618 pre_hint = " to declare "; 619 post_hint = " as extern \"C\"?"; 620 return s; 621 } 622 } 623 624 return nullptr; 625 } 626 627 template <class ELFT> 628 static void reportUndefinedSymbol(const UndefinedDiag &undef, 629 bool correctSpelling) { 630 Symbol &sym = *undef.sym; 631 632 auto visibility = [&]() -> std::string { 633 switch (sym.visibility) { 634 case STV_INTERNAL: 635 return "internal "; 636 case STV_HIDDEN: 637 return "hidden "; 638 case STV_PROTECTED: 639 return "protected "; 640 default: 641 return ""; 642 } 643 }; 644 645 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); 646 if (msg.empty()) 647 msg = "undefined " + visibility() + "symbol: " + toString(sym); 648 649 const size_t maxUndefReferences = 3; 650 size_t i = 0; 651 for (UndefinedDiag::Loc l : undef.locs) { 652 if (i >= maxUndefReferences) 653 break; 654 InputSectionBase &sec = *l.sec; 655 uint64_t offset = l.offset; 656 657 msg += "\n>>> referenced by "; 658 std::string src = sec.getSrcMsg(sym, offset); 659 if (!src.empty()) 660 msg += src + "\n>>> "; 661 msg += sec.getObjMsg(offset); 662 i++; 663 } 664 665 if (i < undef.locs.size()) 666 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 667 .str(); 668 669 if (correctSpelling) { 670 std::string pre_hint = ": ", post_hint; 671 if (const Symbol *corrected = getAlternativeSpelling<ELFT>( 672 cast<Undefined>(sym), pre_hint, post_hint)) { 673 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 674 if (corrected->file) 675 msg += "\n>>> defined in: " + toString(corrected->file); 676 } 677 } 678 679 if (sym.getName().startswith("_ZTV")) 680 msg += 681 "\n>>> the vtable symbol may be undefined because the class is missing " 682 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 683 if (config->gcSections && config->zStartStopGC && 684 sym.getName().startswith("__start_")) { 685 msg += "\n>>> the encapsulation symbol needs to be retained under " 686 "--gc-sections properly; consider -z nostart-stop-gc " 687 "(see https://lld.llvm.org/ELF/start-stop-gc)"; 688 } 689 690 if (undef.isWarning) 691 warn(msg); 692 else 693 error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); 694 } 695 696 template <class ELFT> void elf::reportUndefinedSymbols() { 697 // Find the first "undefined symbol" diagnostic for each diagnostic, and 698 // collect all "referenced from" lines at the first diagnostic. 699 DenseMap<Symbol *, UndefinedDiag *> firstRef; 700 for (UndefinedDiag &undef : undefs) { 701 assert(undef.locs.size() == 1); 702 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 703 canon->locs.push_back(undef.locs[0]); 704 undef.locs.clear(); 705 } else 706 firstRef[undef.sym] = &undef; 707 } 708 709 // Enable spell corrector for the first 2 diagnostics. 710 for (auto it : enumerate(undefs)) 711 if (!it.value().locs.empty()) 712 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); 713 undefs.clear(); 714 } 715 716 // Report an undefined symbol if necessary. 717 // Returns true if the undefined symbol will produce an error message. 718 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, 719 uint64_t offset) { 720 if (!sym.isUndefined()) 721 return false; 722 // If versioned, issue an error (even if the symbol is weak) because we don't 723 // know the defining filename which is required to construct a Verneed entry. 724 if (*sym.getVersionSuffix() == '@') { 725 undefs.push_back({&sym, {{&sec, offset}}, false}); 726 return true; 727 } 728 if (sym.isWeak()) 729 return false; 730 731 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; 732 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 733 return false; 734 735 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 736 // which references a switch table in a discarded .rodata/.text section. The 737 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 738 // spec says references from outside the group to a STB_LOCAL symbol are not 739 // allowed. Work around the bug. 740 // 741 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 742 // because .LC0-.LTOC is not representable if the two labels are in different 743 // .got2 744 if (cast<Undefined>(sym).discardedSecIdx != 0 && 745 (sec.name == ".got2" || sec.name == ".toc")) 746 return false; 747 748 bool isWarning = 749 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 750 config->noinhibitExec; 751 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 752 return !isWarning; 753 } 754 755 // MIPS N32 ABI treats series of successive relocations with the same offset 756 // as a single relocation. The similar approach used by N64 ABI, but this ABI 757 // packs all relocations into the single relocation record. Here we emulate 758 // this for the N32 ABI. Iterate over relocation with the same offset and put 759 // theirs types into the single bit-set. 760 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { 761 RelType type = 0; 762 uint64_t offset = rel->r_offset; 763 764 int n = 0; 765 while (rel != end && rel->r_offset == offset) 766 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 767 return type; 768 } 769 770 // .eh_frame sections are mergeable input sections, so their input 771 // offsets are not linearly mapped to output section. For each input 772 // offset, we need to find a section piece containing the offset and 773 // add the piece's base address to the input offset to compute the 774 // output offset. That isn't cheap. 775 // 776 // This class is to speed up the offset computation. When we process 777 // relocations, we access offsets in the monotonically increasing 778 // order. So we can optimize for that access pattern. 779 // 780 // For sections other than .eh_frame, this class doesn't do anything. 781 namespace { 782 class OffsetGetter { 783 public: 784 explicit OffsetGetter(InputSectionBase &sec) { 785 if (auto *eh = dyn_cast<EhInputSection>(&sec)) 786 pieces = eh->pieces; 787 } 788 789 // Translates offsets in input sections to offsets in output sections. 790 // Given offset must increase monotonically. We assume that Piece is 791 // sorted by inputOff. 792 uint64_t get(uint64_t off) { 793 if (pieces.empty()) 794 return off; 795 796 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) 797 ++i; 798 if (i == pieces.size()) 799 fatal(".eh_frame: relocation is not in any piece"); 800 801 // Pieces must be contiguous, so there must be no holes in between. 802 assert(pieces[i].inputOff <= off && "Relocation not in any piece"); 803 804 // Offset -1 means that the piece is dead (i.e. garbage collected). 805 if (pieces[i].outputOff == -1) 806 return -1; 807 return pieces[i].outputOff + off - pieces[i].inputOff; 808 } 809 810 private: 811 ArrayRef<EhSectionPiece> pieces; 812 size_t i = 0; 813 }; 814 } // namespace 815 816 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, 817 Symbol &sym, int64_t addend, RelExpr expr, 818 RelType type) { 819 Partition &part = isec->getPartition(); 820 821 // Add a relative relocation. If relrDyn section is enabled, and the 822 // relocation offset is guaranteed to be even, add the relocation to 823 // the relrDyn section, otherwise add it to the relaDyn section. 824 // relrDyn sections don't support odd offsets. Also, relrDyn sections 825 // don't store the addend values, so we must write it to the relocated 826 // address. 827 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { 828 isec->relocations.push_back({expr, type, offsetInSec, addend, &sym}); 829 part.relrDyn->relocs.push_back({isec, offsetInSec}); 830 return; 831 } 832 part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym, 833 addend, type, expr); 834 } 835 836 template <class PltSection, class GotPltSection> 837 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, 838 RelocationBaseSection *rel, RelType type, Symbol &sym) { 839 plt->addEntry(sym); 840 gotPlt->addEntry(sym); 841 rel->addReloc({type, gotPlt, sym.getGotPltOffset(), 842 sym.isPreemptible ? DynamicReloc::AgainstSymbol 843 : DynamicReloc::AddendOnlyWithTargetVA, 844 sym, 0, R_ABS}); 845 } 846 847 static void addGotEntry(Symbol &sym) { 848 in.got->addEntry(sym); 849 uint64_t off = sym.getGotOffset(); 850 851 // If preemptible, emit a GLOB_DAT relocation. 852 if (sym.isPreemptible) { 853 mainPart->relaDyn->addReloc({target->gotRel, in.got, off, 854 DynamicReloc::AgainstSymbol, sym, 0, R_ABS}); 855 return; 856 } 857 858 // Otherwise, the value is either a link-time constant or the load base 859 // plus a constant. 860 if (!config->isPic || isAbsolute(sym)) 861 in.got->relocations.push_back({R_ABS, target->symbolicRel, off, 0, &sym}); 862 else 863 addRelativeReloc(in.got, off, sym, 0, R_ABS, target->symbolicRel); 864 } 865 866 static void addTpOffsetGotEntry(Symbol &sym) { 867 in.got->addEntry(sym); 868 uint64_t off = sym.getGotOffset(); 869 if (!sym.isPreemptible && !config->isPic) { 870 in.got->relocations.push_back({R_TPREL, target->symbolicRel, off, 0, &sym}); 871 return; 872 } 873 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 874 target->tlsGotRel, in.got, off, sym, target->symbolicRel); 875 } 876 877 // Return true if we can define a symbol in the executable that 878 // contains the value/function of a symbol defined in a shared 879 // library. 880 static bool canDefineSymbolInExecutable(Symbol &sym) { 881 // If the symbol has default visibility the symbol defined in the 882 // executable will preempt it. 883 // Note that we want the visibility of the shared symbol itself, not 884 // the visibility of the symbol in the output file we are producing. That is 885 // why we use Sym.stOther. 886 if ((sym.stOther & 0x3) == STV_DEFAULT) 887 return true; 888 889 // If we are allowed to break address equality of functions, defining 890 // a plt entry will allow the program to call the function in the 891 // .so, but the .so and the executable will no agree on the address 892 // of the function. Similar logic for objects. 893 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 894 (sym.isObject() && config->ignoreDataAddressEquality)); 895 } 896 897 // Returns true if a given relocation can be computed at link-time. 898 // This only handles relocation types expected in processRelocAux. 899 // 900 // For instance, we know the offset from a relocation to its target at 901 // link-time if the relocation is PC-relative and refers a 902 // non-interposable function in the same executable. This function 903 // will return true for such relocation. 904 // 905 // If this function returns false, that means we need to emit a 906 // dynamic relocation so that the relocation will be fixed at load-time. 907 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 908 InputSectionBase &s, uint64_t relOff) { 909 // These expressions always compute a constant 910 if (oneof<R_GOTPLT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, 911 R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, 912 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 913 R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT, 914 R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e)) 915 return true; 916 917 // These never do, except if the entire file is position dependent or if 918 // only the low bits are used. 919 if (e == R_GOT || e == R_PLT) 920 return target->usesOnlyLowPageBits(type) || !config->isPic; 921 922 if (sym.isPreemptible) 923 return false; 924 if (!config->isPic) 925 return true; 926 927 // The size of a non preemptible symbol is a constant. 928 if (e == R_SIZE) 929 return true; 930 931 // For the target and the relocation, we want to know if they are 932 // absolute or relative. 933 bool absVal = isAbsoluteValue(sym); 934 bool relE = isRelExpr(e); 935 if (absVal && !relE) 936 return true; 937 if (!absVal && relE) 938 return true; 939 if (!absVal && !relE) 940 return target->usesOnlyLowPageBits(type); 941 942 assert(absVal && relE); 943 944 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 945 // in PIC mode. This is a little strange, but it allows us to link function 946 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 947 // Normally such a call will be guarded with a comparison, which will load a 948 // zero from the GOT. 949 if (sym.isUndefWeak()) 950 return true; 951 952 // We set the final symbols values for linker script defined symbols later. 953 // They always can be computed as a link time constant. 954 if (sym.scriptDefined) 955 return true; 956 957 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 958 toString(sym) + getLocation(s, sym, relOff)); 959 return true; 960 } 961 962 // The reason we have to do this early scan is as follows 963 // * To mmap the output file, we need to know the size 964 // * For that, we need to know how many dynamic relocs we will have. 965 // It might be possible to avoid this by outputting the file with write: 966 // * Write the allocated output sections, computing addresses. 967 // * Apply relocations, recording which ones require a dynamic reloc. 968 // * Write the dynamic relocations. 969 // * Write the rest of the file. 970 // This would have some drawbacks. For example, we would only know if .rela.dyn 971 // is needed after applying relocations. If it is, it will go after rw and rx 972 // sections. Given that it is ro, we will need an extra PT_LOAD. This 973 // complicates things for the dynamic linker and means we would have to reserve 974 // space for the extra PT_LOAD even if we end up not using it. 975 template <class ELFT> 976 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, 977 uint64_t offset, Symbol &sym, int64_t addend) { 978 // If the relocation is known to be a link-time constant, we know no dynamic 979 // relocation will be created, pass the control to relocateAlloc() or 980 // relocateNonAlloc() to resolve it. 981 // 982 // The behavior of an undefined weak reference is implementation defined. For 983 // non-link-time constants, we resolve relocations statically (let 984 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic 985 // relocations for -pie and -shared. 986 // 987 // The general expectation of -no-pie static linking is that there is no 988 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for 989 // -shared matches the spirit of its -z undefs default. -pie has freedom on 990 // choices, and we choose dynamic relocations to be consistent with the 991 // handling of GOT-generating relocations. 992 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || 993 (!config->isPic && sym.isUndefWeak())) { 994 sec.relocations.push_back({expr, type, offset, addend, &sym}); 995 return; 996 } 997 998 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; 999 if (canWrite) { 1000 RelType rel = target->getDynRel(type); 1001 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 1002 addRelativeReloc(&sec, offset, sym, addend, expr, type); 1003 return; 1004 } else if (rel != 0) { 1005 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1006 rel = target->relativeRel; 1007 sec.getPartition().relaDyn->addSymbolReloc(rel, &sec, offset, sym, addend, 1008 type); 1009 1010 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1011 // While regular ABI uses dynamic relocations to fill up GOT entries 1012 // MIPS ABI requires dynamic linker to fills up GOT entries using 1013 // specially sorted dynamic symbol table. This affects even dynamic 1014 // relocations against symbols which do not require GOT entries 1015 // creation explicitly, i.e. do not have any GOT-relocations. So if 1016 // a preemptible symbol has a dynamic relocation we anyway have 1017 // to create a GOT entry for it. 1018 // If a non-preemptible symbol has a dynamic relocation against it, 1019 // dynamic linker takes it st_value, adds offset and writes down 1020 // result of the dynamic relocation. In case of preemptible symbol 1021 // dynamic linker performs symbol resolution, writes the symbol value 1022 // to the GOT entry and reads the GOT entry when it needs to perform 1023 // a dynamic relocation. 1024 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1025 if (config->emachine == EM_MIPS) 1026 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1027 return; 1028 } 1029 } 1030 1031 // When producing an executable, we can perform copy relocations (for 1032 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1033 if (!config->shared) { 1034 if (!canDefineSymbolInExecutable(sym)) { 1035 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1036 getLocation(sec, sym, offset)); 1037 return; 1038 } 1039 1040 if (sym.isObject()) { 1041 // Produce a copy relocation. 1042 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1043 if (!config->zCopyreloc) 1044 error("unresolvable relocation " + toString(type) + 1045 " against symbol '" + toString(*ss) + 1046 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1047 getLocation(sec, sym, offset)); 1048 addCopyRelSymbol<ELFT>(*ss); 1049 } 1050 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1051 return; 1052 } 1053 1054 // This handles a non PIC program call to function in a shared library. In 1055 // an ideal world, we could just report an error saying the relocation can 1056 // overflow at runtime. In the real world with glibc, crt1.o has a 1057 // R_X86_64_PC32 pointing to libc.so. 1058 // 1059 // The general idea on how to handle such cases is to create a PLT entry and 1060 // use that as the function value. 1061 // 1062 // For the static linking part, we just return a plt expr and everything 1063 // else will use the PLT entry as the address. 1064 // 1065 // The remaining problem is making sure pointer equality still works. We 1066 // need the help of the dynamic linker for that. We let it know that we have 1067 // a direct reference to a so symbol by creating an undefined symbol with a 1068 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1069 // the value of the symbol we created. This is true even for got entries, so 1070 // pointer equality is maintained. To avoid an infinite loop, the only entry 1071 // that points to the real function is a dedicated got entry used by the 1072 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1073 // R_386_JMP_SLOT, etc). 1074 1075 // For position independent executable on i386, the plt entry requires ebx 1076 // to be set. This causes two problems: 1077 // * If some code has a direct reference to a function, it was probably 1078 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1079 // * If a library definition gets preempted to the executable, it will have 1080 // the wrong ebx value. 1081 if (sym.isFunc()) { 1082 if (config->pie && config->emachine == EM_386) 1083 errorOrWarn("symbol '" + toString(sym) + 1084 "' cannot be preempted; recompile with -fPIE" + 1085 getLocation(sec, sym, offset)); 1086 if (!sym.isInPlt()) 1087 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1088 if (!sym.isDefined()) { 1089 replaceWithDefined( 1090 sym, in.plt, 1091 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); 1092 if (config->emachine == EM_PPC) { 1093 // PPC32 canonical PLT entries are at the beginning of .glink 1094 cast<Defined>(sym).value = in.plt->headerSize; 1095 in.plt->headerSize += 16; 1096 cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym); 1097 } 1098 } 1099 sym.needsPltAddr = true; 1100 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1101 return; 1102 } 1103 } 1104 1105 errorOrWarn("relocation " + toString(type) + " cannot be used against " + 1106 (sym.getName().empty() ? "local symbol" 1107 : "symbol '" + toString(sym) + "'") + 1108 "; recompile with -fPIC" + getLocation(sec, sym, offset)); 1109 } 1110 1111 // This function is similar to the `handleTlsRelocation`. MIPS does not 1112 // support any relaxations for TLS relocations so by factoring out MIPS 1113 // handling in to the separate function we can simplify the code and do not 1114 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 1115 // Mips has a custom MipsGotSection that handles the writing of GOT entries 1116 // without dynamic relocations. 1117 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 1118 InputSectionBase &c, uint64_t offset, 1119 int64_t addend, RelExpr expr) { 1120 if (expr == R_MIPS_TLSLD) { 1121 in.mipsGot->addTlsIndex(*c.file); 1122 c.relocations.push_back({expr, type, offset, addend, &sym}); 1123 return 1; 1124 } 1125 if (expr == R_MIPS_TLSGD) { 1126 in.mipsGot->addDynTlsEntry(*c.file, sym); 1127 c.relocations.push_back({expr, type, offset, addend, &sym}); 1128 return 1; 1129 } 1130 return 0; 1131 } 1132 1133 // Notes about General Dynamic and Local Dynamic TLS models below. They may 1134 // require the generation of a pair of GOT entries that have associated dynamic 1135 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 1136 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 1137 // symbol in TLS block. 1138 // 1139 // Returns the number of relocations processed. 1140 template <class ELFT> 1141 static unsigned 1142 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, 1143 typename ELFT::uint offset, int64_t addend, RelExpr expr) { 1144 if (!sym.isTls()) 1145 return 0; 1146 1147 if (config->emachine == EM_MIPS) 1148 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 1149 1150 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1151 R_TLSDESC_GOTPLT>(expr) && 1152 config->shared) { 1153 if (in.got->addDynTlsEntry(sym)) { 1154 uint64_t off = in.got->getGlobalDynOffset(sym); 1155 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 1156 target->tlsDescRel, in.got, off, sym, target->tlsDescRel); 1157 } 1158 if (expr != R_TLSDESC_CALL) 1159 c.relocations.push_back({expr, type, offset, addend, &sym}); 1160 return 1; 1161 } 1162 1163 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For 1164 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable 1165 // relaxation as well. 1166 bool toExecRelax = !config->shared && config->emachine != EM_ARM && 1167 config->emachine != EM_HEXAGON && 1168 config->emachine != EM_RISCV && 1169 !c.file->ppc64DisableTLSRelax; 1170 1171 // If we are producing an executable and the symbol is non-preemptable, it 1172 // must be defined and the code sequence can be relaxed to use Local-Exec. 1173 // 1174 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 1175 // we can omit the DTPMOD dynamic relocations and resolve them at link time 1176 // because them are always 1. This may be necessary for static linking as 1177 // DTPMOD may not be expected at load time. 1178 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1179 1180 // Local Dynamic is for access to module local TLS variables, while still 1181 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 1182 // module index, with a special value of 0 for the current module. GOT[e1] is 1183 // unused. There only needs to be one module index entry. 1184 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 1185 expr)) { 1186 // Local-Dynamic relocs can be relaxed to Local-Exec. 1187 if (toExecRelax) { 1188 c.relocations.push_back( 1189 {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset, 1190 addend, &sym}); 1191 return target->getTlsGdRelaxSkip(type); 1192 } 1193 if (expr == R_TLSLD_HINT) 1194 return 1; 1195 if (in.got->addTlsIndex()) { 1196 if (isLocalInExecutable) 1197 in.got->relocations.push_back( 1198 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); 1199 else 1200 mainPart->relaDyn->addReloc( 1201 {target->tlsModuleIndexRel, in.got, in.got->getTlsIndexOff()}); 1202 } 1203 c.relocations.push_back({expr, type, offset, addend, &sym}); 1204 return 1; 1205 } 1206 1207 // Local-Dynamic relocs can be relaxed to Local-Exec. 1208 if (expr == R_DTPREL) { 1209 if (toExecRelax) 1210 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE); 1211 c.relocations.push_back({expr, type, offset, addend, &sym}); 1212 return 1; 1213 } 1214 1215 // Local-Dynamic sequence where offset of tls variable relative to dynamic 1216 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 1217 if (expr == R_TLSLD_GOT_OFF) { 1218 if (!sym.isInGot()) { 1219 in.got->addEntry(sym); 1220 uint64_t off = sym.getGotOffset(); 1221 in.got->relocations.push_back( 1222 {R_ABS, target->tlsOffsetRel, off, 0, &sym}); 1223 } 1224 c.relocations.push_back({expr, type, offset, addend, &sym}); 1225 return 1; 1226 } 1227 1228 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1229 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 1230 if (!toExecRelax) { 1231 if (in.got->addDynTlsEntry(sym)) { 1232 uint64_t off = in.got->getGlobalDynOffset(sym); 1233 1234 if (isLocalInExecutable) 1235 // Write one to the GOT slot. 1236 in.got->relocations.push_back( 1237 {R_ADDEND, target->symbolicRel, off, 1, &sym}); 1238 else 1239 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, in.got, 1240 off, sym); 1241 1242 // If the symbol is preemptible we need the dynamic linker to write 1243 // the offset too. 1244 uint64_t offsetOff = off + config->wordsize; 1245 if (sym.isPreemptible) 1246 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, in.got, 1247 offsetOff, sym); 1248 else 1249 in.got->relocations.push_back( 1250 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 1251 } 1252 c.relocations.push_back({expr, type, offset, addend, &sym}); 1253 return 1; 1254 } 1255 1256 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 1257 // depending on the symbol being locally defined or not. 1258 if (sym.isPreemptible) { 1259 c.relocations.push_back( 1260 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset, 1261 addend, &sym}); 1262 if (!sym.isInGot()) { 1263 in.got->addEntry(sym); 1264 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, in.got, 1265 sym.getGotOffset(), sym); 1266 } 1267 } else { 1268 c.relocations.push_back( 1269 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset, 1270 addend, &sym}); 1271 } 1272 return target->getTlsGdRelaxSkip(type); 1273 } 1274 1275 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 1276 R_TLSIE_HINT>(expr)) { 1277 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 1278 // defined. 1279 if (toExecRelax && isLocalInExecutable) { 1280 c.relocations.push_back( 1281 {R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 1282 } else if (expr != R_TLSIE_HINT) { 1283 if (!sym.isInGot()) 1284 addTpOffsetGotEntry(sym); 1285 // R_GOT needs a relative relocation for PIC on i386 and Hexagon. 1286 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type)) 1287 addRelativeReloc(&c, offset, sym, addend, expr, type); 1288 else 1289 c.relocations.push_back({expr, type, offset, addend, &sym}); 1290 } 1291 return 1; 1292 } 1293 1294 return 0; 1295 } 1296 1297 template <class ELFT, class RelTy> 1298 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, 1299 RelTy *start, RelTy *end) { 1300 const RelTy &rel = *i; 1301 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1302 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); 1303 RelType type; 1304 1305 // Deal with MIPS oddity. 1306 if (config->mipsN32Abi) { 1307 type = getMipsN32RelType(i, end); 1308 } else { 1309 type = rel.getType(config->isMips64EL); 1310 ++i; 1311 } 1312 1313 // Get an offset in an output section this relocation is applied to. 1314 uint64_t offset = getOffset.get(rel.r_offset); 1315 if (offset == uint64_t(-1)) 1316 return; 1317 1318 // Error if the target symbol is undefined. Symbol index 0 may be used by 1319 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1320 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) 1321 return; 1322 1323 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; 1324 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); 1325 1326 // Ignore R_*_NONE and other marker relocations. 1327 if (expr == R_NONE) 1328 return; 1329 1330 // Read an addend. 1331 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); 1332 1333 if (config->emachine == EM_PPC64) { 1334 // We can separate the small code model relocations into 2 categories: 1335 // 1) Those that access the compiler generated .toc sections. 1336 // 2) Those that access the linker allocated got entries. 1337 // lld allocates got entries to symbols on demand. Since we don't try to 1338 // sort the got entries in any way, we don't have to track which objects 1339 // have got-based small code model relocs. The .toc sections get placed 1340 // after the end of the linker allocated .got section and we do sort those 1341 // so sections addressed with small code model relocations come first. 1342 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS) 1343 sec.file->ppc64SmallCodeModelTocRelocs = true; 1344 1345 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1346 // InputSectionBase::relocateAlloc(). 1347 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1348 cast<Defined>(sym).section->name == ".toc") 1349 ppc64noTocRelax.insert({&sym, addend}); 1350 1351 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || 1352 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { 1353 if (i == end) { 1354 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " 1355 "relocation" + 1356 getLocation(sec, sym, offset)); 1357 return; 1358 } 1359 1360 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, 1361 // so we can discern it later from the toc-case. 1362 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1363 ++offset; 1364 } 1365 } 1366 1367 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1368 // uses their addresses, we need GOT or GOTPLT to be created. 1369 // 1370 // The 5 types that relative GOTPLT are all x86 and x86-64 specific. 1371 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT, 1372 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1373 in.gotPlt->hasGotPltOffRel = true; 1374 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE, 1375 R_PPC64_RELAX_TOC>(expr)) { 1376 in.got->hasGotOffRel = true; 1377 } 1378 1379 // Process TLS relocations, including relaxing TLS relocations. Note that 1380 // R_TPREL and R_TPREL_NEG relocations are resolved in processRelocAux. 1381 if (expr == R_TPREL || expr == R_TPREL_NEG) { 1382 if (config->shared) { 1383 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + 1384 " cannot be used with -shared" + 1385 getLocation(sec, sym, offset)); 1386 return; 1387 } 1388 } else if (unsigned processed = handleTlsRelocation<ELFT>( 1389 type, sym, sec, offset, addend, expr)) { 1390 i += (processed - 1); 1391 return; 1392 } 1393 1394 // Relax relocations. 1395 // 1396 // If we know that a PLT entry will be resolved within the same ELF module, we 1397 // can skip PLT access and directly jump to the destination function. For 1398 // example, if we are linking a main executable, all dynamic symbols that can 1399 // be resolved within the executable will actually be resolved that way at 1400 // runtime, because the main executable is always at the beginning of a search 1401 // list. We can leverage that fact. 1402 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { 1403 if (expr != R_GOT_PC) { 1404 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1405 // stub type. It should be ignored if optimized to R_PC. 1406 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1407 addend &= ~0x8000; 1408 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1409 // call __tls_get_addr even if the symbol is non-preemptible. 1410 if (!(config->emachine == EM_HEXAGON && 1411 (type == R_HEX_GD_PLT_B22_PCREL || 1412 type == R_HEX_GD_PLT_B22_PCREL_X || 1413 type == R_HEX_GD_PLT_B32_PCREL_X))) 1414 expr = fromPlt(expr); 1415 } else if (!isAbsoluteValue(sym)) { 1416 expr = target->adjustGotPcExpr(type, addend, relocatedAddr); 1417 } 1418 } 1419 1420 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1421 // direct relocation on through. 1422 if (sym.isGnuIFunc() && config->zIfuncNoplt) { 1423 sym.exportDynamic = true; 1424 mainPart->relaDyn->addSymbolReloc(type, &sec, offset, sym, addend, type); 1425 return; 1426 } 1427 1428 // Non-preemptible ifuncs require special handling. First, handle the usual 1429 // case where the symbol isn't one of these. 1430 if (!sym.isGnuIFunc() || sym.isPreemptible) { 1431 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1432 if (needsPlt(expr) && !sym.isInPlt()) 1433 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1434 1435 // Create a GOT slot if a relocation needs GOT. 1436 if (needsGot(expr)) { 1437 if (config->emachine == EM_MIPS) { 1438 // MIPS ABI has special rules to process GOT entries and doesn't 1439 // require relocation entries for them. A special case is TLS 1440 // relocations. In that case dynamic loader applies dynamic 1441 // relocations to initialize TLS GOT entries. 1442 // See "Global Offset Table" in Chapter 5 in the following document 1443 // for detailed description: 1444 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1445 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1446 } else if (!sym.isInGot()) { 1447 addGotEntry(sym); 1448 } 1449 } 1450 } else { 1451 // Handle a reference to a non-preemptible ifunc. These are special in a 1452 // few ways: 1453 // 1454 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1455 // a fixed value. But assuming that all references to the ifunc are 1456 // GOT-generating or PLT-generating, the handling of an ifunc is 1457 // relatively straightforward. We create a PLT entry in Iplt, which is 1458 // usually at the end of .plt, which makes an indirect call using a 1459 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1460 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1461 // which is usually at the end of .rela.plt. Unlike most relocations in 1462 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1463 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1464 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1465 // .got.plt without requiring a separate GOT entry. 1466 // 1467 // - Despite the fact that an ifunc does not have a fixed value, compilers 1468 // that are not passed -fPIC will assume that they do, and will emit 1469 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1470 // symbol. This means that if a direct relocation to the symbol is 1471 // seen, the linker must set a value for the symbol, and this value must 1472 // be consistent no matter what type of reference is made to the symbol. 1473 // This can be done by creating a PLT entry for the symbol in the way 1474 // described above and making it canonical, that is, making all references 1475 // point to the PLT entry instead of the resolver. In lld we also store 1476 // the address of the PLT entry in the dynamic symbol table, which means 1477 // that the symbol will also have the same value in other modules. 1478 // Because the value loaded from the GOT needs to be consistent with 1479 // the value computed using a direct relocation, a non-preemptible ifunc 1480 // may end up with two GOT entries, one in .got.plt that points to the 1481 // address returned by the resolver and is used only by the PLT entry, 1482 // and another in .got that points to the PLT entry and is used by 1483 // GOT-generating relocations. 1484 // 1485 // - The fact that these symbols do not have a fixed value makes them an 1486 // exception to the general rule that a statically linked executable does 1487 // not require any form of dynamic relocation. To handle these relocations 1488 // correctly, the IRELATIVE relocations are stored in an array which a 1489 // statically linked executable's startup code must enumerate using the 1490 // linker-defined symbols __rela?_iplt_{start,end}. 1491 if (!sym.isInPlt()) { 1492 // Create PLT and GOTPLT slots for the symbol. 1493 sym.isInIplt = true; 1494 1495 // Create a copy of the symbol to use as the target of the IRELATIVE 1496 // relocation in the igotPlt. This is in case we make the PLT canonical 1497 // later, which would overwrite the original symbol. 1498 // 1499 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1500 // that's really needed to create the IRELATIVE is the section and value, 1501 // so ideally we should just need to copy those. 1502 auto *directSym = make<Defined>(cast<Defined>(sym)); 1503 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, 1504 *directSym); 1505 sym.pltIndex = directSym->pltIndex; 1506 } 1507 if (needsGot(expr)) { 1508 // Redirect GOT accesses to point to the Igot. 1509 // 1510 // This field is also used to keep track of whether we ever needed a GOT 1511 // entry. If we did and we make the PLT canonical later, we'll need to 1512 // create a GOT entry pointing to the PLT entry for Sym. 1513 sym.gotInIgot = true; 1514 } else if (!needsPlt(expr)) { 1515 // Make the ifunc's PLT entry canonical by changing the value of its 1516 // symbol to redirect all references to point to it. 1517 auto &d = cast<Defined>(sym); 1518 d.section = in.iplt; 1519 d.value = sym.pltIndex * target->ipltEntrySize; 1520 d.size = 0; 1521 // It's important to set the symbol type here so that dynamic loaders 1522 // don't try to call the PLT as if it were an ifunc resolver. 1523 d.type = STT_FUNC; 1524 1525 if (sym.gotInIgot) { 1526 // We previously encountered a GOT generating reference that we 1527 // redirected to the Igot. Now that the PLT entry is canonical we must 1528 // clear the redirection to the Igot and add a GOT entry. As we've 1529 // changed the symbol type to STT_FUNC future GOT generating references 1530 // will naturally use this GOT entry. 1531 // 1532 // We don't need to worry about creating a MIPS GOT here because ifuncs 1533 // aren't a thing on MIPS. 1534 sym.gotInIgot = false; 1535 addGotEntry(sym); 1536 } 1537 } 1538 } 1539 1540 processRelocAux<ELFT>(sec, expr, type, offset, sym, addend); 1541 } 1542 1543 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for 1544 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is 1545 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the 1546 // instructions are generated by very old IBM XL compilers. Work around the 1547 // issue by disabling GD/LD to IE/LE relaxation. 1548 template <class RelTy> 1549 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1550 // Skip if sec is synthetic (sec.file is null) or if sec has been marked. 1551 if (!sec.file || sec.file->ppc64DisableTLSRelax) 1552 return; 1553 bool hasGDLD = false; 1554 for (const RelTy &rel : rels) { 1555 RelType type = rel.getType(false); 1556 switch (type) { 1557 case R_PPC64_TLSGD: 1558 case R_PPC64_TLSLD: 1559 return; // Found a marker 1560 case R_PPC64_GOT_TLSGD16: 1561 case R_PPC64_GOT_TLSGD16_HA: 1562 case R_PPC64_GOT_TLSGD16_HI: 1563 case R_PPC64_GOT_TLSGD16_LO: 1564 case R_PPC64_GOT_TLSLD16: 1565 case R_PPC64_GOT_TLSLD16_HA: 1566 case R_PPC64_GOT_TLSLD16_HI: 1567 case R_PPC64_GOT_TLSLD16_LO: 1568 hasGDLD = true; 1569 break; 1570 } 1571 } 1572 if (hasGDLD) { 1573 sec.file->ppc64DisableTLSRelax = true; 1574 warn(toString(sec.file) + 1575 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " 1576 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); 1577 } 1578 } 1579 1580 template <class ELFT, class RelTy> 1581 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1582 OffsetGetter getOffset(sec); 1583 1584 // Not all relocations end up in Sec.Relocations, but a lot do. 1585 sec.relocations.reserve(rels.size()); 1586 1587 if (config->emachine == EM_PPC64) 1588 checkPPC64TLSRelax<RelTy>(sec, rels); 1589 1590 // For EhInputSection, OffsetGetter expects the relocations to be sorted by 1591 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker 1592 // script), the relocations may be unordered. 1593 SmallVector<RelTy, 0> storage; 1594 if (isa<EhInputSection>(sec)) 1595 rels = sortRels(rels, storage); 1596 1597 for (auto i = rels.begin(), end = rels.end(); i != end;) 1598 scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end); 1599 1600 // Sort relocations by offset for more efficient searching for 1601 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1602 if (config->emachine == EM_RISCV || 1603 (config->emachine == EM_PPC64 && sec.name == ".toc")) 1604 llvm::stable_sort(sec.relocations, 1605 [](const Relocation &lhs, const Relocation &rhs) { 1606 return lhs.offset < rhs.offset; 1607 }); 1608 } 1609 1610 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) { 1611 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>(); 1612 if (rels.areRelocsRel()) 1613 scanRelocs<ELFT>(s, rels.rels); 1614 else 1615 scanRelocs<ELFT>(s, rels.relas); 1616 } 1617 1618 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1619 // std::merge requires a strict weak ordering. 1620 if (a->outSecOff < b->outSecOff) 1621 return true; 1622 1623 if (a->outSecOff == b->outSecOff) { 1624 auto *ta = dyn_cast<ThunkSection>(a); 1625 auto *tb = dyn_cast<ThunkSection>(b); 1626 1627 // Check if Thunk is immediately before any specific Target 1628 // InputSection for example Mips LA25 Thunks. 1629 if (ta && ta->getTargetInputSection() == b) 1630 return true; 1631 1632 // Place Thunk Sections without specific targets before 1633 // non-Thunk Sections. 1634 if (ta && !tb && !ta->getTargetInputSection()) 1635 return true; 1636 } 1637 1638 return false; 1639 } 1640 1641 // Call Fn on every executable InputSection accessed via the linker script 1642 // InputSectionDescription::Sections. 1643 static void forEachInputSectionDescription( 1644 ArrayRef<OutputSection *> outputSections, 1645 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1646 for (OutputSection *os : outputSections) { 1647 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1648 continue; 1649 for (SectionCommand *bc : os->commands) 1650 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1651 fn(os, isd); 1652 } 1653 } 1654 1655 // Thunk Implementation 1656 // 1657 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1658 // of code that the linker inserts inbetween a caller and a callee. The thunks 1659 // are added at link time rather than compile time as the decision on whether 1660 // a thunk is needed, such as the caller and callee being out of range, can only 1661 // be made at link time. 1662 // 1663 // It is straightforward to tell given the current state of the program when a 1664 // thunk is needed for a particular call. The more difficult part is that 1665 // the thunk needs to be placed in the program such that the caller can reach 1666 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1667 // the program alters addresses, which can mean more thunks etc. 1668 // 1669 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1670 // The decision to have a ThunkSection act as a container means that we can 1671 // more easily handle the most common case of a single block of contiguous 1672 // Thunks by inserting just a single ThunkSection. 1673 // 1674 // The implementation of Thunks in lld is split across these areas 1675 // Relocations.cpp : Framework for creating and placing thunks 1676 // Thunks.cpp : The code generated for each supported thunk 1677 // Target.cpp : Target specific hooks that the framework uses to decide when 1678 // a thunk is used 1679 // Synthetic.cpp : Implementation of ThunkSection 1680 // Writer.cpp : Iteratively call framework until no more Thunks added 1681 // 1682 // Thunk placement requirements: 1683 // Mips LA25 thunks. These must be placed immediately before the callee section 1684 // We can assume that the caller is in range of the Thunk. These are modelled 1685 // by Thunks that return the section they must precede with 1686 // getTargetInputSection(). 1687 // 1688 // ARM interworking and range extension thunks. These thunks must be placed 1689 // within range of the caller. All implemented ARM thunks can always reach the 1690 // callee as they use an indirect jump via a register that has no range 1691 // restrictions. 1692 // 1693 // Thunk placement algorithm: 1694 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1695 // getTargetInputSection(). 1696 // 1697 // For thunks that must be placed within range of the caller there are many 1698 // possible choices given that the maximum range from the caller is usually 1699 // much larger than the average InputSection size. Desirable properties include: 1700 // - Maximize reuse of thunks by multiple callers 1701 // - Minimize number of ThunkSections to simplify insertion 1702 // - Handle impact of already added Thunks on addresses 1703 // - Simple to understand and implement 1704 // 1705 // In lld for the first pass, we pre-create one or more ThunkSections per 1706 // InputSectionDescription at Target specific intervals. A ThunkSection is 1707 // placed so that the estimated end of the ThunkSection is within range of the 1708 // start of the InputSectionDescription or the previous ThunkSection. For 1709 // example: 1710 // InputSectionDescription 1711 // Section 0 1712 // ... 1713 // Section N 1714 // ThunkSection 0 1715 // Section N + 1 1716 // ... 1717 // Section N + K 1718 // Thunk Section 1 1719 // 1720 // The intention is that we can add a Thunk to a ThunkSection that is well 1721 // spaced enough to service a number of callers without having to do a lot 1722 // of work. An important principle is that it is not an error if a Thunk cannot 1723 // be placed in a pre-created ThunkSection; when this happens we create a new 1724 // ThunkSection placed next to the caller. This allows us to handle the vast 1725 // majority of thunks simply, but also handle rare cases where the branch range 1726 // is smaller than the target specific spacing. 1727 // 1728 // The algorithm is expected to create all the thunks that are needed in a 1729 // single pass, with a small number of programs needing a second pass due to 1730 // the insertion of thunks in the first pass increasing the offset between 1731 // callers and callees that were only just in range. 1732 // 1733 // A consequence of allowing new ThunkSections to be created outside of the 1734 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1735 // range in pass K, are out of range in some pass > K due to the insertion of 1736 // more Thunks in between the caller and callee. When this happens we retarget 1737 // the relocation back to the original target and create another Thunk. 1738 1739 // Remove ThunkSections that are empty, this should only be the initial set 1740 // precreated on pass 0. 1741 1742 // Insert the Thunks for OutputSection OS into their designated place 1743 // in the Sections vector, and recalculate the InputSection output section 1744 // offsets. 1745 // This may invalidate any output section offsets stored outside of InputSection 1746 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1747 forEachInputSectionDescription( 1748 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1749 if (isd->thunkSections.empty()) 1750 return; 1751 1752 // Remove any zero sized precreated Thunks. 1753 llvm::erase_if(isd->thunkSections, 1754 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1755 return ts.first->getSize() == 0; 1756 }); 1757 1758 // ISD->ThunkSections contains all created ThunkSections, including 1759 // those inserted in previous passes. Extract the Thunks created this 1760 // pass and order them in ascending outSecOff. 1761 std::vector<ThunkSection *> newThunks; 1762 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1763 if (ts.second == pass) 1764 newThunks.push_back(ts.first); 1765 llvm::stable_sort(newThunks, 1766 [](const ThunkSection *a, const ThunkSection *b) { 1767 return a->outSecOff < b->outSecOff; 1768 }); 1769 1770 // Merge sorted vectors of Thunks and InputSections by outSecOff 1771 std::vector<InputSection *> tmp; 1772 tmp.reserve(isd->sections.size() + newThunks.size()); 1773 1774 std::merge(isd->sections.begin(), isd->sections.end(), 1775 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1776 mergeCmp); 1777 1778 isd->sections = std::move(tmp); 1779 }); 1780 } 1781 1782 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1783 // is in range of Src. An ISD maps to a range of InputSections described by a 1784 // linker script section pattern such as { .text .text.* }. 1785 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, 1786 InputSection *isec, 1787 InputSectionDescription *isd, 1788 const Relocation &rel, 1789 uint64_t src) { 1790 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1791 ThunkSection *ts = tp.first; 1792 uint64_t tsBase = os->addr + ts->outSecOff + rel.addend; 1793 uint64_t tsLimit = tsBase + ts->getSize() + rel.addend; 1794 if (target->inBranchRange(rel.type, src, 1795 (src > tsLimit) ? tsBase : tsLimit)) 1796 return ts; 1797 } 1798 1799 // No suitable ThunkSection exists. This can happen when there is a branch 1800 // with lower range than the ThunkSection spacing or when there are too 1801 // many Thunks. Create a new ThunkSection as close to the InputSection as 1802 // possible. Error if InputSection is so large we cannot place ThunkSection 1803 // anywhere in Range. 1804 uint64_t thunkSecOff = isec->outSecOff; 1805 if (!target->inBranchRange(rel.type, src, 1806 os->addr + thunkSecOff + rel.addend)) { 1807 thunkSecOff = isec->outSecOff + isec->getSize(); 1808 if (!target->inBranchRange(rel.type, src, 1809 os->addr + thunkSecOff + rel.addend)) 1810 fatal("InputSection too large for range extension thunk " + 1811 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1812 } 1813 return addThunkSection(os, isd, thunkSecOff); 1814 } 1815 1816 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1817 // precedes its Target. 1818 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1819 ThunkSection *ts = thunkedSections.lookup(isec); 1820 if (ts) 1821 return ts; 1822 1823 // Find InputSectionRange within Target Output Section (TOS) that the 1824 // InputSection (IS) that we need to precede is in. 1825 OutputSection *tos = isec->getParent(); 1826 for (SectionCommand *bc : tos->commands) { 1827 auto *isd = dyn_cast<InputSectionDescription>(bc); 1828 if (!isd || isd->sections.empty()) 1829 continue; 1830 1831 InputSection *first = isd->sections.front(); 1832 InputSection *last = isd->sections.back(); 1833 1834 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1835 continue; 1836 1837 ts = addThunkSection(tos, isd, isec->outSecOff); 1838 thunkedSections[isec] = ts; 1839 return ts; 1840 } 1841 1842 return nullptr; 1843 } 1844 1845 // Create one or more ThunkSections per OS that can be used to place Thunks. 1846 // We attempt to place the ThunkSections using the following desirable 1847 // properties: 1848 // - Within range of the maximum number of callers 1849 // - Minimise the number of ThunkSections 1850 // 1851 // We follow a simple but conservative heuristic to place ThunkSections at 1852 // offsets that are multiples of a Target specific branch range. 1853 // For an InputSectionDescription that is smaller than the range, a single 1854 // ThunkSection at the end of the range will do. 1855 // 1856 // For an InputSectionDescription that is more than twice the size of the range, 1857 // we place the last ThunkSection at range bytes from the end of the 1858 // InputSectionDescription in order to increase the likelihood that the 1859 // distance from a thunk to its target will be sufficiently small to 1860 // allow for the creation of a short thunk. 1861 void ThunkCreator::createInitialThunkSections( 1862 ArrayRef<OutputSection *> outputSections) { 1863 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 1864 1865 forEachInputSectionDescription( 1866 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1867 if (isd->sections.empty()) 1868 return; 1869 1870 uint32_t isdBegin = isd->sections.front()->outSecOff; 1871 uint32_t isdEnd = 1872 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 1873 uint32_t lastThunkLowerBound = -1; 1874 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 1875 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 1876 1877 uint32_t isecLimit; 1878 uint32_t prevIsecLimit = isdBegin; 1879 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 1880 1881 for (const InputSection *isec : isd->sections) { 1882 isecLimit = isec->outSecOff + isec->getSize(); 1883 if (isecLimit > thunkUpperBound) { 1884 addThunkSection(os, isd, prevIsecLimit); 1885 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 1886 } 1887 if (isecLimit > lastThunkLowerBound) 1888 break; 1889 prevIsecLimit = isecLimit; 1890 } 1891 addThunkSection(os, isd, isecLimit); 1892 }); 1893 } 1894 1895 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 1896 InputSectionDescription *isd, 1897 uint64_t off) { 1898 auto *ts = make<ThunkSection>(os, off); 1899 ts->partition = os->partition; 1900 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 1901 !isd->sections.empty()) { 1902 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 1903 // thunks we disturb the base addresses of sections placed after the thunks 1904 // this makes patches we have generated redundant, and may cause us to 1905 // generate more patches as different instructions are now in sensitive 1906 // locations. When we generate more patches we may force more branches to 1907 // go out of range, causing more thunks to be generated. In pathological 1908 // cases this can cause the address dependent content pass not to converge. 1909 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 1910 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 1911 // which means that adding Thunks to the section does not invalidate 1912 // errata patches for following code. 1913 // Rounding up the size to 4KiB has consequences for code-size and can 1914 // trip up linker script defined assertions. For example the linux kernel 1915 // has an assertion that what LLD represents as an InputSectionDescription 1916 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 1917 // We use the heuristic of rounding up the size when both of the following 1918 // conditions are true: 1919 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 1920 // accounts for the case where no single InputSectionDescription is 1921 // larger than the OutputSection size. This is conservative but simple. 1922 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 1923 // any assertion failures that an InputSectionDescription is < 4 KiB 1924 // in size. 1925 uint64_t isdSize = isd->sections.back()->outSecOff + 1926 isd->sections.back()->getSize() - 1927 isd->sections.front()->outSecOff; 1928 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 1929 ts->roundUpSizeForErrata = true; 1930 } 1931 isd->thunkSections.push_back({ts, pass}); 1932 return ts; 1933 } 1934 1935 static bool isThunkSectionCompatible(InputSection *source, 1936 SectionBase *target) { 1937 // We can't reuse thunks in different loadable partitions because they might 1938 // not be loaded. But partition 1 (the main partition) will always be loaded. 1939 if (source->partition != target->partition) 1940 return target->partition == 1; 1941 return true; 1942 } 1943 1944 static int64_t getPCBias(RelType type) { 1945 if (config->emachine != EM_ARM) 1946 return 0; 1947 switch (type) { 1948 case R_ARM_THM_JUMP19: 1949 case R_ARM_THM_JUMP24: 1950 case R_ARM_THM_CALL: 1951 return 4; 1952 default: 1953 return 8; 1954 } 1955 } 1956 1957 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 1958 Relocation &rel, uint64_t src) { 1959 std::vector<Thunk *> *thunkVec = nullptr; 1960 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled 1961 // out in the relocation addend. We compensate for the PC bias so that 1962 // an Arm and Thumb relocation to the same destination get the same keyAddend, 1963 // which is usually 0. 1964 int64_t keyAddend = rel.addend + getPCBias(rel.type); 1965 1966 // We use a ((section, offset), addend) pair to find the thunk position if 1967 // possible so that we create only one thunk for aliased symbols or ICFed 1968 // sections. There may be multiple relocations sharing the same (section, 1969 // offset + addend) pair. We may revert the relocation back to its original 1970 // non-Thunk target, so we cannot fold offset + addend. 1971 if (auto *d = dyn_cast<Defined>(rel.sym)) 1972 if (!d->isInPlt() && d->section) 1973 thunkVec = &thunkedSymbolsBySectionAndAddend[{ 1974 {d->section->repl, d->value}, keyAddend}]; 1975 if (!thunkVec) 1976 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}]; 1977 1978 // Check existing Thunks for Sym to see if they can be reused 1979 for (Thunk *t : *thunkVec) 1980 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 1981 t->isCompatibleWith(*isec, rel) && 1982 target->inBranchRange(rel.type, src, 1983 t->getThunkTargetSym()->getVA(rel.addend))) 1984 return std::make_pair(t, false); 1985 1986 // No existing compatible Thunk in range, create a new one 1987 Thunk *t = addThunk(*isec, rel); 1988 thunkVec->push_back(t); 1989 return std::make_pair(t, true); 1990 } 1991 1992 // Return true if the relocation target is an in range Thunk. 1993 // Return false if the relocation is not to a Thunk. If the relocation target 1994 // was originally to a Thunk, but is no longer in range we revert the 1995 // relocation back to its original non-Thunk target. 1996 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 1997 if (Thunk *t = thunks.lookup(rel.sym)) { 1998 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend))) 1999 return true; 2000 rel.sym = &t->destination; 2001 rel.addend = t->addend; 2002 if (rel.sym->isInPlt()) 2003 rel.expr = toPlt(rel.expr); 2004 } 2005 return false; 2006 } 2007 2008 // Process all relocations from the InputSections that have been assigned 2009 // to InputSectionDescriptions and redirect through Thunks if needed. The 2010 // function should be called iteratively until it returns false. 2011 // 2012 // PreConditions: 2013 // All InputSections that may need a Thunk are reachable from 2014 // OutputSectionCommands. 2015 // 2016 // All OutputSections have an address and all InputSections have an offset 2017 // within the OutputSection. 2018 // 2019 // The offsets between caller (relocation place) and callee 2020 // (relocation target) will not be modified outside of createThunks(). 2021 // 2022 // PostConditions: 2023 // If return value is true then ThunkSections have been inserted into 2024 // OutputSections. All relocations that needed a Thunk based on the information 2025 // available to createThunks() on entry have been redirected to a Thunk. Note 2026 // that adding Thunks changes offsets between caller and callee so more Thunks 2027 // may be required. 2028 // 2029 // If return value is false then no more Thunks are needed, and createThunks has 2030 // made no changes. If the target requires range extension thunks, currently 2031 // ARM, then any future change in offset between caller and callee risks a 2032 // relocation out of range error. 2033 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { 2034 bool addressesChanged = false; 2035 2036 if (pass == 0 && target->getThunkSectionSpacing()) 2037 createInitialThunkSections(outputSections); 2038 2039 // Create all the Thunks and insert them into synthetic ThunkSections. The 2040 // ThunkSections are later inserted back into InputSectionDescriptions. 2041 // We separate the creation of ThunkSections from the insertion of the 2042 // ThunkSections as ThunkSections are not always inserted into the same 2043 // InputSectionDescription as the caller. 2044 forEachInputSectionDescription( 2045 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2046 for (InputSection *isec : isd->sections) 2047 for (Relocation &rel : isec->relocations) { 2048 uint64_t src = isec->getVA(rel.offset); 2049 2050 // If we are a relocation to an existing Thunk, check if it is 2051 // still in range. If not then Rel will be altered to point to its 2052 // original target so another Thunk can be generated. 2053 if (pass > 0 && normalizeExistingThunk(rel, src)) 2054 continue; 2055 2056 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2057 *rel.sym, rel.addend)) 2058 continue; 2059 2060 Thunk *t; 2061 bool isNew; 2062 std::tie(t, isNew) = getThunk(isec, rel, src); 2063 2064 if (isNew) { 2065 // Find or create a ThunkSection for the new Thunk 2066 ThunkSection *ts; 2067 if (auto *tis = t->getTargetInputSection()) 2068 ts = getISThunkSec(tis); 2069 else 2070 ts = getISDThunkSec(os, isec, isd, rel, src); 2071 ts->addThunk(t); 2072 thunks[t->getThunkTargetSym()] = t; 2073 } 2074 2075 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2076 rel.sym = t->getThunkTargetSym(); 2077 rel.expr = fromPlt(rel.expr); 2078 2079 // On AArch64 and PPC, a jump/call relocation may be encoded as 2080 // STT_SECTION + non-zero addend, clear the addend after 2081 // redirection. 2082 if (config->emachine != EM_MIPS) 2083 rel.addend = -getPCBias(rel.type); 2084 } 2085 2086 for (auto &p : isd->thunkSections) 2087 addressesChanged |= p.first->assignOffsets(); 2088 }); 2089 2090 for (auto &p : thunkedSections) 2091 addressesChanged |= p.second->assignOffsets(); 2092 2093 // Merge all created synthetic ThunkSections back into OutputSection 2094 mergeThunks(outputSections); 2095 ++pass; 2096 return addressesChanged; 2097 } 2098 2099 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2100 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2101 // __tls_get_addr. 2102 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2103 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2104 bool needTlsSymbol = false; 2105 forEachInputSectionDescription( 2106 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2107 for (InputSection *isec : isd->sections) 2108 for (Relocation &rel : isec->relocations) 2109 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2110 needTlsSymbol = true; 2111 return; 2112 } 2113 }); 2114 return needTlsSymbol; 2115 } 2116 2117 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2118 Symbol *sym = symtab->find("__tls_get_addr"); 2119 if (!sym) 2120 return; 2121 bool needEntry = true; 2122 forEachInputSectionDescription( 2123 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2124 for (InputSection *isec : isd->sections) 2125 for (Relocation &rel : isec->relocations) 2126 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2127 if (needEntry) { 2128 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, 2129 *sym); 2130 needEntry = false; 2131 } 2132 rel.sym = sym; 2133 } 2134 }); 2135 } 2136 2137 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 2138 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 2139 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 2140 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 2141 template void elf::reportUndefinedSymbols<ELF32LE>(); 2142 template void elf::reportUndefinedSymbols<ELF32BE>(); 2143 template void elf::reportUndefinedSymbols<ELF64LE>(); 2144 template void elf::reportUndefinedSymbols<ELF64BE>(); 2145