1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Support/Endian.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 60 using namespace llvm; 61 using namespace llvm::ELF; 62 using namespace llvm::object; 63 using namespace llvm::support::endian; 64 65 using namespace lld; 66 using namespace lld::elf; 67 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &Sym) { 69 for (BaseCommand *Base : Script->SectionCommands) 70 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) 71 if (Cmd->Sym == &Sym) 72 return Cmd->Location; 73 return None; 74 } 75 76 // Construct a message in the following format. 77 // 78 // >>> defined in /home/alice/src/foo.o 79 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 80 // >>> /home/alice/src/bar.o:(.text+0x1) 81 static std::string getLocation(InputSectionBase &S, const Symbol &Sym, 82 uint64_t Off) { 83 std::string Msg = "\n>>> defined in "; 84 if (Sym.File) 85 Msg += toString(Sym.File); 86 else if (Optional<std::string> Loc = getLinkerScriptLocation(Sym)) 87 Msg += *Loc; 88 89 Msg += "\n>>> referenced by "; 90 std::string Src = S.getSrcMsg(Sym, Off); 91 if (!Src.empty()) 92 Msg += Src + "\n>>> "; 93 return Msg + S.getObjMsg(Off); 94 } 95 96 namespace { 97 // Build a bitmask with one bit set for each RelExpr. 98 // 99 // Constexpr function arguments can't be used in static asserts, so we 100 // use template arguments to build the mask. 101 // But function template partial specializations don't exist (needed 102 // for base case of the recursion), so we need a dummy struct. 103 template <RelExpr... Exprs> struct RelExprMaskBuilder { 104 static inline uint64_t build() { return 0; } 105 }; 106 107 // Specialization for recursive case. 108 template <RelExpr Head, RelExpr... Tail> 109 struct RelExprMaskBuilder<Head, Tail...> { 110 static inline uint64_t build() { 111 static_assert(0 <= Head && Head < 64, 112 "RelExpr is too large for 64-bit mask!"); 113 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 114 } 115 }; 116 } // namespace 117 118 // Return true if `Expr` is one of `Exprs`. 119 // There are fewer than 64 RelExpr's, so we can represent any set of 120 // RelExpr's as a constant bit mask and test for membership with a 121 // couple cheap bitwise operations. 122 template <RelExpr... Exprs> bool oneof(RelExpr Expr) { 123 assert(0 <= Expr && (int)Expr < 64 && 124 "RelExpr is too large for 64-bit mask!"); 125 return (uint64_t(1) << Expr) & RelExprMaskBuilder<Exprs...>::build(); 126 } 127 128 // This function is similar to the `handleTlsRelocation`. MIPS does not 129 // support any relaxations for TLS relocations so by factoring out MIPS 130 // handling in to the separate function we can simplify the code and do not 131 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 132 // Mips has a custom MipsGotSection that handles the writing of GOT entries 133 // without dynamic relocations. 134 static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym, 135 InputSectionBase &C, uint64_t Offset, 136 int64_t Addend, RelExpr Expr) { 137 if (Expr == R_MIPS_TLSLD) { 138 In.MipsGot->addTlsIndex(*C.File); 139 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 140 return 1; 141 } 142 if (Expr == R_MIPS_TLSGD) { 143 In.MipsGot->addDynTlsEntry(*C.File, Sym); 144 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 145 return 1; 146 } 147 return 0; 148 } 149 150 // Notes about General Dynamic and Local Dynamic TLS models below. They may 151 // require the generation of a pair of GOT entries that have associated dynamic 152 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 153 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 154 // symbol in TLS block. 155 // 156 // Returns the number of relocations processed. 157 template <class ELFT> 158 static unsigned 159 handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C, 160 typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { 161 if (!Sym.isTls()) 162 return 0; 163 164 if (Config->EMachine == EM_MIPS) 165 return handleMipsTlsRelocation(Type, Sym, C, Offset, Addend, Expr); 166 167 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>( 168 Expr) && 169 Config->Shared) { 170 if (In.Got->addDynTlsEntry(Sym)) { 171 uint64_t Off = In.Got->getGlobalDynOffset(Sym); 172 Main->RelaDyn->addReloc( 173 {Target->TlsDescRel, In.Got, Off, !Sym.IsPreemptible, &Sym, 0}); 174 } 175 if (Expr != R_TLSDESC_CALL) 176 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 177 return 1; 178 } 179 180 bool CanRelax = Config->EMachine != EM_ARM && Config->EMachine != EM_RISCV; 181 182 // If we are producing an executable and the symbol is non-preemptable, it 183 // must be defined and the code sequence can be relaxed to use Local-Exec. 184 // 185 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 186 // we can omit the DTPMOD dynamic relocations and resolve them at link time 187 // because them are always 1. This may be necessary for static linking as 188 // DTPMOD may not be expected at load time. 189 bool IsLocalInExecutable = !Sym.IsPreemptible && !Config->Shared; 190 191 // Local Dynamic is for access to module local TLS variables, while still 192 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 193 // module index, with a special value of 0 for the current module. GOT[e1] is 194 // unused. There only needs to be one module index entry. 195 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 196 Expr)) { 197 // Local-Dynamic relocs can be relaxed to Local-Exec. 198 if (CanRelax && !Config->Shared) { 199 C.Relocations.push_back( 200 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type, 201 Offset, Addend, &Sym}); 202 return Target->getTlsGdRelaxSkip(Type); 203 } 204 if (Expr == R_TLSLD_HINT) 205 return 1; 206 if (In.Got->addTlsIndex()) { 207 if (IsLocalInExecutable) 208 In.Got->Relocations.push_back( 209 {R_ADDEND, Target->SymbolicRel, In.Got->getTlsIndexOff(), 1, &Sym}); 210 else 211 Main->RelaDyn->addReloc(Target->TlsModuleIndexRel, In.Got, 212 In.Got->getTlsIndexOff(), nullptr); 213 } 214 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 215 return 1; 216 } 217 218 // Local-Dynamic relocs can be relaxed to Local-Exec. 219 if (Expr == R_DTPREL && !Config->Shared) { 220 C.Relocations.push_back( 221 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type, 222 Offset, Addend, &Sym}); 223 return 1; 224 } 225 226 // Local-Dynamic sequence where offset of tls variable relative to dynamic 227 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 228 if (Expr == R_TLSLD_GOT_OFF) { 229 if (!Sym.isInGot()) { 230 In.Got->addEntry(Sym); 231 uint64_t Off = Sym.getGotOffset(); 232 In.Got->Relocations.push_back( 233 {R_ABS, Target->TlsOffsetRel, Off, 0, &Sym}); 234 } 235 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 236 return 1; 237 } 238 239 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 240 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(Expr)) { 241 if (!CanRelax || Config->Shared) { 242 if (In.Got->addDynTlsEntry(Sym)) { 243 uint64_t Off = In.Got->getGlobalDynOffset(Sym); 244 245 if (IsLocalInExecutable) 246 // Write one to the GOT slot. 247 In.Got->Relocations.push_back( 248 {R_ADDEND, Target->SymbolicRel, Off, 1, &Sym}); 249 else 250 Main->RelaDyn->addReloc(Target->TlsModuleIndexRel, In.Got, Off, &Sym); 251 252 // If the symbol is preemptible we need the dynamic linker to write 253 // the offset too. 254 uint64_t OffsetOff = Off + Config->Wordsize; 255 if (Sym.IsPreemptible) 256 Main->RelaDyn->addReloc(Target->TlsOffsetRel, In.Got, OffsetOff, 257 &Sym); 258 else 259 In.Got->Relocations.push_back( 260 {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym}); 261 } 262 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 263 return 1; 264 } 265 266 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 267 // depending on the symbol being locally defined or not. 268 if (Sym.IsPreemptible) { 269 C.Relocations.push_back( 270 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, 271 Offset, Addend, &Sym}); 272 if (!Sym.isInGot()) { 273 In.Got->addEntry(Sym); 274 Main->RelaDyn->addReloc(Target->TlsGotRel, In.Got, Sym.getGotOffset(), 275 &Sym); 276 } 277 } else { 278 C.Relocations.push_back( 279 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, 280 Offset, Addend, &Sym}); 281 } 282 return Target->getTlsGdRelaxSkip(Type); 283 } 284 285 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 286 // defined. 287 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 288 R_TLSIE_HINT>(Expr) && 289 CanRelax && IsLocalInExecutable) { 290 C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym}); 291 return 1; 292 } 293 294 if (Expr == R_TLSIE_HINT) 295 return 1; 296 return 0; 297 } 298 299 static RelType getMipsPairType(RelType Type, bool IsLocal) { 300 switch (Type) { 301 case R_MIPS_HI16: 302 return R_MIPS_LO16; 303 case R_MIPS_GOT16: 304 // In case of global symbol, the R_MIPS_GOT16 relocation does not 305 // have a pair. Each global symbol has a unique entry in the GOT 306 // and a corresponding instruction with help of the R_MIPS_GOT16 307 // relocation loads an address of the symbol. In case of local 308 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 309 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 310 // relocations handle low 16 bits of the address. That allows 311 // to allocate only one GOT entry for every 64 KBytes of local data. 312 return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE; 313 case R_MICROMIPS_GOT16: 314 return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 315 case R_MIPS_PCHI16: 316 return R_MIPS_PCLO16; 317 case R_MICROMIPS_HI16: 318 return R_MICROMIPS_LO16; 319 default: 320 return R_MIPS_NONE; 321 } 322 } 323 324 // True if non-preemptable symbol always has the same value regardless of where 325 // the DSO is loaded. 326 static bool isAbsolute(const Symbol &Sym) { 327 if (Sym.isUndefWeak()) 328 return true; 329 if (const auto *DR = dyn_cast<Defined>(&Sym)) 330 return DR->Section == nullptr; // Absolute symbol. 331 return false; 332 } 333 334 static bool isAbsoluteValue(const Symbol &Sym) { 335 return isAbsolute(Sym) || Sym.isTls(); 336 } 337 338 // Returns true if Expr refers a PLT entry. 339 static bool needsPlt(RelExpr Expr) { 340 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(Expr); 341 } 342 343 // Returns true if Expr refers a GOT entry. Note that this function 344 // returns false for TLS variables even though they need GOT, because 345 // TLS variables uses GOT differently than the regular variables. 346 static bool needsGot(RelExpr Expr) { 347 return oneof<R_GOT, R_GOT_OFF, R_HEXAGON_GOT, R_MIPS_GOT_LOCAL_PAGE, 348 R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, 349 R_GOT_PC, R_GOTPLT>(Expr); 350 } 351 352 // True if this expression is of the form Sym - X, where X is a position in the 353 // file (PC, or GOT for example). 354 static bool isRelExpr(RelExpr Expr) { 355 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 356 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 357 R_RISCV_PC_INDIRECT>(Expr); 358 } 359 360 // Returns true if a given relocation can be computed at link-time. 361 // 362 // For instance, we know the offset from a relocation to its target at 363 // link-time if the relocation is PC-relative and refers a 364 // non-interposable function in the same executable. This function 365 // will return true for such relocation. 366 // 367 // If this function returns false, that means we need to emit a 368 // dynamic relocation so that the relocation will be fixed at load-time. 369 static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym, 370 InputSectionBase &S, uint64_t RelOff) { 371 // These expressions always compute a constant 372 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_HEXAGON_GOT, R_TLSLD_GOT_OFF, 373 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 374 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 375 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 376 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL, 377 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL, 378 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_HINT, R_TLSLD_HINT, 379 R_TLSIE_HINT>(E)) 380 return true; 381 382 // These never do, except if the entire file is position dependent or if 383 // only the low bits are used. 384 if (E == R_GOT || E == R_PLT || E == R_TLSDESC) 385 return Target->usesOnlyLowPageBits(Type) || !Config->Pic; 386 387 if (Sym.IsPreemptible) 388 return false; 389 if (!Config->Pic) 390 return true; 391 392 // The size of a non preemptible symbol is a constant. 393 if (E == R_SIZE) 394 return true; 395 396 // For the target and the relocation, we want to know if they are 397 // absolute or relative. 398 bool AbsVal = isAbsoluteValue(Sym); 399 bool RelE = isRelExpr(E); 400 if (AbsVal && !RelE) 401 return true; 402 if (!AbsVal && RelE) 403 return true; 404 if (!AbsVal && !RelE) 405 return Target->usesOnlyLowPageBits(Type); 406 407 // Relative relocation to an absolute value. This is normally unrepresentable, 408 // but if the relocation refers to a weak undefined symbol, we allow it to 409 // resolve to the image base. This is a little strange, but it allows us to 410 // link function calls to such symbols. Normally such a call will be guarded 411 // with a comparison, which will load a zero from the GOT. 412 // Another special case is MIPS _gp_disp symbol which represents offset 413 // between start of a function and '_gp' value and defined as absolute just 414 // to simplify the code. 415 assert(AbsVal && RelE); 416 if (Sym.isUndefWeak()) 417 return true; 418 419 // We set the final symbols values for linker script defined symbols later. 420 // They always can be computed as a link time constant. 421 if (Sym.ScriptDefined) 422 return true; 423 424 error("relocation " + toString(Type) + " cannot refer to absolute symbol: " + 425 toString(Sym) + getLocation(S, Sym, RelOff)); 426 return true; 427 } 428 429 static RelExpr toPlt(RelExpr Expr) { 430 switch (Expr) { 431 case R_PPC64_CALL: 432 return R_PPC64_CALL_PLT; 433 case R_PC: 434 return R_PLT_PC; 435 case R_ABS: 436 return R_PLT; 437 default: 438 return Expr; 439 } 440 } 441 442 static RelExpr fromPlt(RelExpr Expr) { 443 // We decided not to use a plt. Optimize a reference to the plt to a 444 // reference to the symbol itself. 445 switch (Expr) { 446 case R_PLT_PC: 447 case R_PPC32_PLTREL: 448 return R_PC; 449 case R_PPC64_CALL_PLT: 450 return R_PPC64_CALL; 451 case R_PLT: 452 return R_ABS; 453 default: 454 return Expr; 455 } 456 } 457 458 // Returns true if a given shared symbol is in a read-only segment in a DSO. 459 template <class ELFT> static bool isReadOnly(SharedSymbol &SS) { 460 using Elf_Phdr = typename ELFT::Phdr; 461 462 // Determine if the symbol is read-only by scanning the DSO's program headers. 463 const SharedFile &File = SS.getFile(); 464 for (const Elf_Phdr &Phdr : 465 check(File.template getObj<ELFT>().program_headers())) 466 if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && 467 !(Phdr.p_flags & ELF::PF_W) && SS.Value >= Phdr.p_vaddr && 468 SS.Value < Phdr.p_vaddr + Phdr.p_memsz) 469 return true; 470 return false; 471 } 472 473 // Returns symbols at the same offset as a given symbol, including SS itself. 474 // 475 // If two or more symbols are at the same offset, and at least one of 476 // them are copied by a copy relocation, all of them need to be copied. 477 // Otherwise, they would refer to different places at runtime. 478 template <class ELFT> 479 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &SS) { 480 using Elf_Sym = typename ELFT::Sym; 481 482 SharedFile &File = SS.getFile(); 483 484 SmallSet<SharedSymbol *, 4> Ret; 485 for (const Elf_Sym &S : File.template getGlobalELFSyms<ELFT>()) { 486 if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS || 487 S.getType() == STT_TLS || S.st_value != SS.Value) 488 continue; 489 StringRef Name = check(S.getName(File.getStringTable())); 490 Symbol *Sym = Symtab->find(Name); 491 if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym)) 492 Ret.insert(Alias); 493 } 494 return Ret; 495 } 496 497 // When a symbol is copy relocated or we create a canonical plt entry, it is 498 // effectively a defined symbol. In the case of copy relocation the symbol is 499 // in .bss and in the case of a canonical plt entry it is in .plt. This function 500 // replaces the existing symbol with a Defined pointing to the appropriate 501 // location. 502 static void replaceWithDefined(Symbol &Sym, SectionBase *Sec, uint64_t Value, 503 uint64_t Size) { 504 Symbol Old = Sym; 505 506 Sym.replace(Defined{Sym.File, Sym.getName(), Sym.Binding, Sym.StOther, 507 Sym.Type, Value, Size, Sec}); 508 509 Sym.PltIndex = Old.PltIndex; 510 Sym.GotIndex = Old.GotIndex; 511 Sym.VerdefIndex = Old.VerdefIndex; 512 Sym.PPC64BranchltIndex = Old.PPC64BranchltIndex; 513 Sym.IsPreemptible = true; 514 Sym.ExportDynamic = true; 515 Sym.IsUsedInRegularObj = true; 516 Sym.Used = true; 517 } 518 519 // Reserve space in .bss or .bss.rel.ro for copy relocation. 520 // 521 // The copy relocation is pretty much a hack. If you use a copy relocation 522 // in your program, not only the symbol name but the symbol's size, RW/RO 523 // bit and alignment become part of the ABI. In addition to that, if the 524 // symbol has aliases, the aliases become part of the ABI. That's subtle, 525 // but if you violate that implicit ABI, that can cause very counter- 526 // intuitive consequences. 527 // 528 // So, what is the copy relocation? It's for linking non-position 529 // independent code to DSOs. In an ideal world, all references to data 530 // exported by DSOs should go indirectly through GOT. But if object files 531 // are compiled as non-PIC, all data references are direct. There is no 532 // way for the linker to transform the code to use GOT, as machine 533 // instructions are already set in stone in object files. This is where 534 // the copy relocation takes a role. 535 // 536 // A copy relocation instructs the dynamic linker to copy data from a DSO 537 // to a specified address (which is usually in .bss) at load-time. If the 538 // static linker (that's us) finds a direct data reference to a DSO 539 // symbol, it creates a copy relocation, so that the symbol can be 540 // resolved as if it were in .bss rather than in a DSO. 541 // 542 // As you can see in this function, we create a copy relocation for the 543 // dynamic linker, and the relocation contains not only symbol name but 544 // various other informtion about the symbol. So, such attributes become a 545 // part of the ABI. 546 // 547 // Note for application developers: I can give you a piece of advice if 548 // you are writing a shared library. You probably should export only 549 // functions from your library. You shouldn't export variables. 550 // 551 // As an example what can happen when you export variables without knowing 552 // the semantics of copy relocations, assume that you have an exported 553 // variable of type T. It is an ABI-breaking change to add new members at 554 // end of T even though doing that doesn't change the layout of the 555 // existing members. That's because the space for the new members are not 556 // reserved in .bss unless you recompile the main program. That means they 557 // are likely to overlap with other data that happens to be laid out next 558 // to the variable in .bss. This kind of issue is sometimes very hard to 559 // debug. What's a solution? Instead of exporting a varaible V from a DSO, 560 // define an accessor getV(). 561 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &SS) { 562 // Copy relocation against zero-sized symbol doesn't make sense. 563 uint64_t SymSize = SS.getSize(); 564 if (SymSize == 0 || SS.Alignment == 0) 565 fatal("cannot create a copy relocation for symbol " + toString(SS)); 566 567 // See if this symbol is in a read-only segment. If so, preserve the symbol's 568 // memory protection by reserving space in the .bss.rel.ro section. 569 bool IsRO = isReadOnly<ELFT>(SS); 570 BssSection *Sec = 571 make<BssSection>(IsRO ? ".bss.rel.ro" : ".bss", SymSize, SS.Alignment); 572 if (IsRO) 573 In.BssRelRo->getParent()->addSection(Sec); 574 else 575 In.Bss->getParent()->addSection(Sec); 576 577 // Look through the DSO's dynamic symbol table for aliases and create a 578 // dynamic symbol for each one. This causes the copy relocation to correctly 579 // interpose any aliases. 580 for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) 581 replaceWithDefined(*Sym, Sec, 0, Sym->Size); 582 583 Main->RelaDyn->addReloc(Target->CopyRel, Sec, 0, &SS); 584 } 585 586 // MIPS has an odd notion of "paired" relocations to calculate addends. 587 // For example, if a relocation is of R_MIPS_HI16, there must be a 588 // R_MIPS_LO16 relocation after that, and an addend is calculated using 589 // the two relocations. 590 template <class ELFT, class RelTy> 591 static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End, 592 InputSectionBase &Sec, RelExpr Expr, 593 bool IsLocal) { 594 if (Expr == R_MIPS_GOTREL && IsLocal) 595 return Sec.getFile<ELFT>()->MipsGp0; 596 597 // The ABI says that the paired relocation is used only for REL. 598 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 599 if (RelTy::IsRela) 600 return 0; 601 602 RelType Type = Rel.getType(Config->IsMips64EL); 603 uint32_t PairTy = getMipsPairType(Type, IsLocal); 604 if (PairTy == R_MIPS_NONE) 605 return 0; 606 607 const uint8_t *Buf = Sec.data().data(); 608 uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); 609 610 // To make things worse, paired relocations might not be contiguous in 611 // the relocation table, so we need to do linear search. *sigh* 612 for (const RelTy *RI = &Rel; RI != End; ++RI) 613 if (RI->getType(Config->IsMips64EL) == PairTy && 614 RI->getSymbol(Config->IsMips64EL) == SymIndex) 615 return Target->getImplicitAddend(Buf + RI->r_offset, PairTy); 616 617 warn("can't find matching " + toString(PairTy) + " relocation for " + 618 toString(Type)); 619 return 0; 620 } 621 622 // Returns an addend of a given relocation. If it is RELA, an addend 623 // is in a relocation itself. If it is REL, we need to read it from an 624 // input section. 625 template <class ELFT, class RelTy> 626 static int64_t computeAddend(const RelTy &Rel, const RelTy *End, 627 InputSectionBase &Sec, RelExpr Expr, 628 bool IsLocal) { 629 int64_t Addend; 630 RelType Type = Rel.getType(Config->IsMips64EL); 631 632 if (RelTy::IsRela) { 633 Addend = getAddend<ELFT>(Rel); 634 } else { 635 const uint8_t *Buf = Sec.data().data(); 636 Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type); 637 } 638 639 if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC) 640 Addend += getPPC64TocBase(); 641 if (Config->EMachine == EM_MIPS) 642 Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal); 643 644 return Addend; 645 } 646 647 // Custom error message if Sym is defined in a discarded section. 648 template <class ELFT> 649 static std::string maybeReportDiscarded(Undefined &Sym) { 650 auto *File = dyn_cast_or_null<ObjFile<ELFT>>(Sym.File); 651 if (!File || !Sym.DiscardedSecIdx || 652 File->getSections()[Sym.DiscardedSecIdx] != &InputSection::Discarded) 653 return ""; 654 ArrayRef<Elf_Shdr_Impl<ELFT>> ObjSections = 655 CHECK(File->getObj().sections(), File); 656 657 std::string Msg; 658 if (Sym.Type == ELF::STT_SECTION) { 659 Msg = "relocation refers to a discarded section: "; 660 Msg += CHECK( 661 File->getObj().getSectionName(&ObjSections[Sym.DiscardedSecIdx]), File); 662 } else { 663 Msg = "relocation refers to a symbol in a discarded section: " + 664 toString(Sym); 665 } 666 Msg += "\n>>> defined in " + toString(File); 667 668 Elf_Shdr_Impl<ELFT> ELFSec = ObjSections[Sym.DiscardedSecIdx - 1]; 669 if (ELFSec.sh_type != SHT_GROUP) 670 return Msg; 671 672 // If the discarded section is a COMDAT. 673 StringRef Signature = File->getShtGroupSignature(ObjSections, ELFSec); 674 if (const InputFile *Prevailing = 675 Symtab->ComdatGroups.lookup(CachedHashStringRef(Signature))) 676 Msg += "\n>>> section group signature: " + Signature.str() + 677 "\n>>> prevailing definition is in " + toString(Prevailing); 678 return Msg; 679 } 680 681 // Undefined diagnostics are collected in a vector and emitted once all of 682 // them are known, so that some postprocessing on the list of undefined symbols 683 // can happen before lld emits diagnostics. 684 struct UndefinedDiag { 685 Symbol *Sym; 686 struct Loc { 687 InputSectionBase *Sec; 688 uint64_t Offset; 689 }; 690 std::vector<Loc> Locs; 691 bool IsWarning; 692 }; 693 694 static std::vector<UndefinedDiag> Undefs; 695 696 template <class ELFT> 697 static void reportUndefinedSymbol(const UndefinedDiag &Undef) { 698 Symbol &Sym = *Undef.Sym; 699 700 auto Visibility = [&]() -> std::string { 701 switch (Sym.Visibility) { 702 case STV_INTERNAL: 703 return "internal "; 704 case STV_HIDDEN: 705 return "hidden "; 706 case STV_PROTECTED: 707 return "protected "; 708 default: 709 return ""; 710 } 711 }; 712 713 std::string Msg = maybeReportDiscarded<ELFT>(cast<Undefined>(Sym)); 714 if (Msg.empty()) 715 Msg = "undefined " + Visibility() + "symbol: " + toString(Sym); 716 717 const size_t MaxUndefReferences = 10; 718 size_t I = 0; 719 for (UndefinedDiag::Loc L : Undef.Locs) { 720 if (I >= MaxUndefReferences) 721 break; 722 InputSectionBase &Sec = *L.Sec; 723 uint64_t Offset = L.Offset; 724 725 Msg += "\n>>> referenced by "; 726 std::string Src = Sec.getSrcMsg(Sym, Offset); 727 if (!Src.empty()) 728 Msg += Src + "\n>>> "; 729 Msg += Sec.getObjMsg(Offset); 730 I++; 731 } 732 733 if (I < Undef.Locs.size()) 734 Msg += ("\n>>> referenced " + Twine(Undef.Locs.size() - I) + " more times") 735 .str(); 736 737 if (Sym.getName().startswith("_ZTV")) 738 Msg += "\nthe vtable symbol may be undefined because the class is missing " 739 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 740 741 if (Undef.IsWarning) 742 warn(Msg); 743 else 744 error(Msg); 745 } 746 747 template <class ELFT> void elf::reportUndefinedSymbols() { 748 // Find the first "undefined symbol" diagnostic for each diagnostic, and 749 // collect all "referenced from" lines at the first diagnostic. 750 DenseMap<Symbol *, UndefinedDiag *> FirstRef; 751 for (UndefinedDiag &Undef : Undefs) { 752 assert(Undef.Locs.size() == 1); 753 if (UndefinedDiag *Canon = FirstRef.lookup(Undef.Sym)) { 754 Canon->Locs.push_back(Undef.Locs[0]); 755 Undef.Locs.clear(); 756 } else 757 FirstRef[Undef.Sym] = &Undef; 758 } 759 760 for (const UndefinedDiag &Undef : Undefs) { 761 if (!Undef.Locs.empty()) 762 reportUndefinedSymbol<ELFT>(Undef); 763 } 764 Undefs.clear(); 765 } 766 767 // Report an undefined symbol if necessary. 768 // Returns true if the undefined symbol will produce an error message. 769 template <class ELFT> 770 static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec, 771 uint64_t Offset) { 772 if (!Sym.isUndefined() || Sym.isWeak()) 773 return false; 774 775 bool CanBeExternal = !Sym.isLocal() && Sym.computeBinding() != STB_LOCAL && 776 Sym.Visibility == STV_DEFAULT; 777 if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal) 778 return false; 779 780 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 781 // which references a switch table in a discarded .rodata/.text section. The 782 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 783 // spec says references from outside the group to a STB_LOCAL symbol are not 784 // allowed. Work around the bug. 785 if (Config->EMachine == EM_PPC64 && 786 cast<Undefined>(Sym).DiscardedSecIdx != 0 && Sec.Name == ".toc") 787 return false; 788 789 bool IsWarning = 790 (Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) || 791 Config->NoinhibitExec; 792 Undefs.push_back({&Sym, {{&Sec, Offset}}, IsWarning}); 793 return !IsWarning; 794 } 795 796 // MIPS N32 ABI treats series of successive relocations with the same offset 797 // as a single relocation. The similar approach used by N64 ABI, but this ABI 798 // packs all relocations into the single relocation record. Here we emulate 799 // this for the N32 ABI. Iterate over relocation with the same offset and put 800 // theirs types into the single bit-set. 801 template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) { 802 RelType Type = 0; 803 uint64_t Offset = Rel->r_offset; 804 805 int N = 0; 806 while (Rel != End && Rel->r_offset == Offset) 807 Type |= (Rel++)->getType(Config->IsMips64EL) << (8 * N++); 808 return Type; 809 } 810 811 // .eh_frame sections are mergeable input sections, so their input 812 // offsets are not linearly mapped to output section. For each input 813 // offset, we need to find a section piece containing the offset and 814 // add the piece's base address to the input offset to compute the 815 // output offset. That isn't cheap. 816 // 817 // This class is to speed up the offset computation. When we process 818 // relocations, we access offsets in the monotonically increasing 819 // order. So we can optimize for that access pattern. 820 // 821 // For sections other than .eh_frame, this class doesn't do anything. 822 namespace { 823 class OffsetGetter { 824 public: 825 explicit OffsetGetter(InputSectionBase &Sec) { 826 if (auto *Eh = dyn_cast<EhInputSection>(&Sec)) 827 Pieces = Eh->Pieces; 828 } 829 830 // Translates offsets in input sections to offsets in output sections. 831 // Given offset must increase monotonically. We assume that Piece is 832 // sorted by InputOff. 833 uint64_t get(uint64_t Off) { 834 if (Pieces.empty()) 835 return Off; 836 837 while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off) 838 ++I; 839 if (I == Pieces.size()) 840 fatal(".eh_frame: relocation is not in any piece"); 841 842 // Pieces must be contiguous, so there must be no holes in between. 843 assert(Pieces[I].InputOff <= Off && "Relocation not in any piece"); 844 845 // Offset -1 means that the piece is dead (i.e. garbage collected). 846 if (Pieces[I].OutputOff == -1) 847 return -1; 848 return Pieces[I].OutputOff + Off - Pieces[I].InputOff; 849 } 850 851 private: 852 ArrayRef<EhSectionPiece> Pieces; 853 size_t I = 0; 854 }; 855 } // namespace 856 857 static void addRelativeReloc(InputSectionBase *IS, uint64_t OffsetInSec, 858 Symbol *Sym, int64_t Addend, RelExpr Expr, 859 RelType Type) { 860 Partition &Part = IS->getPartition(); 861 862 // Add a relative relocation. If RelrDyn section is enabled, and the 863 // relocation offset is guaranteed to be even, add the relocation to 864 // the RelrDyn section, otherwise add it to the RelaDyn section. 865 // RelrDyn sections don't support odd offsets. Also, RelrDyn sections 866 // don't store the addend values, so we must write it to the relocated 867 // address. 868 if (Part.RelrDyn && IS->Alignment >= 2 && OffsetInSec % 2 == 0) { 869 IS->Relocations.push_back({Expr, Type, OffsetInSec, Addend, Sym}); 870 Part.RelrDyn->Relocs.push_back({IS, OffsetInSec}); 871 return; 872 } 873 Part.RelaDyn->addReloc(Target->RelativeRel, IS, OffsetInSec, Sym, Addend, 874 Expr, Type); 875 } 876 877 template <class ELFT, class GotPltSection> 878 static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt, 879 RelocationBaseSection *Rel, RelType Type, Symbol &Sym) { 880 Plt->addEntry<ELFT>(Sym); 881 GotPlt->addEntry(Sym); 882 Rel->addReloc( 883 {Type, GotPlt, Sym.getGotPltOffset(), !Sym.IsPreemptible, &Sym, 0}); 884 } 885 886 static void addGotEntry(Symbol &Sym) { 887 In.Got->addEntry(Sym); 888 889 RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS; 890 uint64_t Off = Sym.getGotOffset(); 891 892 // If a GOT slot value can be calculated at link-time, which is now, 893 // we can just fill that out. 894 // 895 // (We don't actually write a value to a GOT slot right now, but we 896 // add a static relocation to a Relocations vector so that 897 // InputSection::relocate will do the work for us. We may be able 898 // to just write a value now, but it is a TODO.) 899 bool IsLinkTimeConstant = 900 !Sym.IsPreemptible && (!Config->Pic || isAbsolute(Sym)); 901 if (IsLinkTimeConstant) { 902 In.Got->Relocations.push_back({Expr, Target->SymbolicRel, Off, 0, &Sym}); 903 return; 904 } 905 906 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 907 // the GOT slot will be fixed at load-time. 908 if (!Sym.isTls() && !Sym.IsPreemptible && Config->Pic && !isAbsolute(Sym)) { 909 addRelativeReloc(In.Got, Off, &Sym, 0, R_ABS, Target->SymbolicRel); 910 return; 911 } 912 Main->RelaDyn->addReloc( 913 Sym.isTls() ? Target->TlsGotRel : Target->GotRel, In.Got, Off, &Sym, 0, 914 Sym.IsPreemptible ? R_ADDEND : R_ABS, Target->SymbolicRel); 915 } 916 917 // Return true if we can define a symbol in the executable that 918 // contains the value/function of a symbol defined in a shared 919 // library. 920 static bool canDefineSymbolInExecutable(Symbol &Sym) { 921 // If the symbol has default visibility the symbol defined in the 922 // executable will preempt it. 923 // Note that we want the visibility of the shared symbol itself, not 924 // the visibility of the symbol in the output file we are producing. That is 925 // why we use Sym.StOther. 926 if ((Sym.StOther & 0x3) == STV_DEFAULT) 927 return true; 928 929 // If we are allowed to break address equality of functions, defining 930 // a plt entry will allow the program to call the function in the 931 // .so, but the .so and the executable will no agree on the address 932 // of the function. Similar logic for objects. 933 return ((Sym.isFunc() && Config->IgnoreFunctionAddressEquality) || 934 (Sym.isObject() && Config->IgnoreDataAddressEquality)); 935 } 936 937 // The reason we have to do this early scan is as follows 938 // * To mmap the output file, we need to know the size 939 // * For that, we need to know how many dynamic relocs we will have. 940 // It might be possible to avoid this by outputting the file with write: 941 // * Write the allocated output sections, computing addresses. 942 // * Apply relocations, recording which ones require a dynamic reloc. 943 // * Write the dynamic relocations. 944 // * Write the rest of the file. 945 // This would have some drawbacks. For example, we would only know if .rela.dyn 946 // is needed after applying relocations. If it is, it will go after rw and rx 947 // sections. Given that it is ro, we will need an extra PT_LOAD. This 948 // complicates things for the dynamic linker and means we would have to reserve 949 // space for the extra PT_LOAD even if we end up not using it. 950 template <class ELFT, class RelTy> 951 static void processRelocAux(InputSectionBase &Sec, RelExpr Expr, RelType Type, 952 uint64_t Offset, Symbol &Sym, const RelTy &Rel, 953 int64_t Addend) { 954 // If the relocation is known to be a link-time constant, we know no dynamic 955 // relocation will be created, pass the control to relocateAlloc() or 956 // relocateNonAlloc() to resolve it. 957 // 958 // The behavior of an undefined weak reference is implementation defined. If 959 // the relocation is to a weak undef, and we are producing an executable, let 960 // relocate{,Non}Alloc() resolve it. 961 if (isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Offset) || 962 (!Config->Shared && Sym.isUndefWeak())) { 963 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 964 return; 965 } 966 967 bool CanWrite = (Sec.Flags & SHF_WRITE) || !Config->ZText; 968 if (CanWrite) { 969 RelType Rel = Target->getDynRel(Type); 970 if (Expr == R_GOT || (Rel == Target->SymbolicRel && !Sym.IsPreemptible)) { 971 addRelativeReloc(&Sec, Offset, &Sym, Addend, Expr, Type); 972 return; 973 } else if (Rel != 0) { 974 if (Config->EMachine == EM_MIPS && Rel == Target->SymbolicRel) 975 Rel = Target->RelativeRel; 976 Sec.getPartition().RelaDyn->addReloc(Rel, &Sec, Offset, &Sym, Addend, 977 R_ADDEND, Type); 978 979 // MIPS ABI turns using of GOT and dynamic relocations inside out. 980 // While regular ABI uses dynamic relocations to fill up GOT entries 981 // MIPS ABI requires dynamic linker to fills up GOT entries using 982 // specially sorted dynamic symbol table. This affects even dynamic 983 // relocations against symbols which do not require GOT entries 984 // creation explicitly, i.e. do not have any GOT-relocations. So if 985 // a preemptible symbol has a dynamic relocation we anyway have 986 // to create a GOT entry for it. 987 // If a non-preemptible symbol has a dynamic relocation against it, 988 // dynamic linker takes it st_value, adds offset and writes down 989 // result of the dynamic relocation. In case of preemptible symbol 990 // dynamic linker performs symbol resolution, writes the symbol value 991 // to the GOT entry and reads the GOT entry when it needs to perform 992 // a dynamic relocation. 993 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 994 if (Config->EMachine == EM_MIPS) 995 In.MipsGot->addEntry(*Sec.File, Sym, Addend, Expr); 996 return; 997 } 998 } 999 1000 if (!CanWrite && (Config->Pic && !isRelExpr(Expr))) { 1001 error( 1002 "can't create dynamic relocation " + toString(Type) + " against " + 1003 (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) + 1004 " in readonly segment; recompile object files with -fPIC " 1005 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 1006 getLocation(Sec, Sym, Offset)); 1007 return; 1008 } 1009 1010 // Copy relocations (for STT_OBJECT) and canonical PLT (for STT_FUNC) are only 1011 // possible in an executable. 1012 // 1013 // Among R_ABS relocatoin types, SymbolicRel has the same size as the word 1014 // size. Others have fewer bits and may cause runtime overflow in -pie/-shared 1015 // mode. Disallow them. 1016 if (Config->Shared || 1017 (Config->Pie && Expr == R_ABS && Type != Target->SymbolicRel)) { 1018 errorOrWarn( 1019 "relocation " + toString(Type) + " cannot be used against " + 1020 (Sym.getName().empty() ? "local symbol" : "symbol " + toString(Sym)) + 1021 "; recompile with -fPIC" + getLocation(Sec, Sym, Offset)); 1022 return; 1023 } 1024 1025 // If the symbol is undefined we already reported any relevant errors. 1026 if (Sym.isUndefined()) 1027 return; 1028 1029 if (!canDefineSymbolInExecutable(Sym)) { 1030 error("cannot preempt symbol: " + toString(Sym) + 1031 getLocation(Sec, Sym, Offset)); 1032 return; 1033 } 1034 1035 if (Sym.isObject()) { 1036 // Produce a copy relocation. 1037 if (auto *SS = dyn_cast<SharedSymbol>(&Sym)) { 1038 if (!Config->ZCopyreloc) 1039 error("unresolvable relocation " + toString(Type) + 1040 " against symbol '" + toString(*SS) + 1041 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1042 getLocation(Sec, Sym, Offset)); 1043 addCopyRelSymbol<ELFT>(*SS); 1044 } 1045 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 1046 return; 1047 } 1048 1049 if (Sym.isFunc()) { 1050 // This handles a non PIC program call to function in a shared library. In 1051 // an ideal world, we could just report an error saying the relocation can 1052 // overflow at runtime. In the real world with glibc, crt1.o has a 1053 // R_X86_64_PC32 pointing to libc.so. 1054 // 1055 // The general idea on how to handle such cases is to create a PLT entry and 1056 // use that as the function value. 1057 // 1058 // For the static linking part, we just return a plt expr and everything 1059 // else will use the PLT entry as the address. 1060 // 1061 // The remaining problem is making sure pointer equality still works. We 1062 // need the help of the dynamic linker for that. We let it know that we have 1063 // a direct reference to a so symbol by creating an undefined symbol with a 1064 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1065 // the value of the symbol we created. This is true even for got entries, so 1066 // pointer equality is maintained. To avoid an infinite loop, the only entry 1067 // that points to the real function is a dedicated got entry used by the 1068 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1069 // R_386_JMP_SLOT, etc). 1070 1071 // For position independent executable on i386, the plt entry requires ebx 1072 // to be set. This causes two problems: 1073 // * If some code has a direct reference to a function, it was probably 1074 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1075 // * If a library definition gets preempted to the executable, it will have 1076 // the wrong ebx value. 1077 if (Config->Pie && Config->EMachine == EM_386) 1078 errorOrWarn("symbol '" + toString(Sym) + 1079 "' cannot be preempted; recompile with -fPIE" + 1080 getLocation(Sec, Sym, Offset)); 1081 if (!Sym.isInPlt()) 1082 addPltEntry<ELFT>(In.Plt, In.GotPlt, In.RelaPlt, Target->PltRel, Sym); 1083 if (!Sym.isDefined()) 1084 replaceWithDefined( 1085 Sym, In.Plt, 1086 Target->PltHeaderSize + Target->PltEntrySize * Sym.PltIndex, 0); 1087 Sym.NeedsPltAddr = true; 1088 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); 1089 return; 1090 } 1091 1092 errorOrWarn("symbol '" + toString(Sym) + "' has no type" + 1093 getLocation(Sec, Sym, Offset)); 1094 } 1095 1096 struct IRelativeReloc { 1097 RelType Type; 1098 InputSectionBase *Sec; 1099 uint64_t Offset; 1100 Symbol *Sym; 1101 }; 1102 1103 static std::vector<IRelativeReloc> IRelativeRelocs; 1104 1105 template <class ELFT, class RelTy> 1106 static void scanReloc(InputSectionBase &Sec, OffsetGetter &GetOffset, RelTy *&I, 1107 RelTy *End) { 1108 const RelTy &Rel = *I; 1109 uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); 1110 Symbol &Sym = Sec.getFile<ELFT>()->getSymbol(SymIndex); 1111 RelType Type; 1112 1113 // Deal with MIPS oddity. 1114 if (Config->MipsN32Abi) { 1115 Type = getMipsN32RelType(I, End); 1116 } else { 1117 Type = Rel.getType(Config->IsMips64EL); 1118 ++I; 1119 } 1120 1121 // Get an offset in an output section this relocation is applied to. 1122 uint64_t Offset = GetOffset.get(Rel.r_offset); 1123 if (Offset == uint64_t(-1)) 1124 return; 1125 1126 // Error if the target symbol is undefined. Symbol index 0 may be used by 1127 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1128 if (SymIndex != 0 && maybeReportUndefined<ELFT>(Sym, Sec, Rel.r_offset)) 1129 return; 1130 1131 const uint8_t *RelocatedAddr = Sec.data().begin() + Rel.r_offset; 1132 RelExpr Expr = Target->getRelExpr(Type, Sym, RelocatedAddr); 1133 1134 // Ignore "hint" relocations because they are only markers for relaxation. 1135 if (oneof<R_HINT, R_NONE>(Expr)) 1136 return; 1137 1138 // We can separate the small code model relocations into 2 categories: 1139 // 1) Those that access the compiler generated .toc sections. 1140 // 2) Those that access the linker allocated got entries. 1141 // lld allocates got entries to symbols on demand. Since we don't try to sort 1142 // the got entries in any way, we don't have to track which objects have 1143 // got-based small code model relocs. The .toc sections get placed after the 1144 // end of the linker allocated .got section and we do sort those so sections 1145 // addressed with small code model relocations come first. 1146 if (Config->EMachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(Type)) 1147 Sec.File->PPC64SmallCodeModelTocRelocs = true; 1148 1149 if (Sym.isGnuIFunc() && !Config->ZText && Config->WarnIfuncTextrel) { 1150 warn("using ifunc symbols when text relocations are allowed may produce " 1151 "a binary that will segfault, if the object file is linked with " 1152 "old version of glibc (glibc 2.28 and earlier). If this applies to " 1153 "you, consider recompiling the object files without -fPIC and " 1154 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " 1155 "turn off this warning." + 1156 getLocation(Sec, Sym, Offset)); 1157 } 1158 1159 // Read an addend. 1160 int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal()); 1161 1162 // Relax relocations. 1163 // 1164 // If we know that a PLT entry will be resolved within the same ELF module, we 1165 // can skip PLT access and directly jump to the destination function. For 1166 // example, if we are linking a main exectuable, all dynamic symbols that can 1167 // be resolved within the executable will actually be resolved that way at 1168 // runtime, because the main exectuable is always at the beginning of a search 1169 // list. We can leverage that fact. 1170 if (!Sym.IsPreemptible && (!Sym.isGnuIFunc() || Config->ZIfuncNoplt)) { 1171 if (Expr == R_GOT_PC && !isAbsoluteValue(Sym)) { 1172 Expr = Target->adjustRelaxExpr(Type, RelocatedAddr, Expr); 1173 } else { 1174 // Addend of R_PPC_PLTREL24 is used to choose call stub type. It should be 1175 // ignored if optimized to R_PC. 1176 if (Config->EMachine == EM_PPC && Expr == R_PPC32_PLTREL) 1177 Addend = 0; 1178 Expr = fromPlt(Expr); 1179 } 1180 } 1181 1182 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1183 // uses their addresses, we need GOT or GOTPLT to be created. 1184 // 1185 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1186 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(Expr)) { 1187 In.GotPlt->HasGotPltOffRel = true; 1188 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( 1189 Expr)) { 1190 In.Got->HasGotOffRel = true; 1191 } 1192 1193 // Process some TLS relocations, including relaxing TLS relocations. 1194 // Note that this function does not handle all TLS relocations. 1195 if (unsigned Processed = 1196 handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) { 1197 I += (Processed - 1); 1198 return; 1199 } 1200 1201 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1202 // direct relocation on through. 1203 if (Sym.isGnuIFunc() && Config->ZIfuncNoplt) { 1204 Sym.ExportDynamic = true; 1205 Main->RelaDyn->addReloc(Type, &Sec, Offset, &Sym, Addend, R_ADDEND, Type); 1206 return; 1207 } 1208 1209 // Non-preemptible ifuncs require special handling. First, handle the usual 1210 // case where the symbol isn't one of these. 1211 if (!Sym.isGnuIFunc() || Sym.IsPreemptible) { 1212 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1213 if (needsPlt(Expr) && !Sym.isInPlt()) 1214 addPltEntry<ELFT>(In.Plt, In.GotPlt, In.RelaPlt, Target->PltRel, Sym); 1215 1216 // Create a GOT slot if a relocation needs GOT. 1217 if (needsGot(Expr)) { 1218 if (Config->EMachine == EM_MIPS) { 1219 // MIPS ABI has special rules to process GOT entries and doesn't 1220 // require relocation entries for them. A special case is TLS 1221 // relocations. In that case dynamic loader applies dynamic 1222 // relocations to initialize TLS GOT entries. 1223 // See "Global Offset Table" in Chapter 5 in the following document 1224 // for detailed description: 1225 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1226 In.MipsGot->addEntry(*Sec.File, Sym, Addend, Expr); 1227 } else if (!Sym.isInGot()) { 1228 addGotEntry(Sym); 1229 } 1230 } 1231 } else { 1232 // Handle a reference to a non-preemptible ifunc. These are special in a 1233 // few ways: 1234 // 1235 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1236 // a fixed value. But assuming that all references to the ifunc are 1237 // GOT-generating or PLT-generating, the handling of an ifunc is 1238 // relatively straightforward. We create a PLT entry in Iplt, which is 1239 // usually at the end of .plt, which makes an indirect call using a 1240 // matching GOT entry in IgotPlt, which is usually at the end of .got.plt. 1241 // The GOT entry is relocated using an IRELATIVE relocation in RelaIplt, 1242 // which is usually at the end of .rela.plt. Unlike most relocations in 1243 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1244 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1245 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1246 // .got.plt without requiring a separate GOT entry. 1247 // 1248 // - Despite the fact that an ifunc does not have a fixed value, compilers 1249 // that are not passed -fPIC will assume that they do, and will emit 1250 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1251 // symbol. This means that if a direct relocation to the symbol is 1252 // seen, the linker must set a value for the symbol, and this value must 1253 // be consistent no matter what type of reference is made to the symbol. 1254 // This can be done by creating a PLT entry for the symbol in the way 1255 // described above and making it canonical, that is, making all references 1256 // point to the PLT entry instead of the resolver. In lld we also store 1257 // the address of the PLT entry in the dynamic symbol table, which means 1258 // that the symbol will also have the same value in other modules. 1259 // Because the value loaded from the GOT needs to be consistent with 1260 // the value computed using a direct relocation, a non-preemptible ifunc 1261 // may end up with two GOT entries, one in .got.plt that points to the 1262 // address returned by the resolver and is used only by the PLT entry, 1263 // and another in .got that points to the PLT entry and is used by 1264 // GOT-generating relocations. 1265 // 1266 // - The fact that these symbols do not have a fixed value makes them an 1267 // exception to the general rule that a statically linked executable does 1268 // not require any form of dynamic relocation. To handle these relocations 1269 // correctly, the IRELATIVE relocations are stored in an array which a 1270 // statically linked executable's startup code must enumerate using the 1271 // linker-defined symbols __rela?_iplt_{start,end}. 1272 // 1273 // - An absolute relocation to a non-preemptible ifunc (such as a global 1274 // variable containing a pointer to the ifunc) needs to be relocated in 1275 // the exact same way as a GOT entry, so we can avoid needing to make the 1276 // PLT entry canonical by translating such relocations into IRELATIVE 1277 // relocations in the RelaIplt. 1278 if (!Sym.isInPlt()) { 1279 // Create PLT and GOTPLT slots for the symbol. 1280 Sym.IsInIplt = true; 1281 1282 // Create a copy of the symbol to use as the target of the IRELATIVE 1283 // relocation in the IgotPlt. This is in case we make the PLT canonical 1284 // later, which would overwrite the original symbol. 1285 // 1286 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1287 // that's really needed to create the IRELATIVE is the section and value, 1288 // so ideally we should just need to copy those. 1289 auto *DirectSym = make<Defined>(cast<Defined>(Sym)); 1290 addPltEntry<ELFT>(In.Iplt, In.IgotPlt, In.RelaIplt, Target->IRelativeRel, 1291 *DirectSym); 1292 Sym.PltIndex = DirectSym->PltIndex; 1293 } 1294 if (Expr == R_ABS && Addend == 0 && (Sec.Flags & SHF_WRITE)) { 1295 // We might be able to represent this as an IRELATIVE. But we don't know 1296 // yet whether some later relocation will make the symbol point to a 1297 // canonical PLT, which would make this either a dynamic RELATIVE (PIC) or 1298 // static (non-PIC) relocation. So we keep a record of the information 1299 // required to process the relocation, and after scanRelocs() has been 1300 // called on all relocations, the relocation is resolved by 1301 // addIRelativeRelocs(). 1302 IRelativeRelocs.push_back({Type, &Sec, Offset, &Sym}); 1303 return; 1304 } 1305 if (needsGot(Expr)) { 1306 // Redirect GOT accesses to point to the Igot. 1307 // 1308 // This field is also used to keep track of whether we ever needed a GOT 1309 // entry. If we did and we make the PLT canonical later, we'll need to 1310 // create a GOT entry pointing to the PLT entry for Sym. 1311 Sym.GotInIgot = true; 1312 } else if (!needsPlt(Expr)) { 1313 // Make the ifunc's PLT entry canonical by changing the value of its 1314 // symbol to redirect all references to point to it. 1315 unsigned EntryOffset = Sym.PltIndex * Target->PltEntrySize; 1316 if (Config->ZRetpolineplt) 1317 EntryOffset += Target->PltHeaderSize; 1318 1319 auto &D = cast<Defined>(Sym); 1320 D.Section = In.Iplt; 1321 D.Value = EntryOffset; 1322 D.Size = 0; 1323 // It's important to set the symbol type here so that dynamic loaders 1324 // don't try to call the PLT as if it were an ifunc resolver. 1325 D.Type = STT_FUNC; 1326 1327 if (Sym.GotInIgot) { 1328 // We previously encountered a GOT generating reference that we 1329 // redirected to the Igot. Now that the PLT entry is canonical we must 1330 // clear the redirection to the Igot and add a GOT entry. As we've 1331 // changed the symbol type to STT_FUNC future GOT generating references 1332 // will naturally use this GOT entry. 1333 // 1334 // We don't need to worry about creating a MIPS GOT here because ifuncs 1335 // aren't a thing on MIPS. 1336 Sym.GotInIgot = false; 1337 addGotEntry(Sym); 1338 } 1339 } 1340 } 1341 1342 processRelocAux<ELFT>(Sec, Expr, Type, Offset, Sym, Rel, Addend); 1343 } 1344 1345 template <class ELFT, class RelTy> 1346 static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) { 1347 OffsetGetter GetOffset(Sec); 1348 1349 // Not all relocations end up in Sec.Relocations, but a lot do. 1350 Sec.Relocations.reserve(Rels.size()); 1351 1352 for (auto I = Rels.begin(), End = Rels.end(); I != End;) 1353 scanReloc<ELFT>(Sec, GetOffset, I, End); 1354 1355 // Sort relocations by offset for more efficient searching for 1356 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1357 if (Config->EMachine == EM_RISCV || 1358 (Config->EMachine == EM_PPC64 && Sec.Name == ".toc")) 1359 llvm::stable_sort(Sec.Relocations, 1360 [](const Relocation &LHS, const Relocation &RHS) { 1361 return LHS.Offset < RHS.Offset; 1362 }); 1363 } 1364 1365 template <class ELFT> void elf::scanRelocations(InputSectionBase &S) { 1366 if (S.AreRelocsRela) 1367 scanRelocs<ELFT>(S, S.relas<ELFT>()); 1368 else 1369 scanRelocs<ELFT>(S, S.rels<ELFT>()); 1370 } 1371 1372 // Figure out which representation to use for any absolute relocs to 1373 // non-preemptible ifuncs that we visited during scanRelocs(). 1374 void elf::addIRelativeRelocs() { 1375 for (IRelativeReloc &R : IRelativeRelocs) { 1376 if (R.Sym->Type == STT_GNU_IFUNC) 1377 In.RelaIplt->addReloc( 1378 {Target->IRelativeRel, R.Sec, R.Offset, true, R.Sym, 0}); 1379 else if (Config->Pic) 1380 addRelativeReloc(R.Sec, R.Offset, R.Sym, 0, R_ABS, R.Type); 1381 else 1382 R.Sec->Relocations.push_back({R_ABS, R.Type, R.Offset, 0, R.Sym}); 1383 } 1384 IRelativeRelocs.clear(); 1385 } 1386 1387 static bool mergeCmp(const InputSection *A, const InputSection *B) { 1388 // std::merge requires a strict weak ordering. 1389 if (A->OutSecOff < B->OutSecOff) 1390 return true; 1391 1392 if (A->OutSecOff == B->OutSecOff) { 1393 auto *TA = dyn_cast<ThunkSection>(A); 1394 auto *TB = dyn_cast<ThunkSection>(B); 1395 1396 // Check if Thunk is immediately before any specific Target 1397 // InputSection for example Mips LA25 Thunks. 1398 if (TA && TA->getTargetInputSection() == B) 1399 return true; 1400 1401 // Place Thunk Sections without specific targets before 1402 // non-Thunk Sections. 1403 if (TA && !TB && !TA->getTargetInputSection()) 1404 return true; 1405 } 1406 1407 return false; 1408 } 1409 1410 // Call Fn on every executable InputSection accessed via the linker script 1411 // InputSectionDescription::Sections. 1412 static void forEachInputSectionDescription( 1413 ArrayRef<OutputSection *> OutputSections, 1414 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> Fn) { 1415 for (OutputSection *OS : OutputSections) { 1416 if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) 1417 continue; 1418 for (BaseCommand *BC : OS->SectionCommands) 1419 if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) 1420 Fn(OS, ISD); 1421 } 1422 } 1423 1424 // Thunk Implementation 1425 // 1426 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1427 // of code that the linker inserts inbetween a caller and a callee. The thunks 1428 // are added at link time rather than compile time as the decision on whether 1429 // a thunk is needed, such as the caller and callee being out of range, can only 1430 // be made at link time. 1431 // 1432 // It is straightforward to tell given the current state of the program when a 1433 // thunk is needed for a particular call. The more difficult part is that 1434 // the thunk needs to be placed in the program such that the caller can reach 1435 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1436 // the program alters addresses, which can mean more thunks etc. 1437 // 1438 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1439 // The decision to have a ThunkSection act as a container means that we can 1440 // more easily handle the most common case of a single block of contiguous 1441 // Thunks by inserting just a single ThunkSection. 1442 // 1443 // The implementation of Thunks in lld is split across these areas 1444 // Relocations.cpp : Framework for creating and placing thunks 1445 // Thunks.cpp : The code generated for each supported thunk 1446 // Target.cpp : Target specific hooks that the framework uses to decide when 1447 // a thunk is used 1448 // Synthetic.cpp : Implementation of ThunkSection 1449 // Writer.cpp : Iteratively call framework until no more Thunks added 1450 // 1451 // Thunk placement requirements: 1452 // Mips LA25 thunks. These must be placed immediately before the callee section 1453 // We can assume that the caller is in range of the Thunk. These are modelled 1454 // by Thunks that return the section they must precede with 1455 // getTargetInputSection(). 1456 // 1457 // ARM interworking and range extension thunks. These thunks must be placed 1458 // within range of the caller. All implemented ARM thunks can always reach the 1459 // callee as they use an indirect jump via a register that has no range 1460 // restrictions. 1461 // 1462 // Thunk placement algorithm: 1463 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1464 // getTargetInputSection(). 1465 // 1466 // For thunks that must be placed within range of the caller there are many 1467 // possible choices given that the maximum range from the caller is usually 1468 // much larger than the average InputSection size. Desirable properties include: 1469 // - Maximize reuse of thunks by multiple callers 1470 // - Minimize number of ThunkSections to simplify insertion 1471 // - Handle impact of already added Thunks on addresses 1472 // - Simple to understand and implement 1473 // 1474 // In lld for the first pass, we pre-create one or more ThunkSections per 1475 // InputSectionDescription at Target specific intervals. A ThunkSection is 1476 // placed so that the estimated end of the ThunkSection is within range of the 1477 // start of the InputSectionDescription or the previous ThunkSection. For 1478 // example: 1479 // InputSectionDescription 1480 // Section 0 1481 // ... 1482 // Section N 1483 // ThunkSection 0 1484 // Section N + 1 1485 // ... 1486 // Section N + K 1487 // Thunk Section 1 1488 // 1489 // The intention is that we can add a Thunk to a ThunkSection that is well 1490 // spaced enough to service a number of callers without having to do a lot 1491 // of work. An important principle is that it is not an error if a Thunk cannot 1492 // be placed in a pre-created ThunkSection; when this happens we create a new 1493 // ThunkSection placed next to the caller. This allows us to handle the vast 1494 // majority of thunks simply, but also handle rare cases where the branch range 1495 // is smaller than the target specific spacing. 1496 // 1497 // The algorithm is expected to create all the thunks that are needed in a 1498 // single pass, with a small number of programs needing a second pass due to 1499 // the insertion of thunks in the first pass increasing the offset between 1500 // callers and callees that were only just in range. 1501 // 1502 // A consequence of allowing new ThunkSections to be created outside of the 1503 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1504 // range in pass K, are out of range in some pass > K due to the insertion of 1505 // more Thunks in between the caller and callee. When this happens we retarget 1506 // the relocation back to the original target and create another Thunk. 1507 1508 // Remove ThunkSections that are empty, this should only be the initial set 1509 // precreated on pass 0. 1510 1511 // Insert the Thunks for OutputSection OS into their designated place 1512 // in the Sections vector, and recalculate the InputSection output section 1513 // offsets. 1514 // This may invalidate any output section offsets stored outside of InputSection 1515 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) { 1516 forEachInputSectionDescription( 1517 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1518 if (ISD->ThunkSections.empty()) 1519 return; 1520 1521 // Remove any zero sized precreated Thunks. 1522 llvm::erase_if(ISD->ThunkSections, 1523 [](const std::pair<ThunkSection *, uint32_t> &TS) { 1524 return TS.first->getSize() == 0; 1525 }); 1526 1527 // ISD->ThunkSections contains all created ThunkSections, including 1528 // those inserted in previous passes. Extract the Thunks created this 1529 // pass and order them in ascending OutSecOff. 1530 std::vector<ThunkSection *> NewThunks; 1531 for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections) 1532 if (TS.second == Pass) 1533 NewThunks.push_back(TS.first); 1534 llvm::stable_sort(NewThunks, 1535 [](const ThunkSection *A, const ThunkSection *B) { 1536 return A->OutSecOff < B->OutSecOff; 1537 }); 1538 1539 // Merge sorted vectors of Thunks and InputSections by OutSecOff 1540 std::vector<InputSection *> Tmp; 1541 Tmp.reserve(ISD->Sections.size() + NewThunks.size()); 1542 1543 std::merge(ISD->Sections.begin(), ISD->Sections.end(), 1544 NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp), 1545 mergeCmp); 1546 1547 ISD->Sections = std::move(Tmp); 1548 }); 1549 } 1550 1551 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1552 // is in range of Src. An ISD maps to a range of InputSections described by a 1553 // linker script section pattern such as { .text .text.* }. 1554 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS, 1555 InputSectionDescription *ISD, 1556 uint32_t Type, uint64_t Src) { 1557 for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) { 1558 ThunkSection *TS = TP.first; 1559 uint64_t TSBase = OS->Addr + TS->OutSecOff; 1560 uint64_t TSLimit = TSBase + TS->getSize(); 1561 if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit)) 1562 return TS; 1563 } 1564 1565 // No suitable ThunkSection exists. This can happen when there is a branch 1566 // with lower range than the ThunkSection spacing or when there are too 1567 // many Thunks. Create a new ThunkSection as close to the InputSection as 1568 // possible. Error if InputSection is so large we cannot place ThunkSection 1569 // anywhere in Range. 1570 uint64_t ThunkSecOff = IS->OutSecOff; 1571 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) { 1572 ThunkSecOff = IS->OutSecOff + IS->getSize(); 1573 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) 1574 fatal("InputSection too large for range extension thunk " + 1575 IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff))); 1576 } 1577 return addThunkSection(OS, ISD, ThunkSecOff); 1578 } 1579 1580 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1581 // precedes its Target. 1582 ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) { 1583 ThunkSection *TS = ThunkedSections.lookup(IS); 1584 if (TS) 1585 return TS; 1586 1587 // Find InputSectionRange within Target Output Section (TOS) that the 1588 // InputSection (IS) that we need to precede is in. 1589 OutputSection *TOS = IS->getParent(); 1590 for (BaseCommand *BC : TOS->SectionCommands) { 1591 auto *ISD = dyn_cast<InputSectionDescription>(BC); 1592 if (!ISD || ISD->Sections.empty()) 1593 continue; 1594 1595 InputSection *First = ISD->Sections.front(); 1596 InputSection *Last = ISD->Sections.back(); 1597 1598 if (IS->OutSecOff < First->OutSecOff || Last->OutSecOff < IS->OutSecOff) 1599 continue; 1600 1601 TS = addThunkSection(TOS, ISD, IS->OutSecOff); 1602 ThunkedSections[IS] = TS; 1603 return TS; 1604 } 1605 1606 return nullptr; 1607 } 1608 1609 // Create one or more ThunkSections per OS that can be used to place Thunks. 1610 // We attempt to place the ThunkSections using the following desirable 1611 // properties: 1612 // - Within range of the maximum number of callers 1613 // - Minimise the number of ThunkSections 1614 // 1615 // We follow a simple but conservative heuristic to place ThunkSections at 1616 // offsets that are multiples of a Target specific branch range. 1617 // For an InputSectionDescription that is smaller than the range, a single 1618 // ThunkSection at the end of the range will do. 1619 // 1620 // For an InputSectionDescription that is more than twice the size of the range, 1621 // we place the last ThunkSection at range bytes from the end of the 1622 // InputSectionDescription in order to increase the likelihood that the 1623 // distance from a thunk to its target will be sufficiently small to 1624 // allow for the creation of a short thunk. 1625 void ThunkCreator::createInitialThunkSections( 1626 ArrayRef<OutputSection *> OutputSections) { 1627 uint32_t ThunkSectionSpacing = Target->getThunkSectionSpacing(); 1628 1629 forEachInputSectionDescription( 1630 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1631 if (ISD->Sections.empty()) 1632 return; 1633 1634 uint32_t ISDBegin = ISD->Sections.front()->OutSecOff; 1635 uint32_t ISDEnd = 1636 ISD->Sections.back()->OutSecOff + ISD->Sections.back()->getSize(); 1637 uint32_t LastThunkLowerBound = -1; 1638 if (ISDEnd - ISDBegin > ThunkSectionSpacing * 2) 1639 LastThunkLowerBound = ISDEnd - ThunkSectionSpacing; 1640 1641 uint32_t ISLimit; 1642 uint32_t PrevISLimit = ISDBegin; 1643 uint32_t ThunkUpperBound = ISDBegin + ThunkSectionSpacing; 1644 1645 for (const InputSection *IS : ISD->Sections) { 1646 ISLimit = IS->OutSecOff + IS->getSize(); 1647 if (ISLimit > ThunkUpperBound) { 1648 addThunkSection(OS, ISD, PrevISLimit); 1649 ThunkUpperBound = PrevISLimit + ThunkSectionSpacing; 1650 } 1651 if (ISLimit > LastThunkLowerBound) 1652 break; 1653 PrevISLimit = ISLimit; 1654 } 1655 addThunkSection(OS, ISD, ISLimit); 1656 }); 1657 } 1658 1659 ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS, 1660 InputSectionDescription *ISD, 1661 uint64_t Off) { 1662 auto *TS = make<ThunkSection>(OS, Off); 1663 TS->Partition = OS->Partition; 1664 ISD->ThunkSections.push_back({TS, Pass}); 1665 return TS; 1666 } 1667 1668 static bool isThunkSectionCompatible(InputSection *Source, 1669 SectionBase *Target) { 1670 // We can't reuse thunks in different loadable partitions because they might 1671 // not be loaded. But partition 1 (the main partition) will always be loaded. 1672 if (Source->Partition != Target->Partition) 1673 return Target->Partition == 1; 1674 return true; 1675 } 1676 1677 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *IS, 1678 Relocation &Rel, uint64_t Src) { 1679 std::vector<Thunk *> *ThunkVec = nullptr; 1680 1681 // We use (section, offset) pair to find the thunk position if possible so 1682 // that we create only one thunk for aliased symbols or ICFed sections. 1683 if (auto *D = dyn_cast<Defined>(Rel.Sym)) 1684 if (!D->isInPlt() && D->Section) 1685 ThunkVec = &ThunkedSymbolsBySection[{D->Section->Repl, D->Value}]; 1686 if (!ThunkVec) 1687 ThunkVec = &ThunkedSymbols[Rel.Sym]; 1688 1689 // Check existing Thunks for Sym to see if they can be reused 1690 for (Thunk *T : *ThunkVec) 1691 if (isThunkSectionCompatible(IS, T->getThunkTargetSym()->Section) && 1692 T->isCompatibleWith(*IS, Rel) && 1693 Target->inBranchRange(Rel.Type, Src, T->getThunkTargetSym()->getVA())) 1694 return std::make_pair(T, false); 1695 1696 // No existing compatible Thunk in range, create a new one 1697 Thunk *T = addThunk(*IS, Rel); 1698 ThunkVec->push_back(T); 1699 return std::make_pair(T, true); 1700 } 1701 1702 // Return true if the relocation target is an in range Thunk. 1703 // Return false if the relocation is not to a Thunk. If the relocation target 1704 // was originally to a Thunk, but is no longer in range we revert the 1705 // relocation back to its original non-Thunk target. 1706 bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) { 1707 if (Thunk *T = Thunks.lookup(Rel.Sym)) { 1708 if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA())) 1709 return true; 1710 Rel.Sym = &T->Destination; 1711 if (Rel.Sym->isInPlt()) 1712 Rel.Expr = toPlt(Rel.Expr); 1713 } 1714 return false; 1715 } 1716 1717 // Process all relocations from the InputSections that have been assigned 1718 // to InputSectionDescriptions and redirect through Thunks if needed. The 1719 // function should be called iteratively until it returns false. 1720 // 1721 // PreConditions: 1722 // All InputSections that may need a Thunk are reachable from 1723 // OutputSectionCommands. 1724 // 1725 // All OutputSections have an address and all InputSections have an offset 1726 // within the OutputSection. 1727 // 1728 // The offsets between caller (relocation place) and callee 1729 // (relocation target) will not be modified outside of createThunks(). 1730 // 1731 // PostConditions: 1732 // If return value is true then ThunkSections have been inserted into 1733 // OutputSections. All relocations that needed a Thunk based on the information 1734 // available to createThunks() on entry have been redirected to a Thunk. Note 1735 // that adding Thunks changes offsets between caller and callee so more Thunks 1736 // may be required. 1737 // 1738 // If return value is false then no more Thunks are needed, and createThunks has 1739 // made no changes. If the target requires range extension thunks, currently 1740 // ARM, then any future change in offset between caller and callee risks a 1741 // relocation out of range error. 1742 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) { 1743 bool AddressesChanged = false; 1744 1745 if (Pass == 0 && Target->getThunkSectionSpacing()) 1746 createInitialThunkSections(OutputSections); 1747 1748 // With Thunk Size much smaller than branch range we expect to 1749 // converge quickly; if we get to 10 something has gone wrong. 1750 if (Pass == 10) 1751 fatal("thunk creation not converged"); 1752 1753 // Create all the Thunks and insert them into synthetic ThunkSections. The 1754 // ThunkSections are later inserted back into InputSectionDescriptions. 1755 // We separate the creation of ThunkSections from the insertion of the 1756 // ThunkSections as ThunkSections are not always inserted into the same 1757 // InputSectionDescription as the caller. 1758 forEachInputSectionDescription( 1759 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { 1760 for (InputSection *IS : ISD->Sections) 1761 for (Relocation &Rel : IS->Relocations) { 1762 uint64_t Src = IS->getVA(Rel.Offset); 1763 1764 // If we are a relocation to an existing Thunk, check if it is 1765 // still in range. If not then Rel will be altered to point to its 1766 // original target so another Thunk can be generated. 1767 if (Pass > 0 && normalizeExistingThunk(Rel, Src)) 1768 continue; 1769 1770 if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src, 1771 *Rel.Sym)) 1772 continue; 1773 1774 Thunk *T; 1775 bool IsNew; 1776 std::tie(T, IsNew) = getThunk(IS, Rel, Src); 1777 1778 if (IsNew) { 1779 // Find or create a ThunkSection for the new Thunk 1780 ThunkSection *TS; 1781 if (auto *TIS = T->getTargetInputSection()) 1782 TS = getISThunkSec(TIS); 1783 else 1784 TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src); 1785 TS->addThunk(T); 1786 Thunks[T->getThunkTargetSym()] = T; 1787 } 1788 1789 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 1790 Rel.Sym = T->getThunkTargetSym(); 1791 Rel.Expr = fromPlt(Rel.Expr); 1792 1793 // The addend of R_PPC_PLTREL24 should be ignored after changing to 1794 // R_PC. 1795 if (Config->EMachine == EM_PPC && Rel.Type == R_PPC_PLTREL24) 1796 Rel.Addend = 0; 1797 } 1798 1799 for (auto &P : ISD->ThunkSections) 1800 AddressesChanged |= P.first->assignOffsets(); 1801 }); 1802 1803 for (auto &P : ThunkedSections) 1804 AddressesChanged |= P.second->assignOffsets(); 1805 1806 // Merge all created synthetic ThunkSections back into OutputSection 1807 mergeThunks(OutputSections); 1808 ++Pass; 1809 return AddressesChanged; 1810 } 1811 1812 template void elf::scanRelocations<ELF32LE>(InputSectionBase &); 1813 template void elf::scanRelocations<ELF32BE>(InputSectionBase &); 1814 template void elf::scanRelocations<ELF64LE>(InputSectionBase &); 1815 template void elf::scanRelocations<ELF64BE>(InputSectionBase &); 1816 template void elf::reportUndefinedSymbols<ELF32LE>(); 1817 template void elf::reportUndefinedSymbols<ELF32BE>(); 1818 template void elf::reportUndefinedSymbols<ELF64LE>(); 1819 template void elf::reportUndefinedSymbols<ELF64BE>(); 1820