1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/CommonLinkerContext.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/Compression.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Threading.h" 26 #include "llvm/Support/xxhash.h" 27 #include <algorithm> 28 #include <mutex> 29 #include <set> 30 #include <unordered_set> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 using namespace llvm::sys; 39 using namespace lld; 40 using namespace lld::elf; 41 42 SmallVector<InputSectionBase *, 0> elf::inputSections; 43 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 44 45 // Returns a string to construct an error message. 46 std::string lld::toString(const InputSectionBase *sec) { 47 return (toString(sec->file) + ":(" + sec->name + ")").str(); 48 } 49 50 template <class ELFT> 51 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 52 const typename ELFT::Shdr &hdr) { 53 if (hdr.sh_type == SHT_NOBITS) 54 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 55 return check(file.getObj().getSectionContents(hdr)); 56 } 57 58 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 59 uint32_t type, uint64_t entsize, 60 uint32_t link, uint32_t info, 61 uint32_t alignment, ArrayRef<uint8_t> data, 62 StringRef name, Kind sectionKind) 63 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 64 link), 65 file(file), rawData(data) { 66 // In order to reduce memory allocation, we assume that mergeable 67 // sections are smaller than 4 GiB, which is not an unreasonable 68 // assumption as of 2017. 69 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 70 error(toString(this) + ": section too large"); 71 72 // The ELF spec states that a value of 0 means the section has 73 // no alignment constraints. 74 uint32_t v = std::max<uint32_t>(alignment, 1); 75 if (!isPowerOf2_64(v)) 76 fatal(toString(this) + ": sh_addralign is not a power of 2"); 77 this->alignment = v; 78 79 // In ELF, each section can be compressed by zlib, and if compressed, 80 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 81 // If that's the case, demangle section name so that we can handle a 82 // section as if it weren't compressed. 83 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 84 if (!zlib::isAvailable()) 85 error(toString(file) + ": contains a compressed section, " + 86 "but zlib is not available"); 87 switch (config->ekind) { 88 case ELF32LEKind: 89 parseCompressedHeader<ELF32LE>(); 90 break; 91 case ELF32BEKind: 92 parseCompressedHeader<ELF32BE>(); 93 break; 94 case ELF64LEKind: 95 parseCompressedHeader<ELF64LE>(); 96 break; 97 case ELF64BEKind: 98 parseCompressedHeader<ELF64BE>(); 99 break; 100 default: 101 llvm_unreachable("unknown ELFT"); 102 } 103 } 104 } 105 106 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 107 // SHF_GROUP is a marker that a section belongs to some comdat group. 108 // That flag doesn't make sense in an executable. 109 static uint64_t getFlags(uint64_t flags) { 110 flags &= ~(uint64_t)SHF_INFO_LINK; 111 if (!config->relocatable) 112 flags &= ~(uint64_t)SHF_GROUP; 113 return flags; 114 } 115 116 template <class ELFT> 117 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 118 const typename ELFT::Shdr &hdr, 119 StringRef name, Kind sectionKind) 120 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 121 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 122 hdr.sh_addralign, getSectionContents(file, hdr), name, 123 sectionKind) { 124 // We reject object files having insanely large alignments even though 125 // they are allowed by the spec. I think 4GB is a reasonable limitation. 126 // We might want to relax this in the future. 127 if (hdr.sh_addralign > UINT32_MAX) 128 fatal(toString(&file) + ": section sh_addralign is too large"); 129 } 130 131 size_t InputSectionBase::getSize() const { 132 if (auto *s = dyn_cast<SyntheticSection>(this)) 133 return s->getSize(); 134 if (uncompressedSize >= 0) 135 return uncompressedSize; 136 return rawData.size() - bytesDropped; 137 } 138 139 void InputSectionBase::uncompress() const { 140 size_t size = uncompressedSize; 141 char *uncompressedBuf; 142 { 143 static std::mutex mu; 144 std::lock_guard<std::mutex> lock(mu); 145 uncompressedBuf = bAlloc().Allocate<char>(size); 146 } 147 148 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 149 fatal(toString(this) + 150 ": uncompress failed: " + llvm::toString(std::move(e))); 151 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 152 uncompressedSize = -1; 153 } 154 155 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 156 if (relSecIdx == 0) 157 return {}; 158 RelsOrRelas<ELFT> ret; 159 typename ELFT::Shdr shdr = 160 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 161 if (shdr.sh_type == SHT_REL) { 162 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 163 file->mb.getBufferStart() + shdr.sh_offset), 164 shdr.sh_size / sizeof(typename ELFT::Rel)); 165 } else { 166 assert(shdr.sh_type == SHT_RELA); 167 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 168 file->mb.getBufferStart() + shdr.sh_offset), 169 shdr.sh_size / sizeof(typename ELFT::Rela)); 170 } 171 return ret; 172 } 173 174 uint64_t SectionBase::getOffset(uint64_t offset) const { 175 switch (kind()) { 176 case Output: { 177 auto *os = cast<OutputSection>(this); 178 // For output sections we treat offset -1 as the end of the section. 179 return offset == uint64_t(-1) ? os->size : offset; 180 } 181 case Regular: 182 case Synthetic: 183 return cast<InputSection>(this)->outSecOff + offset; 184 case EHFrame: 185 // The file crtbeginT.o has relocations pointing to the start of an empty 186 // .eh_frame that is known to be the first in the link. It does that to 187 // identify the start of the output .eh_frame. 188 return offset; 189 case Merge: 190 const MergeInputSection *ms = cast<MergeInputSection>(this); 191 if (InputSection *isec = ms->getParent()) 192 return isec->outSecOff + ms->getParentOffset(offset); 193 return ms->getParentOffset(offset); 194 } 195 llvm_unreachable("invalid section kind"); 196 } 197 198 uint64_t SectionBase::getVA(uint64_t offset) const { 199 const OutputSection *out = getOutputSection(); 200 return (out ? out->addr : 0) + getOffset(offset); 201 } 202 203 OutputSection *SectionBase::getOutputSection() { 204 InputSection *sec; 205 if (auto *isec = dyn_cast<InputSection>(this)) 206 sec = isec; 207 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 208 sec = ms->getParent(); 209 else if (auto *eh = dyn_cast<EhInputSection>(this)) 210 sec = eh->getParent(); 211 else 212 return cast<OutputSection>(this); 213 return sec ? sec->getParent() : nullptr; 214 } 215 216 // When a section is compressed, `rawData` consists with a header followed 217 // by zlib-compressed data. This function parses a header to initialize 218 // `uncompressedSize` member and remove the header from `rawData`. 219 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 220 // Old-style header 221 if (!(flags & SHF_COMPRESSED)) { 222 assert(name.startswith(".zdebug")); 223 if (!toStringRef(rawData).startswith("ZLIB")) { 224 error(toString(this) + ": corrupted compressed section header"); 225 return; 226 } 227 rawData = rawData.slice(4); 228 229 if (rawData.size() < 8) { 230 error(toString(this) + ": corrupted compressed section header"); 231 return; 232 } 233 234 uncompressedSize = read64be(rawData.data()); 235 rawData = rawData.slice(8); 236 237 // Restore the original section name. 238 // (e.g. ".zdebug_info" -> ".debug_info") 239 name = saver().save("." + name.substr(2)); 240 return; 241 } 242 243 flags &= ~(uint64_t)SHF_COMPRESSED; 244 245 // New-style header 246 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 247 error(toString(this) + ": corrupted compressed section"); 248 return; 249 } 250 251 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 252 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 253 error(toString(this) + ": unsupported compression type"); 254 return; 255 } 256 257 uncompressedSize = hdr->ch_size; 258 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 259 rawData = rawData.slice(sizeof(*hdr)); 260 } 261 262 InputSection *InputSectionBase::getLinkOrderDep() const { 263 assert(flags & SHF_LINK_ORDER); 264 if (!link) 265 return nullptr; 266 return cast<InputSection>(file->getSections()[link]); 267 } 268 269 // Find a function symbol that encloses a given location. 270 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 271 for (Symbol *b : file->getSymbols()) 272 if (Defined *d = dyn_cast<Defined>(b)) 273 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 274 offset < d->value + d->size) 275 return d; 276 return nullptr; 277 } 278 279 // Returns an object file location string. Used to construct an error message. 280 std::string InputSectionBase::getLocation(uint64_t offset) { 281 std::string secAndOffset = 282 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 283 284 // We don't have file for synthetic sections. 285 if (file == nullptr) 286 return (config->outputFile + ":(" + secAndOffset).str(); 287 288 std::string filename = toString(file); 289 if (Defined *d = getEnclosingFunction(offset)) 290 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 291 292 return filename + ":(" + secAndOffset; 293 } 294 295 // This function is intended to be used for constructing an error message. 296 // The returned message looks like this: 297 // 298 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 299 // 300 // Returns an empty string if there's no way to get line info. 301 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 302 return file->getSrcMsg(sym, *this, offset); 303 } 304 305 // Returns a filename string along with an optional section name. This 306 // function is intended to be used for constructing an error 307 // message. The returned message looks like this: 308 // 309 // path/to/foo.o:(function bar) 310 // 311 // or 312 // 313 // path/to/foo.o:(function bar) in archive path/to/bar.a 314 std::string InputSectionBase::getObjMsg(uint64_t off) { 315 std::string filename = std::string(file->getName()); 316 317 std::string archive; 318 if (!file->archiveName.empty()) 319 archive = (" in archive " + file->archiveName).str(); 320 321 // Find a symbol that encloses a given location. 322 for (Symbol *b : file->getSymbols()) 323 if (auto *d = dyn_cast<Defined>(b)) 324 if (d->section == this && d->value <= off && off < d->value + d->size) 325 return filename + ":(" + toString(*d) + ")" + archive; 326 327 // If there's no symbol, print out the offset in the section. 328 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 329 .str(); 330 } 331 332 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 333 334 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 335 uint32_t alignment, ArrayRef<uint8_t> data, 336 StringRef name, Kind k) 337 : InputSectionBase(f, flags, type, 338 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 339 name, k) {} 340 341 template <class ELFT> 342 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 343 StringRef name) 344 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 345 346 bool InputSection::classof(const SectionBase *s) { 347 return s->kind() == SectionBase::Regular || 348 s->kind() == SectionBase::Synthetic; 349 } 350 351 OutputSection *InputSection::getParent() const { 352 return cast_or_null<OutputSection>(parent); 353 } 354 355 // Copy SHT_GROUP section contents. Used only for the -r option. 356 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 357 // ELFT::Word is the 32-bit integral type in the target endianness. 358 using u32 = typename ELFT::Word; 359 ArrayRef<u32> from = getDataAs<u32>(); 360 auto *to = reinterpret_cast<u32 *>(buf); 361 362 // The first entry is not a section number but a flag. 363 *to++ = from[0]; 364 365 // Adjust section numbers because section numbers in an input object files are 366 // different in the output. We also need to handle combined or discarded 367 // members. 368 ArrayRef<InputSectionBase *> sections = file->getSections(); 369 std::unordered_set<uint32_t> seen; 370 for (uint32_t idx : from.slice(1)) { 371 OutputSection *osec = sections[idx]->getOutputSection(); 372 if (osec && seen.insert(osec->sectionIndex).second) 373 *to++ = osec->sectionIndex; 374 } 375 } 376 377 InputSectionBase *InputSection::getRelocatedSection() const { 378 if (!file || (type != SHT_RELA && type != SHT_REL)) 379 return nullptr; 380 ArrayRef<InputSectionBase *> sections = file->getSections(); 381 return sections[info]; 382 } 383 384 // This is used for -r and --emit-relocs. We can't use memcpy to copy 385 // relocations because we need to update symbol table offset and section index 386 // for each relocation. So we copy relocations one by one. 387 template <class ELFT, class RelTy> 388 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 389 const TargetInfo &target = *elf::target; 390 InputSectionBase *sec = getRelocatedSection(); 391 392 for (const RelTy &rel : rels) { 393 RelType type = rel.getType(config->isMips64EL); 394 const ObjFile<ELFT> *file = getFile<ELFT>(); 395 Symbol &sym = file->getRelocTargetSym(rel); 396 397 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 398 buf += sizeof(RelTy); 399 400 if (RelTy::IsRela) 401 p->r_addend = getAddend<ELFT>(rel); 402 403 // Output section VA is zero for -r, so r_offset is an offset within the 404 // section, but for --emit-relocs it is a virtual address. 405 p->r_offset = sec->getVA(rel.r_offset); 406 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 407 config->isMips64EL); 408 409 if (sym.type == STT_SECTION) { 410 // We combine multiple section symbols into only one per 411 // section. This means we have to update the addend. That is 412 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 413 // section data. We do that by adding to the Relocation vector. 414 415 // .eh_frame is horribly special and can reference discarded sections. To 416 // avoid having to parse and recreate .eh_frame, we just replace any 417 // relocation in it pointing to discarded sections with R_*_NONE, which 418 // hopefully creates a frame that is ignored at runtime. Also, don't warn 419 // on .gcc_except_table and debug sections. 420 // 421 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 422 auto *d = dyn_cast<Defined>(&sym); 423 if (!d) { 424 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 425 sec->name != ".gcc_except_table" && sec->name != ".got2" && 426 sec->name != ".toc") { 427 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 428 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 429 warn("relocation refers to a discarded section: " + 430 CHECK(file->getObj().getSectionName(sec), file) + 431 "\n>>> referenced by " + getObjMsg(p->r_offset)); 432 } 433 p->setSymbolAndType(0, 0, false); 434 continue; 435 } 436 SectionBase *section = d->section; 437 if (!section->isLive()) { 438 p->setSymbolAndType(0, 0, false); 439 continue; 440 } 441 442 int64_t addend = getAddend<ELFT>(rel); 443 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 444 if (!RelTy::IsRela) 445 addend = target.getImplicitAddend(bufLoc, type); 446 447 if (config->emachine == EM_MIPS && 448 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 449 // Some MIPS relocations depend on "gp" value. By default, 450 // this value has 0x7ff0 offset from a .got section. But 451 // relocatable files produced by a compiler or a linker 452 // might redefine this default value and we must use it 453 // for a calculation of the relocation result. When we 454 // generate EXE or DSO it's trivial. Generating a relocatable 455 // output is more difficult case because the linker does 456 // not calculate relocations in this mode and loses 457 // individual "gp" values used by each input object file. 458 // As a workaround we add the "gp" value to the relocation 459 // addend and save it back to the file. 460 addend += sec->getFile<ELFT>()->mipsGp0; 461 } 462 463 if (RelTy::IsRela) 464 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 465 else if (config->relocatable && type != target.noneRel) 466 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 467 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 468 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 469 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 470 // indicates that r30 is relative to the input section .got2 471 // (r_addend>=0x8000), after linking, r30 should be relative to the output 472 // section .got2 . To compensate for the shift, adjust r_addend by 473 // ppc32Got->outSecOff. 474 p->r_addend += sec->file->ppc32Got2->outSecOff; 475 } 476 } 477 } 478 479 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 480 // references specially. The general rule is that the value of the symbol in 481 // this context is the address of the place P. A further special case is that 482 // branch relocations to an undefined weak reference resolve to the next 483 // instruction. 484 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 485 uint32_t p) { 486 switch (type) { 487 // Unresolved branch relocations to weak references resolve to next 488 // instruction, this will be either 2 or 4 bytes on from P. 489 case R_ARM_THM_JUMP8: 490 case R_ARM_THM_JUMP11: 491 return p + 2 + a; 492 case R_ARM_CALL: 493 case R_ARM_JUMP24: 494 case R_ARM_PC24: 495 case R_ARM_PLT32: 496 case R_ARM_PREL31: 497 case R_ARM_THM_JUMP19: 498 case R_ARM_THM_JUMP24: 499 return p + 4 + a; 500 case R_ARM_THM_CALL: 501 // We don't want an interworking BLX to ARM 502 return p + 5 + a; 503 // Unresolved non branch pc-relative relocations 504 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 505 // targets a weak-reference. 506 case R_ARM_MOVW_PREL_NC: 507 case R_ARM_MOVT_PREL: 508 case R_ARM_REL32: 509 case R_ARM_THM_ALU_PREL_11_0: 510 case R_ARM_THM_MOVW_PREL_NC: 511 case R_ARM_THM_MOVT_PREL: 512 case R_ARM_THM_PC12: 513 return p + a; 514 // p + a is unrepresentable as negative immediates can't be encoded. 515 case R_ARM_THM_PC8: 516 return p; 517 } 518 llvm_unreachable("ARM pc-relative relocation expected\n"); 519 } 520 521 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 522 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 523 switch (type) { 524 // Unresolved branch relocations to weak references resolve to next 525 // instruction, this is 4 bytes on from P. 526 case R_AARCH64_CALL26: 527 case R_AARCH64_CONDBR19: 528 case R_AARCH64_JUMP26: 529 case R_AARCH64_TSTBR14: 530 return p + 4; 531 // Unresolved non branch pc-relative relocations 532 case R_AARCH64_PREL16: 533 case R_AARCH64_PREL32: 534 case R_AARCH64_PREL64: 535 case R_AARCH64_ADR_PREL_LO21: 536 case R_AARCH64_LD_PREL_LO19: 537 case R_AARCH64_PLT32: 538 return p; 539 } 540 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 541 } 542 543 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 544 switch (type) { 545 case R_RISCV_BRANCH: 546 case R_RISCV_JAL: 547 case R_RISCV_CALL: 548 case R_RISCV_CALL_PLT: 549 case R_RISCV_RVC_BRANCH: 550 case R_RISCV_RVC_JUMP: 551 return p; 552 default: 553 return 0; 554 } 555 } 556 557 // ARM SBREL relocations are of the form S + A - B where B is the static base 558 // The ARM ABI defines base to be "addressing origin of the output segment 559 // defining the symbol S". We defined the "addressing origin"/static base to be 560 // the base of the PT_LOAD segment containing the Sym. 561 // The procedure call standard only defines a Read Write Position Independent 562 // RWPI variant so in practice we should expect the static base to be the base 563 // of the RW segment. 564 static uint64_t getARMStaticBase(const Symbol &sym) { 565 OutputSection *os = sym.getOutputSection(); 566 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 567 fatal("SBREL relocation to " + sym.getName() + " without static base"); 568 return os->ptLoad->firstSec->addr; 569 } 570 571 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 572 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 573 // is calculated using PCREL_HI20's symbol. 574 // 575 // This function returns the R_RISCV_PCREL_HI20 relocation from 576 // R_RISCV_PCREL_LO12's symbol and addend. 577 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 578 const Defined *d = cast<Defined>(sym); 579 if (!d->section) { 580 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 581 sym->getName()); 582 return nullptr; 583 } 584 InputSection *isec = cast<InputSection>(d->section); 585 586 if (addend != 0) 587 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 588 isec->getObjMsg(d->value) + " is ignored"); 589 590 // Relocations are sorted by offset, so we can use std::equal_range to do 591 // binary search. 592 Relocation r; 593 r.offset = d->value; 594 auto range = 595 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 596 [](const Relocation &lhs, const Relocation &rhs) { 597 return lhs.offset < rhs.offset; 598 }); 599 600 for (auto it = range.first; it != range.second; ++it) 601 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 602 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 603 return &*it; 604 605 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 606 " without an associated R_RISCV_PCREL_HI20 relocation"); 607 return nullptr; 608 } 609 610 // A TLS symbol's virtual address is relative to the TLS segment. Add a 611 // target-specific adjustment to produce a thread-pointer-relative offset. 612 static int64_t getTlsTpOffset(const Symbol &s) { 613 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 614 if (&s == ElfSym::tlsModuleBase) 615 return 0; 616 617 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 618 // while most others use Variant 1. At run time TP will be aligned to p_align. 619 620 // Variant 1. TP will be followed by an optional gap (which is the size of 2 621 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 622 // padding, then the static TLS blocks. The alignment padding is added so that 623 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 624 // 625 // Variant 2. Static TLS blocks, followed by alignment padding are placed 626 // before TP. The alignment padding is added so that (TP - padding - 627 // p_memsz) is congruent to p_vaddr modulo p_align. 628 PhdrEntry *tls = Out::tlsPhdr; 629 switch (config->emachine) { 630 // Variant 1. 631 case EM_ARM: 632 case EM_AARCH64: 633 return s.getVA(0) + config->wordsize * 2 + 634 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 635 case EM_MIPS: 636 case EM_PPC: 637 case EM_PPC64: 638 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 639 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 640 // data and 0xf000 of the program's TLS segment. 641 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 642 case EM_RISCV: 643 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 644 645 // Variant 2. 646 case EM_HEXAGON: 647 case EM_SPARCV9: 648 case EM_386: 649 case EM_X86_64: 650 return s.getVA(0) - tls->p_memsz - 651 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 652 default: 653 llvm_unreachable("unhandled Config->EMachine"); 654 } 655 } 656 657 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 658 int64_t a, uint64_t p, 659 const Symbol &sym, RelExpr expr) { 660 switch (expr) { 661 case R_ABS: 662 case R_DTPREL: 663 case R_RELAX_TLS_LD_TO_LE_ABS: 664 case R_RELAX_GOT_PC_NOPIC: 665 case R_RISCV_ADD: 666 return sym.getVA(a); 667 case R_ADDEND: 668 return a; 669 case R_ARM_SBREL: 670 return sym.getVA(a) - getARMStaticBase(sym); 671 case R_GOT: 672 case R_RELAX_TLS_GD_TO_IE_ABS: 673 return sym.getGotVA() + a; 674 case R_GOTONLY_PC: 675 return in.got->getVA() + a - p; 676 case R_GOTPLTONLY_PC: 677 return in.gotPlt->getVA() + a - p; 678 case R_GOTREL: 679 case R_PPC64_RELAX_TOC: 680 return sym.getVA(a) - in.got->getVA(); 681 case R_GOTPLTREL: 682 return sym.getVA(a) - in.gotPlt->getVA(); 683 case R_GOTPLT: 684 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 685 return sym.getGotVA() + a - in.gotPlt->getVA(); 686 case R_TLSLD_GOT_OFF: 687 case R_GOT_OFF: 688 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 689 return sym.getGotOffset() + a; 690 case R_AARCH64_GOT_PAGE_PC: 691 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 692 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 693 case R_AARCH64_GOT_PAGE: 694 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 695 case R_GOT_PC: 696 case R_RELAX_TLS_GD_TO_IE: 697 return sym.getGotVA() + a - p; 698 case R_MIPS_GOTREL: 699 return sym.getVA(a) - in.mipsGot->getGp(file); 700 case R_MIPS_GOT_GP: 701 return in.mipsGot->getGp(file) + a; 702 case R_MIPS_GOT_GP_PC: { 703 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 704 // is _gp_disp symbol. In that case we should use the following 705 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 706 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 707 // microMIPS variants of these relocations use slightly different 708 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 709 // to correctly handle less-significant bit of the microMIPS symbol. 710 uint64_t v = in.mipsGot->getGp(file) + a - p; 711 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 712 v += 4; 713 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 714 v -= 1; 715 return v; 716 } 717 case R_MIPS_GOT_LOCAL_PAGE: 718 // If relocation against MIPS local symbol requires GOT entry, this entry 719 // should be initialized by 'page address'. This address is high 16-bits 720 // of sum the symbol's value and the addend. 721 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 722 in.mipsGot->getGp(file); 723 case R_MIPS_GOT_OFF: 724 case R_MIPS_GOT_OFF32: 725 // In case of MIPS if a GOT relocation has non-zero addend this addend 726 // should be applied to the GOT entry content not to the GOT entry offset. 727 // That is why we use separate expression type. 728 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 729 in.mipsGot->getGp(file); 730 case R_MIPS_TLSGD: 731 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 732 in.mipsGot->getGp(file); 733 case R_MIPS_TLSLD: 734 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 735 in.mipsGot->getGp(file); 736 case R_AARCH64_PAGE_PC: { 737 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 738 return getAArch64Page(val) - getAArch64Page(p); 739 } 740 case R_RISCV_PC_INDIRECT: { 741 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 742 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 743 *hiRel->sym, hiRel->expr); 744 return 0; 745 } 746 case R_PC: 747 case R_ARM_PCA: { 748 uint64_t dest; 749 if (expr == R_ARM_PCA) 750 // Some PC relative ARM (Thumb) relocations align down the place. 751 p = p & 0xfffffffc; 752 if (sym.isUndefWeak()) { 753 // On ARM and AArch64 a branch to an undefined weak resolves to the next 754 // instruction, otherwise the place. On RISCV, resolve an undefined weak 755 // to the same instruction to cause an infinite loop (making the user 756 // aware of the issue) while ensuring no overflow. 757 if (config->emachine == EM_ARM) 758 dest = getARMUndefinedRelativeWeakVA(type, a, p); 759 else if (config->emachine == EM_AARCH64) 760 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 761 else if (config->emachine == EM_PPC) 762 dest = p; 763 else if (config->emachine == EM_RISCV) 764 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 765 else 766 dest = sym.getVA(a); 767 } else { 768 dest = sym.getVA(a); 769 } 770 return dest - p; 771 } 772 case R_PLT: 773 return sym.getPltVA() + a; 774 case R_PLT_PC: 775 case R_PPC64_CALL_PLT: 776 return sym.getPltVA() + a - p; 777 case R_PLT_GOTPLT: 778 return sym.getPltVA() + a - in.gotPlt->getVA(); 779 case R_PPC32_PLTREL: 780 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 781 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 782 // target VA computation. 783 return sym.getPltVA() - p; 784 case R_PPC64_CALL: { 785 uint64_t symVA = sym.getVA(a); 786 // If we have an undefined weak symbol, we might get here with a symbol 787 // address of zero. That could overflow, but the code must be unreachable, 788 // so don't bother doing anything at all. 789 if (!symVA) 790 return 0; 791 792 // PPC64 V2 ABI describes two entry points to a function. The global entry 793 // point is used for calls where the caller and callee (may) have different 794 // TOC base pointers and r2 needs to be modified to hold the TOC base for 795 // the callee. For local calls the caller and callee share the same 796 // TOC base and so the TOC pointer initialization code should be skipped by 797 // branching to the local entry point. 798 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 799 } 800 case R_PPC64_TOCBASE: 801 return getPPC64TocBase() + a; 802 case R_RELAX_GOT_PC: 803 case R_PPC64_RELAX_GOT_PC: 804 return sym.getVA(a) - p; 805 case R_RELAX_TLS_GD_TO_LE: 806 case R_RELAX_TLS_IE_TO_LE: 807 case R_RELAX_TLS_LD_TO_LE: 808 case R_TPREL: 809 // It is not very clear what to return if the symbol is undefined. With 810 // --noinhibit-exec, even a non-weak undefined reference may reach here. 811 // Just return A, which matches R_ABS, and the behavior of some dynamic 812 // loaders. 813 if (sym.isUndefined()) 814 return a; 815 return getTlsTpOffset(sym) + a; 816 case R_RELAX_TLS_GD_TO_LE_NEG: 817 case R_TPREL_NEG: 818 if (sym.isUndefined()) 819 return a; 820 return -getTlsTpOffset(sym) + a; 821 case R_SIZE: 822 return sym.getSize() + a; 823 case R_TLSDESC: 824 return in.got->getTlsDescAddr(sym) + a; 825 case R_TLSDESC_PC: 826 return in.got->getTlsDescAddr(sym) + a - p; 827 case R_TLSDESC_GOTPLT: 828 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 829 case R_AARCH64_TLSDESC_PAGE: 830 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 831 case R_TLSGD_GOT: 832 return in.got->getGlobalDynOffset(sym) + a; 833 case R_TLSGD_GOTPLT: 834 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 835 case R_TLSGD_PC: 836 return in.got->getGlobalDynAddr(sym) + a - p; 837 case R_TLSLD_GOTPLT: 838 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 839 case R_TLSLD_GOT: 840 return in.got->getTlsIndexOff() + a; 841 case R_TLSLD_PC: 842 return in.got->getTlsIndexVA() + a - p; 843 default: 844 llvm_unreachable("invalid expression"); 845 } 846 } 847 848 // This function applies relocations to sections without SHF_ALLOC bit. 849 // Such sections are never mapped to memory at runtime. Debug sections are 850 // an example. Relocations in non-alloc sections are much easier to 851 // handle than in allocated sections because it will never need complex 852 // treatment such as GOT or PLT (because at runtime no one refers them). 853 // So, we handle relocations for non-alloc sections directly in this 854 // function as a performance optimization. 855 template <class ELFT, class RelTy> 856 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 857 const unsigned bits = sizeof(typename ELFT::uint) * 8; 858 const TargetInfo &target = *elf::target; 859 const bool isDebug = isDebugSection(*this); 860 const bool isDebugLocOrRanges = 861 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 862 const bool isDebugLine = isDebug && name == ".debug_line"; 863 Optional<uint64_t> tombstone; 864 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 865 if (patAndValue.first.match(this->name)) { 866 tombstone = patAndValue.second; 867 break; 868 } 869 870 for (const RelTy &rel : rels) { 871 RelType type = rel.getType(config->isMips64EL); 872 873 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 874 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 875 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 876 // need to keep this bug-compatible code for a while. 877 if (config->emachine == EM_386 && type == R_386_GOTPC) 878 continue; 879 880 uint64_t offset = rel.r_offset; 881 uint8_t *bufLoc = buf + offset; 882 int64_t addend = getAddend<ELFT>(rel); 883 if (!RelTy::IsRela) 884 addend += target.getImplicitAddend(bufLoc, type); 885 886 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 887 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 888 if (expr == R_NONE) 889 continue; 890 891 if (tombstone || 892 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 893 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 894 // folded section symbols) to a tombstone value. Resolving to addend is 895 // unsatisfactory because the result address range may collide with a 896 // valid range of low address, or leave multiple CUs claiming ownership of 897 // the same range of code, which may confuse consumers. 898 // 899 // To address the problems, we use -1 as a tombstone value for most 900 // .debug_* sections. We have to ignore the addend because we don't want 901 // to resolve an address attribute (which may have a non-zero addend) to 902 // -1+addend (wrap around to a low address). 903 // 904 // R_DTPREL type relocations represent an offset into the dynamic thread 905 // vector. The computed value is st_value plus a non-negative offset. 906 // Negative values are invalid, so -1 can be used as the tombstone value. 907 // 908 // If the referenced symbol is discarded (made Undefined), or the 909 // section defining the referenced symbol is garbage collected, 910 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 911 // case. However, resolving a relocation in .debug_line to -1 would stop 912 // debugger users from setting breakpoints on the folded-in function, so 913 // exclude .debug_line. 914 // 915 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 916 // (base address selection entry), use 1 (which is used by GNU ld for 917 // .debug_ranges). 918 // 919 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 920 // value. Enable -1 in a future release. 921 auto *ds = dyn_cast<Defined>(&sym); 922 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 923 // If -z dead-reloc-in-nonalloc= is specified, respect it. 924 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 925 : (isDebugLocOrRanges ? 1 : 0); 926 target.relocateNoSym(bufLoc, type, value); 927 continue; 928 } 929 } 930 931 // For a relocatable link, only tombstone values are applied. 932 if (config->relocatable) 933 continue; 934 935 if (expr == R_SIZE) { 936 target.relocateNoSym(bufLoc, type, 937 SignExtend64<bits>(sym.getSize() + addend)); 938 continue; 939 } 940 941 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 942 // sections. 943 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || 944 expr == R_RISCV_ADD) { 945 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 946 continue; 947 } 948 949 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 950 toString(type) + " against symbol '" + toString(sym) + 951 "'"; 952 if (expr != R_PC && expr != R_ARM_PCA) { 953 error(msg); 954 return; 955 } 956 957 // If the control reaches here, we found a PC-relative relocation in a 958 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 959 // at runtime, the notion of PC-relative doesn't make sense here. So, 960 // this is a usage error. However, GNU linkers historically accept such 961 // relocations without any errors and relocate them as if they were at 962 // address 0. For bug-compatibilty, we accept them with warnings. We 963 // know Steel Bank Common Lisp as of 2018 have this bug. 964 warn(msg); 965 target.relocateNoSym( 966 bufLoc, type, 967 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 968 } 969 } 970 971 // This is used when '-r' is given. 972 // For REL targets, InputSection::copyRelocations() may store artificial 973 // relocations aimed to update addends. They are handled in relocateAlloc() 974 // for allocatable sections, and this function does the same for 975 // non-allocatable sections, such as sections with debug information. 976 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 977 const unsigned bits = config->is64 ? 64 : 32; 978 979 for (const Relocation &rel : sec->relocations) { 980 // InputSection::copyRelocations() adds only R_ABS relocations. 981 assert(rel.expr == R_ABS); 982 uint8_t *bufLoc = buf + rel.offset; 983 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 984 target->relocate(bufLoc, rel, targetVA); 985 } 986 } 987 988 template <class ELFT> 989 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 990 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 991 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 992 993 if (flags & SHF_ALLOC) { 994 relocateAlloc(buf, bufEnd); 995 return; 996 } 997 998 auto *sec = cast<InputSection>(this); 999 if (config->relocatable) 1000 relocateNonAllocForRelocatable(sec, buf); 1001 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 1002 // locations with tombstone values. 1003 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 1004 if (rels.areRelocsRel()) 1005 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 1006 else 1007 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 1008 } 1009 1010 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1011 assert(flags & SHF_ALLOC); 1012 const unsigned bits = config->wordsize * 8; 1013 const TargetInfo &target = *elf::target; 1014 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1015 AArch64Relaxer aarch64relaxer(relocations); 1016 for (size_t i = 0, size = relocations.size(); i != size; ++i) { 1017 const Relocation &rel = relocations[i]; 1018 if (rel.expr == R_NONE) 1019 continue; 1020 uint64_t offset = rel.offset; 1021 uint8_t *bufLoc = buf + offset; 1022 1023 uint64_t secAddr = getOutputSection()->addr; 1024 if (auto *sec = dyn_cast<InputSection>(this)) 1025 secAddr += sec->outSecOff; 1026 const uint64_t addrLoc = secAddr + offset; 1027 const uint64_t targetVA = 1028 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 1029 *rel.sym, rel.expr), 1030 bits); 1031 switch (rel.expr) { 1032 case R_RELAX_GOT_PC: 1033 case R_RELAX_GOT_PC_NOPIC: 1034 target.relaxGot(bufLoc, rel, targetVA); 1035 break; 1036 case R_AARCH64_GOT_PAGE_PC: 1037 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr( 1038 rel, relocations[i + 1], secAddr, buf)) { 1039 ++i; 1040 continue; 1041 } 1042 target.relocate(bufLoc, rel, targetVA); 1043 break; 1044 case R_PPC64_RELAX_GOT_PC: { 1045 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1046 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1047 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1048 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1049 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1050 // and only relax the other if the saved offset matches. 1051 if (rel.type == R_PPC64_GOT_PCREL34) 1052 lastPPCRelaxedRelocOff = offset; 1053 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1054 break; 1055 target.relaxGot(bufLoc, rel, targetVA); 1056 break; 1057 } 1058 case R_PPC64_RELAX_TOC: 1059 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1060 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1061 // entry, there may be R_PPC64_TOC16_HA not paired with 1062 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1063 // opportunities but is safe. 1064 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1065 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1066 target.relocate(bufLoc, rel, targetVA); 1067 break; 1068 case R_RELAX_TLS_IE_TO_LE: 1069 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1070 break; 1071 case R_RELAX_TLS_LD_TO_LE: 1072 case R_RELAX_TLS_LD_TO_LE_ABS: 1073 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1074 break; 1075 case R_RELAX_TLS_GD_TO_LE: 1076 case R_RELAX_TLS_GD_TO_LE_NEG: 1077 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1078 break; 1079 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1080 case R_RELAX_TLS_GD_TO_IE: 1081 case R_RELAX_TLS_GD_TO_IE_ABS: 1082 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1083 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1084 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1085 break; 1086 case R_PPC64_CALL: 1087 // If this is a call to __tls_get_addr, it may be part of a TLS 1088 // sequence that has been relaxed and turned into a nop. In this 1089 // case, we don't want to handle it as a call. 1090 if (read32(bufLoc) == 0x60000000) // nop 1091 break; 1092 1093 // Patch a nop (0x60000000) to a ld. 1094 if (rel.sym->needsTocRestore) { 1095 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1096 // recursive calls even if the function is preemptible. This is not 1097 // wrong in the common case where the function is not preempted at 1098 // runtime. Just ignore. 1099 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1100 rel.sym->file != file) { 1101 // Use substr(6) to remove the "__plt_" prefix. 1102 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1103 lld::toString(*rel.sym).substr(6) + 1104 " lacks nop, can't restore toc"); 1105 break; 1106 } 1107 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1108 } 1109 target.relocate(bufLoc, rel, targetVA); 1110 break; 1111 default: 1112 target.relocate(bufLoc, rel, targetVA); 1113 break; 1114 } 1115 } 1116 1117 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1118 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1119 // insn. This is primarily used to relax and optimize jumps created with 1120 // basic block sections. 1121 if (jumpInstrMod) { 1122 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1123 jumpInstrMod->size); 1124 } 1125 } 1126 1127 // For each function-defining prologue, find any calls to __morestack, 1128 // and replace them with calls to __morestack_non_split. 1129 static void switchMorestackCallsToMorestackNonSplit( 1130 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1131 1132 // If the target adjusted a function's prologue, all calls to 1133 // __morestack inside that function should be switched to 1134 // __morestack_non_split. 1135 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1136 if (!moreStackNonSplit) { 1137 error("mixing split-stack objects requires a definition of " 1138 "__morestack_non_split"); 1139 return; 1140 } 1141 1142 // Sort both collections to compare addresses efficiently. 1143 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1144 return l->offset < r->offset; 1145 }); 1146 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1147 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1148 return l->value < r->value; 1149 }); 1150 1151 auto it = morestackCalls.begin(); 1152 for (Defined *f : functions) { 1153 // Find the first call to __morestack within the function. 1154 while (it != morestackCalls.end() && (*it)->offset < f->value) 1155 ++it; 1156 // Adjust all calls inside the function. 1157 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1158 (*it)->sym = moreStackNonSplit; 1159 ++it; 1160 } 1161 } 1162 } 1163 1164 static bool enclosingPrologueAttempted(uint64_t offset, 1165 const DenseSet<Defined *> &prologues) { 1166 for (Defined *f : prologues) 1167 if (f->value <= offset && offset < f->value + f->size) 1168 return true; 1169 return false; 1170 } 1171 1172 // If a function compiled for split stack calls a function not 1173 // compiled for split stack, then the caller needs its prologue 1174 // adjusted to ensure that the called function will have enough stack 1175 // available. Find those functions, and adjust their prologues. 1176 template <class ELFT> 1177 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1178 uint8_t *end) { 1179 DenseSet<Defined *> prologues; 1180 std::vector<Relocation *> morestackCalls; 1181 1182 for (Relocation &rel : relocations) { 1183 // Ignore calls into the split-stack api. 1184 if (rel.sym->getName().startswith("__morestack")) { 1185 if (rel.sym->getName().equals("__morestack")) 1186 morestackCalls.push_back(&rel); 1187 continue; 1188 } 1189 1190 // A relocation to non-function isn't relevant. Sometimes 1191 // __morestack is not marked as a function, so this check comes 1192 // after the name check. 1193 if (rel.sym->type != STT_FUNC) 1194 continue; 1195 1196 // If the callee's-file was compiled with split stack, nothing to do. In 1197 // this context, a "Defined" symbol is one "defined by the binary currently 1198 // being produced". So an "undefined" symbol might be provided by a shared 1199 // library. It is not possible to tell how such symbols were compiled, so be 1200 // conservative. 1201 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1202 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1203 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1204 continue; 1205 1206 if (enclosingPrologueAttempted(rel.offset, prologues)) 1207 continue; 1208 1209 if (Defined *f = getEnclosingFunction(rel.offset)) { 1210 prologues.insert(f); 1211 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1212 f->stOther)) 1213 continue; 1214 if (!getFile<ELFT>()->someNoSplitStack) 1215 error(lld::toString(this) + ": " + f->getName() + 1216 " (with -fsplit-stack) calls " + rel.sym->getName() + 1217 " (without -fsplit-stack), but couldn't adjust its prologue"); 1218 } 1219 } 1220 1221 if (target->needsMoreStackNonSplit) 1222 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1223 } 1224 1225 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1226 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1227 s->writeTo(buf); 1228 return; 1229 } 1230 1231 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1232 return; 1233 // If -r or --emit-relocs is given, then an InputSection 1234 // may be a relocation section. 1235 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1236 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1237 return; 1238 } 1239 if (LLVM_UNLIKELY(type == SHT_REL)) { 1240 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1241 return; 1242 } 1243 1244 // If -r is given, we may have a SHT_GROUP section. 1245 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1246 copyShtGroup<ELFT>(buf); 1247 return; 1248 } 1249 1250 // If this is a compressed section, uncompress section contents directly 1251 // to the buffer. 1252 if (uncompressedSize >= 0) { 1253 size_t size = uncompressedSize; 1254 if (Error e = zlib::uncompress(toStringRef(rawData), (char *)buf, size)) 1255 fatal(toString(this) + 1256 ": uncompress failed: " + llvm::toString(std::move(e))); 1257 uint8_t *bufEnd = buf + size; 1258 relocate<ELFT>(buf, bufEnd); 1259 return; 1260 } 1261 1262 // Copy section contents from source object file to output file 1263 // and then apply relocations. 1264 memcpy(buf, data().data(), data().size()); 1265 uint8_t *bufEnd = buf + data().size(); 1266 relocate<ELFT>(buf, bufEnd); 1267 } 1268 1269 void InputSection::replace(InputSection *other) { 1270 alignment = std::max(alignment, other->alignment); 1271 1272 // When a section is replaced with another section that was allocated to 1273 // another partition, the replacement section (and its associated sections) 1274 // need to be placed in the main partition so that both partitions will be 1275 // able to access it. 1276 if (partition != other->partition) { 1277 partition = 1; 1278 for (InputSection *isec : dependentSections) 1279 isec->partition = 1; 1280 } 1281 1282 other->repl = repl; 1283 other->markDead(); 1284 } 1285 1286 template <class ELFT> 1287 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1288 const typename ELFT::Shdr &header, 1289 StringRef name) 1290 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1291 1292 SyntheticSection *EhInputSection::getParent() const { 1293 return cast_or_null<SyntheticSection>(parent); 1294 } 1295 1296 // Returns the index of the first relocation that points to a region between 1297 // Begin and Begin+Size. 1298 template <class IntTy, class RelTy> 1299 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1300 unsigned &relocI) { 1301 // Start search from RelocI for fast access. That works because the 1302 // relocations are sorted in .eh_frame. 1303 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1304 const RelTy &rel = rels[relocI]; 1305 if (rel.r_offset < begin) 1306 continue; 1307 1308 if (rel.r_offset < begin + size) 1309 return relocI; 1310 return -1; 1311 } 1312 return -1; 1313 } 1314 1315 // .eh_frame is a sequence of CIE or FDE records. 1316 // This function splits an input section into records and returns them. 1317 template <class ELFT> void EhInputSection::split() { 1318 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1319 // getReloc expects the relocations to be sorted by r_offset. See the comment 1320 // in scanRelocs. 1321 if (rels.areRelocsRel()) { 1322 SmallVector<typename ELFT::Rel, 0> storage; 1323 split<ELFT>(sortRels(rels.rels, storage)); 1324 } else { 1325 SmallVector<typename ELFT::Rela, 0> storage; 1326 split<ELFT>(sortRels(rels.relas, storage)); 1327 } 1328 } 1329 1330 template <class ELFT, class RelTy> 1331 void EhInputSection::split(ArrayRef<RelTy> rels) { 1332 ArrayRef<uint8_t> d = rawData; 1333 const char *msg = nullptr; 1334 unsigned relI = 0; 1335 while (!d.empty()) { 1336 if (d.size() < 4) { 1337 msg = "CIE/FDE too small"; 1338 break; 1339 } 1340 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1341 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1342 // but we do not support that format yet. 1343 if (size == UINT32_MAX) { 1344 msg = "CIE/FDE too large"; 1345 break; 1346 } 1347 size += 4; 1348 if (size > d.size()) { 1349 msg = "CIE/FDE ends past the end of the section"; 1350 break; 1351 } 1352 1353 uint64_t off = d.data() - rawData.data(); 1354 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1355 d = d.slice(size); 1356 } 1357 if (msg) 1358 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1359 getObjMsg(d.data() - rawData.data())); 1360 } 1361 1362 static size_t findNull(StringRef s, size_t entSize) { 1363 // Optimize the common case. 1364 if (entSize == 1) 1365 return s.find(0); 1366 1367 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1368 const char *b = s.begin() + i; 1369 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1370 return i; 1371 } 1372 return StringRef::npos; 1373 } 1374 1375 SyntheticSection *MergeInputSection::getParent() const { 1376 return cast_or_null<SyntheticSection>(parent); 1377 } 1378 1379 // Split SHF_STRINGS section. Such section is a sequence of 1380 // null-terminated strings. 1381 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1382 size_t off = 0; 1383 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1384 StringRef s = toStringRef(data); 1385 1386 while (!s.empty()) { 1387 size_t end = findNull(s, entSize); 1388 if (end == StringRef::npos) 1389 fatal(toString(this) + ": string is not null terminated"); 1390 size_t size = end + entSize; 1391 1392 pieces.emplace_back(off, xxHash64(s.substr(0, size)), live); 1393 s = s.substr(size); 1394 off += size; 1395 } 1396 } 1397 1398 // Split non-SHF_STRINGS section. Such section is a sequence of 1399 // fixed size records. 1400 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1401 size_t entSize) { 1402 size_t size = data.size(); 1403 assert((size % entSize) == 0); 1404 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1405 1406 pieces.assign(size / entSize, SectionPiece(0, 0, false)); 1407 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1408 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1409 } 1410 1411 template <class ELFT> 1412 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1413 const typename ELFT::Shdr &header, 1414 StringRef name) 1415 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1416 1417 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1418 uint64_t entsize, ArrayRef<uint8_t> data, 1419 StringRef name) 1420 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1421 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1422 1423 // This function is called after we obtain a complete list of input sections 1424 // that need to be linked. This is responsible to split section contents 1425 // into small chunks for further processing. 1426 // 1427 // Note that this function is called from parallelForEach. This must be 1428 // thread-safe (i.e. no memory allocation from the pools). 1429 void MergeInputSection::splitIntoPieces() { 1430 assert(pieces.empty()); 1431 1432 if (flags & SHF_STRINGS) 1433 splitStrings(data(), entsize); 1434 else 1435 splitNonStrings(data(), entsize); 1436 } 1437 1438 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1439 if (this->data().size() <= offset) 1440 fatal(toString(this) + ": offset is outside the section"); 1441 1442 // If Offset is not at beginning of a section piece, it is not in the map. 1443 // In that case we need to do a binary search of the original section piece vector. 1444 auto it = partition_point( 1445 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1446 return &it[-1]; 1447 } 1448 1449 // Returns the offset in an output section for a given input offset. 1450 // Because contents of a mergeable section is not contiguous in output, 1451 // it is not just an addition to a base output offset. 1452 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1453 // If Offset is not at beginning of a section piece, it is not in the map. 1454 // In that case we need to search from the original section piece vector. 1455 const SectionPiece &piece = *getSectionPiece(offset); 1456 uint64_t addend = offset - piece.inputOff; 1457 return piece.outputOff + addend; 1458 } 1459 1460 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1461 StringRef); 1462 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1463 StringRef); 1464 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1465 StringRef); 1466 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1467 StringRef); 1468 1469 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1470 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1471 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1472 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1473 1474 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1475 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1476 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1477 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1478 1479 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1480 const ELF32LE::Shdr &, StringRef); 1481 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1482 const ELF32BE::Shdr &, StringRef); 1483 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1484 const ELF64LE::Shdr &, StringRef); 1485 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1486 const ELF64BE::Shdr &, StringRef); 1487 1488 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1489 const ELF32LE::Shdr &, StringRef); 1490 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1491 const ELF32BE::Shdr &, StringRef); 1492 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1493 const ELF64LE::Shdr &, StringRef); 1494 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1495 const ELF64BE::Shdr &, StringRef); 1496 1497 template void EhInputSection::split<ELF32LE>(); 1498 template void EhInputSection::split<ELF32BE>(); 1499 template void EhInputSection::split<ELF64LE>(); 1500 template void EhInputSection::split<ELF64BE>(); 1501