1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "InputFiles.h"
12 #include "OutputSections.h"
13 #include "Relocations.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "Target.h"
18 #include "lld/Common/CommonLinkerContext.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/xxhash.h"
23 #include <algorithm>
24 #include <mutex>
25 #include <vector>
26
27 using namespace llvm;
28 using namespace llvm::ELF;
29 using namespace llvm::object;
30 using namespace llvm::support;
31 using namespace llvm::support::endian;
32 using namespace llvm::sys;
33 using namespace lld;
34 using namespace lld::elf;
35
36 SmallVector<InputSectionBase *, 0> elf::inputSections;
37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
38
39 // Returns a string to construct an error message.
toString(const InputSectionBase * sec)40 std::string lld::toString(const InputSectionBase *sec) {
41 return (toString(sec->file) + ":(" + sec->name + ")").str();
42 }
43
44 template <class ELFT>
getSectionContents(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr)45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
46 const typename ELFT::Shdr &hdr) {
47 if (hdr.sh_type == SHT_NOBITS)
48 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
49 return check(file.getObj().getSectionContents(hdr));
50 }
51
InputSectionBase(InputFile * file,uint64_t flags,uint32_t type,uint64_t entsize,uint32_t link,uint32_t info,uint32_t alignment,ArrayRef<uint8_t> data,StringRef name,Kind sectionKind)52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
53 uint32_t type, uint64_t entsize,
54 uint32_t link, uint32_t info,
55 uint32_t alignment, ArrayRef<uint8_t> data,
56 StringRef name, Kind sectionKind)
57 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
58 link),
59 file(file), rawData(data) {
60 // In order to reduce memory allocation, we assume that mergeable
61 // sections are smaller than 4 GiB, which is not an unreasonable
62 // assumption as of 2017.
63 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
64 error(toString(this) + ": section too large");
65
66 // The ELF spec states that a value of 0 means the section has
67 // no alignment constraints.
68 uint32_t v = std::max<uint32_t>(alignment, 1);
69 if (!isPowerOf2_64(v))
70 fatal(toString(this) + ": sh_addralign is not a power of 2");
71 this->alignment = v;
72
73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
74 // longer supported.
75 if (flags & SHF_COMPRESSED)
76 invokeELFT(parseCompressedHeader);
77 }
78
79 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
80 // SHF_GROUP is a marker that a section belongs to some comdat group.
81 // That flag doesn't make sense in an executable.
getFlags(uint64_t flags)82 static uint64_t getFlags(uint64_t flags) {
83 flags &= ~(uint64_t)SHF_INFO_LINK;
84 if (!config->relocatable)
85 flags &= ~(uint64_t)SHF_GROUP;
86 return flags;
87 }
88
89 template <class ELFT>
InputSectionBase(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr,StringRef name,Kind sectionKind)90 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
91 const typename ELFT::Shdr &hdr,
92 StringRef name, Kind sectionKind)
93 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type,
94 hdr.sh_entsize, hdr.sh_link, hdr.sh_info,
95 hdr.sh_addralign, getSectionContents(file, hdr), name,
96 sectionKind) {
97 // We reject object files having insanely large alignments even though
98 // they are allowed by the spec. I think 4GB is a reasonable limitation.
99 // We might want to relax this in the future.
100 if (hdr.sh_addralign > UINT32_MAX)
101 fatal(toString(&file) + ": section sh_addralign is too large");
102 }
103
getSize() const104 size_t InputSectionBase::getSize() const {
105 if (auto *s = dyn_cast<SyntheticSection>(this))
106 return s->getSize();
107 if (uncompressedSize >= 0)
108 return uncompressedSize;
109 return rawData.size() - bytesDropped;
110 }
111
uncompress() const112 void InputSectionBase::uncompress() const {
113 size_t size = uncompressedSize;
114 uint8_t *uncompressedBuf;
115 {
116 static std::mutex mu;
117 std::lock_guard<std::mutex> lock(mu);
118 uncompressedBuf = bAlloc().Allocate<uint8_t>(size);
119 }
120
121 if (Error e = compression::zlib::uncompress(rawData, uncompressedBuf, size))
122 fatal(toString(this) +
123 ": uncompress failed: " + llvm::toString(std::move(e)));
124 rawData = makeArrayRef(uncompressedBuf, size);
125 uncompressedSize = -1;
126 }
127
relsOrRelas() const128 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const {
129 if (relSecIdx == 0)
130 return {};
131 RelsOrRelas<ELFT> ret;
132 typename ELFT::Shdr shdr =
133 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx];
134 if (shdr.sh_type == SHT_REL) {
135 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>(
136 file->mb.getBufferStart() + shdr.sh_offset),
137 shdr.sh_size / sizeof(typename ELFT::Rel));
138 } else {
139 assert(shdr.sh_type == SHT_RELA);
140 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>(
141 file->mb.getBufferStart() + shdr.sh_offset),
142 shdr.sh_size / sizeof(typename ELFT::Rela));
143 }
144 return ret;
145 }
146
getOffset(uint64_t offset) const147 uint64_t SectionBase::getOffset(uint64_t offset) const {
148 switch (kind()) {
149 case Output: {
150 auto *os = cast<OutputSection>(this);
151 // For output sections we treat offset -1 as the end of the section.
152 return offset == uint64_t(-1) ? os->size : offset;
153 }
154 case Regular:
155 case Synthetic:
156 return cast<InputSection>(this)->outSecOff + offset;
157 case EHFrame: {
158 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
159 // crtbeginT.o may reference the start of an empty .eh_frame to identify the
160 // start of the output .eh_frame. Just return offset.
161 //
162 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
163 // discarded due to GC/ICF. We should compute the output section offset.
164 const EhInputSection *es = cast<EhInputSection>(this);
165 if (!es->rawData.empty())
166 if (InputSection *isec = es->getParent())
167 return isec->outSecOff + es->getParentOffset(offset);
168 return offset;
169 }
170 case Merge:
171 const MergeInputSection *ms = cast<MergeInputSection>(this);
172 if (InputSection *isec = ms->getParent())
173 return isec->outSecOff + ms->getParentOffset(offset);
174 return ms->getParentOffset(offset);
175 }
176 llvm_unreachable("invalid section kind");
177 }
178
getVA(uint64_t offset) const179 uint64_t SectionBase::getVA(uint64_t offset) const {
180 const OutputSection *out = getOutputSection();
181 return (out ? out->addr : 0) + getOffset(offset);
182 }
183
getOutputSection()184 OutputSection *SectionBase::getOutputSection() {
185 InputSection *sec;
186 if (auto *isec = dyn_cast<InputSection>(this))
187 sec = isec;
188 else if (auto *ms = dyn_cast<MergeInputSection>(this))
189 sec = ms->getParent();
190 else if (auto *eh = dyn_cast<EhInputSection>(this))
191 sec = eh->getParent();
192 else
193 return cast<OutputSection>(this);
194 return sec ? sec->getParent() : nullptr;
195 }
196
197 // When a section is compressed, `rawData` consists with a header followed
198 // by zlib-compressed data. This function parses a header to initialize
199 // `uncompressedSize` member and remove the header from `rawData`.
parseCompressedHeader()200 template <typename ELFT> void InputSectionBase::parseCompressedHeader() {
201 flags &= ~(uint64_t)SHF_COMPRESSED;
202
203 // New-style header
204 if (rawData.size() < sizeof(typename ELFT::Chdr)) {
205 error(toString(this) + ": corrupted compressed section");
206 return;
207 }
208
209 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data());
210 if (hdr->ch_type == ELFCOMPRESS_ZLIB) {
211 if (!compression::zlib::isAvailable())
212 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is "
213 "not built with zlib support");
214 } else {
215 error(toString(this) + ": unsupported compression type (" +
216 Twine(hdr->ch_type) + ")");
217 return;
218 }
219
220 uncompressedSize = hdr->ch_size;
221 alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
222 rawData = rawData.slice(sizeof(*hdr));
223 }
224
getLinkOrderDep() const225 InputSection *InputSectionBase::getLinkOrderDep() const {
226 assert(flags & SHF_LINK_ORDER);
227 if (!link)
228 return nullptr;
229 return cast<InputSection>(file->getSections()[link]);
230 }
231
232 // Find a function symbol that encloses a given location.
getEnclosingFunction(uint64_t offset)233 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
234 for (Symbol *b : file->getSymbols())
235 if (Defined *d = dyn_cast<Defined>(b))
236 if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
237 offset < d->value + d->size)
238 return d;
239 return nullptr;
240 }
241
242 // Returns an object file location string. Used to construct an error message.
getLocation(uint64_t offset)243 std::string InputSectionBase::getLocation(uint64_t offset) {
244 std::string secAndOffset =
245 (name + "+0x" + Twine::utohexstr(offset) + ")").str();
246
247 // We don't have file for synthetic sections.
248 if (file == nullptr)
249 return (config->outputFile + ":(" + secAndOffset).str();
250
251 std::string filename = toString(file);
252 if (Defined *d = getEnclosingFunction(offset))
253 return filename + ":(function " + toString(*d) + ": " + secAndOffset;
254
255 return filename + ":(" + secAndOffset;
256 }
257
258 // This function is intended to be used for constructing an error message.
259 // The returned message looks like this:
260 //
261 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
262 //
263 // Returns an empty string if there's no way to get line info.
getSrcMsg(const Symbol & sym,uint64_t offset)264 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
265 return file->getSrcMsg(sym, *this, offset);
266 }
267
268 // Returns a filename string along with an optional section name. This
269 // function is intended to be used for constructing an error
270 // message. The returned message looks like this:
271 //
272 // path/to/foo.o:(function bar)
273 //
274 // or
275 //
276 // path/to/foo.o:(function bar) in archive path/to/bar.a
getObjMsg(uint64_t off)277 std::string InputSectionBase::getObjMsg(uint64_t off) {
278 std::string filename = std::string(file->getName());
279
280 std::string archive;
281 if (!file->archiveName.empty())
282 archive = (" in archive " + file->archiveName).str();
283
284 // Find a symbol that encloses a given location. getObjMsg may be called
285 // before ObjFile::initializeLocalSymbols where local symbols are initialized.
286 for (Symbol *b : file->getSymbols())
287 if (auto *d = dyn_cast_or_null<Defined>(b))
288 if (d->section == this && d->value <= off && off < d->value + d->size)
289 return filename + ":(" + toString(*d) + ")" + archive;
290
291 // If there's no symbol, print out the offset in the section.
292 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
293 .str();
294 }
295
296 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
297
InputSection(InputFile * f,uint64_t flags,uint32_t type,uint32_t alignment,ArrayRef<uint8_t> data,StringRef name,Kind k)298 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
299 uint32_t alignment, ArrayRef<uint8_t> data,
300 StringRef name, Kind k)
301 : InputSectionBase(f, flags, type,
302 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
303 name, k) {}
304
305 template <class ELFT>
InputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)306 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
307 StringRef name)
308 : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
309
310 // Copy SHT_GROUP section contents. Used only for the -r option.
copyShtGroup(uint8_t * buf)311 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
312 // ELFT::Word is the 32-bit integral type in the target endianness.
313 using u32 = typename ELFT::Word;
314 ArrayRef<u32> from = getDataAs<u32>();
315 auto *to = reinterpret_cast<u32 *>(buf);
316
317 // The first entry is not a section number but a flag.
318 *to++ = from[0];
319
320 // Adjust section numbers because section numbers in an input object files are
321 // different in the output. We also need to handle combined or discarded
322 // members.
323 ArrayRef<InputSectionBase *> sections = file->getSections();
324 DenseSet<uint32_t> seen;
325 for (uint32_t idx : from.slice(1)) {
326 OutputSection *osec = sections[idx]->getOutputSection();
327 if (osec && seen.insert(osec->sectionIndex).second)
328 *to++ = osec->sectionIndex;
329 }
330 }
331
getRelocatedSection() const332 InputSectionBase *InputSection::getRelocatedSection() const {
333 if (!file || (type != SHT_RELA && type != SHT_REL))
334 return nullptr;
335 ArrayRef<InputSectionBase *> sections = file->getSections();
336 return sections[info];
337 }
338
339 // This is used for -r and --emit-relocs. We can't use memcpy to copy
340 // relocations because we need to update symbol table offset and section index
341 // for each relocation. So we copy relocations one by one.
342 template <class ELFT, class RelTy>
copyRelocations(uint8_t * buf,ArrayRef<RelTy> rels)343 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
344 const TargetInfo &target = *elf::target;
345 InputSectionBase *sec = getRelocatedSection();
346 (void)sec->data(); // uncompress if needed
347
348 for (const RelTy &rel : rels) {
349 RelType type = rel.getType(config->isMips64EL);
350 const ObjFile<ELFT> *file = getFile<ELFT>();
351 Symbol &sym = file->getRelocTargetSym(rel);
352
353 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
354 buf += sizeof(RelTy);
355
356 if (RelTy::IsRela)
357 p->r_addend = getAddend<ELFT>(rel);
358
359 // Output section VA is zero for -r, so r_offset is an offset within the
360 // section, but for --emit-relocs it is a virtual address.
361 p->r_offset = sec->getVA(rel.r_offset);
362 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
363 config->isMips64EL);
364
365 if (sym.type == STT_SECTION) {
366 // We combine multiple section symbols into only one per
367 // section. This means we have to update the addend. That is
368 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
369 // section data. We do that by adding to the Relocation vector.
370
371 // .eh_frame is horribly special and can reference discarded sections. To
372 // avoid having to parse and recreate .eh_frame, we just replace any
373 // relocation in it pointing to discarded sections with R_*_NONE, which
374 // hopefully creates a frame that is ignored at runtime. Also, don't warn
375 // on .gcc_except_table and debug sections.
376 //
377 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
378 auto *d = dyn_cast<Defined>(&sym);
379 if (!d) {
380 if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
381 sec->name != ".gcc_except_table" && sec->name != ".got2" &&
382 sec->name != ".toc") {
383 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
384 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx];
385 warn("relocation refers to a discarded section: " +
386 CHECK(file->getObj().getSectionName(sec), file) +
387 "\n>>> referenced by " + getObjMsg(p->r_offset));
388 }
389 p->setSymbolAndType(0, 0, false);
390 continue;
391 }
392 SectionBase *section = d->section;
393 if (!section->isLive()) {
394 p->setSymbolAndType(0, 0, false);
395 continue;
396 }
397
398 int64_t addend = getAddend<ELFT>(rel);
399 const uint8_t *bufLoc = sec->rawData.begin() + rel.r_offset;
400 if (!RelTy::IsRela)
401 addend = target.getImplicitAddend(bufLoc, type);
402
403 if (config->emachine == EM_MIPS &&
404 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
405 // Some MIPS relocations depend on "gp" value. By default,
406 // this value has 0x7ff0 offset from a .got section. But
407 // relocatable files produced by a compiler or a linker
408 // might redefine this default value and we must use it
409 // for a calculation of the relocation result. When we
410 // generate EXE or DSO it's trivial. Generating a relocatable
411 // output is more difficult case because the linker does
412 // not calculate relocations in this mode and loses
413 // individual "gp" values used by each input object file.
414 // As a workaround we add the "gp" value to the relocation
415 // addend and save it back to the file.
416 addend += sec->getFile<ELFT>()->mipsGp0;
417 }
418
419 if (RelTy::IsRela)
420 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
421 else if (config->relocatable && type != target.noneRel)
422 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
423 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
424 p->r_addend >= 0x8000 && sec->file->ppc32Got2) {
425 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
426 // indicates that r30 is relative to the input section .got2
427 // (r_addend>=0x8000), after linking, r30 should be relative to the output
428 // section .got2 . To compensate for the shift, adjust r_addend by
429 // ppc32Got->outSecOff.
430 p->r_addend += sec->file->ppc32Got2->outSecOff;
431 }
432 }
433 }
434
435 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
436 // references specially. The general rule is that the value of the symbol in
437 // this context is the address of the place P. A further special case is that
438 // branch relocations to an undefined weak reference resolve to the next
439 // instruction.
getARMUndefinedRelativeWeakVA(RelType type,uint32_t a,uint32_t p)440 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
441 uint32_t p) {
442 switch (type) {
443 // Unresolved branch relocations to weak references resolve to next
444 // instruction, this will be either 2 or 4 bytes on from P.
445 case R_ARM_THM_JUMP8:
446 case R_ARM_THM_JUMP11:
447 return p + 2 + a;
448 case R_ARM_CALL:
449 case R_ARM_JUMP24:
450 case R_ARM_PC24:
451 case R_ARM_PLT32:
452 case R_ARM_PREL31:
453 case R_ARM_THM_JUMP19:
454 case R_ARM_THM_JUMP24:
455 return p + 4 + a;
456 case R_ARM_THM_CALL:
457 // We don't want an interworking BLX to ARM
458 return p + 5 + a;
459 // Unresolved non branch pc-relative relocations
460 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
461 // targets a weak-reference.
462 case R_ARM_MOVW_PREL_NC:
463 case R_ARM_MOVT_PREL:
464 case R_ARM_REL32:
465 case R_ARM_THM_ALU_PREL_11_0:
466 case R_ARM_THM_MOVW_PREL_NC:
467 case R_ARM_THM_MOVT_PREL:
468 case R_ARM_THM_PC12:
469 return p + a;
470 // p + a is unrepresentable as negative immediates can't be encoded.
471 case R_ARM_THM_PC8:
472 return p;
473 }
474 llvm_unreachable("ARM pc-relative relocation expected\n");
475 }
476
477 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
getAArch64UndefinedRelativeWeakVA(uint64_t type,uint64_t p)478 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
479 switch (type) {
480 // Unresolved branch relocations to weak references resolve to next
481 // instruction, this is 4 bytes on from P.
482 case R_AARCH64_CALL26:
483 case R_AARCH64_CONDBR19:
484 case R_AARCH64_JUMP26:
485 case R_AARCH64_TSTBR14:
486 return p + 4;
487 // Unresolved non branch pc-relative relocations
488 case R_AARCH64_PREL16:
489 case R_AARCH64_PREL32:
490 case R_AARCH64_PREL64:
491 case R_AARCH64_ADR_PREL_LO21:
492 case R_AARCH64_LD_PREL_LO19:
493 case R_AARCH64_PLT32:
494 return p;
495 }
496 llvm_unreachable("AArch64 pc-relative relocation expected\n");
497 }
498
getRISCVUndefinedRelativeWeakVA(uint64_t type,uint64_t p)499 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
500 switch (type) {
501 case R_RISCV_BRANCH:
502 case R_RISCV_JAL:
503 case R_RISCV_CALL:
504 case R_RISCV_CALL_PLT:
505 case R_RISCV_RVC_BRANCH:
506 case R_RISCV_RVC_JUMP:
507 return p;
508 default:
509 return 0;
510 }
511 }
512
513 // ARM SBREL relocations are of the form S + A - B where B is the static base
514 // The ARM ABI defines base to be "addressing origin of the output segment
515 // defining the symbol S". We defined the "addressing origin"/static base to be
516 // the base of the PT_LOAD segment containing the Sym.
517 // The procedure call standard only defines a Read Write Position Independent
518 // RWPI variant so in practice we should expect the static base to be the base
519 // of the RW segment.
getARMStaticBase(const Symbol & sym)520 static uint64_t getARMStaticBase(const Symbol &sym) {
521 OutputSection *os = sym.getOutputSection();
522 if (!os || !os->ptLoad || !os->ptLoad->firstSec)
523 fatal("SBREL relocation to " + sym.getName() + " without static base");
524 return os->ptLoad->firstSec->addr;
525 }
526
527 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
528 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
529 // is calculated using PCREL_HI20's symbol.
530 //
531 // This function returns the R_RISCV_PCREL_HI20 relocation from
532 // R_RISCV_PCREL_LO12's symbol and addend.
getRISCVPCRelHi20(const Symbol * sym,uint64_t addend)533 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
534 const Defined *d = cast<Defined>(sym);
535 if (!d->section) {
536 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
537 sym->getName());
538 return nullptr;
539 }
540 InputSection *isec = cast<InputSection>(d->section);
541
542 if (addend != 0)
543 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
544 isec->getObjMsg(d->value) + " is ignored");
545
546 // Relocations are sorted by offset, so we can use std::equal_range to do
547 // binary search.
548 Relocation r;
549 r.offset = d->value;
550 auto range =
551 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
552 [](const Relocation &lhs, const Relocation &rhs) {
553 return lhs.offset < rhs.offset;
554 });
555
556 for (auto it = range.first; it != range.second; ++it)
557 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
558 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
559 return &*it;
560
561 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " +
562 isec->getObjMsg(d->value) +
563 " without an associated R_RISCV_PCREL_HI20 relocation");
564 return nullptr;
565 }
566
567 // A TLS symbol's virtual address is relative to the TLS segment. Add a
568 // target-specific adjustment to produce a thread-pointer-relative offset.
getTlsTpOffset(const Symbol & s)569 static int64_t getTlsTpOffset(const Symbol &s) {
570 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
571 if (&s == ElfSym::tlsModuleBase)
572 return 0;
573
574 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
575 // while most others use Variant 1. At run time TP will be aligned to p_align.
576
577 // Variant 1. TP will be followed by an optional gap (which is the size of 2
578 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
579 // padding, then the static TLS blocks. The alignment padding is added so that
580 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
581 //
582 // Variant 2. Static TLS blocks, followed by alignment padding are placed
583 // before TP. The alignment padding is added so that (TP - padding -
584 // p_memsz) is congruent to p_vaddr modulo p_align.
585 PhdrEntry *tls = Out::tlsPhdr;
586 switch (config->emachine) {
587 // Variant 1.
588 case EM_ARM:
589 case EM_AARCH64:
590 return s.getVA(0) + config->wordsize * 2 +
591 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
592 case EM_MIPS:
593 case EM_PPC:
594 case EM_PPC64:
595 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
596 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
597 // data and 0xf000 of the program's TLS segment.
598 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
599 case EM_RISCV:
600 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
601
602 // Variant 2.
603 case EM_HEXAGON:
604 case EM_SPARCV9:
605 case EM_386:
606 case EM_X86_64:
607 return s.getVA(0) - tls->p_memsz -
608 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
609 default:
610 llvm_unreachable("unhandled Config->EMachine");
611 }
612 }
613
getRelocTargetVA(const InputFile * file,RelType type,int64_t a,uint64_t p,const Symbol & sym,RelExpr expr)614 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
615 int64_t a, uint64_t p,
616 const Symbol &sym, RelExpr expr) {
617 switch (expr) {
618 case R_ABS:
619 case R_DTPREL:
620 case R_RELAX_TLS_LD_TO_LE_ABS:
621 case R_RELAX_GOT_PC_NOPIC:
622 case R_RISCV_ADD:
623 return sym.getVA(a);
624 case R_ADDEND:
625 return a;
626 case R_RELAX_HINT:
627 return 0;
628 case R_ARM_SBREL:
629 return sym.getVA(a) - getARMStaticBase(sym);
630 case R_GOT:
631 case R_RELAX_TLS_GD_TO_IE_ABS:
632 return sym.getGotVA() + a;
633 case R_GOTONLY_PC:
634 return in.got->getVA() + a - p;
635 case R_GOTPLTONLY_PC:
636 return in.gotPlt->getVA() + a - p;
637 case R_GOTREL:
638 case R_PPC64_RELAX_TOC:
639 return sym.getVA(a) - in.got->getVA();
640 case R_GOTPLTREL:
641 return sym.getVA(a) - in.gotPlt->getVA();
642 case R_GOTPLT:
643 case R_RELAX_TLS_GD_TO_IE_GOTPLT:
644 return sym.getGotVA() + a - in.gotPlt->getVA();
645 case R_TLSLD_GOT_OFF:
646 case R_GOT_OFF:
647 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
648 return sym.getGotOffset() + a;
649 case R_AARCH64_GOT_PAGE_PC:
650 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
651 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
652 case R_AARCH64_GOT_PAGE:
653 return sym.getGotVA() + a - getAArch64Page(in.got->getVA());
654 case R_GOT_PC:
655 case R_RELAX_TLS_GD_TO_IE:
656 return sym.getGotVA() + a - p;
657 case R_MIPS_GOTREL:
658 return sym.getVA(a) - in.mipsGot->getGp(file);
659 case R_MIPS_GOT_GP:
660 return in.mipsGot->getGp(file) + a;
661 case R_MIPS_GOT_GP_PC: {
662 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
663 // is _gp_disp symbol. In that case we should use the following
664 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
665 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
666 // microMIPS variants of these relocations use slightly different
667 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
668 // to correctly handle less-significant bit of the microMIPS symbol.
669 uint64_t v = in.mipsGot->getGp(file) + a - p;
670 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
671 v += 4;
672 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
673 v -= 1;
674 return v;
675 }
676 case R_MIPS_GOT_LOCAL_PAGE:
677 // If relocation against MIPS local symbol requires GOT entry, this entry
678 // should be initialized by 'page address'. This address is high 16-bits
679 // of sum the symbol's value and the addend.
680 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
681 in.mipsGot->getGp(file);
682 case R_MIPS_GOT_OFF:
683 case R_MIPS_GOT_OFF32:
684 // In case of MIPS if a GOT relocation has non-zero addend this addend
685 // should be applied to the GOT entry content not to the GOT entry offset.
686 // That is why we use separate expression type.
687 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
688 in.mipsGot->getGp(file);
689 case R_MIPS_TLSGD:
690 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
691 in.mipsGot->getGp(file);
692 case R_MIPS_TLSLD:
693 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
694 in.mipsGot->getGp(file);
695 case R_AARCH64_PAGE_PC: {
696 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
697 return getAArch64Page(val) - getAArch64Page(p);
698 }
699 case R_RISCV_PC_INDIRECT: {
700 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
701 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
702 *hiRel->sym, hiRel->expr);
703 return 0;
704 }
705 case R_PC:
706 case R_ARM_PCA: {
707 uint64_t dest;
708 if (expr == R_ARM_PCA)
709 // Some PC relative ARM (Thumb) relocations align down the place.
710 p = p & 0xfffffffc;
711 if (sym.isUndefined()) {
712 // On ARM and AArch64 a branch to an undefined weak resolves to the next
713 // instruction, otherwise the place. On RISCV, resolve an undefined weak
714 // to the same instruction to cause an infinite loop (making the user
715 // aware of the issue) while ensuring no overflow.
716 // Note: if the symbol is hidden, its binding has been converted to local,
717 // so we just check isUndefined() here.
718 if (config->emachine == EM_ARM)
719 dest = getARMUndefinedRelativeWeakVA(type, a, p);
720 else if (config->emachine == EM_AARCH64)
721 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a;
722 else if (config->emachine == EM_PPC)
723 dest = p;
724 else if (config->emachine == EM_RISCV)
725 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a;
726 else
727 dest = sym.getVA(a);
728 } else {
729 dest = sym.getVA(a);
730 }
731 return dest - p;
732 }
733 case R_PLT:
734 return sym.getPltVA() + a;
735 case R_PLT_PC:
736 case R_PPC64_CALL_PLT:
737 return sym.getPltVA() + a - p;
738 case R_PLT_GOTPLT:
739 return sym.getPltVA() + a - in.gotPlt->getVA();
740 case R_PPC32_PLTREL:
741 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
742 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
743 // target VA computation.
744 return sym.getPltVA() - p;
745 case R_PPC64_CALL: {
746 uint64_t symVA = sym.getVA(a);
747 // If we have an undefined weak symbol, we might get here with a symbol
748 // address of zero. That could overflow, but the code must be unreachable,
749 // so don't bother doing anything at all.
750 if (!symVA)
751 return 0;
752
753 // PPC64 V2 ABI describes two entry points to a function. The global entry
754 // point is used for calls where the caller and callee (may) have different
755 // TOC base pointers and r2 needs to be modified to hold the TOC base for
756 // the callee. For local calls the caller and callee share the same
757 // TOC base and so the TOC pointer initialization code should be skipped by
758 // branching to the local entry point.
759 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
760 }
761 case R_PPC64_TOCBASE:
762 return getPPC64TocBase() + a;
763 case R_RELAX_GOT_PC:
764 case R_PPC64_RELAX_GOT_PC:
765 return sym.getVA(a) - p;
766 case R_RELAX_TLS_GD_TO_LE:
767 case R_RELAX_TLS_IE_TO_LE:
768 case R_RELAX_TLS_LD_TO_LE:
769 case R_TPREL:
770 // It is not very clear what to return if the symbol is undefined. With
771 // --noinhibit-exec, even a non-weak undefined reference may reach here.
772 // Just return A, which matches R_ABS, and the behavior of some dynamic
773 // loaders.
774 if (sym.isUndefined())
775 return a;
776 return getTlsTpOffset(sym) + a;
777 case R_RELAX_TLS_GD_TO_LE_NEG:
778 case R_TPREL_NEG:
779 if (sym.isUndefined())
780 return a;
781 return -getTlsTpOffset(sym) + a;
782 case R_SIZE:
783 return sym.getSize() + a;
784 case R_TLSDESC:
785 return in.got->getTlsDescAddr(sym) + a;
786 case R_TLSDESC_PC:
787 return in.got->getTlsDescAddr(sym) + a - p;
788 case R_TLSDESC_GOTPLT:
789 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA();
790 case R_AARCH64_TLSDESC_PAGE:
791 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p);
792 case R_TLSGD_GOT:
793 return in.got->getGlobalDynOffset(sym) + a;
794 case R_TLSGD_GOTPLT:
795 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA();
796 case R_TLSGD_PC:
797 return in.got->getGlobalDynAddr(sym) + a - p;
798 case R_TLSLD_GOTPLT:
799 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
800 case R_TLSLD_GOT:
801 return in.got->getTlsIndexOff() + a;
802 case R_TLSLD_PC:
803 return in.got->getTlsIndexVA() + a - p;
804 default:
805 llvm_unreachable("invalid expression");
806 }
807 }
808
809 // This function applies relocations to sections without SHF_ALLOC bit.
810 // Such sections are never mapped to memory at runtime. Debug sections are
811 // an example. Relocations in non-alloc sections are much easier to
812 // handle than in allocated sections because it will never need complex
813 // treatment such as GOT or PLT (because at runtime no one refers them).
814 // So, we handle relocations for non-alloc sections directly in this
815 // function as a performance optimization.
816 template <class ELFT, class RelTy>
relocateNonAlloc(uint8_t * buf,ArrayRef<RelTy> rels)817 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
818 const unsigned bits = sizeof(typename ELFT::uint) * 8;
819 const TargetInfo &target = *elf::target;
820 const bool isDebug = isDebugSection(*this);
821 const bool isDebugLocOrRanges =
822 isDebug && (name == ".debug_loc" || name == ".debug_ranges");
823 const bool isDebugLine = isDebug && name == ".debug_line";
824 Optional<uint64_t> tombstone;
825 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
826 if (patAndValue.first.match(this->name)) {
827 tombstone = patAndValue.second;
828 break;
829 }
830
831 for (const RelTy &rel : rels) {
832 RelType type = rel.getType(config->isMips64EL);
833
834 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
835 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
836 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
837 // need to keep this bug-compatible code for a while.
838 if (config->emachine == EM_386 && type == R_386_GOTPC)
839 continue;
840
841 uint64_t offset = rel.r_offset;
842 uint8_t *bufLoc = buf + offset;
843 int64_t addend = getAddend<ELFT>(rel);
844 if (!RelTy::IsRela)
845 addend += target.getImplicitAddend(bufLoc, type);
846
847 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
848 RelExpr expr = target.getRelExpr(type, sym, bufLoc);
849 if (expr == R_NONE)
850 continue;
851
852 if (tombstone ||
853 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) {
854 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
855 // folded section symbols) to a tombstone value. Resolving to addend is
856 // unsatisfactory because the result address range may collide with a
857 // valid range of low address, or leave multiple CUs claiming ownership of
858 // the same range of code, which may confuse consumers.
859 //
860 // To address the problems, we use -1 as a tombstone value for most
861 // .debug_* sections. We have to ignore the addend because we don't want
862 // to resolve an address attribute (which may have a non-zero addend) to
863 // -1+addend (wrap around to a low address).
864 //
865 // R_DTPREL type relocations represent an offset into the dynamic thread
866 // vector. The computed value is st_value plus a non-negative offset.
867 // Negative values are invalid, so -1 can be used as the tombstone value.
868 //
869 // If the referenced symbol is discarded (made Undefined), or the
870 // section defining the referenced symbol is garbage collected,
871 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded
872 // case. However, resolving a relocation in .debug_line to -1 would stop
873 // debugger users from setting breakpoints on the folded-in function, so
874 // exclude .debug_line.
875 //
876 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
877 // (base address selection entry), use 1 (which is used by GNU ld for
878 // .debug_ranges).
879 //
880 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
881 // value. Enable -1 in a future release.
882 auto *ds = dyn_cast<Defined>(&sym);
883 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) {
884 // If -z dead-reloc-in-nonalloc= is specified, respect it.
885 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone)
886 : (isDebugLocOrRanges ? 1 : 0);
887 target.relocateNoSym(bufLoc, type, value);
888 continue;
889 }
890 }
891
892 // For a relocatable link, only tombstone values are applied.
893 if (config->relocatable)
894 continue;
895
896 if (expr == R_SIZE) {
897 target.relocateNoSym(bufLoc, type,
898 SignExtend64<bits>(sym.getSize() + addend));
899 continue;
900 }
901
902 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
903 // sections.
904 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL ||
905 expr == R_RISCV_ADD) {
906 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
907 continue;
908 }
909
910 std::string msg = getLocation(offset) + ": has non-ABS relocation " +
911 toString(type) + " against symbol '" + toString(sym) +
912 "'";
913 if (expr != R_PC && expr != R_ARM_PCA) {
914 error(msg);
915 return;
916 }
917
918 // If the control reaches here, we found a PC-relative relocation in a
919 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
920 // at runtime, the notion of PC-relative doesn't make sense here. So,
921 // this is a usage error. However, GNU linkers historically accept such
922 // relocations without any errors and relocate them as if they were at
923 // address 0. For bug-compatibilty, we accept them with warnings. We
924 // know Steel Bank Common Lisp as of 2018 have this bug.
925 warn(msg);
926 target.relocateNoSym(
927 bufLoc, type,
928 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
929 }
930 }
931
932 // This is used when '-r' is given.
933 // For REL targets, InputSection::copyRelocations() may store artificial
934 // relocations aimed to update addends. They are handled in relocateAlloc()
935 // for allocatable sections, and this function does the same for
936 // non-allocatable sections, such as sections with debug information.
relocateNonAllocForRelocatable(InputSection * sec,uint8_t * buf)937 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
938 const unsigned bits = config->is64 ? 64 : 32;
939
940 for (const Relocation &rel : sec->relocations) {
941 // InputSection::copyRelocations() adds only R_ABS relocations.
942 assert(rel.expr == R_ABS);
943 uint8_t *bufLoc = buf + rel.offset;
944 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
945 target->relocate(bufLoc, rel, targetVA);
946 }
947 }
948
949 template <class ELFT>
relocate(uint8_t * buf,uint8_t * bufEnd)950 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
951 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack))
952 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
953
954 if (flags & SHF_ALLOC) {
955 relocateAlloc(buf, bufEnd);
956 return;
957 }
958
959 auto *sec = cast<InputSection>(this);
960 if (config->relocatable)
961 relocateNonAllocForRelocatable(sec, buf);
962 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
963 // locations with tombstone values.
964 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
965 if (rels.areRelocsRel())
966 sec->relocateNonAlloc<ELFT>(buf, rels.rels);
967 else
968 sec->relocateNonAlloc<ELFT>(buf, rels.relas);
969 }
970
relocateAlloc(uint8_t * buf,uint8_t * bufEnd)971 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
972 assert(flags & SHF_ALLOC);
973 const unsigned bits = config->wordsize * 8;
974 const TargetInfo &target = *elf::target;
975 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1);
976 AArch64Relaxer aarch64relaxer(relocations);
977 for (size_t i = 0, size = relocations.size(); i != size; ++i) {
978 const Relocation &rel = relocations[i];
979 if (rel.expr == R_NONE)
980 continue;
981 uint64_t offset = rel.offset;
982 uint8_t *bufLoc = buf + offset;
983
984 uint64_t secAddr = getOutputSection()->addr;
985 if (auto *sec = dyn_cast<InputSection>(this))
986 secAddr += sec->outSecOff;
987 const uint64_t addrLoc = secAddr + offset;
988 const uint64_t targetVA =
989 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc,
990 *rel.sym, rel.expr),
991 bits);
992 switch (rel.expr) {
993 case R_RELAX_HINT:
994 continue;
995 case R_RELAX_GOT_PC:
996 case R_RELAX_GOT_PC_NOPIC:
997 target.relaxGot(bufLoc, rel, targetVA);
998 break;
999 case R_AARCH64_GOT_PAGE_PC:
1000 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr(
1001 rel, relocations[i + 1], secAddr, buf)) {
1002 ++i;
1003 continue;
1004 }
1005 target.relocate(bufLoc, rel, targetVA);
1006 break;
1007 case R_AARCH64_PAGE_PC:
1008 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpAdd(
1009 rel, relocations[i + 1], secAddr, buf)) {
1010 ++i;
1011 continue;
1012 }
1013 target.relocate(bufLoc, rel, targetVA);
1014 break;
1015 case R_PPC64_RELAX_GOT_PC: {
1016 // The R_PPC64_PCREL_OPT relocation must appear immediately after
1017 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1018 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1019 // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1020 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1021 // and only relax the other if the saved offset matches.
1022 if (rel.type == R_PPC64_GOT_PCREL34)
1023 lastPPCRelaxedRelocOff = offset;
1024 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff)
1025 break;
1026 target.relaxGot(bufLoc, rel, targetVA);
1027 break;
1028 }
1029 case R_PPC64_RELAX_TOC:
1030 // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1031 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1032 // entry, there may be R_PPC64_TOC16_HA not paired with
1033 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1034 // opportunities but is safe.
1035 if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1036 !tryRelaxPPC64TocIndirection(rel, bufLoc))
1037 target.relocate(bufLoc, rel, targetVA);
1038 break;
1039 case R_RELAX_TLS_IE_TO_LE:
1040 target.relaxTlsIeToLe(bufLoc, rel, targetVA);
1041 break;
1042 case R_RELAX_TLS_LD_TO_LE:
1043 case R_RELAX_TLS_LD_TO_LE_ABS:
1044 target.relaxTlsLdToLe(bufLoc, rel, targetVA);
1045 break;
1046 case R_RELAX_TLS_GD_TO_LE:
1047 case R_RELAX_TLS_GD_TO_LE_NEG:
1048 target.relaxTlsGdToLe(bufLoc, rel, targetVA);
1049 break;
1050 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
1051 case R_RELAX_TLS_GD_TO_IE:
1052 case R_RELAX_TLS_GD_TO_IE_ABS:
1053 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1054 case R_RELAX_TLS_GD_TO_IE_GOTPLT:
1055 target.relaxTlsGdToIe(bufLoc, rel, targetVA);
1056 break;
1057 case R_PPC64_CALL:
1058 // If this is a call to __tls_get_addr, it may be part of a TLS
1059 // sequence that has been relaxed and turned into a nop. In this
1060 // case, we don't want to handle it as a call.
1061 if (read32(bufLoc) == 0x60000000) // nop
1062 break;
1063
1064 // Patch a nop (0x60000000) to a ld.
1065 if (rel.sym->needsTocRestore) {
1066 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1067 // recursive calls even if the function is preemptible. This is not
1068 // wrong in the common case where the function is not preempted at
1069 // runtime. Just ignore.
1070 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
1071 rel.sym->file != file) {
1072 // Use substr(6) to remove the "__plt_" prefix.
1073 errorOrWarn(getErrorLocation(bufLoc) + "call to " +
1074 lld::toString(*rel.sym).substr(6) +
1075 " lacks nop, can't restore toc");
1076 break;
1077 }
1078 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
1079 }
1080 target.relocate(bufLoc, rel, targetVA);
1081 break;
1082 default:
1083 target.relocate(bufLoc, rel, targetVA);
1084 break;
1085 }
1086 }
1087
1088 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of
1089 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp
1090 // insn. This is primarily used to relax and optimize jumps created with
1091 // basic block sections.
1092 if (jumpInstrMod) {
1093 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original,
1094 jumpInstrMod->size);
1095 }
1096 }
1097
1098 // For each function-defining prologue, find any calls to __morestack,
1099 // and replace them with calls to __morestack_non_split.
switchMorestackCallsToMorestackNonSplit(DenseSet<Defined * > & prologues,SmallVector<Relocation *,0> & morestackCalls)1100 static void switchMorestackCallsToMorestackNonSplit(
1101 DenseSet<Defined *> &prologues,
1102 SmallVector<Relocation *, 0> &morestackCalls) {
1103
1104 // If the target adjusted a function's prologue, all calls to
1105 // __morestack inside that function should be switched to
1106 // __morestack_non_split.
1107 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
1108 if (!moreStackNonSplit) {
1109 error("mixing split-stack objects requires a definition of "
1110 "__morestack_non_split");
1111 return;
1112 }
1113
1114 // Sort both collections to compare addresses efficiently.
1115 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1116 return l->offset < r->offset;
1117 });
1118 std::vector<Defined *> functions(prologues.begin(), prologues.end());
1119 llvm::sort(functions, [](const Defined *l, const Defined *r) {
1120 return l->value < r->value;
1121 });
1122
1123 auto it = morestackCalls.begin();
1124 for (Defined *f : functions) {
1125 // Find the first call to __morestack within the function.
1126 while (it != morestackCalls.end() && (*it)->offset < f->value)
1127 ++it;
1128 // Adjust all calls inside the function.
1129 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1130 (*it)->sym = moreStackNonSplit;
1131 ++it;
1132 }
1133 }
1134 }
1135
enclosingPrologueAttempted(uint64_t offset,const DenseSet<Defined * > & prologues)1136 static bool enclosingPrologueAttempted(uint64_t offset,
1137 const DenseSet<Defined *> &prologues) {
1138 for (Defined *f : prologues)
1139 if (f->value <= offset && offset < f->value + f->size)
1140 return true;
1141 return false;
1142 }
1143
1144 // If a function compiled for split stack calls a function not
1145 // compiled for split stack, then the caller needs its prologue
1146 // adjusted to ensure that the called function will have enough stack
1147 // available. Find those functions, and adjust their prologues.
1148 template <class ELFT>
adjustSplitStackFunctionPrologues(uint8_t * buf,uint8_t * end)1149 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1150 uint8_t *end) {
1151 DenseSet<Defined *> prologues;
1152 SmallVector<Relocation *, 0> morestackCalls;
1153
1154 for (Relocation &rel : relocations) {
1155 // Ignore calls into the split-stack api.
1156 if (rel.sym->getName().startswith("__morestack")) {
1157 if (rel.sym->getName().equals("__morestack"))
1158 morestackCalls.push_back(&rel);
1159 continue;
1160 }
1161
1162 // A relocation to non-function isn't relevant. Sometimes
1163 // __morestack is not marked as a function, so this check comes
1164 // after the name check.
1165 if (rel.sym->type != STT_FUNC)
1166 continue;
1167
1168 // If the callee's-file was compiled with split stack, nothing to do. In
1169 // this context, a "Defined" symbol is one "defined by the binary currently
1170 // being produced". So an "undefined" symbol might be provided by a shared
1171 // library. It is not possible to tell how such symbols were compiled, so be
1172 // conservative.
1173 if (Defined *d = dyn_cast<Defined>(rel.sym))
1174 if (InputSection *isec = cast_or_null<InputSection>(d->section))
1175 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1176 continue;
1177
1178 if (enclosingPrologueAttempted(rel.offset, prologues))
1179 continue;
1180
1181 if (Defined *f = getEnclosingFunction(rel.offset)) {
1182 prologues.insert(f);
1183 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
1184 f->stOther))
1185 continue;
1186 if (!getFile<ELFT>()->someNoSplitStack)
1187 error(lld::toString(this) + ": " + f->getName() +
1188 " (with -fsplit-stack) calls " + rel.sym->getName() +
1189 " (without -fsplit-stack), but couldn't adjust its prologue");
1190 }
1191 }
1192
1193 if (target->needsMoreStackNonSplit)
1194 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1195 }
1196
writeTo(uint8_t * buf)1197 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1198 if (LLVM_UNLIKELY(type == SHT_NOBITS))
1199 return;
1200 // If -r or --emit-relocs is given, then an InputSection
1201 // may be a relocation section.
1202 if (LLVM_UNLIKELY(type == SHT_RELA)) {
1203 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>());
1204 return;
1205 }
1206 if (LLVM_UNLIKELY(type == SHT_REL)) {
1207 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>());
1208 return;
1209 }
1210
1211 // If -r is given, we may have a SHT_GROUP section.
1212 if (LLVM_UNLIKELY(type == SHT_GROUP)) {
1213 copyShtGroup<ELFT>(buf);
1214 return;
1215 }
1216
1217 // If this is a compressed section, uncompress section contents directly
1218 // to the buffer.
1219 if (uncompressedSize >= 0) {
1220 size_t size = uncompressedSize;
1221 if (Error e = compression::zlib::uncompress(rawData, buf, size))
1222 fatal(toString(this) +
1223 ": uncompress failed: " + llvm::toString(std::move(e)));
1224 uint8_t *bufEnd = buf + size;
1225 relocate<ELFT>(buf, bufEnd);
1226 return;
1227 }
1228
1229 // Copy section contents from source object file to output file
1230 // and then apply relocations.
1231 memcpy(buf, rawData.data(), rawData.size());
1232 relocate<ELFT>(buf, buf + rawData.size());
1233 }
1234
replace(InputSection * other)1235 void InputSection::replace(InputSection *other) {
1236 alignment = std::max(alignment, other->alignment);
1237
1238 // When a section is replaced with another section that was allocated to
1239 // another partition, the replacement section (and its associated sections)
1240 // need to be placed in the main partition so that both partitions will be
1241 // able to access it.
1242 if (partition != other->partition) {
1243 partition = 1;
1244 for (InputSection *isec : dependentSections)
1245 isec->partition = 1;
1246 }
1247
1248 other->repl = repl;
1249 other->markDead();
1250 }
1251
1252 template <class ELFT>
EhInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1253 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1254 const typename ELFT::Shdr &header,
1255 StringRef name)
1256 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1257
getParent() const1258 SyntheticSection *EhInputSection::getParent() const {
1259 return cast_or_null<SyntheticSection>(parent);
1260 }
1261
1262 // Returns the index of the first relocation that points to a region between
1263 // Begin and Begin+Size.
1264 template <class IntTy, class RelTy>
getReloc(IntTy begin,IntTy size,const ArrayRef<RelTy> & rels,unsigned & relocI)1265 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
1266 unsigned &relocI) {
1267 // Start search from RelocI for fast access. That works because the
1268 // relocations are sorted in .eh_frame.
1269 for (unsigned n = rels.size(); relocI < n; ++relocI) {
1270 const RelTy &rel = rels[relocI];
1271 if (rel.r_offset < begin)
1272 continue;
1273
1274 if (rel.r_offset < begin + size)
1275 return relocI;
1276 return -1;
1277 }
1278 return -1;
1279 }
1280
1281 // .eh_frame is a sequence of CIE or FDE records.
1282 // This function splits an input section into records and returns them.
split()1283 template <class ELFT> void EhInputSection::split() {
1284 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>();
1285 // getReloc expects the relocations to be sorted by r_offset. See the comment
1286 // in scanRelocs.
1287 if (rels.areRelocsRel()) {
1288 SmallVector<typename ELFT::Rel, 0> storage;
1289 split<ELFT>(sortRels(rels.rels, storage));
1290 } else {
1291 SmallVector<typename ELFT::Rela, 0> storage;
1292 split<ELFT>(sortRels(rels.relas, storage));
1293 }
1294 }
1295
1296 template <class ELFT, class RelTy>
split(ArrayRef<RelTy> rels)1297 void EhInputSection::split(ArrayRef<RelTy> rels) {
1298 ArrayRef<uint8_t> d = rawData;
1299 const char *msg = nullptr;
1300 unsigned relI = 0;
1301 while (!d.empty()) {
1302 if (d.size() < 4) {
1303 msg = "CIE/FDE too small";
1304 break;
1305 }
1306 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data());
1307 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1308 // but we do not support that format yet.
1309 if (size == UINT32_MAX) {
1310 msg = "CIE/FDE too large";
1311 break;
1312 }
1313 size += 4;
1314 if (size > d.size()) {
1315 msg = "CIE/FDE ends past the end of the section";
1316 break;
1317 }
1318
1319 uint64_t off = d.data() - rawData.data();
1320 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
1321 d = d.slice(size);
1322 }
1323 if (msg)
1324 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " +
1325 getObjMsg(d.data() - rawData.data()));
1326 }
1327
1328 // Return the offset in an output section for a given input offset.
getParentOffset(uint64_t offset) const1329 uint64_t EhInputSection::getParentOffset(uint64_t offset) const {
1330 const EhSectionPiece &piece = partition_point(
1331 pieces, [=](EhSectionPiece p) { return p.inputOff <= offset; })[-1];
1332 if (piece.outputOff == -1) // invalid piece
1333 return offset - piece.inputOff;
1334 return piece.outputOff + (offset - piece.inputOff);
1335 }
1336
findNull(StringRef s,size_t entSize)1337 static size_t findNull(StringRef s, size_t entSize) {
1338 for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1339 const char *b = s.begin() + i;
1340 if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1341 return i;
1342 }
1343 llvm_unreachable("");
1344 }
1345
getParent() const1346 SyntheticSection *MergeInputSection::getParent() const {
1347 return cast_or_null<SyntheticSection>(parent);
1348 }
1349
1350 // Split SHF_STRINGS section. Such section is a sequence of
1351 // null-terminated strings.
splitStrings(StringRef s,size_t entSize)1352 void MergeInputSection::splitStrings(StringRef s, size_t entSize) {
1353 const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1354 const char *p = s.data(), *end = s.data() + s.size();
1355 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; }))
1356 fatal(toString(this) + ": string is not null terminated");
1357 if (entSize == 1) {
1358 // Optimize the common case.
1359 do {
1360 size_t size = strlen(p);
1361 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live);
1362 p += size + 1;
1363 } while (p != end);
1364 } else {
1365 do {
1366 size_t size = findNull(StringRef(p, end - p), entSize);
1367 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live);
1368 p += size + entSize;
1369 } while (p != end);
1370 }
1371 }
1372
1373 // Split non-SHF_STRINGS section. Such section is a sequence of
1374 // fixed size records.
splitNonStrings(ArrayRef<uint8_t> data,size_t entSize)1375 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1376 size_t entSize) {
1377 size_t size = data.size();
1378 assert((size % entSize) == 0);
1379 const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1380
1381 pieces.resize_for_overwrite(size / entSize);
1382 for (size_t i = 0, j = 0; i != size; i += entSize, j++)
1383 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live};
1384 }
1385
1386 template <class ELFT>
MergeInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1387 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1388 const typename ELFT::Shdr &header,
1389 StringRef name)
1390 : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1391
MergeInputSection(uint64_t flags,uint32_t type,uint64_t entsize,ArrayRef<uint8_t> data,StringRef name)1392 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1393 uint64_t entsize, ArrayRef<uint8_t> data,
1394 StringRef name)
1395 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1396 /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1397
1398 // This function is called after we obtain a complete list of input sections
1399 // that need to be linked. This is responsible to split section contents
1400 // into small chunks for further processing.
1401 //
1402 // Note that this function is called from parallelForEach. This must be
1403 // thread-safe (i.e. no memory allocation from the pools).
splitIntoPieces()1404 void MergeInputSection::splitIntoPieces() {
1405 assert(pieces.empty());
1406
1407 if (flags & SHF_STRINGS)
1408 splitStrings(toStringRef(data()), entsize);
1409 else
1410 splitNonStrings(data(), entsize);
1411 }
1412
getSectionPiece(uint64_t offset)1413 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) {
1414 if (rawData.size() <= offset)
1415 fatal(toString(this) + ": offset is outside the section");
1416 return partition_point(
1417 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1];
1418 }
1419
1420 // Return the offset in an output section for a given input offset.
getParentOffset(uint64_t offset) const1421 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1422 const SectionPiece &piece = getSectionPiece(offset);
1423 return piece.outputOff + (offset - piece.inputOff);
1424 }
1425
1426 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1427 StringRef);
1428 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1429 StringRef);
1430 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1431 StringRef);
1432 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1433 StringRef);
1434
1435 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1436 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1437 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1438 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1439
1440 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const;
1441 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const;
1442 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const;
1443 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const;
1444
1445 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1446 const ELF32LE::Shdr &, StringRef);
1447 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1448 const ELF32BE::Shdr &, StringRef);
1449 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1450 const ELF64LE::Shdr &, StringRef);
1451 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1452 const ELF64BE::Shdr &, StringRef);
1453
1454 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1455 const ELF32LE::Shdr &, StringRef);
1456 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1457 const ELF32BE::Shdr &, StringRef);
1458 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1459 const ELF64LE::Shdr &, StringRef);
1460 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1461 const ELF64BE::Shdr &, StringRef);
1462
1463 template void EhInputSection::split<ELF32LE>();
1464 template void EhInputSection::split<ELF32BE>();
1465 template void EhInputSection::split<ELF64LE>();
1466 template void EhInputSection::split<ELF64BE>();
1467