1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "InputFiles.h" 14 #include "LinkerScript.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "SyntheticSections.h" 18 #include "Target.h" 19 #include "Thunks.h" 20 #include "lld/Common/ErrorHandler.h" 21 #include "lld/Common/Memory.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/Threading.h" 28 #include "llvm/Support/xxhash.h" 29 #include <mutex> 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::support; 35 using namespace llvm::support::endian; 36 using namespace llvm::sys; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 std::vector<InputSectionBase *> elf::InputSections; 42 43 // Returns a string to construct an error message. 44 std::string lld::toString(const InputSectionBase *Sec) { 45 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 46 } 47 48 DenseMap<SectionBase *, int> elf::buildSectionOrder() { 49 DenseMap<SectionBase *, int> SectionOrder; 50 if (Config->SymbolOrderingFile.empty()) 51 return SectionOrder; 52 53 // Build a map from symbols to their priorities. Symbols that didn't 54 // appear in the symbol ordering file have the lowest priority 0. 55 // All explicitly mentioned symbols have negative (higher) priorities. 56 DenseMap<StringRef, int> SymbolOrder; 57 int Priority = -Config->SymbolOrderingFile.size(); 58 for (StringRef S : Config->SymbolOrderingFile) 59 SymbolOrder.insert({S, Priority++}); 60 61 // Build a map from sections to their priorities. 62 for (InputFile *File : ObjectFiles) { 63 for (Symbol *Sym : File->getSymbols()) { 64 auto *D = dyn_cast<Defined>(Sym); 65 if (!D || !D->Section) 66 continue; 67 int &Priority = SectionOrder[D->Section]; 68 Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); 69 } 70 } 71 return SectionOrder; 72 } 73 74 template <class ELFT> 75 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File, 76 const typename ELFT::Shdr *Hdr) { 77 if (!File || Hdr->sh_type == SHT_NOBITS) 78 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 79 return check(File->getObj().getSectionContents(Hdr)); 80 } 81 82 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 83 uint32_t Type, uint64_t Entsize, 84 uint32_t Link, uint32_t Info, 85 uint32_t Alignment, ArrayRef<uint8_t> Data, 86 StringRef Name, Kind SectionKind) 87 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 88 Link), 89 File(File), Data(Data), Repl(this) { 90 NumRelocations = 0; 91 AreRelocsRela = false; 92 93 // The ELF spec states that a value of 0 means the section has 94 // no alignment constraits. 95 uint32_t V = std::max<uint64_t>(Alignment, 1); 96 if (!isPowerOf2_64(V)) 97 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 98 this->Alignment = V; 99 } 100 101 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 102 // SHF_GROUP is a marker that a section belongs to some comdat group. 103 // That flag doesn't make sense in an executable. 104 static uint64_t getFlags(uint64_t Flags) { 105 Flags &= ~(uint64_t)SHF_INFO_LINK; 106 if (!Config->Relocatable) 107 Flags &= ~(uint64_t)SHF_GROUP; 108 return Flags; 109 } 110 111 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 112 // March 2017) fail to infer section types for sections starting with 113 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 114 // SHF_INIT_ARRAY. As a result, the following assembler directive 115 // creates ".init_array.100" with SHT_PROGBITS, for example. 116 // 117 // .section .init_array.100, "aw" 118 // 119 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 120 // incorrect inputs as if they were correct from the beginning. 121 static uint64_t getType(uint64_t Type, StringRef Name) { 122 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 123 return SHT_INIT_ARRAY; 124 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 125 return SHT_FINI_ARRAY; 126 return Type; 127 } 128 129 template <class ELFT> 130 InputSectionBase::InputSectionBase(ObjFile<ELFT> *File, 131 const typename ELFT::Shdr *Hdr, 132 StringRef Name, Kind SectionKind) 133 : InputSectionBase(File, getFlags(Hdr->sh_flags), 134 getType(Hdr->sh_type, Name), Hdr->sh_entsize, 135 Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, 136 getSectionContents(File, Hdr), Name, SectionKind) { 137 // We reject object files having insanely large alignments even though 138 // they are allowed by the spec. I think 4GB is a reasonable limitation. 139 // We might want to relax this in the future. 140 if (Hdr->sh_addralign > UINT32_MAX) 141 fatal(toString(File) + ": section sh_addralign is too large"); 142 } 143 144 size_t InputSectionBase::getSize() const { 145 if (auto *S = dyn_cast<SyntheticSection>(this)) 146 return S->getSize(); 147 148 return Data.size(); 149 } 150 151 uint64_t InputSectionBase::getOffsetInFile() const { 152 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 153 const uint8_t *SecStart = Data.begin(); 154 return SecStart - FileStart; 155 } 156 157 uint64_t SectionBase::getOffset(uint64_t Offset) const { 158 switch (kind()) { 159 case Output: { 160 auto *OS = cast<OutputSection>(this); 161 // For output sections we treat offset -1 as the end of the section. 162 return Offset == uint64_t(-1) ? OS->Size : Offset; 163 } 164 case Regular: 165 return cast<InputSection>(this)->OutSecOff + Offset; 166 case Synthetic: { 167 auto *IS = cast<InputSection>(this); 168 // For synthetic sections we treat offset -1 as the end of the section. 169 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 170 } 171 case EHFrame: 172 // The file crtbeginT.o has relocations pointing to the start of an empty 173 // .eh_frame that is known to be the first in the link. It does that to 174 // identify the start of the output .eh_frame. 175 return Offset; 176 case Merge: 177 const MergeInputSection *MS = cast<MergeInputSection>(this); 178 if (InputSection *IS = MS->getParent()) 179 return IS->OutSecOff + MS->getOffset(Offset); 180 return MS->getOffset(Offset); 181 } 182 llvm_unreachable("invalid section kind"); 183 } 184 185 OutputSection *SectionBase::getOutputSection() { 186 InputSection *Sec; 187 if (auto *IS = dyn_cast<InputSection>(this)) 188 Sec = cast<InputSection>(IS->Repl); 189 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 190 Sec = MS->getParent(); 191 else if (auto *EH = dyn_cast<EhInputSection>(this)) 192 Sec = EH->getParent(); 193 else 194 return cast<OutputSection>(this); 195 return Sec ? Sec->getParent() : nullptr; 196 } 197 198 // Uncompress section contents if required. Note that this function 199 // is called from parallelForEach, so it must be thread-safe. 200 void InputSectionBase::maybeUncompress() { 201 if (UncompressBuf || !Decompressor::isCompressedELFSection(Flags, Name)) 202 return; 203 204 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 205 Config->IsLE, Config->Is64)); 206 207 size_t Size = Dec.getDecompressedSize(); 208 UncompressBuf.reset(new char[Size]()); 209 if (Error E = Dec.decompress({UncompressBuf.get(), Size})) 210 fatal(toString(this) + 211 ": decompress failed: " + llvm::toString(std::move(E))); 212 213 this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size); 214 this->Flags &= ~(uint64_t)SHF_COMPRESSED; 215 } 216 217 InputSection *InputSectionBase::getLinkOrderDep() const { 218 if ((Flags & SHF_LINK_ORDER) && Link != 0) { 219 InputSectionBase *L = File->getSections()[Link]; 220 if (auto *IS = dyn_cast<InputSection>(L)) 221 return IS; 222 error("a section with SHF_LINK_ORDER should not refer a non-regular " 223 "section: " + 224 toString(L)); 225 } 226 return nullptr; 227 } 228 229 // Returns a source location string. Used to construct an error message. 230 template <class ELFT> 231 std::string InputSectionBase::getLocation(uint64_t Offset) { 232 // We don't have file for synthetic sections. 233 if (getFile<ELFT>() == nullptr) 234 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 235 .str(); 236 237 // First check if we can get desired values from debugging information. 238 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 239 if (!LineInfo.empty()) 240 return LineInfo; 241 242 // File->SourceFile contains STT_FILE symbol that contains a 243 // source file name. If it's missing, we use an object file name. 244 std::string SrcFile = getFile<ELFT>()->SourceFile; 245 if (SrcFile.empty()) 246 SrcFile = toString(File); 247 248 // Find a function symbol that encloses a given location. 249 for (Symbol *B : File->getSymbols()) 250 if (auto *D = dyn_cast<Defined>(B)) 251 if (D->Section == this && D->Type == STT_FUNC) 252 if (D->Value <= Offset && Offset < D->Value + D->Size) 253 return SrcFile + ":(function " + toString(*D) + ")"; 254 255 // If there's no symbol, print out the offset in the section. 256 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 257 } 258 259 // Concatenates arguments to construct a string representing an error location. 260 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 261 std::string Filename = path::filename(Path); 262 std::string Lineno = ":" + std::to_string(Line); 263 if (Filename == Path) 264 return Filename + Lineno; 265 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 266 } 267 268 // This function is intended to be used for constructing an error message. 269 // The returned message looks like this: 270 // 271 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 272 // 273 // Returns an empty string if there's no way to get line info. 274 template <class ELFT> 275 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { 276 // Synthetic sections don't have input files. 277 ObjFile<ELFT> *File = getFile<ELFT>(); 278 if (!File) 279 return ""; 280 281 // In DWARF, functions and variables are stored to different places. 282 // First, lookup a function for a given offset. 283 if (Optional<DILineInfo> Info = File->getDILineInfo(this, Offset)) 284 return createFileLineMsg(Info->FileName, Info->Line); 285 286 // If it failed, lookup again as a variable. 287 if (Optional<std::pair<std::string, unsigned>> FileLine = 288 File->getVariableLoc(Sym.getName())) 289 return createFileLineMsg(FileLine->first, FileLine->second); 290 291 // File->SourceFile contains STT_FILE symbol, and that is a last resort. 292 return File->SourceFile; 293 } 294 295 // Returns a filename string along with an optional section name. This 296 // function is intended to be used for constructing an error 297 // message. The returned message looks like this: 298 // 299 // path/to/foo.o:(function bar) 300 // 301 // or 302 // 303 // path/to/foo.o:(function bar) in archive path/to/bar.a 304 std::string InputSectionBase::getObjMsg(uint64_t Off) { 305 // Synthetic sections don't have input files. 306 if (!File) 307 return ("<internal>:(" + Name + "+0x" + utohexstr(Off) + ")").str(); 308 std::string Filename = File->getName(); 309 310 std::string Archive; 311 if (!File->ArchiveName.empty()) 312 Archive = (" in archive " + File->ArchiveName).str(); 313 314 // Find a symbol that encloses a given location. 315 for (Symbol *B : File->getSymbols()) 316 if (auto *D = dyn_cast<Defined>(B)) 317 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 318 return Filename + ":(" + toString(*D) + ")" + Archive; 319 320 // If there's no symbol, print out the offset in the section. 321 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 322 .str(); 323 } 324 325 InputSectionBase InputSectionBase::Discarded; 326 327 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 328 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 329 : InputSectionBase(nullptr, Flags, Type, 330 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 331 Name, K) {} 332 333 template <class ELFT> 334 InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header, 335 StringRef Name) 336 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 337 338 bool InputSection::classof(const SectionBase *S) { 339 return S->kind() == SectionBase::Regular || 340 S->kind() == SectionBase::Synthetic; 341 } 342 343 OutputSection *InputSection::getParent() const { 344 return cast_or_null<OutputSection>(Parent); 345 } 346 347 // Copy SHT_GROUP section contents. Used only for the -r option. 348 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 349 // ELFT::Word is the 32-bit integral type in the target endianness. 350 typedef typename ELFT::Word u32; 351 ArrayRef<u32> From = getDataAs<u32>(); 352 auto *To = reinterpret_cast<u32 *>(Buf); 353 354 // The first entry is not a section number but a flag. 355 *To++ = From[0]; 356 357 // Adjust section numbers because section numbers in an input object 358 // files are different in the output. 359 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 360 for (uint32_t Idx : From.slice(1)) 361 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 362 } 363 364 InputSectionBase *InputSection::getRelocatedSection() { 365 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 366 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 367 return Sections[this->Info]; 368 } 369 370 // This is used for -r and --emit-relocs. We can't use memcpy to copy 371 // relocations because we need to update symbol table offset and section index 372 // for each relocation. So we copy relocations one by one. 373 template <class ELFT, class RelTy> 374 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 375 InputSectionBase *Sec = getRelocatedSection(); 376 377 for (const RelTy &Rel : Rels) { 378 RelType Type = Rel.getType(Config->IsMips64EL); 379 Symbol &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 380 381 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 382 Buf += sizeof(RelTy); 383 384 if (Config->IsRela) 385 P->r_addend = getAddend<ELFT>(Rel); 386 387 // Output section VA is zero for -r, so r_offset is an offset within the 388 // section, but for --emit-relocs it is an virtual address. 389 P->r_offset = Sec->getOutputSection()->Addr + Sec->getOffset(Rel.r_offset); 390 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Sym), Type, 391 Config->IsMips64EL); 392 393 if (Sym.Type == STT_SECTION) { 394 // We combine multiple section symbols into only one per 395 // section. This means we have to update the addend. That is 396 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 397 // section data. We do that by adding to the Relocation vector. 398 399 // .eh_frame is horribly special and can reference discarded sections. To 400 // avoid having to parse and recreate .eh_frame, we just replace any 401 // relocation in it pointing to discarded sections with R_*_NONE, which 402 // hopefully creates a frame that is ignored at runtime. 403 auto *D = dyn_cast<Defined>(&Sym); 404 if (!D) { 405 error("STT_SECTION symbol should be defined"); 406 continue; 407 } 408 SectionBase *Section = D->Section; 409 if (Section == &InputSection::Discarded) { 410 P->setSymbolAndType(0, 0, false); 411 continue; 412 } 413 414 if (Config->IsRela) { 415 P->r_addend = 416 Sym.getVA(getAddend<ELFT>(Rel)) - Section->getOutputSection()->Addr; 417 } else if (Config->Relocatable) { 418 const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset; 419 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, 420 Target->getImplicitAddend(BufLoc, Type), 421 &Sym}); 422 } 423 } 424 425 } 426 } 427 428 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 429 // references specially. The general rule is that the value of the symbol in 430 // this context is the address of the place P. A further special case is that 431 // branch relocations to an undefined weak reference resolve to the next 432 // instruction. 433 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 434 uint32_t P) { 435 switch (Type) { 436 // Unresolved branch relocations to weak references resolve to next 437 // instruction, this will be either 2 or 4 bytes on from P. 438 case R_ARM_THM_JUMP11: 439 return P + 2 + A; 440 case R_ARM_CALL: 441 case R_ARM_JUMP24: 442 case R_ARM_PC24: 443 case R_ARM_PLT32: 444 case R_ARM_PREL31: 445 case R_ARM_THM_JUMP19: 446 case R_ARM_THM_JUMP24: 447 return P + 4 + A; 448 case R_ARM_THM_CALL: 449 // We don't want an interworking BLX to ARM 450 return P + 5 + A; 451 // Unresolved non branch pc-relative relocations 452 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 453 // targets a weak-reference. 454 case R_ARM_MOVW_PREL_NC: 455 case R_ARM_MOVT_PREL: 456 case R_ARM_REL32: 457 case R_ARM_THM_MOVW_PREL_NC: 458 case R_ARM_THM_MOVT_PREL: 459 return P + A; 460 } 461 llvm_unreachable("ARM pc-relative relocation expected\n"); 462 } 463 464 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 465 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 466 uint64_t P) { 467 switch (Type) { 468 // Unresolved branch relocations to weak references resolve to next 469 // instruction, this is 4 bytes on from P. 470 case R_AARCH64_CALL26: 471 case R_AARCH64_CONDBR19: 472 case R_AARCH64_JUMP26: 473 case R_AARCH64_TSTBR14: 474 return P + 4 + A; 475 // Unresolved non branch pc-relative relocations 476 case R_AARCH64_PREL16: 477 case R_AARCH64_PREL32: 478 case R_AARCH64_PREL64: 479 case R_AARCH64_ADR_PREL_LO21: 480 case R_AARCH64_LD_PREL_LO19: 481 return P + A; 482 } 483 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 484 } 485 486 // ARM SBREL relocations are of the form S + A - B where B is the static base 487 // The ARM ABI defines base to be "addressing origin of the output segment 488 // defining the symbol S". We defined the "addressing origin"/static base to be 489 // the base of the PT_LOAD segment containing the Sym. 490 // The procedure call standard only defines a Read Write Position Independent 491 // RWPI variant so in practice we should expect the static base to be the base 492 // of the RW segment. 493 static uint64_t getARMStaticBase(const Symbol &Sym) { 494 OutputSection *OS = Sym.getOutputSection(); 495 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 496 fatal("SBREL relocation to " + Sym.getName() + " without static base"); 497 return OS->PtLoad->FirstSec->Addr; 498 } 499 500 static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P, 501 const Symbol &Sym, RelExpr Expr) { 502 switch (Expr) { 503 case R_INVALID: 504 return 0; 505 case R_ABS: 506 case R_RELAX_GOT_PC_NOPIC: 507 return Sym.getVA(A); 508 case R_ARM_SBREL: 509 return Sym.getVA(A) - getARMStaticBase(Sym); 510 case R_GOT: 511 case R_RELAX_TLS_GD_TO_IE_ABS: 512 return Sym.getGotVA() + A; 513 case R_GOTONLY_PC: 514 return InX::Got->getVA() + A - P; 515 case R_GOTONLY_PC_FROM_END: 516 return InX::Got->getVA() + A - P + InX::Got->getSize(); 517 case R_GOTREL: 518 return Sym.getVA(A) - InX::Got->getVA(); 519 case R_GOTREL_FROM_END: 520 return Sym.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 521 case R_GOT_FROM_END: 522 case R_RELAX_TLS_GD_TO_IE_END: 523 return Sym.getGotOffset() + A - InX::Got->getSize(); 524 case R_GOT_OFF: 525 return Sym.getGotOffset() + A; 526 case R_GOT_PAGE_PC: 527 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 528 return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); 529 case R_GOT_PC: 530 case R_RELAX_TLS_GD_TO_IE: 531 return Sym.getGotVA() + A - P; 532 case R_HINT: 533 case R_NONE: 534 case R_TLSDESC_CALL: 535 llvm_unreachable("cannot relocate hint relocs"); 536 case R_MIPS_GOTREL: 537 return Sym.getVA(A) - InX::MipsGot->getGp(); 538 case R_MIPS_GOT_GP: 539 return InX::MipsGot->getGp() + A; 540 case R_MIPS_GOT_GP_PC: { 541 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 542 // is _gp_disp symbol. In that case we should use the following 543 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 544 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 545 // microMIPS variants of these relocations use slightly different 546 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 547 // to correctly handle less-sugnificant bit of the microMIPS symbol. 548 uint64_t V = InX::MipsGot->getGp() + A - P; 549 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 550 V += 4; 551 if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) 552 V -= 1; 553 return V; 554 } 555 case R_MIPS_GOT_LOCAL_PAGE: 556 // If relocation against MIPS local symbol requires GOT entry, this entry 557 // should be initialized by 'page address'. This address is high 16-bits 558 // of sum the symbol's value and the addend. 559 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Sym, A) - 560 InX::MipsGot->getGp(); 561 case R_MIPS_GOT_OFF: 562 case R_MIPS_GOT_OFF32: 563 // In case of MIPS if a GOT relocation has non-zero addend this addend 564 // should be applied to the GOT entry content not to the GOT entry offset. 565 // That is why we use separate expression type. 566 return InX::MipsGot->getVA() + InX::MipsGot->getSymEntryOffset(Sym, A) - 567 InX::MipsGot->getGp(); 568 case R_MIPS_TLSGD: 569 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 570 InX::MipsGot->getGlobalDynOffset(Sym) - InX::MipsGot->getGp(); 571 case R_MIPS_TLSLD: 572 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 573 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 574 case R_PAGE_PC: 575 case R_PLT_PAGE_PC: { 576 uint64_t Dest; 577 if (Sym.isUndefWeak()) 578 Dest = getAArch64Page(A); 579 else 580 Dest = getAArch64Page(Sym.getVA(A)); 581 return Dest - getAArch64Page(P); 582 } 583 case R_PC: { 584 uint64_t Dest; 585 if (Sym.isUndefWeak()) { 586 // On ARM and AArch64 a branch to an undefined weak resolves to the 587 // next instruction, otherwise the place. 588 if (Config->EMachine == EM_ARM) 589 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 590 else if (Config->EMachine == EM_AARCH64) 591 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 592 else 593 Dest = Sym.getVA(A); 594 } else { 595 Dest = Sym.getVA(A); 596 } 597 return Dest - P; 598 } 599 case R_PLT: 600 return Sym.getPltVA() + A; 601 case R_PLT_PC: 602 case R_PPC_PLT_OPD: 603 return Sym.getPltVA() + A - P; 604 case R_PPC_OPD: { 605 uint64_t SymVA = Sym.getVA(A); 606 // If we have an undefined weak symbol, we might get here with a symbol 607 // address of zero. That could overflow, but the code must be unreachable, 608 // so don't bother doing anything at all. 609 if (!SymVA) 610 return 0; 611 if (Out::Opd) { 612 // If this is a local call, and we currently have the address of a 613 // function-descriptor, get the underlying code address instead. 614 uint64_t OpdStart = Out::Opd->Addr; 615 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 616 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 617 if (InOpd) 618 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 619 } 620 return SymVA - P; 621 } 622 case R_PPC_TOC: 623 return getPPC64TocBase() + A; 624 case R_RELAX_GOT_PC: 625 return Sym.getVA(A) - P; 626 case R_RELAX_TLS_GD_TO_LE: 627 case R_RELAX_TLS_IE_TO_LE: 628 case R_RELAX_TLS_LD_TO_LE: 629 case R_TLS: 630 // A weak undefined TLS symbol resolves to the base of the TLS 631 // block, i.e. gets a value of zero. If we pass --gc-sections to 632 // lld and .tbss is not referenced, it gets reclaimed and we don't 633 // create a TLS program header. Therefore, we resolve this 634 // statically to zero. 635 if (Sym.isTls() && Sym.isUndefWeak()) 636 return 0; 637 if (Target->TcbSize) 638 return Sym.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 639 return Sym.getVA(A) - Out::TlsPhdr->p_memsz; 640 case R_RELAX_TLS_GD_TO_LE_NEG: 641 case R_NEG_TLS: 642 return Out::TlsPhdr->p_memsz - Sym.getVA(A); 643 case R_SIZE: 644 return A; // Sym.getSize was already folded into the addend. 645 case R_TLSDESC: 646 return InX::Got->getGlobalDynAddr(Sym) + A; 647 case R_TLSDESC_PAGE: 648 return getAArch64Page(InX::Got->getGlobalDynAddr(Sym) + A) - 649 getAArch64Page(P); 650 case R_TLSGD: 651 return InX::Got->getGlobalDynOffset(Sym) + A - InX::Got->getSize(); 652 case R_TLSGD_PC: 653 return InX::Got->getGlobalDynAddr(Sym) + A - P; 654 case R_TLSLD: 655 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 656 case R_TLSLD_PC: 657 return InX::Got->getTlsIndexVA() + A - P; 658 } 659 llvm_unreachable("Invalid expression"); 660 } 661 662 // This function applies relocations to sections without SHF_ALLOC bit. 663 // Such sections are never mapped to memory at runtime. Debug sections are 664 // an example. Relocations in non-alloc sections are much easier to 665 // handle than in allocated sections because it will never need complex 666 // treatement such as GOT or PLT (because at runtime no one refers them). 667 // So, we handle relocations for non-alloc sections directly in this 668 // function as a performance optimization. 669 template <class ELFT, class RelTy> 670 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 671 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 672 673 for (const RelTy &Rel : Rels) { 674 RelType Type = Rel.getType(Config->IsMips64EL); 675 uint64_t Offset = getOffset(Rel.r_offset); 676 uint8_t *BufLoc = Buf + Offset; 677 int64_t Addend = getAddend<ELFT>(Rel); 678 if (!RelTy::IsRela) 679 Addend += Target->getImplicitAddend(BufLoc, Type); 680 681 Symbol &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 682 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 683 if (Expr == R_NONE) 684 continue; 685 if (Expr != R_ABS) { 686 // GCC 8.0 or earlier have a bug that it emits R_386_GOTPC relocations 687 // against _GLOBAL_OFFSET_TABLE for .debug_info. The bug seems to have 688 // been fixed in 2017: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630, 689 // but we need to keep this bug-compatible code for a while. 690 if (Config->EMachine == EM_386 && Type == R_386_GOTPC) 691 continue; 692 693 error(this->getLocation<ELFT>(Offset) + ": has non-ABS relocation " + 694 toString(Type) + " against symbol '" + toString(Sym) + "'"); 695 return; 696 } 697 698 if (Sym.isTls() && !Out::TlsPhdr) 699 Target->relocateOne(BufLoc, Type, 0); 700 else 701 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 702 } 703 } 704 705 template <class ELFT> 706 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 707 if (Flags & SHF_ALLOC) { 708 relocateAlloc(Buf, BufEnd); 709 return; 710 } 711 712 auto *Sec = cast<InputSection>(this); 713 if (Sec->AreRelocsRela) 714 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 715 else 716 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 717 } 718 719 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 720 assert(Flags & SHF_ALLOC); 721 const unsigned Bits = Config->Wordsize * 8; 722 723 for (const Relocation &Rel : Relocations) { 724 uint64_t Offset = getOffset(Rel.Offset); 725 uint8_t *BufLoc = Buf + Offset; 726 RelType Type = Rel.Type; 727 728 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 729 RelExpr Expr = Rel.Expr; 730 uint64_t TargetVA = SignExtend64( 731 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 732 733 switch (Expr) { 734 case R_RELAX_GOT_PC: 735 case R_RELAX_GOT_PC_NOPIC: 736 Target->relaxGot(BufLoc, TargetVA); 737 break; 738 case R_RELAX_TLS_IE_TO_LE: 739 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 740 break; 741 case R_RELAX_TLS_LD_TO_LE: 742 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 743 break; 744 case R_RELAX_TLS_GD_TO_LE: 745 case R_RELAX_TLS_GD_TO_LE_NEG: 746 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 747 break; 748 case R_RELAX_TLS_GD_TO_IE: 749 case R_RELAX_TLS_GD_TO_IE_ABS: 750 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 751 case R_RELAX_TLS_GD_TO_IE_END: 752 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 753 break; 754 case R_PPC_PLT_OPD: 755 // Patch a nop (0x60000000) to a ld. 756 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 757 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 758 LLVM_FALLTHROUGH; 759 default: 760 Target->relocateOne(BufLoc, Type, TargetVA); 761 break; 762 } 763 } 764 } 765 766 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 767 if (this->Type == SHT_NOBITS) 768 return; 769 770 if (auto *S = dyn_cast<SyntheticSection>(this)) { 771 S->writeTo(Buf + OutSecOff); 772 return; 773 } 774 775 // If -r or --emit-relocs is given, then an InputSection 776 // may be a relocation section. 777 if (this->Type == SHT_RELA) { 778 copyRelocations<ELFT>(Buf + OutSecOff, 779 this->template getDataAs<typename ELFT::Rela>()); 780 return; 781 } 782 if (this->Type == SHT_REL) { 783 copyRelocations<ELFT>(Buf + OutSecOff, 784 this->template getDataAs<typename ELFT::Rel>()); 785 return; 786 } 787 788 // If -r is given, we may have a SHT_GROUP section. 789 if (this->Type == SHT_GROUP) { 790 copyShtGroup<ELFT>(Buf + OutSecOff); 791 return; 792 } 793 794 // Copy section contents from source object file to output file 795 // and then apply relocations. 796 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 797 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 798 this->relocate<ELFT>(Buf, BufEnd); 799 } 800 801 void InputSection::replace(InputSection *Other) { 802 this->Alignment = std::max(this->Alignment, Other->Alignment); 803 Other->Repl = this->Repl; 804 Other->Live = false; 805 } 806 807 template <class ELFT> 808 EhInputSection::EhInputSection(ObjFile<ELFT> *F, 809 const typename ELFT::Shdr *Header, 810 StringRef Name) 811 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} 812 813 SyntheticSection *EhInputSection::getParent() const { 814 return cast_or_null<SyntheticSection>(Parent); 815 } 816 817 // Returns the index of the first relocation that points to a region between 818 // Begin and Begin+Size. 819 template <class IntTy, class RelTy> 820 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 821 unsigned &RelocI) { 822 // Start search from RelocI for fast access. That works because the 823 // relocations are sorted in .eh_frame. 824 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 825 const RelTy &Rel = Rels[RelocI]; 826 if (Rel.r_offset < Begin) 827 continue; 828 829 if (Rel.r_offset < Begin + Size) 830 return RelocI; 831 return -1; 832 } 833 return -1; 834 } 835 836 // .eh_frame is a sequence of CIE or FDE records. 837 // This function splits an input section into records and returns them. 838 template <class ELFT> void EhInputSection::split() { 839 // Early exit if already split. 840 if (!this->Pieces.empty()) 841 return; 842 843 if (this->AreRelocsRela) 844 split<ELFT>(this->relas<ELFT>()); 845 else 846 split<ELFT>(this->rels<ELFT>()); 847 } 848 849 template <class ELFT, class RelTy> 850 void EhInputSection::split(ArrayRef<RelTy> Rels) { 851 ArrayRef<uint8_t> Data = this->Data; 852 unsigned RelI = 0; 853 for (size_t Off = 0, End = Data.size(); Off != End;) { 854 size_t Size = readEhRecordSize(this, Off); 855 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 856 // The empty record is the end marker. 857 if (Size == 4) 858 break; 859 Off += Size; 860 } 861 } 862 863 static size_t findNull(StringRef S, size_t EntSize) { 864 // Optimize the common case. 865 if (EntSize == 1) 866 return S.find(0); 867 868 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 869 const char *B = S.begin() + I; 870 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 871 return I; 872 } 873 return StringRef::npos; 874 } 875 876 SyntheticSection *MergeInputSection::getParent() const { 877 return cast_or_null<SyntheticSection>(Parent); 878 } 879 880 // Split SHF_STRINGS section. Such section is a sequence of 881 // null-terminated strings. 882 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 883 size_t Off = 0; 884 bool IsAlloc = this->Flags & SHF_ALLOC; 885 StringRef S = toStringRef(Data); 886 887 while (!S.empty()) { 888 size_t End = findNull(S, EntSize); 889 if (End == StringRef::npos) 890 fatal(toString(this) + ": string is not null terminated"); 891 size_t Size = End + EntSize; 892 893 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 894 S = S.substr(Size); 895 Off += Size; 896 } 897 } 898 899 // Split non-SHF_STRINGS section. Such section is a sequence of 900 // fixed size records. 901 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 902 size_t EntSize) { 903 size_t Size = Data.size(); 904 assert((Size % EntSize) == 0); 905 bool IsAlloc = this->Flags & SHF_ALLOC; 906 907 for (size_t I = 0; I != Size; I += EntSize) 908 Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))), 909 !IsAlloc); 910 } 911 912 template <class ELFT> 913 MergeInputSection::MergeInputSection(ObjFile<ELFT> *F, 914 const typename ELFT::Shdr *Header, 915 StringRef Name) 916 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) { 917 // In order to reduce memory allocation, we assume that mergeable 918 // sections are smaller than 4 GiB, which is not an unreasonable 919 // assumption as of 2017. 920 if (Data.size() > UINT32_MAX) 921 error(toString(this) + ": section too large"); 922 } 923 924 // This function is called after we obtain a complete list of input sections 925 // that need to be linked. This is responsible to split section contents 926 // into small chunks for further processing. 927 // 928 // Note that this function is called from parallelForEach. This must be 929 // thread-safe (i.e. no memory allocation from the pools). 930 void MergeInputSection::splitIntoPieces() { 931 assert(Pieces.empty()); 932 933 if (this->Flags & SHF_STRINGS) 934 splitStrings(Data, Entsize); 935 else 936 splitNonStrings(Data, Entsize); 937 938 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 939 for (uint64_t Off : LiveOffsets) 940 this->getSectionPiece(Off)->Live = true; 941 } 942 943 // Do binary search to get a section piece at a given input offset. 944 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 945 auto *This = static_cast<const MergeInputSection *>(this); 946 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 947 } 948 949 template <class It, class T, class Compare> 950 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 951 size_t Size = std::distance(First, Last); 952 assert(Size != 0); 953 while (Size != 1) { 954 size_t H = Size / 2; 955 const It MI = First + H; 956 Size -= H; 957 First = Comp(Value, *MI) ? First : First + H; 958 } 959 return Comp(Value, *First) ? First : First + 1; 960 } 961 962 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 963 if (Data.size() <= Offset) 964 fatal(toString(this) + ": entry is past the end of the section"); 965 966 // Find the element this offset points to. 967 auto I = fastUpperBound( 968 Pieces.begin(), Pieces.end(), Offset, 969 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 970 --I; 971 return &*I; 972 } 973 974 // Returns the offset in an output section for a given input offset. 975 // Because contents of a mergeable section is not contiguous in output, 976 // it is not just an addition to a base output offset. 977 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 978 if (!Live) 979 return 0; 980 981 // Initialize OffsetMap lazily. 982 llvm::call_once(InitOffsetMap, [&] { 983 OffsetMap.reserve(Pieces.size()); 984 for (size_t I = 0; I < Pieces.size(); ++I) 985 OffsetMap[Pieces[I].InputOff] = I; 986 }); 987 988 // Find a string starting at a given offset. 989 auto It = OffsetMap.find(Offset); 990 if (It != OffsetMap.end()) 991 return Pieces[It->second].OutputOff; 992 993 // If Offset is not at beginning of a section piece, it is not in the map. 994 // In that case we need to search from the original section piece vector. 995 const SectionPiece &Piece = *this->getSectionPiece(Offset); 996 if (!Piece.Live) 997 return 0; 998 999 uint64_t Addend = Offset - Piece.InputOff; 1000 return Piece.OutputOff + Addend; 1001 } 1002 1003 template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *, 1004 StringRef); 1005 template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *, 1006 StringRef); 1007 template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *, 1008 StringRef); 1009 template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *, 1010 StringRef); 1011 1012 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1013 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1014 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1015 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1016 1017 template std::string InputSectionBase::getSrcMsg<ELF32LE>(const Symbol &, 1018 uint64_t); 1019 template std::string InputSectionBase::getSrcMsg<ELF32BE>(const Symbol &, 1020 uint64_t); 1021 template std::string InputSectionBase::getSrcMsg<ELF64LE>(const Symbol &, 1022 uint64_t); 1023 template std::string InputSectionBase::getSrcMsg<ELF64BE>(const Symbol &, 1024 uint64_t); 1025 1026 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1027 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1028 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1029 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1030 1031 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *, 1032 const ELF32LE::Shdr *, StringRef); 1033 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *, 1034 const ELF32BE::Shdr *, StringRef); 1035 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *, 1036 const ELF64LE::Shdr *, StringRef); 1037 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *, 1038 const ELF64BE::Shdr *, StringRef); 1039 1040 template EhInputSection::EhInputSection(ObjFile<ELF32LE> *, 1041 const ELF32LE::Shdr *, StringRef); 1042 template EhInputSection::EhInputSection(ObjFile<ELF32BE> *, 1043 const ELF32BE::Shdr *, StringRef); 1044 template EhInputSection::EhInputSection(ObjFile<ELF64LE> *, 1045 const ELF64LE::Shdr *, StringRef); 1046 template EhInputSection::EhInputSection(ObjFile<ELF64BE> *, 1047 const ELF64BE::Shdr *, StringRef); 1048 1049 template void EhInputSection::split<ELF32LE>(); 1050 template void EhInputSection::split<ELF32BE>(); 1051 template void EhInputSection::split<ELF64LE>(); 1052 template void EhInputSection::split<ELF64BE>(); 1053