1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <vector> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 using namespace llvm::sys; 33 using namespace lld; 34 using namespace lld::elf; 35 36 SmallVector<InputSectionBase *, 0> elf::inputSections; 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t alignment, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 58 link), 59 file(file), rawData(data) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(alignment, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->alignment = v; 72 73 // In ELF, each section can be compressed by zlib, and if compressed, 74 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 75 // If that's the case, demangle section name so that we can handle a 76 // section as if it weren't compressed. 77 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 78 if (!zlib::isAvailable()) 79 error(toString(file) + ": contains a compressed section, " + 80 "but zlib is not available"); 81 invokeELFT(parseCompressedHeader); 82 } 83 } 84 85 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 86 // SHF_GROUP is a marker that a section belongs to some comdat group. 87 // That flag doesn't make sense in an executable. 88 static uint64_t getFlags(uint64_t flags) { 89 flags &= ~(uint64_t)SHF_INFO_LINK; 90 if (!config->relocatable) 91 flags &= ~(uint64_t)SHF_GROUP; 92 return flags; 93 } 94 95 template <class ELFT> 96 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 97 const typename ELFT::Shdr &hdr, 98 StringRef name, Kind sectionKind) 99 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 100 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 101 hdr.sh_addralign, getSectionContents(file, hdr), name, 102 sectionKind) { 103 // We reject object files having insanely large alignments even though 104 // they are allowed by the spec. I think 4GB is a reasonable limitation. 105 // We might want to relax this in the future. 106 if (hdr.sh_addralign > UINT32_MAX) 107 fatal(toString(&file) + ": section sh_addralign is too large"); 108 } 109 110 size_t InputSectionBase::getSize() const { 111 if (auto *s = dyn_cast<SyntheticSection>(this)) 112 return s->getSize(); 113 if (uncompressedSize >= 0) 114 return uncompressedSize; 115 return rawData.size() - bytesDropped; 116 } 117 118 void InputSectionBase::uncompress() const { 119 size_t size = uncompressedSize; 120 char *uncompressedBuf; 121 { 122 static std::mutex mu; 123 std::lock_guard<std::mutex> lock(mu); 124 uncompressedBuf = bAlloc().Allocate<char>(size); 125 } 126 127 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 128 fatal(toString(this) + 129 ": uncompress failed: " + llvm::toString(std::move(e))); 130 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 131 uncompressedSize = -1; 132 } 133 134 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 135 if (relSecIdx == 0) 136 return {}; 137 RelsOrRelas<ELFT> ret; 138 typename ELFT::Shdr shdr = 139 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 140 if (shdr.sh_type == SHT_REL) { 141 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 142 file->mb.getBufferStart() + shdr.sh_offset), 143 shdr.sh_size / sizeof(typename ELFT::Rel)); 144 } else { 145 assert(shdr.sh_type == SHT_RELA); 146 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 147 file->mb.getBufferStart() + shdr.sh_offset), 148 shdr.sh_size / sizeof(typename ELFT::Rela)); 149 } 150 return ret; 151 } 152 153 uint64_t SectionBase::getOffset(uint64_t offset) const { 154 switch (kind()) { 155 case Output: { 156 auto *os = cast<OutputSection>(this); 157 // For output sections we treat offset -1 as the end of the section. 158 return offset == uint64_t(-1) ? os->size : offset; 159 } 160 case Regular: 161 case Synthetic: 162 return cast<InputSection>(this)->outSecOff + offset; 163 case EHFrame: { 164 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC 165 // crtbeginT.o may reference the start of an empty .eh_frame to identify the 166 // start of the output .eh_frame. Just return offset. 167 // 168 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be 169 // discarded due to GC/ICF. We should compute the output section offset. 170 const EhInputSection *es = cast<EhInputSection>(this); 171 if (!es->rawData.empty()) 172 if (InputSection *isec = es->getParent()) 173 return isec->outSecOff + es->getParentOffset(offset); 174 return offset; 175 } 176 case Merge: 177 const MergeInputSection *ms = cast<MergeInputSection>(this); 178 if (InputSection *isec = ms->getParent()) 179 return isec->outSecOff + ms->getParentOffset(offset); 180 return ms->getParentOffset(offset); 181 } 182 llvm_unreachable("invalid section kind"); 183 } 184 185 uint64_t SectionBase::getVA(uint64_t offset) const { 186 const OutputSection *out = getOutputSection(); 187 return (out ? out->addr : 0) + getOffset(offset); 188 } 189 190 OutputSection *SectionBase::getOutputSection() { 191 InputSection *sec; 192 if (auto *isec = dyn_cast<InputSection>(this)) 193 sec = isec; 194 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 195 sec = ms->getParent(); 196 else if (auto *eh = dyn_cast<EhInputSection>(this)) 197 sec = eh->getParent(); 198 else 199 return cast<OutputSection>(this); 200 return sec ? sec->getParent() : nullptr; 201 } 202 203 // When a section is compressed, `rawData` consists with a header followed 204 // by zlib-compressed data. This function parses a header to initialize 205 // `uncompressedSize` member and remove the header from `rawData`. 206 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 207 // Old-style header 208 if (!(flags & SHF_COMPRESSED)) { 209 assert(name.startswith(".zdebug")); 210 if (!toStringRef(rawData).startswith("ZLIB")) { 211 error(toString(this) + ": corrupted compressed section header"); 212 return; 213 } 214 rawData = rawData.slice(4); 215 216 if (rawData.size() < 8) { 217 error(toString(this) + ": corrupted compressed section header"); 218 return; 219 } 220 221 uncompressedSize = read64be(rawData.data()); 222 rawData = rawData.slice(8); 223 224 // Restore the original section name. 225 // (e.g. ".zdebug_info" -> ".debug_info") 226 name = saver().save("." + name.substr(2)); 227 return; 228 } 229 230 flags &= ~(uint64_t)SHF_COMPRESSED; 231 232 // New-style header 233 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 234 error(toString(this) + ": corrupted compressed section"); 235 return; 236 } 237 238 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 239 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 240 error(toString(this) + ": unsupported compression type"); 241 return; 242 } 243 244 uncompressedSize = hdr->ch_size; 245 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 246 rawData = rawData.slice(sizeof(*hdr)); 247 } 248 249 InputSection *InputSectionBase::getLinkOrderDep() const { 250 assert(flags & SHF_LINK_ORDER); 251 if (!link) 252 return nullptr; 253 return cast<InputSection>(file->getSections()[link]); 254 } 255 256 // Find a function symbol that encloses a given location. 257 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 258 for (Symbol *b : file->getSymbols()) 259 if (Defined *d = dyn_cast<Defined>(b)) 260 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 261 offset < d->value + d->size) 262 return d; 263 return nullptr; 264 } 265 266 // Returns an object file location string. Used to construct an error message. 267 std::string InputSectionBase::getLocation(uint64_t offset) { 268 std::string secAndOffset = 269 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 270 271 // We don't have file for synthetic sections. 272 if (file == nullptr) 273 return (config->outputFile + ":(" + secAndOffset).str(); 274 275 std::string filename = toString(file); 276 if (Defined *d = getEnclosingFunction(offset)) 277 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 278 279 return filename + ":(" + secAndOffset; 280 } 281 282 // This function is intended to be used for constructing an error message. 283 // The returned message looks like this: 284 // 285 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 286 // 287 // Returns an empty string if there's no way to get line info. 288 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 289 return file->getSrcMsg(sym, *this, offset); 290 } 291 292 // Returns a filename string along with an optional section name. This 293 // function is intended to be used for constructing an error 294 // message. The returned message looks like this: 295 // 296 // path/to/foo.o:(function bar) 297 // 298 // or 299 // 300 // path/to/foo.o:(function bar) in archive path/to/bar.a 301 std::string InputSectionBase::getObjMsg(uint64_t off) { 302 std::string filename = std::string(file->getName()); 303 304 std::string archive; 305 if (!file->archiveName.empty()) 306 archive = (" in archive " + file->archiveName).str(); 307 308 // Find a symbol that encloses a given location. getObjMsg may be called 309 // before ObjFile::initializeLocalSymbols where local symbols are initialized. 310 for (Symbol *b : file->getSymbols()) 311 if (auto *d = dyn_cast_or_null<Defined>(b)) 312 if (d->section == this && d->value <= off && off < d->value + d->size) 313 return filename + ":(" + toString(*d) + ")" + archive; 314 315 // If there's no symbol, print out the offset in the section. 316 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 317 .str(); 318 } 319 320 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 321 322 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 323 uint32_t alignment, ArrayRef<uint8_t> data, 324 StringRef name, Kind k) 325 : InputSectionBase(f, flags, type, 326 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 327 name, k) {} 328 329 template <class ELFT> 330 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 331 StringRef name) 332 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 333 334 // Copy SHT_GROUP section contents. Used only for the -r option. 335 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 336 // ELFT::Word is the 32-bit integral type in the target endianness. 337 using u32 = typename ELFT::Word; 338 ArrayRef<u32> from = getDataAs<u32>(); 339 auto *to = reinterpret_cast<u32 *>(buf); 340 341 // The first entry is not a section number but a flag. 342 *to++ = from[0]; 343 344 // Adjust section numbers because section numbers in an input object files are 345 // different in the output. We also need to handle combined or discarded 346 // members. 347 ArrayRef<InputSectionBase *> sections = file->getSections(); 348 DenseSet<uint32_t> seen; 349 for (uint32_t idx : from.slice(1)) { 350 OutputSection *osec = sections[idx]->getOutputSection(); 351 if (osec && seen.insert(osec->sectionIndex).second) 352 *to++ = osec->sectionIndex; 353 } 354 } 355 356 InputSectionBase *InputSection::getRelocatedSection() const { 357 if (!file || (type != SHT_RELA && type != SHT_REL)) 358 return nullptr; 359 ArrayRef<InputSectionBase *> sections = file->getSections(); 360 return sections[info]; 361 } 362 363 // This is used for -r and --emit-relocs. We can't use memcpy to copy 364 // relocations because we need to update symbol table offset and section index 365 // for each relocation. So we copy relocations one by one. 366 template <class ELFT, class RelTy> 367 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 368 const TargetInfo &target = *elf::target; 369 InputSectionBase *sec = getRelocatedSection(); 370 (void)sec->data(); // uncompress if needed 371 372 for (const RelTy &rel : rels) { 373 RelType type = rel.getType(config->isMips64EL); 374 const ObjFile<ELFT> *file = getFile<ELFT>(); 375 Symbol &sym = file->getRelocTargetSym(rel); 376 377 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 378 buf += sizeof(RelTy); 379 380 if (RelTy::IsRela) 381 p->r_addend = getAddend<ELFT>(rel); 382 383 // Output section VA is zero for -r, so r_offset is an offset within the 384 // section, but for --emit-relocs it is a virtual address. 385 p->r_offset = sec->getVA(rel.r_offset); 386 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 387 config->isMips64EL); 388 389 if (sym.type == STT_SECTION) { 390 // We combine multiple section symbols into only one per 391 // section. This means we have to update the addend. That is 392 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 393 // section data. We do that by adding to the Relocation vector. 394 395 // .eh_frame is horribly special and can reference discarded sections. To 396 // avoid having to parse and recreate .eh_frame, we just replace any 397 // relocation in it pointing to discarded sections with R_*_NONE, which 398 // hopefully creates a frame that is ignored at runtime. Also, don't warn 399 // on .gcc_except_table and debug sections. 400 // 401 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 402 auto *d = dyn_cast<Defined>(&sym); 403 if (!d) { 404 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 405 sec->name != ".gcc_except_table" && sec->name != ".got2" && 406 sec->name != ".toc") { 407 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 408 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 409 warn("relocation refers to a discarded section: " + 410 CHECK(file->getObj().getSectionName(sec), file) + 411 "\n>>> referenced by " + getObjMsg(p->r_offset)); 412 } 413 p->setSymbolAndType(0, 0, false); 414 continue; 415 } 416 SectionBase *section = d->section; 417 if (!section->isLive()) { 418 p->setSymbolAndType(0, 0, false); 419 continue; 420 } 421 422 int64_t addend = getAddend<ELFT>(rel); 423 const uint8_t *bufLoc = sec->rawData.begin() + rel.r_offset; 424 if (!RelTy::IsRela) 425 addend = target.getImplicitAddend(bufLoc, type); 426 427 if (config->emachine == EM_MIPS && 428 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 429 // Some MIPS relocations depend on "gp" value. By default, 430 // this value has 0x7ff0 offset from a .got section. But 431 // relocatable files produced by a compiler or a linker 432 // might redefine this default value and we must use it 433 // for a calculation of the relocation result. When we 434 // generate EXE or DSO it's trivial. Generating a relocatable 435 // output is more difficult case because the linker does 436 // not calculate relocations in this mode and loses 437 // individual "gp" values used by each input object file. 438 // As a workaround we add the "gp" value to the relocation 439 // addend and save it back to the file. 440 addend += sec->getFile<ELFT>()->mipsGp0; 441 } 442 443 if (RelTy::IsRela) 444 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 445 else if (config->relocatable && type != target.noneRel) 446 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 447 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 448 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 449 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 450 // indicates that r30 is relative to the input section .got2 451 // (r_addend>=0x8000), after linking, r30 should be relative to the output 452 // section .got2 . To compensate for the shift, adjust r_addend by 453 // ppc32Got->outSecOff. 454 p->r_addend += sec->file->ppc32Got2->outSecOff; 455 } 456 } 457 } 458 459 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 460 // references specially. The general rule is that the value of the symbol in 461 // this context is the address of the place P. A further special case is that 462 // branch relocations to an undefined weak reference resolve to the next 463 // instruction. 464 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 465 uint32_t p) { 466 switch (type) { 467 // Unresolved branch relocations to weak references resolve to next 468 // instruction, this will be either 2 or 4 bytes on from P. 469 case R_ARM_THM_JUMP8: 470 case R_ARM_THM_JUMP11: 471 return p + 2 + a; 472 case R_ARM_CALL: 473 case R_ARM_JUMP24: 474 case R_ARM_PC24: 475 case R_ARM_PLT32: 476 case R_ARM_PREL31: 477 case R_ARM_THM_JUMP19: 478 case R_ARM_THM_JUMP24: 479 return p + 4 + a; 480 case R_ARM_THM_CALL: 481 // We don't want an interworking BLX to ARM 482 return p + 5 + a; 483 // Unresolved non branch pc-relative relocations 484 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 485 // targets a weak-reference. 486 case R_ARM_MOVW_PREL_NC: 487 case R_ARM_MOVT_PREL: 488 case R_ARM_REL32: 489 case R_ARM_THM_ALU_PREL_11_0: 490 case R_ARM_THM_MOVW_PREL_NC: 491 case R_ARM_THM_MOVT_PREL: 492 case R_ARM_THM_PC12: 493 return p + a; 494 // p + a is unrepresentable as negative immediates can't be encoded. 495 case R_ARM_THM_PC8: 496 return p; 497 } 498 llvm_unreachable("ARM pc-relative relocation expected\n"); 499 } 500 501 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 502 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 503 switch (type) { 504 // Unresolved branch relocations to weak references resolve to next 505 // instruction, this is 4 bytes on from P. 506 case R_AARCH64_CALL26: 507 case R_AARCH64_CONDBR19: 508 case R_AARCH64_JUMP26: 509 case R_AARCH64_TSTBR14: 510 return p + 4; 511 // Unresolved non branch pc-relative relocations 512 case R_AARCH64_PREL16: 513 case R_AARCH64_PREL32: 514 case R_AARCH64_PREL64: 515 case R_AARCH64_ADR_PREL_LO21: 516 case R_AARCH64_LD_PREL_LO19: 517 case R_AARCH64_PLT32: 518 return p; 519 } 520 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 521 } 522 523 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 524 switch (type) { 525 case R_RISCV_BRANCH: 526 case R_RISCV_JAL: 527 case R_RISCV_CALL: 528 case R_RISCV_CALL_PLT: 529 case R_RISCV_RVC_BRANCH: 530 case R_RISCV_RVC_JUMP: 531 return p; 532 default: 533 return 0; 534 } 535 } 536 537 // ARM SBREL relocations are of the form S + A - B where B is the static base 538 // The ARM ABI defines base to be "addressing origin of the output segment 539 // defining the symbol S". We defined the "addressing origin"/static base to be 540 // the base of the PT_LOAD segment containing the Sym. 541 // The procedure call standard only defines a Read Write Position Independent 542 // RWPI variant so in practice we should expect the static base to be the base 543 // of the RW segment. 544 static uint64_t getARMStaticBase(const Symbol &sym) { 545 OutputSection *os = sym.getOutputSection(); 546 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 547 fatal("SBREL relocation to " + sym.getName() + " without static base"); 548 return os->ptLoad->firstSec->addr; 549 } 550 551 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 552 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 553 // is calculated using PCREL_HI20's symbol. 554 // 555 // This function returns the R_RISCV_PCREL_HI20 relocation from 556 // R_RISCV_PCREL_LO12's symbol and addend. 557 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 558 const Defined *d = cast<Defined>(sym); 559 if (!d->section) { 560 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 561 sym->getName()); 562 return nullptr; 563 } 564 InputSection *isec = cast<InputSection>(d->section); 565 566 if (addend != 0) 567 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 568 isec->getObjMsg(d->value) + " is ignored"); 569 570 // Relocations are sorted by offset, so we can use std::equal_range to do 571 // binary search. 572 Relocation r; 573 r.offset = d->value; 574 auto range = 575 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 576 [](const Relocation &lhs, const Relocation &rhs) { 577 return lhs.offset < rhs.offset; 578 }); 579 580 for (auto it = range.first; it != range.second; ++it) 581 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 582 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 583 return &*it; 584 585 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 586 " without an associated R_RISCV_PCREL_HI20 relocation"); 587 return nullptr; 588 } 589 590 // A TLS symbol's virtual address is relative to the TLS segment. Add a 591 // target-specific adjustment to produce a thread-pointer-relative offset. 592 static int64_t getTlsTpOffset(const Symbol &s) { 593 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 594 if (&s == ElfSym::tlsModuleBase) 595 return 0; 596 597 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 598 // while most others use Variant 1. At run time TP will be aligned to p_align. 599 600 // Variant 1. TP will be followed by an optional gap (which is the size of 2 601 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 602 // padding, then the static TLS blocks. The alignment padding is added so that 603 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 604 // 605 // Variant 2. Static TLS blocks, followed by alignment padding are placed 606 // before TP. The alignment padding is added so that (TP - padding - 607 // p_memsz) is congruent to p_vaddr modulo p_align. 608 PhdrEntry *tls = Out::tlsPhdr; 609 switch (config->emachine) { 610 // Variant 1. 611 case EM_ARM: 612 case EM_AARCH64: 613 return s.getVA(0) + config->wordsize * 2 + 614 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 615 case EM_MIPS: 616 case EM_PPC: 617 case EM_PPC64: 618 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 619 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 620 // data and 0xf000 of the program's TLS segment. 621 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 622 case EM_RISCV: 623 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 624 625 // Variant 2. 626 case EM_HEXAGON: 627 case EM_SPARCV9: 628 case EM_386: 629 case EM_X86_64: 630 return s.getVA(0) - tls->p_memsz - 631 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 632 default: 633 llvm_unreachable("unhandled Config->EMachine"); 634 } 635 } 636 637 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 638 int64_t a, uint64_t p, 639 const Symbol &sym, RelExpr expr) { 640 switch (expr) { 641 case R_ABS: 642 case R_DTPREL: 643 case R_RELAX_TLS_LD_TO_LE_ABS: 644 case R_RELAX_GOT_PC_NOPIC: 645 case R_RISCV_ADD: 646 return sym.getVA(a); 647 case R_ADDEND: 648 return a; 649 case R_ARM_SBREL: 650 return sym.getVA(a) - getARMStaticBase(sym); 651 case R_GOT: 652 case R_RELAX_TLS_GD_TO_IE_ABS: 653 return sym.getGotVA() + a; 654 case R_GOTONLY_PC: 655 return in.got->getVA() + a - p; 656 case R_GOTPLTONLY_PC: 657 return in.gotPlt->getVA() + a - p; 658 case R_GOTREL: 659 case R_PPC64_RELAX_TOC: 660 return sym.getVA(a) - in.got->getVA(); 661 case R_GOTPLTREL: 662 return sym.getVA(a) - in.gotPlt->getVA(); 663 case R_GOTPLT: 664 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 665 return sym.getGotVA() + a - in.gotPlt->getVA(); 666 case R_TLSLD_GOT_OFF: 667 case R_GOT_OFF: 668 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 669 return sym.getGotOffset() + a; 670 case R_AARCH64_GOT_PAGE_PC: 671 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 672 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 673 case R_AARCH64_GOT_PAGE: 674 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 675 case R_GOT_PC: 676 case R_RELAX_TLS_GD_TO_IE: 677 return sym.getGotVA() + a - p; 678 case R_MIPS_GOTREL: 679 return sym.getVA(a) - in.mipsGot->getGp(file); 680 case R_MIPS_GOT_GP: 681 return in.mipsGot->getGp(file) + a; 682 case R_MIPS_GOT_GP_PC: { 683 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 684 // is _gp_disp symbol. In that case we should use the following 685 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 686 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 687 // microMIPS variants of these relocations use slightly different 688 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 689 // to correctly handle less-significant bit of the microMIPS symbol. 690 uint64_t v = in.mipsGot->getGp(file) + a - p; 691 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 692 v += 4; 693 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 694 v -= 1; 695 return v; 696 } 697 case R_MIPS_GOT_LOCAL_PAGE: 698 // If relocation against MIPS local symbol requires GOT entry, this entry 699 // should be initialized by 'page address'. This address is high 16-bits 700 // of sum the symbol's value and the addend. 701 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 702 in.mipsGot->getGp(file); 703 case R_MIPS_GOT_OFF: 704 case R_MIPS_GOT_OFF32: 705 // In case of MIPS if a GOT relocation has non-zero addend this addend 706 // should be applied to the GOT entry content not to the GOT entry offset. 707 // That is why we use separate expression type. 708 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 709 in.mipsGot->getGp(file); 710 case R_MIPS_TLSGD: 711 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 712 in.mipsGot->getGp(file); 713 case R_MIPS_TLSLD: 714 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 715 in.mipsGot->getGp(file); 716 case R_AARCH64_PAGE_PC: { 717 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 718 return getAArch64Page(val) - getAArch64Page(p); 719 } 720 case R_RISCV_PC_INDIRECT: { 721 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 722 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 723 *hiRel->sym, hiRel->expr); 724 return 0; 725 } 726 case R_PC: 727 case R_ARM_PCA: { 728 uint64_t dest; 729 if (expr == R_ARM_PCA) 730 // Some PC relative ARM (Thumb) relocations align down the place. 731 p = p & 0xfffffffc; 732 if (sym.isUndefined()) { 733 // On ARM and AArch64 a branch to an undefined weak resolves to the next 734 // instruction, otherwise the place. On RISCV, resolve an undefined weak 735 // to the same instruction to cause an infinite loop (making the user 736 // aware of the issue) while ensuring no overflow. 737 // Note: if the symbol is hidden, its binding has been converted to local, 738 // so we just check isUndefined() here. 739 if (config->emachine == EM_ARM) 740 dest = getARMUndefinedRelativeWeakVA(type, a, p); 741 else if (config->emachine == EM_AARCH64) 742 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 743 else if (config->emachine == EM_PPC) 744 dest = p; 745 else if (config->emachine == EM_RISCV) 746 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 747 else 748 dest = sym.getVA(a); 749 } else { 750 dest = sym.getVA(a); 751 } 752 return dest - p; 753 } 754 case R_PLT: 755 return sym.getPltVA() + a; 756 case R_PLT_PC: 757 case R_PPC64_CALL_PLT: 758 return sym.getPltVA() + a - p; 759 case R_PLT_GOTPLT: 760 return sym.getPltVA() + a - in.gotPlt->getVA(); 761 case R_PPC32_PLTREL: 762 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 763 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 764 // target VA computation. 765 return sym.getPltVA() - p; 766 case R_PPC64_CALL: { 767 uint64_t symVA = sym.getVA(a); 768 // If we have an undefined weak symbol, we might get here with a symbol 769 // address of zero. That could overflow, but the code must be unreachable, 770 // so don't bother doing anything at all. 771 if (!symVA) 772 return 0; 773 774 // PPC64 V2 ABI describes two entry points to a function. The global entry 775 // point is used for calls where the caller and callee (may) have different 776 // TOC base pointers and r2 needs to be modified to hold the TOC base for 777 // the callee. For local calls the caller and callee share the same 778 // TOC base and so the TOC pointer initialization code should be skipped by 779 // branching to the local entry point. 780 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 781 } 782 case R_PPC64_TOCBASE: 783 return getPPC64TocBase() + a; 784 case R_RELAX_GOT_PC: 785 case R_PPC64_RELAX_GOT_PC: 786 return sym.getVA(a) - p; 787 case R_RELAX_TLS_GD_TO_LE: 788 case R_RELAX_TLS_IE_TO_LE: 789 case R_RELAX_TLS_LD_TO_LE: 790 case R_TPREL: 791 // It is not very clear what to return if the symbol is undefined. With 792 // --noinhibit-exec, even a non-weak undefined reference may reach here. 793 // Just return A, which matches R_ABS, and the behavior of some dynamic 794 // loaders. 795 if (sym.isUndefined()) 796 return a; 797 return getTlsTpOffset(sym) + a; 798 case R_RELAX_TLS_GD_TO_LE_NEG: 799 case R_TPREL_NEG: 800 if (sym.isUndefined()) 801 return a; 802 return -getTlsTpOffset(sym) + a; 803 case R_SIZE: 804 return sym.getSize() + a; 805 case R_TLSDESC: 806 return in.got->getTlsDescAddr(sym) + a; 807 case R_TLSDESC_PC: 808 return in.got->getTlsDescAddr(sym) + a - p; 809 case R_TLSDESC_GOTPLT: 810 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 811 case R_AARCH64_TLSDESC_PAGE: 812 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 813 case R_TLSGD_GOT: 814 return in.got->getGlobalDynOffset(sym) + a; 815 case R_TLSGD_GOTPLT: 816 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 817 case R_TLSGD_PC: 818 return in.got->getGlobalDynAddr(sym) + a - p; 819 case R_TLSLD_GOTPLT: 820 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 821 case R_TLSLD_GOT: 822 return in.got->getTlsIndexOff() + a; 823 case R_TLSLD_PC: 824 return in.got->getTlsIndexVA() + a - p; 825 default: 826 llvm_unreachable("invalid expression"); 827 } 828 } 829 830 // This function applies relocations to sections without SHF_ALLOC bit. 831 // Such sections are never mapped to memory at runtime. Debug sections are 832 // an example. Relocations in non-alloc sections are much easier to 833 // handle than in allocated sections because it will never need complex 834 // treatment such as GOT or PLT (because at runtime no one refers them). 835 // So, we handle relocations for non-alloc sections directly in this 836 // function as a performance optimization. 837 template <class ELFT, class RelTy> 838 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 839 const unsigned bits = sizeof(typename ELFT::uint) * 8; 840 const TargetInfo &target = *elf::target; 841 const bool isDebug = isDebugSection(*this); 842 const bool isDebugLocOrRanges = 843 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 844 const bool isDebugLine = isDebug && name == ".debug_line"; 845 Optional<uint64_t> tombstone; 846 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 847 if (patAndValue.first.match(this->name)) { 848 tombstone = patAndValue.second; 849 break; 850 } 851 852 for (const RelTy &rel : rels) { 853 RelType type = rel.getType(config->isMips64EL); 854 855 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 856 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 857 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 858 // need to keep this bug-compatible code for a while. 859 if (config->emachine == EM_386 && type == R_386_GOTPC) 860 continue; 861 862 uint64_t offset = rel.r_offset; 863 uint8_t *bufLoc = buf + offset; 864 int64_t addend = getAddend<ELFT>(rel); 865 if (!RelTy::IsRela) 866 addend += target.getImplicitAddend(bufLoc, type); 867 868 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 869 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 870 if (expr == R_NONE) 871 continue; 872 873 if (tombstone || 874 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 875 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 876 // folded section symbols) to a tombstone value. Resolving to addend is 877 // unsatisfactory because the result address range may collide with a 878 // valid range of low address, or leave multiple CUs claiming ownership of 879 // the same range of code, which may confuse consumers. 880 // 881 // To address the problems, we use -1 as a tombstone value for most 882 // .debug_* sections. We have to ignore the addend because we don't want 883 // to resolve an address attribute (which may have a non-zero addend) to 884 // -1+addend (wrap around to a low address). 885 // 886 // R_DTPREL type relocations represent an offset into the dynamic thread 887 // vector. The computed value is st_value plus a non-negative offset. 888 // Negative values are invalid, so -1 can be used as the tombstone value. 889 // 890 // If the referenced symbol is discarded (made Undefined), or the 891 // section defining the referenced symbol is garbage collected, 892 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 893 // case. However, resolving a relocation in .debug_line to -1 would stop 894 // debugger users from setting breakpoints on the folded-in function, so 895 // exclude .debug_line. 896 // 897 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 898 // (base address selection entry), use 1 (which is used by GNU ld for 899 // .debug_ranges). 900 // 901 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 902 // value. Enable -1 in a future release. 903 auto *ds = dyn_cast<Defined>(&sym); 904 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 905 // If -z dead-reloc-in-nonalloc= is specified, respect it. 906 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 907 : (isDebugLocOrRanges ? 1 : 0); 908 target.relocateNoSym(bufLoc, type, value); 909 continue; 910 } 911 } 912 913 // For a relocatable link, only tombstone values are applied. 914 if (config->relocatable) 915 continue; 916 917 if (expr == R_SIZE) { 918 target.relocateNoSym(bufLoc, type, 919 SignExtend64<bits>(sym.getSize() + addend)); 920 continue; 921 } 922 923 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 924 // sections. 925 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || 926 expr == R_RISCV_ADD) { 927 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 928 continue; 929 } 930 931 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 932 toString(type) + " against symbol '" + toString(sym) + 933 "'"; 934 if (expr != R_PC && expr != R_ARM_PCA) { 935 error(msg); 936 return; 937 } 938 939 // If the control reaches here, we found a PC-relative relocation in a 940 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 941 // at runtime, the notion of PC-relative doesn't make sense here. So, 942 // this is a usage error. However, GNU linkers historically accept such 943 // relocations without any errors and relocate them as if they were at 944 // address 0. For bug-compatibilty, we accept them with warnings. We 945 // know Steel Bank Common Lisp as of 2018 have this bug. 946 warn(msg); 947 target.relocateNoSym( 948 bufLoc, type, 949 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 950 } 951 } 952 953 // This is used when '-r' is given. 954 // For REL targets, InputSection::copyRelocations() may store artificial 955 // relocations aimed to update addends. They are handled in relocateAlloc() 956 // for allocatable sections, and this function does the same for 957 // non-allocatable sections, such as sections with debug information. 958 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 959 const unsigned bits = config->is64 ? 64 : 32; 960 961 for (const Relocation &rel : sec->relocations) { 962 // InputSection::copyRelocations() adds only R_ABS relocations. 963 assert(rel.expr == R_ABS); 964 uint8_t *bufLoc = buf + rel.offset; 965 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 966 target->relocate(bufLoc, rel, targetVA); 967 } 968 } 969 970 template <class ELFT> 971 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 972 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 973 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 974 975 if (flags & SHF_ALLOC) { 976 relocateAlloc(buf, bufEnd); 977 return; 978 } 979 980 auto *sec = cast<InputSection>(this); 981 if (config->relocatable) 982 relocateNonAllocForRelocatable(sec, buf); 983 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 984 // locations with tombstone values. 985 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 986 if (rels.areRelocsRel()) 987 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 988 else 989 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 990 } 991 992 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 993 assert(flags & SHF_ALLOC); 994 const unsigned bits = config->wordsize * 8; 995 const TargetInfo &target = *elf::target; 996 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 997 AArch64Relaxer aarch64relaxer(relocations); 998 for (size_t i = 0, size = relocations.size(); i != size; ++i) { 999 const Relocation &rel = relocations[i]; 1000 if (rel.expr == R_NONE) 1001 continue; 1002 uint64_t offset = rel.offset; 1003 uint8_t *bufLoc = buf + offset; 1004 1005 uint64_t secAddr = getOutputSection()->addr; 1006 if (auto *sec = dyn_cast<InputSection>(this)) 1007 secAddr += sec->outSecOff; 1008 const uint64_t addrLoc = secAddr + offset; 1009 const uint64_t targetVA = 1010 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 1011 *rel.sym, rel.expr), 1012 bits); 1013 switch (rel.expr) { 1014 case R_RELAX_GOT_PC: 1015 case R_RELAX_GOT_PC_NOPIC: 1016 target.relaxGot(bufLoc, rel, targetVA); 1017 break; 1018 case R_AARCH64_GOT_PAGE_PC: 1019 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr( 1020 rel, relocations[i + 1], secAddr, buf)) { 1021 ++i; 1022 continue; 1023 } 1024 target.relocate(bufLoc, rel, targetVA); 1025 break; 1026 case R_AARCH64_PAGE_PC: 1027 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpAdd( 1028 rel, relocations[i + 1], secAddr, buf)) { 1029 ++i; 1030 continue; 1031 } 1032 target.relocate(bufLoc, rel, targetVA); 1033 break; 1034 case R_PPC64_RELAX_GOT_PC: { 1035 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1036 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1037 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1038 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1039 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1040 // and only relax the other if the saved offset matches. 1041 if (rel.type == R_PPC64_GOT_PCREL34) 1042 lastPPCRelaxedRelocOff = offset; 1043 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1044 break; 1045 target.relaxGot(bufLoc, rel, targetVA); 1046 break; 1047 } 1048 case R_PPC64_RELAX_TOC: 1049 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1050 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1051 // entry, there may be R_PPC64_TOC16_HA not paired with 1052 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1053 // opportunities but is safe. 1054 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1055 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1056 target.relocate(bufLoc, rel, targetVA); 1057 break; 1058 case R_RELAX_TLS_IE_TO_LE: 1059 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1060 break; 1061 case R_RELAX_TLS_LD_TO_LE: 1062 case R_RELAX_TLS_LD_TO_LE_ABS: 1063 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1064 break; 1065 case R_RELAX_TLS_GD_TO_LE: 1066 case R_RELAX_TLS_GD_TO_LE_NEG: 1067 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1068 break; 1069 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1070 case R_RELAX_TLS_GD_TO_IE: 1071 case R_RELAX_TLS_GD_TO_IE_ABS: 1072 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1073 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1074 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1075 break; 1076 case R_PPC64_CALL: 1077 // If this is a call to __tls_get_addr, it may be part of a TLS 1078 // sequence that has been relaxed and turned into a nop. In this 1079 // case, we don't want to handle it as a call. 1080 if (read32(bufLoc) == 0x60000000) // nop 1081 break; 1082 1083 // Patch a nop (0x60000000) to a ld. 1084 if (rel.sym->needsTocRestore) { 1085 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1086 // recursive calls even if the function is preemptible. This is not 1087 // wrong in the common case where the function is not preempted at 1088 // runtime. Just ignore. 1089 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1090 rel.sym->file != file) { 1091 // Use substr(6) to remove the "__plt_" prefix. 1092 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1093 lld::toString(*rel.sym).substr(6) + 1094 " lacks nop, can't restore toc"); 1095 break; 1096 } 1097 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1098 } 1099 target.relocate(bufLoc, rel, targetVA); 1100 break; 1101 default: 1102 target.relocate(bufLoc, rel, targetVA); 1103 break; 1104 } 1105 } 1106 1107 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1108 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1109 // insn. This is primarily used to relax and optimize jumps created with 1110 // basic block sections. 1111 if (jumpInstrMod) { 1112 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1113 jumpInstrMod->size); 1114 } 1115 } 1116 1117 // For each function-defining prologue, find any calls to __morestack, 1118 // and replace them with calls to __morestack_non_split. 1119 static void switchMorestackCallsToMorestackNonSplit( 1120 DenseSet<Defined *> &prologues, 1121 SmallVector<Relocation *, 0> &morestackCalls) { 1122 1123 // If the target adjusted a function's prologue, all calls to 1124 // __morestack inside that function should be switched to 1125 // __morestack_non_split. 1126 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1127 if (!moreStackNonSplit) { 1128 error("mixing split-stack objects requires a definition of " 1129 "__morestack_non_split"); 1130 return; 1131 } 1132 1133 // Sort both collections to compare addresses efficiently. 1134 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1135 return l->offset < r->offset; 1136 }); 1137 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1138 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1139 return l->value < r->value; 1140 }); 1141 1142 auto it = morestackCalls.begin(); 1143 for (Defined *f : functions) { 1144 // Find the first call to __morestack within the function. 1145 while (it != morestackCalls.end() && (*it)->offset < f->value) 1146 ++it; 1147 // Adjust all calls inside the function. 1148 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1149 (*it)->sym = moreStackNonSplit; 1150 ++it; 1151 } 1152 } 1153 } 1154 1155 static bool enclosingPrologueAttempted(uint64_t offset, 1156 const DenseSet<Defined *> &prologues) { 1157 for (Defined *f : prologues) 1158 if (f->value <= offset && offset < f->value + f->size) 1159 return true; 1160 return false; 1161 } 1162 1163 // If a function compiled for split stack calls a function not 1164 // compiled for split stack, then the caller needs its prologue 1165 // adjusted to ensure that the called function will have enough stack 1166 // available. Find those functions, and adjust their prologues. 1167 template <class ELFT> 1168 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1169 uint8_t *end) { 1170 DenseSet<Defined *> prologues; 1171 SmallVector<Relocation *, 0> morestackCalls; 1172 1173 for (Relocation &rel : relocations) { 1174 // Ignore calls into the split-stack api. 1175 if (rel.sym->getName().startswith("__morestack")) { 1176 if (rel.sym->getName().equals("__morestack")) 1177 morestackCalls.push_back(&rel); 1178 continue; 1179 } 1180 1181 // A relocation to non-function isn't relevant. Sometimes 1182 // __morestack is not marked as a function, so this check comes 1183 // after the name check. 1184 if (rel.sym->type != STT_FUNC) 1185 continue; 1186 1187 // If the callee's-file was compiled with split stack, nothing to do. In 1188 // this context, a "Defined" symbol is one "defined by the binary currently 1189 // being produced". So an "undefined" symbol might be provided by a shared 1190 // library. It is not possible to tell how such symbols were compiled, so be 1191 // conservative. 1192 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1193 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1194 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1195 continue; 1196 1197 if (enclosingPrologueAttempted(rel.offset, prologues)) 1198 continue; 1199 1200 if (Defined *f = getEnclosingFunction(rel.offset)) { 1201 prologues.insert(f); 1202 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1203 f->stOther)) 1204 continue; 1205 if (!getFile<ELFT>()->someNoSplitStack) 1206 error(lld::toString(this) + ": " + f->getName() + 1207 " (with -fsplit-stack) calls " + rel.sym->getName() + 1208 " (without -fsplit-stack), but couldn't adjust its prologue"); 1209 } 1210 } 1211 1212 if (target->needsMoreStackNonSplit) 1213 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1214 } 1215 1216 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1217 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1218 return; 1219 // If -r or --emit-relocs is given, then an InputSection 1220 // may be a relocation section. 1221 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1222 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1223 return; 1224 } 1225 if (LLVM_UNLIKELY(type == SHT_REL)) { 1226 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1227 return; 1228 } 1229 1230 // If -r is given, we may have a SHT_GROUP section. 1231 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1232 copyShtGroup<ELFT>(buf); 1233 return; 1234 } 1235 1236 // If this is a compressed section, uncompress section contents directly 1237 // to the buffer. 1238 if (uncompressedSize >= 0) { 1239 size_t size = uncompressedSize; 1240 if (Error e = zlib::uncompress(toStringRef(rawData), (char *)buf, size)) 1241 fatal(toString(this) + 1242 ": uncompress failed: " + llvm::toString(std::move(e))); 1243 uint8_t *bufEnd = buf + size; 1244 relocate<ELFT>(buf, bufEnd); 1245 return; 1246 } 1247 1248 // Copy section contents from source object file to output file 1249 // and then apply relocations. 1250 memcpy(buf, rawData.data(), rawData.size()); 1251 relocate<ELFT>(buf, buf + rawData.size()); 1252 } 1253 1254 void InputSection::replace(InputSection *other) { 1255 alignment = std::max(alignment, other->alignment); 1256 1257 // When a section is replaced with another section that was allocated to 1258 // another partition, the replacement section (and its associated sections) 1259 // need to be placed in the main partition so that both partitions will be 1260 // able to access it. 1261 if (partition != other->partition) { 1262 partition = 1; 1263 for (InputSection *isec : dependentSections) 1264 isec->partition = 1; 1265 } 1266 1267 other->repl = repl; 1268 other->markDead(); 1269 } 1270 1271 template <class ELFT> 1272 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1273 const typename ELFT::Shdr &header, 1274 StringRef name) 1275 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1276 1277 SyntheticSection *EhInputSection::getParent() const { 1278 return cast_or_null<SyntheticSection>(parent); 1279 } 1280 1281 // Returns the index of the first relocation that points to a region between 1282 // Begin and Begin+Size. 1283 template <class IntTy, class RelTy> 1284 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1285 unsigned &relocI) { 1286 // Start search from RelocI for fast access. That works because the 1287 // relocations are sorted in .eh_frame. 1288 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1289 const RelTy &rel = rels[relocI]; 1290 if (rel.r_offset < begin) 1291 continue; 1292 1293 if (rel.r_offset < begin + size) 1294 return relocI; 1295 return -1; 1296 } 1297 return -1; 1298 } 1299 1300 // .eh_frame is a sequence of CIE or FDE records. 1301 // This function splits an input section into records and returns them. 1302 template <class ELFT> void EhInputSection::split() { 1303 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1304 // getReloc expects the relocations to be sorted by r_offset. See the comment 1305 // in scanRelocs. 1306 if (rels.areRelocsRel()) { 1307 SmallVector<typename ELFT::Rel, 0> storage; 1308 split<ELFT>(sortRels(rels.rels, storage)); 1309 } else { 1310 SmallVector<typename ELFT::Rela, 0> storage; 1311 split<ELFT>(sortRels(rels.relas, storage)); 1312 } 1313 } 1314 1315 template <class ELFT, class RelTy> 1316 void EhInputSection::split(ArrayRef<RelTy> rels) { 1317 ArrayRef<uint8_t> d = rawData; 1318 const char *msg = nullptr; 1319 unsigned relI = 0; 1320 while (!d.empty()) { 1321 if (d.size() < 4) { 1322 msg = "CIE/FDE too small"; 1323 break; 1324 } 1325 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1326 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1327 // but we do not support that format yet. 1328 if (size == UINT32_MAX) { 1329 msg = "CIE/FDE too large"; 1330 break; 1331 } 1332 size += 4; 1333 if (size > d.size()) { 1334 msg = "CIE/FDE ends past the end of the section"; 1335 break; 1336 } 1337 1338 uint64_t off = d.data() - rawData.data(); 1339 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1340 d = d.slice(size); 1341 } 1342 if (msg) 1343 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1344 getObjMsg(d.data() - rawData.data())); 1345 } 1346 1347 // Return the offset in an output section for a given input offset. 1348 uint64_t EhInputSection::getParentOffset(uint64_t offset) const { 1349 const EhSectionPiece &piece = partition_point( 1350 pieces, [=](EhSectionPiece p) { return p.inputOff <= offset; })[-1]; 1351 if (piece.outputOff == -1) // invalid piece 1352 return offset - piece.inputOff; 1353 return piece.outputOff + (offset - piece.inputOff); 1354 } 1355 1356 static size_t findNull(StringRef s, size_t entSize) { 1357 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1358 const char *b = s.begin() + i; 1359 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1360 return i; 1361 } 1362 llvm_unreachable(""); 1363 } 1364 1365 SyntheticSection *MergeInputSection::getParent() const { 1366 return cast_or_null<SyntheticSection>(parent); 1367 } 1368 1369 // Split SHF_STRINGS section. Such section is a sequence of 1370 // null-terminated strings. 1371 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1372 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1373 const char *p = s.data(), *end = s.data() + s.size(); 1374 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1375 fatal(toString(this) + ": string is not null terminated"); 1376 if (entSize == 1) { 1377 // Optimize the common case. 1378 do { 1379 size_t size = strlen(p) + 1; 1380 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1381 p += size; 1382 } while (p != end); 1383 } else { 1384 do { 1385 size_t size = findNull(StringRef(p, end - p), entSize) + entSize; 1386 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1387 p += size; 1388 } while (p != end); 1389 } 1390 } 1391 1392 // Split non-SHF_STRINGS section. Such section is a sequence of 1393 // fixed size records. 1394 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1395 size_t entSize) { 1396 size_t size = data.size(); 1397 assert((size % entSize) == 0); 1398 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1399 1400 pieces.resize_for_overwrite(size / entSize); 1401 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1402 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1403 } 1404 1405 template <class ELFT> 1406 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1407 const typename ELFT::Shdr &header, 1408 StringRef name) 1409 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1410 1411 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1412 uint64_t entsize, ArrayRef<uint8_t> data, 1413 StringRef name) 1414 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1415 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1416 1417 // This function is called after we obtain a complete list of input sections 1418 // that need to be linked. This is responsible to split section contents 1419 // into small chunks for further processing. 1420 // 1421 // Note that this function is called from parallelForEach. This must be 1422 // thread-safe (i.e. no memory allocation from the pools). 1423 void MergeInputSection::splitIntoPieces() { 1424 assert(pieces.empty()); 1425 1426 if (flags & SHF_STRINGS) 1427 splitStrings(toStringRef(data()), entsize); 1428 else 1429 splitNonStrings(data(), entsize); 1430 } 1431 1432 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { 1433 if (rawData.size() <= offset) 1434 fatal(toString(this) + ": offset is outside the section"); 1435 return partition_point( 1436 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; 1437 } 1438 1439 // Return the offset in an output section for a given input offset. 1440 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1441 const SectionPiece &piece = getSectionPiece(offset); 1442 return piece.outputOff + (offset - piece.inputOff); 1443 } 1444 1445 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1446 StringRef); 1447 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1448 StringRef); 1449 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1450 StringRef); 1451 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1452 StringRef); 1453 1454 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1455 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1456 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1457 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1458 1459 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1460 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1461 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1462 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1463 1464 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1465 const ELF32LE::Shdr &, StringRef); 1466 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1467 const ELF32BE::Shdr &, StringRef); 1468 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1469 const ELF64LE::Shdr &, StringRef); 1470 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1471 const ELF64BE::Shdr &, StringRef); 1472 1473 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1474 const ELF32LE::Shdr &, StringRef); 1475 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1476 const ELF32BE::Shdr &, StringRef); 1477 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1478 const ELF64LE::Shdr &, StringRef); 1479 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1480 const ELF64BE::Shdr &, StringRef); 1481 1482 template void EhInputSection::split<ELF32LE>(); 1483 template void EhInputSection::split<ELF32BE>(); 1484 template void EhInputSection::split<ELF64LE>(); 1485 template void EhInputSection::split<ELF64BE>(); 1486