1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compression.h" 24 #include "llvm/Support/Endian.h" 25 #include <mutex> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 33 using namespace lld; 34 using namespace lld::elf; 35 36 std::vector<InputSectionBase *> elf::InputSections; 37 38 // Returns a string to construct an error message. 39 std::string lld::toString(const InputSectionBase *Sec) { 40 // File can be absent if section is synthetic. 41 std::string FileName = Sec->File ? Sec->File->getName() : "<internal>"; 42 return (FileName + ":(" + Sec->Name + ")").str(); 43 } 44 45 template <class ELFT> 46 static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File, 47 const typename ELFT::Shdr *Hdr) { 48 if (!File || Hdr->sh_type == SHT_NOBITS) 49 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 50 return check(File->getObj().getSectionContents(Hdr)); 51 } 52 53 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 54 uint32_t Type, uint64_t Entsize, 55 uint32_t Link, uint32_t Info, 56 uint32_t Alignment, ArrayRef<uint8_t> Data, 57 StringRef Name, Kind SectionKind) 58 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 59 Link), 60 File(File), Data(Data), Repl(this) { 61 Live = !Config->GcSections || !(Flags & SHF_ALLOC); 62 Assigned = false; 63 NumRelocations = 0; 64 AreRelocsRela = false; 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraits. 68 uint32_t V = std::max<uint64_t>(Alignment, 1); 69 if (!isPowerOf2_64(V)) 70 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 71 this->Alignment = V; 72 } 73 74 template <class ELFT> 75 InputSectionBase::InputSectionBase(elf::ObjectFile<ELFT> *File, 76 const typename ELFT::Shdr *Hdr, 77 StringRef Name, Kind SectionKind) 78 : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type, 79 Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info, 80 Hdr->sh_addralign, getSectionContents(File, Hdr), Name, 81 SectionKind) { 82 // We reject object files having insanely large alignments even though 83 // they are allowed by the spec. I think 4GB is a reasonable limitation. 84 // We might want to relax this in the future. 85 if (Hdr->sh_addralign > UINT32_MAX) 86 fatal(toString(File) + ": section sh_addralign is too large"); 87 } 88 89 size_t InputSectionBase::getSize() const { 90 if (auto *S = dyn_cast<SyntheticSection>(this)) 91 return S->getSize(); 92 93 return Data.size(); 94 } 95 96 uint64_t InputSectionBase::getOffsetInFile() const { 97 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 98 const uint8_t *SecStart = Data.begin(); 99 return SecStart - FileStart; 100 } 101 102 uint64_t SectionBase::getOffset(uint64_t Offset) const { 103 switch (kind()) { 104 case Output: { 105 auto *OS = cast<OutputSection>(this); 106 // For output sections we treat offset -1 as the end of the section. 107 return Offset == uint64_t(-1) ? OS->Size : Offset; 108 } 109 case Regular: 110 return cast<InputSection>(this)->OutSecOff + Offset; 111 case Synthetic: { 112 auto *IS = cast<InputSection>(this); 113 // For synthetic sections we treat offset -1 as the end of the section. 114 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 115 } 116 case EHFrame: 117 // The file crtbeginT.o has relocations pointing to the start of an empty 118 // .eh_frame that is known to be the first in the link. It does that to 119 // identify the start of the output .eh_frame. 120 return Offset; 121 case Merge: 122 const MergeInputSection *MS = cast<MergeInputSection>(this); 123 if (MS->MergeSec) 124 return MS->MergeSec->OutSecOff + MS->getOffset(Offset); 125 return MS->getOffset(Offset); 126 } 127 llvm_unreachable("invalid section kind"); 128 } 129 130 OutputSection *SectionBase::getOutputSection() { 131 if (auto *IS = dyn_cast<InputSection>(this)) 132 return IS->OutSec; 133 if (auto *MS = dyn_cast<MergeInputSection>(this)) 134 return MS->MergeSec ? MS->MergeSec->OutSec : nullptr; 135 if (auto *EH = dyn_cast<EhInputSection>(this)) 136 return EH->EHSec->OutSec; 137 return cast<OutputSection>(this); 138 } 139 140 // Uncompress section contents. Note that this function is called 141 // from parallel_for_each, so it must be thread-safe. 142 template <class ELFT> void InputSectionBase::uncompress() { 143 Decompressor Dec = check(Decompressor::create( 144 Name, toStringRef(Data), ELFT::TargetEndianness == llvm::support::little, 145 ELFT::Is64Bits)); 146 147 size_t Size = Dec.getDecompressedSize(); 148 char *OutputBuf; 149 { 150 static std::mutex Mu; 151 std::lock_guard<std::mutex> Lock(Mu); 152 OutputBuf = BAlloc.Allocate<char>(Size); 153 } 154 155 if (Error E = Dec.decompress({OutputBuf, Size})) 156 fatal(toString(this) + 157 ": decompress failed: " + llvm::toString(std::move(E))); 158 Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size); 159 } 160 161 uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const { 162 return getOffset(Sym.Value); 163 } 164 165 template <class ELFT> 166 InputSectionBase *InputSectionBase::getLinkOrderDep() const { 167 if ((Flags & SHF_LINK_ORDER) && Link != 0) 168 return getFile<ELFT>()->getSections()[Link]; 169 return nullptr; 170 } 171 172 // Returns a source location string. Used to construct an error message. 173 template <class ELFT> 174 std::string InputSectionBase::getLocation(uint64_t Offset) { 175 // We don't have file for synthetic sections. 176 if (getFile<ELFT>() == nullptr) 177 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 178 .str(); 179 180 // First check if we can get desired values from debugging information. 181 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 182 if (!LineInfo.empty()) 183 return LineInfo; 184 185 // File->SourceFile contains STT_FILE symbol that contains a 186 // source file name. If it's missing, we use an object file name. 187 std::string SrcFile = getFile<ELFT>()->SourceFile; 188 if (SrcFile.empty()) 189 SrcFile = toString(File); 190 191 // Find a function symbol that encloses a given location. 192 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 193 if (auto *D = dyn_cast<DefinedRegular>(B)) 194 if (D->Section == this && D->Type == STT_FUNC) 195 if (D->Value <= Offset && Offset < D->Value + D->Size) 196 return SrcFile + ":(function " + toString(*D) + ")"; 197 198 // If there's no symbol, print out the offset in the section. 199 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 200 } 201 202 InputSectionBase InputSectionBase::Discarded; 203 204 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 205 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 206 : InputSectionBase(nullptr, Flags, Type, 207 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 208 Name, K) {} 209 210 template <class ELFT> 211 InputSection::InputSection(elf::ObjectFile<ELFT> *F, 212 const typename ELFT::Shdr *Header, StringRef Name) 213 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 214 215 bool InputSection::classof(const SectionBase *S) { 216 return S->kind() == SectionBase::Regular || 217 S->kind() == SectionBase::Synthetic; 218 } 219 220 bool InputSectionBase::classof(const SectionBase *S) { 221 return S->kind() != Output; 222 } 223 224 template <class ELFT> InputSectionBase *InputSection::getRelocatedSection() { 225 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 226 ArrayRef<InputSectionBase *> Sections = this->getFile<ELFT>()->getSections(); 227 return Sections[this->Info]; 228 } 229 230 // This is used for -r and --emit-relocs. We can't use memcpy to copy 231 // relocations because we need to update symbol table offset and section index 232 // for each relocation. So we copy relocations one by one. 233 template <class ELFT, class RelTy> 234 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 235 InputSectionBase *RelocatedSection = getRelocatedSection<ELFT>(); 236 237 // Loop is slow and have complexity O(N*M), where N - amount of 238 // relocations and M - amount of symbols in symbol table. 239 // That happens because getSymbolIndex(...) call below performs 240 // simple linear search. 241 for (const RelTy &Rel : Rels) { 242 uint32_t Type = Rel.getType(Config->isMips64EL()); 243 SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); 244 245 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 246 Buf += sizeof(RelTy); 247 248 if (Config->isRela()) 249 P->r_addend = getAddend<ELFT>(Rel); 250 251 // Output section VA is zero for -r, so r_offset is an offset within the 252 // section, but for --emit-relocs it is an virtual address. 253 P->r_offset = RelocatedSection->OutSec->Addr + 254 RelocatedSection->getOffset(Rel.r_offset); 255 P->setSymbolAndType(In<ELFT>::SymTab->getSymbolIndex(&Body), Type, 256 Config->isMips64EL()); 257 258 if (Body.Type == STT_SECTION) { 259 // We combine multiple section symbols into only one per 260 // section. This means we have to update the addend. That is 261 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 262 // section data. We do that by adding to the Relocation vector. 263 264 // .eh_frame is horribly special and can reference discarded sections. To 265 // avoid having to parse and recreate .eh_frame, we just replace any 266 // relocation in it pointing to discarded sections with R_*_NONE, which 267 // hopefully creates a frame that is ignored at runtime. 268 SectionBase *Section = cast<DefinedRegular>(Body).Section; 269 if (Section == &InputSection::Discarded) { 270 P->setSymbolAndType(0, 0, false); 271 continue; 272 } 273 274 if (Config->isRela()) { 275 P->r_addend += Body.getVA<ELFT>() - Section->getOutputSection()->Addr; 276 } else if (Config->Relocatable) { 277 const uint8_t *BufLoc = RelocatedSection->Data.begin() + Rel.r_offset; 278 RelocatedSection->Relocations.push_back( 279 {R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type), 280 &Body}); 281 } 282 } 283 284 } 285 } 286 287 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 288 uint32_t P) { 289 switch (Type) { 290 case R_ARM_THM_JUMP11: 291 return P + 2; 292 case R_ARM_CALL: 293 case R_ARM_JUMP24: 294 case R_ARM_PC24: 295 case R_ARM_PLT32: 296 case R_ARM_PREL31: 297 case R_ARM_THM_JUMP19: 298 case R_ARM_THM_JUMP24: 299 return P + 4; 300 case R_ARM_THM_CALL: 301 // We don't want an interworking BLX to ARM 302 return P + 5; 303 default: 304 return A; 305 } 306 } 307 308 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 309 uint64_t P) { 310 switch (Type) { 311 case R_AARCH64_CALL26: 312 case R_AARCH64_CONDBR19: 313 case R_AARCH64_JUMP26: 314 case R_AARCH64_TSTBR14: 315 return P + 4; 316 default: 317 return A; 318 } 319 } 320 321 template <class ELFT> 322 static typename ELFT::uint 323 getRelocTargetVA(uint32_t Type, int64_t A, typename ELFT::uint P, 324 const SymbolBody &Body, RelExpr Expr) { 325 switch (Expr) { 326 case R_HINT: 327 case R_NONE: 328 case R_TLSDESC_CALL: 329 llvm_unreachable("cannot relocate hint relocs"); 330 case R_TLSLD: 331 return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize(); 332 case R_TLSLD_PC: 333 return In<ELFT>::Got->getTlsIndexVA() + A - P; 334 case R_PPC_TOC: 335 return getPPC64TocBase() + A; 336 case R_TLSGD: 337 return In<ELFT>::Got->getGlobalDynOffset(Body) + A - 338 In<ELFT>::Got->getSize(); 339 case R_TLSGD_PC: 340 return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 341 case R_TLSDESC: 342 return In<ELFT>::Got->getGlobalDynAddr(Body) + A; 343 case R_TLSDESC_PAGE: 344 return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) - 345 getAArch64Page(P); 346 case R_PLT: 347 return Body.getPltVA<ELFT>() + A; 348 case R_PLT_PC: 349 case R_PPC_PLT_OPD: 350 return Body.getPltVA<ELFT>() + A - P; 351 case R_SIZE: 352 return Body.getSize<ELFT>() + A; 353 case R_GOTREL: 354 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA(); 355 case R_GOTREL_FROM_END: 356 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() - 357 In<ELFT>::Got->getSize(); 358 case R_RELAX_TLS_GD_TO_IE_END: 359 case R_GOT_FROM_END: 360 return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize(); 361 case R_RELAX_TLS_GD_TO_IE_ABS: 362 case R_GOT: 363 return Body.getGotVA<ELFT>() + A; 364 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 365 case R_GOT_PAGE_PC: 366 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 367 case R_RELAX_TLS_GD_TO_IE: 368 case R_GOT_PC: 369 return Body.getGotVA<ELFT>() + A - P; 370 case R_GOTONLY_PC: 371 return In<ELFT>::Got->getVA() + A - P; 372 case R_GOTONLY_PC_FROM_END: 373 return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize(); 374 case R_RELAX_TLS_LD_TO_LE: 375 case R_RELAX_TLS_IE_TO_LE: 376 case R_RELAX_TLS_GD_TO_LE: 377 case R_TLS: 378 // A weak undefined TLS symbol resolves to the base of the TLS 379 // block, i.e. gets a value of zero. If we pass --gc-sections to 380 // lld and .tbss is not referenced, it gets reclaimed and we don't 381 // create a TLS program header. Therefore, we resolve this 382 // statically to zero. 383 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 384 Body.symbol()->isWeak()) 385 return 0; 386 if (Target->TcbSize) 387 return Body.getVA<ELFT>(A) + 388 alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 389 return Body.getVA<ELFT>(A) - Out::TlsPhdr->p_memsz; 390 case R_RELAX_TLS_GD_TO_LE_NEG: 391 case R_NEG_TLS: 392 return Out::TlsPhdr->p_memsz - Body.getVA<ELFT>(A); 393 case R_ABS: 394 case R_RELAX_GOT_PC_NOPIC: 395 return Body.getVA<ELFT>(A); 396 case R_GOT_OFF: 397 return Body.getGotOffset<ELFT>() + A; 398 case R_MIPS_GOT_LOCAL_PAGE: 399 // If relocation against MIPS local symbol requires GOT entry, this entry 400 // should be initialized by 'page address'. This address is high 16-bits 401 // of sum the symbol's value and the addend. 402 return In<ELFT>::MipsGot->getVA() + 403 In<ELFT>::MipsGot->getPageEntryOffset(Body, A) - 404 In<ELFT>::MipsGot->getGp(); 405 case R_MIPS_GOT_OFF: 406 case R_MIPS_GOT_OFF32: 407 // In case of MIPS if a GOT relocation has non-zero addend this addend 408 // should be applied to the GOT entry content not to the GOT entry offset. 409 // That is why we use separate expression type. 410 return In<ELFT>::MipsGot->getVA() + 411 In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) - 412 In<ELFT>::MipsGot->getGp(); 413 case R_MIPS_GOTREL: 414 return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp(); 415 case R_MIPS_TLSGD: 416 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 417 In<ELFT>::MipsGot->getGlobalDynOffset(Body) - 418 In<ELFT>::MipsGot->getGp(); 419 case R_MIPS_TLSLD: 420 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 421 In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp(); 422 case R_PPC_OPD: { 423 uint64_t SymVA = Body.getVA<ELFT>(A); 424 // If we have an undefined weak symbol, we might get here with a symbol 425 // address of zero. That could overflow, but the code must be unreachable, 426 // so don't bother doing anything at all. 427 if (!SymVA) 428 return 0; 429 if (Out::Opd) { 430 // If this is a local call, and we currently have the address of a 431 // function-descriptor, get the underlying code address instead. 432 uint64_t OpdStart = Out::Opd->Addr; 433 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 434 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 435 if (InOpd) 436 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 437 } 438 return SymVA - P; 439 } 440 case R_PC: 441 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { 442 // On ARM and AArch64 a branch to an undefined weak resolves to the 443 // next instruction, otherwise the place. 444 if (Config->EMachine == EM_ARM) 445 return getARMUndefinedRelativeWeakVA(Type, A, P); 446 if (Config->EMachine == EM_AARCH64) 447 return getAArch64UndefinedRelativeWeakVA(Type, A, P); 448 } 449 case R_RELAX_GOT_PC: 450 return Body.getVA<ELFT>(A) - P; 451 case R_PLT_PAGE_PC: 452 case R_PAGE_PC: 453 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) 454 return getAArch64Page(A); 455 return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P); 456 } 457 llvm_unreachable("Invalid expression"); 458 } 459 460 // This function applies relocations to sections without SHF_ALLOC bit. 461 // Such sections are never mapped to memory at runtime. Debug sections are 462 // an example. Relocations in non-alloc sections are much easier to 463 // handle than in allocated sections because it will never need complex 464 // treatement such as GOT or PLT (because at runtime no one refers them). 465 // So, we handle relocations for non-alloc sections directly in this 466 // function as a performance optimization. 467 template <class ELFT, class RelTy> 468 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 469 typedef typename ELFT::uint uintX_t; 470 for (const RelTy &Rel : Rels) { 471 uint32_t Type = Rel.getType(Config->isMips64EL()); 472 uint64_t Offset = getOffset(Rel.r_offset); 473 uint8_t *BufLoc = Buf + Offset; 474 int64_t Addend = getAddend<ELFT>(Rel); 475 if (!RelTy::IsRela) 476 Addend += Target->getImplicitAddend(BufLoc, Type); 477 478 SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 479 RelExpr Expr = Target->getRelExpr(Type, Sym); 480 if (Expr == R_NONE) 481 continue; 482 if (Expr != R_ABS) { 483 error(this->getLocation<ELFT>(Offset) + ": has non-ABS reloc"); 484 return; 485 } 486 487 uintX_t AddrLoc = this->OutSec->Addr + Offset; 488 uint64_t SymVA = 0; 489 if (!Sym.isTls() || Out::TlsPhdr) 490 SymVA = SignExtend64<sizeof(uintX_t) * 8>( 491 getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS)); 492 Target->relocateOne(BufLoc, Type, SymVA); 493 } 494 } 495 496 template <class ELFT> elf::ObjectFile<ELFT> *InputSectionBase::getFile() const { 497 return cast_or_null<elf::ObjectFile<ELFT>>(File); 498 } 499 500 template <class ELFT> 501 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 502 // scanReloc function in Writer.cpp constructs Relocations 503 // vector only for SHF_ALLOC'ed sections. For other sections, 504 // we handle relocations directly here. 505 auto *IS = dyn_cast<InputSection>(this); 506 if (IS && !(IS->Flags & SHF_ALLOC)) { 507 if (IS->AreRelocsRela) 508 IS->relocateNonAlloc<ELFT>(Buf, IS->template relas<ELFT>()); 509 else 510 IS->relocateNonAlloc<ELFT>(Buf, IS->template rels<ELFT>()); 511 return; 512 } 513 514 typedef typename ELFT::uint uintX_t; 515 const unsigned Bits = sizeof(uintX_t) * 8; 516 for (const Relocation &Rel : Relocations) { 517 uint64_t Offset = getOffset(Rel.Offset); 518 uint8_t *BufLoc = Buf + Offset; 519 uint32_t Type = Rel.Type; 520 521 uintX_t AddrLoc = getOutputSection()->Addr + Offset; 522 RelExpr Expr = Rel.Expr; 523 uint64_t TargetVA = SignExtend64<Bits>( 524 getRelocTargetVA<ELFT>(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr)); 525 526 switch (Expr) { 527 case R_RELAX_GOT_PC: 528 case R_RELAX_GOT_PC_NOPIC: 529 Target->relaxGot(BufLoc, TargetVA); 530 break; 531 case R_RELAX_TLS_IE_TO_LE: 532 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 533 break; 534 case R_RELAX_TLS_LD_TO_LE: 535 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 536 break; 537 case R_RELAX_TLS_GD_TO_LE: 538 case R_RELAX_TLS_GD_TO_LE_NEG: 539 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 540 break; 541 case R_RELAX_TLS_GD_TO_IE: 542 case R_RELAX_TLS_GD_TO_IE_ABS: 543 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 544 case R_RELAX_TLS_GD_TO_IE_END: 545 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 546 break; 547 case R_PPC_PLT_OPD: 548 // Patch a nop (0x60000000) to a ld. 549 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 550 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 551 // fallthrough 552 default: 553 Target->relocateOne(BufLoc, Type, TargetVA); 554 break; 555 } 556 } 557 } 558 559 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 560 if (this->Type == SHT_NOBITS) 561 return; 562 563 if (auto *S = dyn_cast<SyntheticSection>(this)) { 564 S->writeTo(Buf + OutSecOff); 565 return; 566 } 567 568 // If -r or --emit-relocs is given, then an InputSection 569 // may be a relocation section. 570 if (this->Type == SHT_RELA) { 571 copyRelocations<ELFT>(Buf + OutSecOff, 572 this->template getDataAs<typename ELFT::Rela>()); 573 return; 574 } 575 if (this->Type == SHT_REL) { 576 copyRelocations<ELFT>(Buf + OutSecOff, 577 this->template getDataAs<typename ELFT::Rel>()); 578 return; 579 } 580 581 // Copy section contents from source object file to output file. 582 ArrayRef<uint8_t> Data = this->Data; 583 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 584 585 // Iterate over all relocation sections that apply to this section. 586 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 587 this->relocate<ELFT>(Buf, BufEnd); 588 } 589 590 void InputSection::replace(InputSection *Other) { 591 this->Alignment = std::max(this->Alignment, Other->Alignment); 592 Other->Repl = this->Repl; 593 Other->Live = false; 594 } 595 596 template <class ELFT> 597 EhInputSection::EhInputSection(elf::ObjectFile<ELFT> *F, 598 const typename ELFT::Shdr *Header, 599 StringRef Name) 600 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { 601 // Mark .eh_frame sections as live by default because there are 602 // usually no relocations that point to .eh_frames. Otherwise, 603 // the garbage collector would drop all .eh_frame sections. 604 this->Live = true; 605 } 606 607 bool EhInputSection::classof(const SectionBase *S) { 608 return S->kind() == InputSectionBase::EHFrame; 609 } 610 611 // Returns the index of the first relocation that points to a region between 612 // Begin and Begin+Size. 613 template <class IntTy, class RelTy> 614 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 615 unsigned &RelocI) { 616 // Start search from RelocI for fast access. That works because the 617 // relocations are sorted in .eh_frame. 618 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 619 const RelTy &Rel = Rels[RelocI]; 620 if (Rel.r_offset < Begin) 621 continue; 622 623 if (Rel.r_offset < Begin + Size) 624 return RelocI; 625 return -1; 626 } 627 return -1; 628 } 629 630 // .eh_frame is a sequence of CIE or FDE records. 631 // This function splits an input section into records and returns them. 632 template <class ELFT> void EhInputSection::split() { 633 // Early exit if already split. 634 if (!this->Pieces.empty()) 635 return; 636 637 if (this->NumRelocations) { 638 if (this->AreRelocsRela) 639 split<ELFT>(this->relas<ELFT>()); 640 else 641 split<ELFT>(this->rels<ELFT>()); 642 return; 643 } 644 split<ELFT>(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 645 } 646 647 template <class ELFT, class RelTy> 648 void EhInputSection::split(ArrayRef<RelTy> Rels) { 649 ArrayRef<uint8_t> Data = this->Data; 650 unsigned RelI = 0; 651 for (size_t Off = 0, End = Data.size(); Off != End;) { 652 size_t Size = readEhRecordSize<ELFT>(this, Off); 653 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 654 // The empty record is the end marker. 655 if (Size == 4) 656 break; 657 Off += Size; 658 } 659 } 660 661 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 662 // Optimize the common case. 663 StringRef S((const char *)A.data(), A.size()); 664 if (EntSize == 1) 665 return S.find(0); 666 667 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 668 const char *B = S.begin() + I; 669 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 670 return I; 671 } 672 return StringRef::npos; 673 } 674 675 // Split SHF_STRINGS section. Such section is a sequence of 676 // null-terminated strings. 677 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 678 size_t Off = 0; 679 bool IsAlloc = this->Flags & SHF_ALLOC; 680 while (!Data.empty()) { 681 size_t End = findNull(Data, EntSize); 682 if (End == StringRef::npos) 683 fatal(toString(this) + ": string is not null terminated"); 684 size_t Size = End + EntSize; 685 Pieces.emplace_back(Off, !IsAlloc); 686 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 687 Data = Data.slice(Size); 688 Off += Size; 689 } 690 } 691 692 // Split non-SHF_STRINGS section. Such section is a sequence of 693 // fixed size records. 694 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 695 size_t EntSize) { 696 size_t Size = Data.size(); 697 assert((Size % EntSize) == 0); 698 bool IsAlloc = this->Flags & SHF_ALLOC; 699 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 700 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 701 Pieces.emplace_back(I, !IsAlloc); 702 } 703 } 704 705 template <class ELFT> 706 MergeInputSection::MergeInputSection(elf::ObjectFile<ELFT> *F, 707 const typename ELFT::Shdr *Header, 708 StringRef Name) 709 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 710 711 // This function is called after we obtain a complete list of input sections 712 // that need to be linked. This is responsible to split section contents 713 // into small chunks for further processing. 714 // 715 // Note that this function is called from parallel_for_each. This must be 716 // thread-safe (i.e. no memory allocation from the pools). 717 void MergeInputSection::splitIntoPieces() { 718 ArrayRef<uint8_t> Data = this->Data; 719 uint64_t EntSize = this->Entsize; 720 if (this->Flags & SHF_STRINGS) 721 splitStrings(Data, EntSize); 722 else 723 splitNonStrings(Data, EntSize); 724 725 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 726 for (uint64_t Off : LiveOffsets) 727 this->getSectionPiece(Off)->Live = true; 728 } 729 730 bool MergeInputSection::classof(const SectionBase *S) { 731 return S->kind() == InputSectionBase::Merge; 732 } 733 734 // Do binary search to get a section piece at a given input offset. 735 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 736 auto *This = static_cast<const MergeInputSection *>(this); 737 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 738 } 739 740 template <class It, class T, class Compare> 741 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 742 size_t Size = std::distance(First, Last); 743 assert(Size != 0); 744 while (Size != 1) { 745 size_t H = Size / 2; 746 const It MI = First + H; 747 Size -= H; 748 First = Comp(Value, *MI) ? First : First + H; 749 } 750 return Comp(Value, *First) ? First : First + 1; 751 } 752 753 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 754 uint64_t Size = this->Data.size(); 755 if (Offset >= Size) 756 fatal(toString(this) + ": entry is past the end of the section"); 757 758 // Find the element this offset points to. 759 auto I = fastUpperBound( 760 Pieces.begin(), Pieces.end(), Offset, 761 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 762 --I; 763 return &*I; 764 } 765 766 // Returns the offset in an output section for a given input offset. 767 // Because contents of a mergeable section is not contiguous in output, 768 // it is not just an addition to a base output offset. 769 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 770 // Initialize OffsetMap lazily. 771 std::call_once(InitOffsetMap, [&] { 772 OffsetMap.reserve(Pieces.size()); 773 for (const SectionPiece &Piece : Pieces) 774 OffsetMap[Piece.InputOff] = Piece.OutputOff; 775 }); 776 777 // Find a string starting at a given offset. 778 auto It = OffsetMap.find(Offset); 779 if (It != OffsetMap.end()) 780 return It->second; 781 782 if (!this->Live) 783 return 0; 784 785 // If Offset is not at beginning of a section piece, it is not in the map. 786 // In that case we need to search from the original section piece vector. 787 const SectionPiece &Piece = *this->getSectionPiece(Offset); 788 if (!Piece.Live) 789 return 0; 790 791 uint64_t Addend = Offset - Piece.InputOff; 792 return Piece.OutputOff + Addend; 793 } 794 795 template InputSection::InputSection(elf::ObjectFile<ELF32LE> *F, 796 const ELF32LE::Shdr *Header, 797 StringRef Name); 798 template InputSection::InputSection(elf::ObjectFile<ELF32BE> *F, 799 const ELF32BE::Shdr *Header, 800 StringRef Name); 801 template InputSection::InputSection(elf::ObjectFile<ELF64LE> *F, 802 const ELF64LE::Shdr *Header, 803 StringRef Name); 804 template InputSection::InputSection(elf::ObjectFile<ELF64BE> *F, 805 const ELF64BE::Shdr *Header, 806 StringRef Name); 807 808 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t Offset); 809 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t Offset); 810 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t Offset); 811 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t Offset); 812 813 template void InputSection::writeTo<ELF32LE>(uint8_t *Buf); 814 template void InputSection::writeTo<ELF32BE>(uint8_t *Buf); 815 template void InputSection::writeTo<ELF64LE>(uint8_t *Buf); 816 template void InputSection::writeTo<ELF64BE>(uint8_t *Buf); 817 818 template void InputSectionBase::uncompress<ELF32LE>(); 819 template void InputSectionBase::uncompress<ELF32BE>(); 820 template void InputSectionBase::uncompress<ELF64LE>(); 821 template void InputSectionBase::uncompress<ELF64BE>(); 822 823 template InputSectionBase *InputSectionBase::getLinkOrderDep<ELF32LE>() const; 824 template InputSectionBase *InputSectionBase::getLinkOrderDep<ELF32BE>() const; 825 template InputSectionBase *InputSectionBase::getLinkOrderDep<ELF64LE>() const; 826 template InputSectionBase *InputSectionBase::getLinkOrderDep<ELF64BE>() const; 827 828 template InputSectionBase *InputSection::getRelocatedSection<ELF32LE>(); 829 template InputSectionBase *InputSection::getRelocatedSection<ELF32BE>(); 830 template InputSectionBase *InputSection::getRelocatedSection<ELF64LE>(); 831 template InputSectionBase *InputSection::getRelocatedSection<ELF64BE>(); 832 833 template elf::ObjectFile<ELF32LE> *InputSectionBase::getFile<ELF32LE>() const; 834 template elf::ObjectFile<ELF32BE> *InputSectionBase::getFile<ELF32BE>() const; 835 template elf::ObjectFile<ELF64LE> *InputSectionBase::getFile<ELF64LE>() const; 836 template elf::ObjectFile<ELF64BE> *InputSectionBase::getFile<ELF64BE>() const; 837 838 template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF32LE> *F, 839 const ELF32LE::Shdr *Header, 840 StringRef Name); 841 template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF32BE> *F, 842 const ELF32BE::Shdr *Header, 843 StringRef Name); 844 template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF64LE> *F, 845 const ELF64LE::Shdr *Header, 846 StringRef Name); 847 template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF64BE> *F, 848 const ELF64BE::Shdr *Header, 849 StringRef Name); 850 851 template EhInputSection::EhInputSection(elf::ObjectFile<ELF32LE> *F, 852 const ELF32LE::Shdr *Header, 853 StringRef Name); 854 template EhInputSection::EhInputSection(elf::ObjectFile<ELF32BE> *F, 855 const ELF32BE::Shdr *Header, 856 StringRef Name); 857 template EhInputSection::EhInputSection(elf::ObjectFile<ELF64LE> *F, 858 const ELF64LE::Shdr *Header, 859 StringRef Name); 860 template EhInputSection::EhInputSection(elf::ObjectFile<ELF64BE> *F, 861 const ELF64BE::Shdr *Header, 862 StringRef Name); 863 864 template void EhInputSection::split<ELF32LE>(); 865 template void EhInputSection::split<ELF32BE>(); 866 template void EhInputSection::split<ELF64LE>(); 867 template void EhInputSection::split<ELF64BE>(); 868