1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 numRelocations = 0; 74 areRelocsRela = false; 75 76 // The ELF spec states that a value of 0 means the section has 77 // no alignment constraints. 78 uint32_t v = std::max<uint32_t>(alignment, 1); 79 if (!isPowerOf2_64(v)) 80 fatal(toString(this) + ": sh_addralign is not a power of 2"); 81 this->alignment = v; 82 83 // In ELF, each section can be compressed by zlib, and if compressed, 84 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 85 // If that's the case, demangle section name so that we can handle a 86 // section as if it weren't compressed. 87 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 88 if (!zlib::isAvailable()) 89 error(toString(file) + ": contains a compressed section, " + 90 "but zlib is not available"); 91 parseCompressedHeader(); 92 } 93 } 94 95 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 96 // SHF_GROUP is a marker that a section belongs to some comdat group. 97 // That flag doesn't make sense in an executable. 98 static uint64_t getFlags(uint64_t flags) { 99 flags &= ~(uint64_t)SHF_INFO_LINK; 100 if (!config->relocatable) 101 flags &= ~(uint64_t)SHF_GROUP; 102 return flags; 103 } 104 105 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 106 // March 2017) fail to infer section types for sections starting with 107 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 108 // SHF_INIT_ARRAY. As a result, the following assembler directive 109 // creates ".init_array.100" with SHT_PROGBITS, for example. 110 // 111 // .section .init_array.100, "aw" 112 // 113 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 114 // incorrect inputs as if they were correct from the beginning. 115 static uint64_t getType(uint64_t type, StringRef name) { 116 if (type == SHT_PROGBITS && name.startswith(".init_array.")) 117 return SHT_INIT_ARRAY; 118 if (type == SHT_PROGBITS && name.startswith(".fini_array.")) 119 return SHT_FINI_ARRAY; 120 return type; 121 } 122 123 template <class ELFT> 124 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 125 const typename ELFT::Shdr &hdr, 126 StringRef name, Kind sectionKind) 127 : InputSectionBase(&file, getFlags(hdr.sh_flags), 128 getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link, 129 hdr.sh_info, hdr.sh_addralign, 130 getSectionContents(file, hdr), name, sectionKind) { 131 // We reject object files having insanely large alignments even though 132 // they are allowed by the spec. I think 4GB is a reasonable limitation. 133 // We might want to relax this in the future. 134 if (hdr.sh_addralign > UINT32_MAX) 135 fatal(toString(&file) + ": section sh_addralign is too large"); 136 } 137 138 size_t InputSectionBase::getSize() const { 139 if (auto *s = dyn_cast<SyntheticSection>(this)) 140 return s->getSize(); 141 if (uncompressedSize >= 0) 142 return uncompressedSize; 143 return rawData.size() - bytesDropped; 144 } 145 146 void InputSectionBase::uncompress() const { 147 size_t size = uncompressedSize; 148 char *uncompressedBuf; 149 { 150 static std::mutex mu; 151 std::lock_guard<std::mutex> lock(mu); 152 uncompressedBuf = bAlloc.Allocate<char>(size); 153 } 154 155 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 156 fatal(toString(this) + 157 ": uncompress failed: " + llvm::toString(std::move(e))); 158 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 159 uncompressedSize = -1; 160 } 161 162 uint64_t InputSectionBase::getOffsetInFile() const { 163 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 164 const uint8_t *secStart = data().begin(); 165 return secStart - fileStart; 166 } 167 168 uint64_t SectionBase::getOffset(uint64_t offset) const { 169 switch (kind()) { 170 case Output: { 171 auto *os = cast<OutputSection>(this); 172 // For output sections we treat offset -1 as the end of the section. 173 return offset == uint64_t(-1) ? os->size : offset; 174 } 175 case Regular: 176 case Synthetic: 177 return cast<InputSection>(this)->getOffset(offset); 178 case EHFrame: 179 // The file crtbeginT.o has relocations pointing to the start of an empty 180 // .eh_frame that is known to be the first in the link. It does that to 181 // identify the start of the output .eh_frame. 182 return offset; 183 case Merge: 184 const MergeInputSection *ms = cast<MergeInputSection>(this); 185 if (InputSection *isec = ms->getParent()) 186 return isec->getOffset(ms->getParentOffset(offset)); 187 return ms->getParentOffset(offset); 188 } 189 llvm_unreachable("invalid section kind"); 190 } 191 192 uint64_t SectionBase::getVA(uint64_t offset) const { 193 const OutputSection *out = getOutputSection(); 194 return (out ? out->addr : 0) + getOffset(offset); 195 } 196 197 OutputSection *SectionBase::getOutputSection() { 198 InputSection *sec; 199 if (auto *isec = dyn_cast<InputSection>(this)) 200 sec = isec; 201 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 202 sec = ms->getParent(); 203 else if (auto *eh = dyn_cast<EhInputSection>(this)) 204 sec = eh->getParent(); 205 else 206 return cast<OutputSection>(this); 207 return sec ? sec->getParent() : nullptr; 208 } 209 210 // When a section is compressed, `rawData` consists with a header followed 211 // by zlib-compressed data. This function parses a header to initialize 212 // `uncompressedSize` member and remove the header from `rawData`. 213 void InputSectionBase::parseCompressedHeader() { 214 using Chdr64 = typename ELF64LE::Chdr; 215 using Chdr32 = typename ELF32LE::Chdr; 216 217 // Old-style header 218 if (name.startswith(".zdebug")) { 219 if (!toStringRef(rawData).startswith("ZLIB")) { 220 error(toString(this) + ": corrupted compressed section header"); 221 return; 222 } 223 rawData = rawData.slice(4); 224 225 if (rawData.size() < 8) { 226 error(toString(this) + ": corrupted compressed section header"); 227 return; 228 } 229 230 uncompressedSize = read64be(rawData.data()); 231 rawData = rawData.slice(8); 232 233 // Restore the original section name. 234 // (e.g. ".zdebug_info" -> ".debug_info") 235 name = saver.save("." + name.substr(2)); 236 return; 237 } 238 239 assert(flags & SHF_COMPRESSED); 240 flags &= ~(uint64_t)SHF_COMPRESSED; 241 242 // New-style 64-bit header 243 if (config->is64) { 244 if (rawData.size() < sizeof(Chdr64)) { 245 error(toString(this) + ": corrupted compressed section"); 246 return; 247 } 248 249 auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data()); 250 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 251 error(toString(this) + ": unsupported compression type"); 252 return; 253 } 254 255 uncompressedSize = hdr->ch_size; 256 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 257 rawData = rawData.slice(sizeof(*hdr)); 258 return; 259 } 260 261 // New-style 32-bit header 262 if (rawData.size() < sizeof(Chdr32)) { 263 error(toString(this) + ": corrupted compressed section"); 264 return; 265 } 266 267 auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data()); 268 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 269 error(toString(this) + ": unsupported compression type"); 270 return; 271 } 272 273 uncompressedSize = hdr->ch_size; 274 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 275 rawData = rawData.slice(sizeof(*hdr)); 276 } 277 278 InputSection *InputSectionBase::getLinkOrderDep() const { 279 assert(flags & SHF_LINK_ORDER); 280 if (!link) 281 return nullptr; 282 return cast<InputSection>(file->getSections()[link]); 283 } 284 285 // Find a function symbol that encloses a given location. 286 template <class ELFT> 287 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 288 for (Symbol *b : file->getSymbols()) 289 if (Defined *d = dyn_cast<Defined>(b)) 290 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 291 offset < d->value + d->size) 292 return d; 293 return nullptr; 294 } 295 296 // Returns a source location string. Used to construct an error message. 297 template <class ELFT> 298 std::string InputSectionBase::getLocation(uint64_t offset) { 299 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); 300 301 // We don't have file for synthetic sections. 302 if (getFile<ELFT>() == nullptr) 303 return (config->outputFile + ":(" + secAndOffset + ")") 304 .str(); 305 306 // First check if we can get desired values from debugging information. 307 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) 308 return info->FileName + ":" + std::to_string(info->Line) + ":(" + 309 secAndOffset + ")"; 310 311 // File->sourceFile contains STT_FILE symbol that contains a 312 // source file name. If it's missing, we use an object file name. 313 std::string srcFile = std::string(getFile<ELFT>()->sourceFile); 314 if (srcFile.empty()) 315 srcFile = toString(file); 316 317 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 318 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; 319 320 // If there's no symbol, print out the offset in the section. 321 return (srcFile + ":(" + secAndOffset + ")"); 322 } 323 324 // This function is intended to be used for constructing an error message. 325 // The returned message looks like this: 326 // 327 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 328 // 329 // Returns an empty string if there's no way to get line info. 330 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 331 return file->getSrcMsg(sym, *this, offset); 332 } 333 334 // Returns a filename string along with an optional section name. This 335 // function is intended to be used for constructing an error 336 // message. The returned message looks like this: 337 // 338 // path/to/foo.o:(function bar) 339 // 340 // or 341 // 342 // path/to/foo.o:(function bar) in archive path/to/bar.a 343 std::string InputSectionBase::getObjMsg(uint64_t off) { 344 std::string filename = std::string(file->getName()); 345 346 std::string archive; 347 if (!file->archiveName.empty()) 348 archive = " in archive " + file->archiveName; 349 350 // Find a symbol that encloses a given location. 351 for (Symbol *b : file->getSymbols()) 352 if (auto *d = dyn_cast<Defined>(b)) 353 if (d->section == this && d->value <= off && off < d->value + d->size) 354 return filename + ":(" + toString(*d) + ")" + archive; 355 356 // If there's no symbol, print out the offset in the section. 357 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 358 .str(); 359 } 360 361 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 362 363 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 364 uint32_t alignment, ArrayRef<uint8_t> data, 365 StringRef name, Kind k) 366 : InputSectionBase(f, flags, type, 367 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 368 name, k) {} 369 370 template <class ELFT> 371 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 372 StringRef name) 373 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 374 375 bool InputSection::classof(const SectionBase *s) { 376 return s->kind() == SectionBase::Regular || 377 s->kind() == SectionBase::Synthetic; 378 } 379 380 OutputSection *InputSection::getParent() const { 381 return cast_or_null<OutputSection>(parent); 382 } 383 384 // Copy SHT_GROUP section contents. Used only for the -r option. 385 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 386 // ELFT::Word is the 32-bit integral type in the target endianness. 387 using u32 = typename ELFT::Word; 388 ArrayRef<u32> from = getDataAs<u32>(); 389 auto *to = reinterpret_cast<u32 *>(buf); 390 391 // The first entry is not a section number but a flag. 392 *to++ = from[0]; 393 394 // Adjust section numbers because section numbers in an input object files are 395 // different in the output. We also need to handle combined or discarded 396 // members. 397 ArrayRef<InputSectionBase *> sections = file->getSections(); 398 std::unordered_set<uint32_t> seen; 399 for (uint32_t idx : from.slice(1)) { 400 OutputSection *osec = sections[idx]->getOutputSection(); 401 if (osec && seen.insert(osec->sectionIndex).second) 402 *to++ = osec->sectionIndex; 403 } 404 } 405 406 InputSectionBase *InputSection::getRelocatedSection() const { 407 if (!file || (type != SHT_RELA && type != SHT_REL)) 408 return nullptr; 409 ArrayRef<InputSectionBase *> sections = file->getSections(); 410 return sections[info]; 411 } 412 413 // This is used for -r and --emit-relocs. We can't use memcpy to copy 414 // relocations because we need to update symbol table offset and section index 415 // for each relocation. So we copy relocations one by one. 416 template <class ELFT, class RelTy> 417 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 418 InputSectionBase *sec = getRelocatedSection(); 419 420 for (const RelTy &rel : rels) { 421 RelType type = rel.getType(config->isMips64EL); 422 const ObjFile<ELFT> *file = getFile<ELFT>(); 423 Symbol &sym = file->getRelocTargetSym(rel); 424 425 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 426 buf += sizeof(RelTy); 427 428 if (RelTy::IsRela) 429 p->r_addend = getAddend<ELFT>(rel); 430 431 // Output section VA is zero for -r, so r_offset is an offset within the 432 // section, but for --emit-relocs it is a virtual address. 433 p->r_offset = sec->getVA(rel.r_offset); 434 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 435 config->isMips64EL); 436 437 if (sym.type == STT_SECTION) { 438 // We combine multiple section symbols into only one per 439 // section. This means we have to update the addend. That is 440 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 441 // section data. We do that by adding to the Relocation vector. 442 443 // .eh_frame is horribly special and can reference discarded sections. To 444 // avoid having to parse and recreate .eh_frame, we just replace any 445 // relocation in it pointing to discarded sections with R_*_NONE, which 446 // hopefully creates a frame that is ignored at runtime. Also, don't warn 447 // on .gcc_except_table and debug sections. 448 // 449 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 450 auto *d = dyn_cast<Defined>(&sym); 451 if (!d) { 452 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 453 sec->name != ".gcc_except_table" && sec->name != ".got2" && 454 sec->name != ".toc") { 455 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 456 Elf_Shdr_Impl<ELFT> sec = 457 CHECK(file->getObj().sections(), file)[secIdx]; 458 warn("relocation refers to a discarded section: " + 459 CHECK(file->getObj().getSectionName(sec), file) + 460 "\n>>> referenced by " + getObjMsg(p->r_offset)); 461 } 462 p->setSymbolAndType(0, 0, false); 463 continue; 464 } 465 SectionBase *section = d->section->repl; 466 if (!section->isLive()) { 467 p->setSymbolAndType(0, 0, false); 468 continue; 469 } 470 471 int64_t addend = getAddend<ELFT>(rel); 472 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 473 if (!RelTy::IsRela) 474 addend = target->getImplicitAddend(bufLoc, type); 475 476 if (config->emachine == EM_MIPS && 477 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 478 // Some MIPS relocations depend on "gp" value. By default, 479 // this value has 0x7ff0 offset from a .got section. But 480 // relocatable files produced by a compiler or a linker 481 // might redefine this default value and we must use it 482 // for a calculation of the relocation result. When we 483 // generate EXE or DSO it's trivial. Generating a relocatable 484 // output is more difficult case because the linker does 485 // not calculate relocations in this mode and loses 486 // individual "gp" values used by each input object file. 487 // As a workaround we add the "gp" value to the relocation 488 // addend and save it back to the file. 489 addend += sec->getFile<ELFT>()->mipsGp0; 490 } 491 492 if (RelTy::IsRela) 493 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 494 else if (config->relocatable && type != target->noneRel) 495 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 496 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 497 p->r_addend >= 0x8000) { 498 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 499 // indicates that r30 is relative to the input section .got2 500 // (r_addend>=0x8000), after linking, r30 should be relative to the output 501 // section .got2 . To compensate for the shift, adjust r_addend by 502 // ppc32Got2OutSecOff. 503 p->r_addend += sec->file->ppc32Got2OutSecOff; 504 } 505 } 506 } 507 508 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 509 // references specially. The general rule is that the value of the symbol in 510 // this context is the address of the place P. A further special case is that 511 // branch relocations to an undefined weak reference resolve to the next 512 // instruction. 513 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 514 uint32_t p) { 515 switch (type) { 516 // Unresolved branch relocations to weak references resolve to next 517 // instruction, this will be either 2 or 4 bytes on from P. 518 case R_ARM_THM_JUMP11: 519 return p + 2 + a; 520 case R_ARM_CALL: 521 case R_ARM_JUMP24: 522 case R_ARM_PC24: 523 case R_ARM_PLT32: 524 case R_ARM_PREL31: 525 case R_ARM_THM_JUMP19: 526 case R_ARM_THM_JUMP24: 527 return p + 4 + a; 528 case R_ARM_THM_CALL: 529 // We don't want an interworking BLX to ARM 530 return p + 5 + a; 531 // Unresolved non branch pc-relative relocations 532 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 533 // targets a weak-reference. 534 case R_ARM_MOVW_PREL_NC: 535 case R_ARM_MOVT_PREL: 536 case R_ARM_REL32: 537 case R_ARM_THM_ALU_PREL_11_0: 538 case R_ARM_THM_MOVW_PREL_NC: 539 case R_ARM_THM_MOVT_PREL: 540 case R_ARM_THM_PC12: 541 return p + a; 542 // p + a is unrepresentable as negative immediates can't be encoded. 543 case R_ARM_THM_PC8: 544 return p; 545 } 546 llvm_unreachable("ARM pc-relative relocation expected\n"); 547 } 548 549 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 550 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 551 switch (type) { 552 // Unresolved branch relocations to weak references resolve to next 553 // instruction, this is 4 bytes on from P. 554 case R_AARCH64_CALL26: 555 case R_AARCH64_CONDBR19: 556 case R_AARCH64_JUMP26: 557 case R_AARCH64_TSTBR14: 558 return p + 4; 559 // Unresolved non branch pc-relative relocations 560 case R_AARCH64_PREL16: 561 case R_AARCH64_PREL32: 562 case R_AARCH64_PREL64: 563 case R_AARCH64_ADR_PREL_LO21: 564 case R_AARCH64_LD_PREL_LO19: 565 case R_AARCH64_PLT32: 566 return p; 567 } 568 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 569 } 570 571 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 572 switch (type) { 573 case R_RISCV_BRANCH: 574 case R_RISCV_JAL: 575 case R_RISCV_CALL: 576 case R_RISCV_CALL_PLT: 577 case R_RISCV_RVC_BRANCH: 578 case R_RISCV_RVC_JUMP: 579 return p; 580 default: 581 return 0; 582 } 583 } 584 585 // ARM SBREL relocations are of the form S + A - B where B is the static base 586 // The ARM ABI defines base to be "addressing origin of the output segment 587 // defining the symbol S". We defined the "addressing origin"/static base to be 588 // the base of the PT_LOAD segment containing the Sym. 589 // The procedure call standard only defines a Read Write Position Independent 590 // RWPI variant so in practice we should expect the static base to be the base 591 // of the RW segment. 592 static uint64_t getARMStaticBase(const Symbol &sym) { 593 OutputSection *os = sym.getOutputSection(); 594 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 595 fatal("SBREL relocation to " + sym.getName() + " without static base"); 596 return os->ptLoad->firstSec->addr; 597 } 598 599 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 600 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 601 // is calculated using PCREL_HI20's symbol. 602 // 603 // This function returns the R_RISCV_PCREL_HI20 relocation from 604 // R_RISCV_PCREL_LO12's symbol and addend. 605 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 606 const Defined *d = cast<Defined>(sym); 607 if (!d->section) { 608 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 609 sym->getName()); 610 return nullptr; 611 } 612 InputSection *isec = cast<InputSection>(d->section); 613 614 if (addend != 0) 615 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 616 isec->getObjMsg(d->value) + " is ignored"); 617 618 // Relocations are sorted by offset, so we can use std::equal_range to do 619 // binary search. 620 Relocation r; 621 r.offset = d->value; 622 auto range = 623 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 624 [](const Relocation &lhs, const Relocation &rhs) { 625 return lhs.offset < rhs.offset; 626 }); 627 628 for (auto it = range.first; it != range.second; ++it) 629 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 630 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 631 return &*it; 632 633 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 634 " without an associated R_RISCV_PCREL_HI20 relocation"); 635 return nullptr; 636 } 637 638 // A TLS symbol's virtual address is relative to the TLS segment. Add a 639 // target-specific adjustment to produce a thread-pointer-relative offset. 640 static int64_t getTlsTpOffset(const Symbol &s) { 641 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 642 if (&s == ElfSym::tlsModuleBase) 643 return 0; 644 645 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 646 // while most others use Variant 1. At run time TP will be aligned to p_align. 647 648 // Variant 1. TP will be followed by an optional gap (which is the size of 2 649 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 650 // padding, then the static TLS blocks. The alignment padding is added so that 651 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 652 // 653 // Variant 2. Static TLS blocks, followed by alignment padding are placed 654 // before TP. The alignment padding is added so that (TP - padding - 655 // p_memsz) is congruent to p_vaddr modulo p_align. 656 PhdrEntry *tls = Out::tlsPhdr; 657 switch (config->emachine) { 658 // Variant 1. 659 case EM_ARM: 660 case EM_AARCH64: 661 return s.getVA(0) + config->wordsize * 2 + 662 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 663 case EM_MIPS: 664 case EM_PPC: 665 case EM_PPC64: 666 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 667 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 668 // data and 0xf000 of the program's TLS segment. 669 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 670 case EM_RISCV: 671 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 672 673 // Variant 2. 674 case EM_HEXAGON: 675 case EM_SPARCV9: 676 case EM_386: 677 case EM_X86_64: 678 return s.getVA(0) - tls->p_memsz - 679 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 680 default: 681 llvm_unreachable("unhandled Config->EMachine"); 682 } 683 } 684 685 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 686 int64_t a, uint64_t p, 687 const Symbol &sym, RelExpr expr) { 688 switch (expr) { 689 case R_ABS: 690 case R_DTPREL: 691 case R_RELAX_TLS_LD_TO_LE_ABS: 692 case R_RELAX_GOT_PC_NOPIC: 693 case R_RISCV_ADD: 694 return sym.getVA(a); 695 case R_ADDEND: 696 return a; 697 case R_ARM_SBREL: 698 return sym.getVA(a) - getARMStaticBase(sym); 699 case R_GOT: 700 case R_RELAX_TLS_GD_TO_IE_ABS: 701 return sym.getGotVA() + a; 702 case R_GOTONLY_PC: 703 return in.got->getVA() + a - p; 704 case R_GOTPLTONLY_PC: 705 return in.gotPlt->getVA() + a - p; 706 case R_GOTREL: 707 case R_PPC64_RELAX_TOC: 708 return sym.getVA(a) - in.got->getVA(); 709 case R_GOTPLTREL: 710 return sym.getVA(a) - in.gotPlt->getVA(); 711 case R_GOTPLT: 712 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 713 return sym.getGotVA() + a - in.gotPlt->getVA(); 714 case R_TLSLD_GOT_OFF: 715 case R_GOT_OFF: 716 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 717 return sym.getGotOffset() + a; 718 case R_AARCH64_GOT_PAGE_PC: 719 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 720 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 721 case R_AARCH64_GOT_PAGE: 722 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 723 case R_GOT_PC: 724 case R_RELAX_TLS_GD_TO_IE: 725 return sym.getGotVA() + a - p; 726 case R_MIPS_GOTREL: 727 return sym.getVA(a) - in.mipsGot->getGp(file); 728 case R_MIPS_GOT_GP: 729 return in.mipsGot->getGp(file) + a; 730 case R_MIPS_GOT_GP_PC: { 731 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 732 // is _gp_disp symbol. In that case we should use the following 733 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 734 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 735 // microMIPS variants of these relocations use slightly different 736 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 737 // to correctly handle less-significant bit of the microMIPS symbol. 738 uint64_t v = in.mipsGot->getGp(file) + a - p; 739 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 740 v += 4; 741 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 742 v -= 1; 743 return v; 744 } 745 case R_MIPS_GOT_LOCAL_PAGE: 746 // If relocation against MIPS local symbol requires GOT entry, this entry 747 // should be initialized by 'page address'. This address is high 16-bits 748 // of sum the symbol's value and the addend. 749 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 750 in.mipsGot->getGp(file); 751 case R_MIPS_GOT_OFF: 752 case R_MIPS_GOT_OFF32: 753 // In case of MIPS if a GOT relocation has non-zero addend this addend 754 // should be applied to the GOT entry content not to the GOT entry offset. 755 // That is why we use separate expression type. 756 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 757 in.mipsGot->getGp(file); 758 case R_MIPS_TLSGD: 759 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 760 in.mipsGot->getGp(file); 761 case R_MIPS_TLSLD: 762 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 763 in.mipsGot->getGp(file); 764 case R_AARCH64_PAGE_PC: { 765 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 766 return getAArch64Page(val) - getAArch64Page(p); 767 } 768 case R_RISCV_PC_INDIRECT: { 769 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 770 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 771 *hiRel->sym, hiRel->expr); 772 return 0; 773 } 774 case R_PC: 775 case R_ARM_PCA: { 776 uint64_t dest; 777 if (expr == R_ARM_PCA) 778 // Some PC relative ARM (Thumb) relocations align down the place. 779 p = p & 0xfffffffc; 780 if (sym.isUndefWeak()) { 781 // On ARM and AArch64 a branch to an undefined weak resolves to the next 782 // instruction, otherwise the place. On RISCV, resolve an undefined weak 783 // to the same instruction to cause an infinite loop (making the user 784 // aware of the issue) while ensuring no overflow. 785 if (config->emachine == EM_ARM) 786 dest = getARMUndefinedRelativeWeakVA(type, a, p); 787 else if (config->emachine == EM_AARCH64) 788 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 789 else if (config->emachine == EM_PPC) 790 dest = p; 791 else if (config->emachine == EM_RISCV) 792 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 793 else 794 dest = sym.getVA(a); 795 } else { 796 dest = sym.getVA(a); 797 } 798 return dest - p; 799 } 800 case R_PLT: 801 return sym.getPltVA() + a; 802 case R_PLT_PC: 803 case R_PPC64_CALL_PLT: 804 return sym.getPltVA() + a - p; 805 case R_PPC32_PLTREL: 806 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 807 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 808 // target VA computation. 809 return sym.getPltVA() - p; 810 case R_PPC64_CALL: { 811 uint64_t symVA = sym.getVA(a); 812 // If we have an undefined weak symbol, we might get here with a symbol 813 // address of zero. That could overflow, but the code must be unreachable, 814 // so don't bother doing anything at all. 815 if (!symVA) 816 return 0; 817 818 // PPC64 V2 ABI describes two entry points to a function. The global entry 819 // point is used for calls where the caller and callee (may) have different 820 // TOC base pointers and r2 needs to be modified to hold the TOC base for 821 // the callee. For local calls the caller and callee share the same 822 // TOC base and so the TOC pointer initialization code should be skipped by 823 // branching to the local entry point. 824 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 825 } 826 case R_PPC64_TOCBASE: 827 return getPPC64TocBase() + a; 828 case R_RELAX_GOT_PC: 829 case R_PPC64_RELAX_GOT_PC: 830 return sym.getVA(a) - p; 831 case R_RELAX_TLS_GD_TO_LE: 832 case R_RELAX_TLS_IE_TO_LE: 833 case R_RELAX_TLS_LD_TO_LE: 834 case R_TPREL: 835 // It is not very clear what to return if the symbol is undefined. With 836 // --noinhibit-exec, even a non-weak undefined reference may reach here. 837 // Just return A, which matches R_ABS, and the behavior of some dynamic 838 // loaders. 839 if (sym.isUndefined() || sym.isLazy()) 840 return a; 841 return getTlsTpOffset(sym) + a; 842 case R_RELAX_TLS_GD_TO_LE_NEG: 843 case R_TPREL_NEG: 844 if (sym.isUndefined()) 845 return a; 846 return -getTlsTpOffset(sym) + a; 847 case R_SIZE: 848 return sym.getSize() + a; 849 case R_TLSDESC: 850 return in.got->getGlobalDynAddr(sym) + a; 851 case R_TLSDESC_PC: 852 return in.got->getGlobalDynAddr(sym) + a - p; 853 case R_AARCH64_TLSDESC_PAGE: 854 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 855 getAArch64Page(p); 856 case R_TLSGD_GOT: 857 return in.got->getGlobalDynOffset(sym) + a; 858 case R_TLSGD_GOTPLT: 859 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 860 case R_TLSGD_PC: 861 return in.got->getGlobalDynAddr(sym) + a - p; 862 case R_TLSLD_GOTPLT: 863 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 864 case R_TLSLD_GOT: 865 return in.got->getTlsIndexOff() + a; 866 case R_TLSLD_PC: 867 return in.got->getTlsIndexVA() + a - p; 868 default: 869 llvm_unreachable("invalid expression"); 870 } 871 } 872 873 // This function applies relocations to sections without SHF_ALLOC bit. 874 // Such sections are never mapped to memory at runtime. Debug sections are 875 // an example. Relocations in non-alloc sections are much easier to 876 // handle than in allocated sections because it will never need complex 877 // treatment such as GOT or PLT (because at runtime no one refers them). 878 // So, we handle relocations for non-alloc sections directly in this 879 // function as a performance optimization. 880 template <class ELFT, class RelTy> 881 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 882 const unsigned bits = sizeof(typename ELFT::uint) * 8; 883 const bool isDebug = isDebugSection(*this); 884 const bool isDebugLocOrRanges = 885 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 886 const bool isDebugLine = isDebug && name == ".debug_line"; 887 Optional<uint64_t> tombstone; 888 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 889 if (patAndValue.first.match(this->name)) { 890 tombstone = patAndValue.second; 891 break; 892 } 893 894 for (const RelTy &rel : rels) { 895 RelType type = rel.getType(config->isMips64EL); 896 897 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 898 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 899 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 900 // need to keep this bug-compatible code for a while. 901 if (config->emachine == EM_386 && type == R_386_GOTPC) 902 continue; 903 904 uint64_t offset = rel.r_offset; 905 uint8_t *bufLoc = buf + offset; 906 int64_t addend = getAddend<ELFT>(rel); 907 if (!RelTy::IsRela) 908 addend += target->getImplicitAddend(bufLoc, type); 909 910 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 911 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 912 if (expr == R_NONE) 913 continue; 914 915 if (expr == R_SIZE) { 916 target->relocateNoSym(bufLoc, type, 917 SignExtend64<bits>(sym.getSize() + addend)); 918 continue; 919 } 920 921 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 922 // sections. 923 if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL && 924 expr != R_RISCV_ADD) { 925 std::string msg = getLocation<ELFT>(offset) + 926 ": has non-ABS relocation " + toString(type) + 927 " against symbol '" + toString(sym) + "'"; 928 if (expr != R_PC && expr != R_ARM_PCA) { 929 error(msg); 930 return; 931 } 932 933 // If the control reaches here, we found a PC-relative relocation in a 934 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 935 // at runtime, the notion of PC-relative doesn't make sense here. So, 936 // this is a usage error. However, GNU linkers historically accept such 937 // relocations without any errors and relocate them as if they were at 938 // address 0. For bug-compatibilty, we accept them with warnings. We 939 // know Steel Bank Common Lisp as of 2018 have this bug. 940 warn(msg); 941 target->relocateNoSym( 942 bufLoc, type, 943 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 944 continue; 945 } 946 947 if (tombstone || 948 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) { 949 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 950 // folded section symbols) to a tombstone value. Resolving to addend is 951 // unsatisfactory because the result address range may collide with a 952 // valid range of low address, or leave multiple CUs claiming ownership of 953 // the same range of code, which may confuse consumers. 954 // 955 // To address the problems, we use -1 as a tombstone value for most 956 // .debug_* sections. We have to ignore the addend because we don't want 957 // to resolve an address attribute (which may have a non-zero addend) to 958 // -1+addend (wrap around to a low address). 959 // 960 // R_DTPREL type relocations represent an offset into the dynamic thread 961 // vector. The computed value is st_value plus a non-negative offset. 962 // Negative values are invalid, so -1 can be used as the tombstone value. 963 // 964 // If the referenced symbol is discarded (made Undefined), or the 965 // section defining the referenced symbol is garbage collected, 966 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section` 967 // catches the ICF folded case. However, resolving a relocation in 968 // .debug_line to -1 would stop debugger users from setting breakpoints on 969 // the folded-in function, so exclude .debug_line. 970 // 971 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 972 // (base address selection entry), use 1 (which is used by GNU ld for 973 // .debug_ranges). 974 // 975 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 976 // value. Enable -1 in a future release. 977 auto *ds = dyn_cast<Defined>(&sym); 978 if (!sym.getOutputSection() || 979 (ds && ds->section->repl != ds->section && !isDebugLine)) { 980 // If -z dead-reloc-in-nonalloc= is specified, respect it. 981 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 982 : (isDebugLocOrRanges ? 1 : 0); 983 target->relocateNoSym(bufLoc, type, value); 984 continue; 985 } 986 } 987 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 988 } 989 } 990 991 // This is used when '-r' is given. 992 // For REL targets, InputSection::copyRelocations() may store artificial 993 // relocations aimed to update addends. They are handled in relocateAlloc() 994 // for allocatable sections, and this function does the same for 995 // non-allocatable sections, such as sections with debug information. 996 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 997 const unsigned bits = config->is64 ? 64 : 32; 998 999 for (const Relocation &rel : sec->relocations) { 1000 // InputSection::copyRelocations() adds only R_ABS relocations. 1001 assert(rel.expr == R_ABS); 1002 uint8_t *bufLoc = buf + rel.offset; 1003 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 1004 target->relocate(bufLoc, rel, targetVA); 1005 } 1006 } 1007 1008 template <class ELFT> 1009 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 1010 if (flags & SHF_EXECINSTR) 1011 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 1012 1013 if (flags & SHF_ALLOC) { 1014 relocateAlloc(buf, bufEnd); 1015 return; 1016 } 1017 1018 auto *sec = cast<InputSection>(this); 1019 if (config->relocatable) 1020 relocateNonAllocForRelocatable(sec, buf); 1021 else if (sec->areRelocsRela) 1022 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>()); 1023 else 1024 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>()); 1025 } 1026 1027 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1028 assert(flags & SHF_ALLOC); 1029 const unsigned bits = config->wordsize * 8; 1030 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1031 1032 for (const Relocation &rel : relocations) { 1033 if (rel.expr == R_NONE) 1034 continue; 1035 uint64_t offset = rel.offset; 1036 uint8_t *bufLoc = buf + offset; 1037 RelType type = rel.type; 1038 1039 uint64_t addrLoc = getOutputSection()->addr + offset; 1040 if (auto *sec = dyn_cast<InputSection>(this)) 1041 addrLoc += sec->outSecOff; 1042 RelExpr expr = rel.expr; 1043 uint64_t targetVA = SignExtend64( 1044 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 1045 bits); 1046 1047 switch (expr) { 1048 case R_RELAX_GOT_PC: 1049 case R_RELAX_GOT_PC_NOPIC: 1050 target->relaxGot(bufLoc, rel, targetVA); 1051 break; 1052 case R_PPC64_RELAX_GOT_PC: { 1053 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1054 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1055 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1056 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1057 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1058 // and only relax the other if the saved offset matches. 1059 if (type == R_PPC64_GOT_PCREL34) 1060 lastPPCRelaxedRelocOff = offset; 1061 if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1062 break; 1063 target->relaxGot(bufLoc, rel, targetVA); 1064 break; 1065 } 1066 case R_PPC64_RELAX_TOC: 1067 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1068 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1069 // entry, there may be R_PPC64_TOC16_HA not paired with 1070 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1071 // opportunities but is safe. 1072 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1073 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1074 target->relocate(bufLoc, rel, targetVA); 1075 break; 1076 case R_RELAX_TLS_IE_TO_LE: 1077 target->relaxTlsIeToLe(bufLoc, rel, targetVA); 1078 break; 1079 case R_RELAX_TLS_LD_TO_LE: 1080 case R_RELAX_TLS_LD_TO_LE_ABS: 1081 target->relaxTlsLdToLe(bufLoc, rel, targetVA); 1082 break; 1083 case R_RELAX_TLS_GD_TO_LE: 1084 case R_RELAX_TLS_GD_TO_LE_NEG: 1085 target->relaxTlsGdToLe(bufLoc, rel, targetVA); 1086 break; 1087 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1088 case R_RELAX_TLS_GD_TO_IE: 1089 case R_RELAX_TLS_GD_TO_IE_ABS: 1090 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1091 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1092 target->relaxTlsGdToIe(bufLoc, rel, targetVA); 1093 break; 1094 case R_PPC64_CALL: 1095 // If this is a call to __tls_get_addr, it may be part of a TLS 1096 // sequence that has been relaxed and turned into a nop. In this 1097 // case, we don't want to handle it as a call. 1098 if (read32(bufLoc) == 0x60000000) // nop 1099 break; 1100 1101 // Patch a nop (0x60000000) to a ld. 1102 if (rel.sym->needsTocRestore) { 1103 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1104 // recursive calls even if the function is preemptible. This is not 1105 // wrong in the common case where the function is not preempted at 1106 // runtime. Just ignore. 1107 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1108 rel.sym->file != file) { 1109 // Use substr(6) to remove the "__plt_" prefix. 1110 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1111 lld::toString(*rel.sym).substr(6) + 1112 " lacks nop, can't restore toc"); 1113 break; 1114 } 1115 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1116 } 1117 target->relocate(bufLoc, rel, targetVA); 1118 break; 1119 default: 1120 target->relocate(bufLoc, rel, targetVA); 1121 break; 1122 } 1123 } 1124 1125 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1126 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1127 // insn. This is primarily used to relax and optimize jumps created with 1128 // basic block sections. 1129 if (isa<InputSection>(this)) { 1130 for (const JumpInstrMod &jumpMod : jumpInstrMods) { 1131 uint64_t offset = jumpMod.offset; 1132 uint8_t *bufLoc = buf + offset; 1133 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size); 1134 } 1135 } 1136 } 1137 1138 // For each function-defining prologue, find any calls to __morestack, 1139 // and replace them with calls to __morestack_non_split. 1140 static void switchMorestackCallsToMorestackNonSplit( 1141 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1142 1143 // If the target adjusted a function's prologue, all calls to 1144 // __morestack inside that function should be switched to 1145 // __morestack_non_split. 1146 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1147 if (!moreStackNonSplit) { 1148 error("Mixing split-stack objects requires a definition of " 1149 "__morestack_non_split"); 1150 return; 1151 } 1152 1153 // Sort both collections to compare addresses efficiently. 1154 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1155 return l->offset < r->offset; 1156 }); 1157 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1158 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1159 return l->value < r->value; 1160 }); 1161 1162 auto it = morestackCalls.begin(); 1163 for (Defined *f : functions) { 1164 // Find the first call to __morestack within the function. 1165 while (it != morestackCalls.end() && (*it)->offset < f->value) 1166 ++it; 1167 // Adjust all calls inside the function. 1168 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1169 (*it)->sym = moreStackNonSplit; 1170 ++it; 1171 } 1172 } 1173 } 1174 1175 static bool enclosingPrologueAttempted(uint64_t offset, 1176 const DenseSet<Defined *> &prologues) { 1177 for (Defined *f : prologues) 1178 if (f->value <= offset && offset < f->value + f->size) 1179 return true; 1180 return false; 1181 } 1182 1183 // If a function compiled for split stack calls a function not 1184 // compiled for split stack, then the caller needs its prologue 1185 // adjusted to ensure that the called function will have enough stack 1186 // available. Find those functions, and adjust their prologues. 1187 template <class ELFT> 1188 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1189 uint8_t *end) { 1190 if (!getFile<ELFT>()->splitStack) 1191 return; 1192 DenseSet<Defined *> prologues; 1193 std::vector<Relocation *> morestackCalls; 1194 1195 for (Relocation &rel : relocations) { 1196 // Local symbols can't possibly be cross-calls, and should have been 1197 // resolved long before this line. 1198 if (rel.sym->isLocal()) 1199 continue; 1200 1201 // Ignore calls into the split-stack api. 1202 if (rel.sym->getName().startswith("__morestack")) { 1203 if (rel.sym->getName().equals("__morestack")) 1204 morestackCalls.push_back(&rel); 1205 continue; 1206 } 1207 1208 // A relocation to non-function isn't relevant. Sometimes 1209 // __morestack is not marked as a function, so this check comes 1210 // after the name check. 1211 if (rel.sym->type != STT_FUNC) 1212 continue; 1213 1214 // If the callee's-file was compiled with split stack, nothing to do. In 1215 // this context, a "Defined" symbol is one "defined by the binary currently 1216 // being produced". So an "undefined" symbol might be provided by a shared 1217 // library. It is not possible to tell how such symbols were compiled, so be 1218 // conservative. 1219 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1220 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1221 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1222 continue; 1223 1224 if (enclosingPrologueAttempted(rel.offset, prologues)) 1225 continue; 1226 1227 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1228 prologues.insert(f); 1229 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1230 f->stOther)) 1231 continue; 1232 if (!getFile<ELFT>()->someNoSplitStack) 1233 error(lld::toString(this) + ": " + f->getName() + 1234 " (with -fsplit-stack) calls " + rel.sym->getName() + 1235 " (without -fsplit-stack), but couldn't adjust its prologue"); 1236 } 1237 } 1238 1239 if (target->needsMoreStackNonSplit) 1240 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1241 } 1242 1243 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1244 if (type == SHT_NOBITS) 1245 return; 1246 1247 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1248 s->writeTo(buf + outSecOff); 1249 return; 1250 } 1251 1252 // If -r or --emit-relocs is given, then an InputSection 1253 // may be a relocation section. 1254 if (type == SHT_RELA) { 1255 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1256 return; 1257 } 1258 if (type == SHT_REL) { 1259 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1260 return; 1261 } 1262 1263 // If -r is given, we may have a SHT_GROUP section. 1264 if (type == SHT_GROUP) { 1265 copyShtGroup<ELFT>(buf + outSecOff); 1266 return; 1267 } 1268 1269 // If this is a compressed section, uncompress section contents directly 1270 // to the buffer. 1271 if (uncompressedSize >= 0) { 1272 size_t size = uncompressedSize; 1273 if (Error e = zlib::uncompress(toStringRef(rawData), 1274 (char *)(buf + outSecOff), size)) 1275 fatal(toString(this) + 1276 ": uncompress failed: " + llvm::toString(std::move(e))); 1277 uint8_t *bufEnd = buf + outSecOff + size; 1278 relocate<ELFT>(buf + outSecOff, bufEnd); 1279 return; 1280 } 1281 1282 // Copy section contents from source object file to output file 1283 // and then apply relocations. 1284 memcpy(buf + outSecOff, data().data(), data().size()); 1285 uint8_t *bufEnd = buf + outSecOff + data().size(); 1286 relocate<ELFT>(buf + outSecOff, bufEnd); 1287 } 1288 1289 void InputSection::replace(InputSection *other) { 1290 alignment = std::max(alignment, other->alignment); 1291 1292 // When a section is replaced with another section that was allocated to 1293 // another partition, the replacement section (and its associated sections) 1294 // need to be placed in the main partition so that both partitions will be 1295 // able to access it. 1296 if (partition != other->partition) { 1297 partition = 1; 1298 for (InputSection *isec : dependentSections) 1299 isec->partition = 1; 1300 } 1301 1302 other->repl = repl; 1303 other->markDead(); 1304 } 1305 1306 template <class ELFT> 1307 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1308 const typename ELFT::Shdr &header, 1309 StringRef name) 1310 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1311 1312 SyntheticSection *EhInputSection::getParent() const { 1313 return cast_or_null<SyntheticSection>(parent); 1314 } 1315 1316 // Returns the index of the first relocation that points to a region between 1317 // Begin and Begin+Size. 1318 template <class IntTy, class RelTy> 1319 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1320 unsigned &relocI) { 1321 // Start search from RelocI for fast access. That works because the 1322 // relocations are sorted in .eh_frame. 1323 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1324 const RelTy &rel = rels[relocI]; 1325 if (rel.r_offset < begin) 1326 continue; 1327 1328 if (rel.r_offset < begin + size) 1329 return relocI; 1330 return -1; 1331 } 1332 return -1; 1333 } 1334 1335 // .eh_frame is a sequence of CIE or FDE records. 1336 // This function splits an input section into records and returns them. 1337 template <class ELFT> void EhInputSection::split() { 1338 if (areRelocsRela) 1339 split<ELFT>(relas<ELFT>()); 1340 else 1341 split<ELFT>(rels<ELFT>()); 1342 } 1343 1344 template <class ELFT, class RelTy> 1345 void EhInputSection::split(ArrayRef<RelTy> rels) { 1346 // getReloc expects the relocations to be sorted by r_offset. See the comment 1347 // in scanRelocs. 1348 SmallVector<RelTy, 0> storage; 1349 rels = sortRels(rels, storage); 1350 1351 unsigned relI = 0; 1352 for (size_t off = 0, end = data().size(); off != end;) { 1353 size_t size = readEhRecordSize(this, off); 1354 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1355 // The empty record is the end marker. 1356 if (size == 4) 1357 break; 1358 off += size; 1359 } 1360 } 1361 1362 static size_t findNull(StringRef s, size_t entSize) { 1363 // Optimize the common case. 1364 if (entSize == 1) 1365 return s.find(0); 1366 1367 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1368 const char *b = s.begin() + i; 1369 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1370 return i; 1371 } 1372 return StringRef::npos; 1373 } 1374 1375 SyntheticSection *MergeInputSection::getParent() const { 1376 return cast_or_null<SyntheticSection>(parent); 1377 } 1378 1379 // Split SHF_STRINGS section. Such section is a sequence of 1380 // null-terminated strings. 1381 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1382 size_t off = 0; 1383 bool isAlloc = flags & SHF_ALLOC; 1384 StringRef s = toStringRef(data); 1385 1386 while (!s.empty()) { 1387 size_t end = findNull(s, entSize); 1388 if (end == StringRef::npos) 1389 fatal(toString(this) + ": string is not null terminated"); 1390 size_t size = end + entSize; 1391 1392 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1393 s = s.substr(size); 1394 off += size; 1395 } 1396 } 1397 1398 // Split non-SHF_STRINGS section. Such section is a sequence of 1399 // fixed size records. 1400 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1401 size_t entSize) { 1402 size_t size = data.size(); 1403 assert((size % entSize) == 0); 1404 bool isAlloc = flags & SHF_ALLOC; 1405 1406 for (size_t i = 0; i != size; i += entSize) 1407 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1408 } 1409 1410 template <class ELFT> 1411 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1412 const typename ELFT::Shdr &header, 1413 StringRef name) 1414 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1415 1416 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1417 uint64_t entsize, ArrayRef<uint8_t> data, 1418 StringRef name) 1419 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1420 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1421 1422 // This function is called after we obtain a complete list of input sections 1423 // that need to be linked. This is responsible to split section contents 1424 // into small chunks for further processing. 1425 // 1426 // Note that this function is called from parallelForEach. This must be 1427 // thread-safe (i.e. no memory allocation from the pools). 1428 void MergeInputSection::splitIntoPieces() { 1429 assert(pieces.empty()); 1430 1431 if (flags & SHF_STRINGS) 1432 splitStrings(data(), entsize); 1433 else 1434 splitNonStrings(data(), entsize); 1435 } 1436 1437 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1438 if (this->data().size() <= offset) 1439 fatal(toString(this) + ": offset is outside the section"); 1440 1441 // If Offset is not at beginning of a section piece, it is not in the map. 1442 // In that case we need to do a binary search of the original section piece vector. 1443 auto it = partition_point( 1444 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1445 return &it[-1]; 1446 } 1447 1448 // Returns the offset in an output section for a given input offset. 1449 // Because contents of a mergeable section is not contiguous in output, 1450 // it is not just an addition to a base output offset. 1451 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1452 // If Offset is not at beginning of a section piece, it is not in the map. 1453 // In that case we need to search from the original section piece vector. 1454 const SectionPiece &piece = *getSectionPiece(offset); 1455 uint64_t addend = offset - piece.inputOff; 1456 return piece.outputOff + addend; 1457 } 1458 1459 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1460 StringRef); 1461 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1462 StringRef); 1463 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1464 StringRef); 1465 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1466 StringRef); 1467 1468 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1469 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1470 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1471 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1472 1473 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1474 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1475 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1476 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1477 1478 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1479 const ELF32LE::Shdr &, StringRef); 1480 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1481 const ELF32BE::Shdr &, StringRef); 1482 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1483 const ELF64LE::Shdr &, StringRef); 1484 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1485 const ELF64BE::Shdr &, StringRef); 1486 1487 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1488 const ELF32LE::Shdr &, StringRef); 1489 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1490 const ELF32BE::Shdr &, StringRef); 1491 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1492 const ELF64LE::Shdr &, StringRef); 1493 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1494 const ELF64BE::Shdr &, StringRef); 1495 1496 template void EhInputSection::split<ELF32LE>(); 1497 template void EhInputSection::split<ELF32BE>(); 1498 template void EhInputSection::split<ELF64LE>(); 1499 template void EhInputSection::split<ELF64BE>(); 1500