1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Support/Compression.h" 23 #include "llvm/Support/Endian.h" 24 #include <mutex> 25 26 using namespace llvm; 27 using namespace llvm::ELF; 28 using namespace llvm::object; 29 using namespace llvm::support; 30 using namespace llvm::support::endian; 31 32 using namespace lld; 33 using namespace lld::elf; 34 35 // Returns a string to construct an error message. 36 template <class ELFT> 37 std::string lld::toString(const InputSectionBase<ELFT> *Sec) { 38 return (Sec->getFile()->getName() + ":(" + Sec->Name + ")").str(); 39 } 40 41 template <class ELFT> 42 static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File, 43 const typename ELFT::Shdr *Hdr) { 44 if (!File || Hdr->sh_type == SHT_NOBITS) 45 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 46 return check(File->getObj().getSectionContents(Hdr)); 47 } 48 49 template <class ELFT> 50 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 51 uintX_t Flags, uint32_t Type, 52 uintX_t Entsize, uint32_t Link, 53 uint32_t Info, uintX_t Addralign, 54 ArrayRef<uint8_t> Data, StringRef Name, 55 Kind SectionKind) 56 : InputSectionData(SectionKind, Name, Data, 57 !Config->GcSections || !(Flags & SHF_ALLOC)), 58 File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link), 59 Info(Info), Repl(this) { 60 NumRelocations = 0; 61 AreRelocsRela = false; 62 63 // The ELF spec states that a value of 0 means the section has 64 // no alignment constraits. 65 uint64_t V = std::max<uint64_t>(Addralign, 1); 66 if (!isPowerOf2_64(V)) 67 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 68 69 // We reject object files having insanely large alignments even though 70 // they are allowed by the spec. I think 4GB is a reasonable limitation. 71 // We might want to relax this in the future. 72 if (V > UINT32_MAX) 73 fatal(toString(File) + ": section sh_addralign is too large"); 74 Alignment = V; 75 76 // If it is not a mergeable section, overwrite the flag so that the flag 77 // is consistent with the class. This inconsistency could occur when 78 // string merging is disabled using -O0 flag. 79 if (!Config->Relocatable && !isa<MergeInputSection<ELFT>>(this)) 80 this->Flags &= ~(SHF_MERGE | SHF_STRINGS); 81 } 82 83 template <class ELFT> 84 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 85 const Elf_Shdr *Hdr, StringRef Name, 86 Kind SectionKind) 87 : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type, 88 Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info, 89 Hdr->sh_addralign, getSectionContents(File, Hdr), Name, 90 SectionKind) { 91 this->Offset = Hdr->sh_offset; 92 } 93 94 template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const { 95 if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) 96 return S->getSize(); 97 98 if (auto *D = dyn_cast<InputSection<ELFT>>(this)) 99 if (D->getThunksSize() > 0) 100 return D->getThunkOff() + D->getThunksSize(); 101 102 return Data.size(); 103 } 104 105 // Returns a string for an error message. 106 template <class SectionT> static std::string getName(SectionT *Sec) { 107 return (Sec->getFile()->getName() + ":(" + Sec->Name + ")").str(); 108 } 109 110 template <class ELFT> 111 typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) const { 112 switch (kind()) { 113 case Regular: 114 return cast<InputSection<ELFT>>(this)->OutSecOff + Offset; 115 case Synthetic: 116 // For synthetic sections we treat offset -1 as the end of the section. 117 // The same approach is used for synthetic symbols (DefinedSynthetic). 118 return cast<InputSection<ELFT>>(this)->OutSecOff + 119 (Offset == uintX_t(-1) ? getSize() : Offset); 120 case EHFrame: 121 // The file crtbeginT.o has relocations pointing to the start of an empty 122 // .eh_frame that is known to be the first in the link. It does that to 123 // identify the start of the output .eh_frame. 124 return Offset; 125 case Merge: 126 return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset); 127 } 128 llvm_unreachable("invalid section kind"); 129 } 130 131 template <class ELFT> bool InputSectionBase<ELFT>::isCompressed() const { 132 return (Flags & SHF_COMPRESSED) || Name.startswith(".zdebug"); 133 } 134 135 // Returns compressed data and its size when uncompressed. 136 template <class ELFT> 137 std::pair<ArrayRef<uint8_t>, uint64_t> 138 InputSectionBase<ELFT>::getElfCompressedData(ArrayRef<uint8_t> Data) { 139 // Compressed section with Elf_Chdr is the ELF standard. 140 if (Data.size() < sizeof(Elf_Chdr)) 141 fatal(toString(this) + ": corrupted compressed section"); 142 auto *Hdr = reinterpret_cast<const Elf_Chdr *>(Data.data()); 143 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) 144 fatal(toString(this) + ": unsupported compression type"); 145 return {Data.slice(sizeof(*Hdr)), Hdr->ch_size}; 146 } 147 148 // Returns compressed data and its size when uncompressed. 149 template <class ELFT> 150 std::pair<ArrayRef<uint8_t>, uint64_t> 151 InputSectionBase<ELFT>::getRawCompressedData(ArrayRef<uint8_t> Data) { 152 // Compressed sections without Elf_Chdr header contain this header 153 // instead. This is a GNU extension. 154 struct ZlibHeader { 155 char Magic[4]; // Should be "ZLIB" 156 char Size[8]; // Uncompressed size in big-endian 157 }; 158 159 if (Data.size() < sizeof(ZlibHeader)) 160 fatal(toString(this) + ": corrupted compressed section"); 161 auto *Hdr = reinterpret_cast<const ZlibHeader *>(Data.data()); 162 if (memcmp(Hdr->Magic, "ZLIB", 4)) 163 fatal(toString(this) + ": broken ZLIB-compressed section"); 164 return {Data.slice(sizeof(*Hdr)), read64be(Hdr->Size)}; 165 } 166 167 // Uncompress section contents. Note that this function is called 168 // from parallel_for_each, so it must be thread-safe. 169 template <class ELFT> void InputSectionBase<ELFT>::uncompress() { 170 if (!zlib::isAvailable()) 171 fatal(toString(this) + 172 ": build lld with zlib to enable compressed sections support"); 173 174 // This section is compressed. Here we decompress it. Ideally, all 175 // compressed sections have SHF_COMPRESSED bit and their contents 176 // start with headers of Elf_Chdr type. However, sections whose 177 // names start with ".zdebug_" don't have the bit and contains a raw 178 // ZLIB-compressed data (which is a bad thing because section names 179 // shouldn't be significant in ELF.) We need to be able to read both. 180 ArrayRef<uint8_t> Buf; // Compressed data 181 size_t Size; // Uncompressed size 182 if (Flags & SHF_COMPRESSED) 183 std::tie(Buf, Size) = getElfCompressedData(Data); 184 else 185 std::tie(Buf, Size) = getRawCompressedData(Data); 186 187 // Uncompress Buf. 188 char *OutputBuf; 189 { 190 static std::mutex Mu; 191 std::lock_guard<std::mutex> Lock(Mu); 192 OutputBuf = BAlloc.Allocate<char>(Size); 193 } 194 if (zlib::uncompress(toStringRef(Buf), OutputBuf, Size) != zlib::StatusOK) 195 fatal(toString(this) + ": error while uncompressing section"); 196 Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size); 197 } 198 199 template <class ELFT> 200 typename ELFT::uint 201 InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) const { 202 return getOffset(Sym.Value); 203 } 204 205 template <class ELFT> 206 InputSectionBase<ELFT> *InputSectionBase<ELFT>::getLinkOrderDep() const { 207 if ((Flags & SHF_LINK_ORDER) && Link != 0) 208 return getFile()->getSections()[Link]; 209 return nullptr; 210 } 211 212 // Returns a source location string. Used to construct an error message. 213 template <class ELFT> 214 std::string InputSectionBase<ELFT>::getLocation(typename ELFT::uint Offset) { 215 // First check if we can get desired values from debugging information. 216 std::string LineInfo = File->getLineInfo(this, Offset); 217 if (!LineInfo.empty()) 218 return LineInfo; 219 220 // File->SourceFile contains STT_FILE symbol that contains a 221 // source file name. If it's missing, we use an object file name. 222 std::string SrcFile = File->SourceFile; 223 if (SrcFile.empty()) 224 SrcFile = toString(File); 225 226 // Find a function symbol that encloses a given location. 227 for (SymbolBody *B : File->getSymbols()) 228 if (auto *D = dyn_cast<DefinedRegular<ELFT>>(B)) 229 if (D->Section == this && D->Type == STT_FUNC) 230 if (D->Value <= Offset && Offset < D->Value + D->Size) 231 return SrcFile + ":(function " + toString(*D) + ")"; 232 233 // If there's no symbol, print out the offset in the section. 234 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 235 } 236 237 template <class ELFT> 238 InputSection<ELFT>::InputSection() : InputSectionBase<ELFT>() {} 239 240 template <class ELFT> 241 InputSection<ELFT>::InputSection(uintX_t Flags, uint32_t Type, 242 uintX_t Addralign, ArrayRef<uint8_t> Data, 243 StringRef Name, Kind K) 244 : InputSectionBase<ELFT>(nullptr, Flags, Type, 245 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign, 246 Data, Name, K) {} 247 248 template <class ELFT> 249 InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F, 250 const Elf_Shdr *Header, StringRef Name) 251 : InputSectionBase<ELFT>(F, Header, Name, Base::Regular) {} 252 253 template <class ELFT> 254 bool InputSection<ELFT>::classof(const InputSectionData *S) { 255 return S->kind() == Base::Regular || S->kind() == Base::Synthetic; 256 } 257 258 template <class ELFT> 259 InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() { 260 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 261 ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections(); 262 return Sections[this->Info]; 263 } 264 265 template <class ELFT> void InputSection<ELFT>::addThunk(const Thunk<ELFT> *T) { 266 Thunks.push_back(T); 267 } 268 269 template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const { 270 return this->Data.size(); 271 } 272 273 template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const { 274 uint64_t Total = 0; 275 for (const Thunk<ELFT> *T : Thunks) 276 Total += T->size(); 277 return Total; 278 } 279 280 // This is used for -r. We can't use memcpy to copy relocations because we need 281 // to update symbol table offset and section index for each relocation. So we 282 // copy relocations one by one. 283 template <class ELFT> 284 template <class RelTy> 285 void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 286 InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection(); 287 288 for (const RelTy &Rel : Rels) { 289 uint32_t Type = Rel.getType(Config->Mips64EL); 290 SymbolBody &Body = this->File->getRelocTargetSym(Rel); 291 292 Elf_Rela *P = reinterpret_cast<Elf_Rela *>(Buf); 293 Buf += sizeof(RelTy); 294 295 if (Config->Rela) 296 P->r_addend = getAddend<ELFT>(Rel); 297 P->r_offset = RelocatedSection->getOffset(Rel.r_offset); 298 P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL); 299 } 300 } 301 302 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 303 uint32_t P) { 304 switch (Type) { 305 case R_ARM_THM_JUMP11: 306 return P + 2; 307 case R_ARM_CALL: 308 case R_ARM_JUMP24: 309 case R_ARM_PC24: 310 case R_ARM_PLT32: 311 case R_ARM_PREL31: 312 case R_ARM_THM_JUMP19: 313 case R_ARM_THM_JUMP24: 314 return P + 4; 315 case R_ARM_THM_CALL: 316 // We don't want an interworking BLX to ARM 317 return P + 5; 318 default: 319 return A; 320 } 321 } 322 323 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 324 uint64_t P) { 325 switch (Type) { 326 case R_AARCH64_CALL26: 327 case R_AARCH64_CONDBR19: 328 case R_AARCH64_JUMP26: 329 case R_AARCH64_TSTBR14: 330 return P + 4; 331 default: 332 return A; 333 } 334 } 335 336 template <class ELFT> 337 static typename ELFT::uint 338 getRelocTargetVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P, 339 const SymbolBody &Body, RelExpr Expr) { 340 switch (Expr) { 341 case R_HINT: 342 case R_TLSDESC_CALL: 343 llvm_unreachable("cannot relocate hint relocs"); 344 case R_TLSLD: 345 return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize(); 346 case R_TLSLD_PC: 347 return In<ELFT>::Got->getTlsIndexVA() + A - P; 348 case R_THUNK_ABS: 349 return Body.getThunkVA<ELFT>() + A; 350 case R_THUNK_PC: 351 case R_THUNK_PLT_PC: 352 return Body.getThunkVA<ELFT>() + A - P; 353 case R_PPC_TOC: 354 return getPPC64TocBase() + A; 355 case R_TLSGD: 356 return In<ELFT>::Got->getGlobalDynOffset(Body) + A - 357 In<ELFT>::Got->getSize(); 358 case R_TLSGD_PC: 359 return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 360 case R_TLSDESC: 361 return In<ELFT>::Got->getGlobalDynAddr(Body) + A; 362 case R_TLSDESC_PAGE: 363 return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) - 364 getAArch64Page(P); 365 case R_PLT: 366 return Body.getPltVA<ELFT>() + A; 367 case R_PLT_PC: 368 case R_PPC_PLT_OPD: 369 return Body.getPltVA<ELFT>() + A - P; 370 case R_SIZE: 371 return Body.getSize<ELFT>() + A; 372 case R_GOTREL: 373 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA(); 374 case R_GOTREL_FROM_END: 375 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() - 376 In<ELFT>::Got->getSize(); 377 case R_RELAX_TLS_GD_TO_IE_END: 378 case R_GOT_FROM_END: 379 return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize(); 380 case R_RELAX_TLS_GD_TO_IE_ABS: 381 case R_GOT: 382 return Body.getGotVA<ELFT>() + A; 383 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 384 case R_GOT_PAGE_PC: 385 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 386 case R_RELAX_TLS_GD_TO_IE: 387 case R_GOT_PC: 388 return Body.getGotVA<ELFT>() + A - P; 389 case R_GOTONLY_PC: 390 return In<ELFT>::Got->getVA() + A - P; 391 case R_GOTONLY_PC_FROM_END: 392 return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize(); 393 case R_RELAX_TLS_LD_TO_LE: 394 case R_RELAX_TLS_IE_TO_LE: 395 case R_RELAX_TLS_GD_TO_LE: 396 case R_TLS: 397 // A weak undefined TLS symbol resolves to the base of the TLS 398 // block, i.e. gets a value of zero. If we pass --gc-sections to 399 // lld and .tbss is not referenced, it gets reclaimed and we don't 400 // create a TLS program header. Therefore, we resolve this 401 // statically to zero. 402 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 403 Body.symbol()->isWeak()) 404 return 0; 405 if (Target->TcbSize) 406 return Body.getVA<ELFT>(A) + 407 alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align); 408 return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz; 409 case R_RELAX_TLS_GD_TO_LE_NEG: 410 case R_NEG_TLS: 411 return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A); 412 case R_ABS: 413 case R_RELAX_GOT_PC_NOPIC: 414 return Body.getVA<ELFT>(A); 415 case R_GOT_OFF: 416 return Body.getGotOffset<ELFT>() + A; 417 case R_MIPS_GOT_LOCAL_PAGE: 418 // If relocation against MIPS local symbol requires GOT entry, this entry 419 // should be initialized by 'page address'. This address is high 16-bits 420 // of sum the symbol's value and the addend. 421 return In<ELFT>::MipsGot->getVA() + 422 In<ELFT>::MipsGot->getPageEntryOffset(Body, A) - 423 In<ELFT>::MipsGot->getGp(); 424 case R_MIPS_GOT_OFF: 425 case R_MIPS_GOT_OFF32: 426 // In case of MIPS if a GOT relocation has non-zero addend this addend 427 // should be applied to the GOT entry content not to the GOT entry offset. 428 // That is why we use separate expression type. 429 return In<ELFT>::MipsGot->getVA() + 430 In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) - 431 In<ELFT>::MipsGot->getGp(); 432 case R_MIPS_GOTREL: 433 return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp(); 434 case R_MIPS_TLSGD: 435 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 436 In<ELFT>::MipsGot->getGlobalDynOffset(Body) - 437 In<ELFT>::MipsGot->getGp(); 438 case R_MIPS_TLSLD: 439 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 440 In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp(); 441 case R_PPC_OPD: { 442 uint64_t SymVA = Body.getVA<ELFT>(A); 443 // If we have an undefined weak symbol, we might get here with a symbol 444 // address of zero. That could overflow, but the code must be unreachable, 445 // so don't bother doing anything at all. 446 if (!SymVA) 447 return 0; 448 if (Out<ELF64BE>::Opd) { 449 // If this is a local call, and we currently have the address of a 450 // function-descriptor, get the underlying code address instead. 451 uint64_t OpdStart = Out<ELF64BE>::Opd->Addr; 452 uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->Size; 453 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 454 if (InOpd) 455 SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]); 456 } 457 return SymVA - P; 458 } 459 case R_PC: 460 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { 461 // On ARM and AArch64 a branch to an undefined weak resolves to the 462 // next instruction, otherwise the place. 463 if (Config->EMachine == EM_ARM) 464 return getARMUndefinedRelativeWeakVA(Type, A, P); 465 if (Config->EMachine == EM_AARCH64) 466 return getAArch64UndefinedRelativeWeakVA(Type, A, P); 467 } 468 case R_RELAX_GOT_PC: 469 return Body.getVA<ELFT>(A) - P; 470 case R_PLT_PAGE_PC: 471 case R_PAGE_PC: 472 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) 473 return getAArch64Page(A); 474 return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P); 475 } 476 llvm_unreachable("Invalid expression"); 477 } 478 479 // This function applies relocations to sections without SHF_ALLOC bit. 480 // Such sections are never mapped to memory at runtime. Debug sections are 481 // an example. Relocations in non-alloc sections are much easier to 482 // handle than in allocated sections because it will never need complex 483 // treatement such as GOT or PLT (because at runtime no one refers them). 484 // So, we handle relocations for non-alloc sections directly in this 485 // function as a performance optimization. 486 template <class ELFT> 487 template <class RelTy> 488 void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 489 for (const RelTy &Rel : Rels) { 490 uint32_t Type = Rel.getType(Config->Mips64EL); 491 uintX_t Offset = this->getOffset(Rel.r_offset); 492 uint8_t *BufLoc = Buf + Offset; 493 uintX_t Addend = getAddend<ELFT>(Rel); 494 if (!RelTy::IsRela) 495 Addend += Target->getImplicitAddend(BufLoc, Type); 496 497 SymbolBody &Sym = this->File->getRelocTargetSym(Rel); 498 if (Target->getRelExpr(Type, Sym) != R_ABS) { 499 error(this->getLocation(Offset) + ": has non-ABS reloc"); 500 return; 501 } 502 503 uintX_t AddrLoc = this->OutSec->Addr + Offset; 504 uint64_t SymVA = 0; 505 if (!Sym.isTls() || Out<ELFT>::TlsPhdr) 506 SymVA = SignExtend64<sizeof(uintX_t) * 8>( 507 getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS)); 508 Target->relocateOne(BufLoc, Type, SymVA); 509 } 510 } 511 512 template <class ELFT> 513 void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) { 514 // scanReloc function in Writer.cpp constructs Relocations 515 // vector only for SHF_ALLOC'ed sections. For other sections, 516 // we handle relocations directly here. 517 auto *IS = dyn_cast<InputSection<ELFT>>(this); 518 if (IS && !(IS->Flags & SHF_ALLOC)) { 519 if (IS->AreRelocsRela) 520 IS->relocateNonAlloc(Buf, IS->relas()); 521 else 522 IS->relocateNonAlloc(Buf, IS->rels()); 523 return; 524 } 525 526 const unsigned Bits = sizeof(uintX_t) * 8; 527 for (const Relocation &Rel : Relocations) { 528 uintX_t Offset = getOffset(Rel.Offset); 529 uint8_t *BufLoc = Buf + Offset; 530 uint32_t Type = Rel.Type; 531 uintX_t A = Rel.Addend; 532 533 uintX_t AddrLoc = OutSec->Addr + Offset; 534 RelExpr Expr = Rel.Expr; 535 uint64_t TargetVA = SignExtend64<Bits>( 536 getRelocTargetVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, Expr)); 537 538 switch (Expr) { 539 case R_RELAX_GOT_PC: 540 case R_RELAX_GOT_PC_NOPIC: 541 Target->relaxGot(BufLoc, TargetVA); 542 break; 543 case R_RELAX_TLS_IE_TO_LE: 544 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 545 break; 546 case R_RELAX_TLS_LD_TO_LE: 547 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 548 break; 549 case R_RELAX_TLS_GD_TO_LE: 550 case R_RELAX_TLS_GD_TO_LE_NEG: 551 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 552 break; 553 case R_RELAX_TLS_GD_TO_IE: 554 case R_RELAX_TLS_GD_TO_IE_ABS: 555 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 556 case R_RELAX_TLS_GD_TO_IE_END: 557 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 558 break; 559 case R_PPC_PLT_OPD: 560 // Patch a nop (0x60000000) to a ld. 561 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 562 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 563 // fallthrough 564 default: 565 Target->relocateOne(BufLoc, Type, TargetVA); 566 break; 567 } 568 } 569 } 570 571 template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) { 572 if (this->Type == SHT_NOBITS) 573 return; 574 575 if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) { 576 S->writeTo(Buf + OutSecOff); 577 return; 578 } 579 580 // If -r is given, then an InputSection may be a relocation section. 581 if (this->Type == SHT_RELA) { 582 copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rela>()); 583 return; 584 } 585 if (this->Type == SHT_REL) { 586 copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rel>()); 587 return; 588 } 589 590 // Copy section contents from source object file to output file. 591 ArrayRef<uint8_t> Data = this->Data; 592 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 593 594 // Iterate over all relocation sections that apply to this section. 595 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 596 this->relocate(Buf, BufEnd); 597 598 // The section might have a data/code generated by the linker and need 599 // to be written after the section. Usually these are thunks - small piece 600 // of code used to jump between "incompatible" functions like PIC and non-PIC 601 // or if the jump target too far and its address does not fit to the short 602 // jump istruction. 603 if (!Thunks.empty()) { 604 Buf += OutSecOff + getThunkOff(); 605 for (const Thunk<ELFT> *T : Thunks) { 606 T->writeTo(Buf); 607 Buf += T->size(); 608 } 609 } 610 } 611 612 template <class ELFT> 613 void InputSection<ELFT>::replace(InputSection<ELFT> *Other) { 614 this->Alignment = std::max(this->Alignment, Other->Alignment); 615 Other->Repl = this->Repl; 616 Other->Live = false; 617 } 618 619 template <class ELFT> 620 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F, 621 const Elf_Shdr *Header, StringRef Name) 622 : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::EHFrame) { 623 // Mark .eh_frame sections as live by default because there are 624 // usually no relocations that point to .eh_frames. Otherwise, 625 // the garbage collector would drop all .eh_frame sections. 626 this->Live = true; 627 } 628 629 template <class ELFT> 630 bool EhInputSection<ELFT>::classof(const InputSectionData *S) { 631 return S->kind() == InputSectionBase<ELFT>::EHFrame; 632 } 633 634 // Returns the index of the first relocation that points to a region between 635 // Begin and Begin+Size. 636 template <class IntTy, class RelTy> 637 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 638 unsigned &RelocI) { 639 // Start search from RelocI for fast access. That works because the 640 // relocations are sorted in .eh_frame. 641 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 642 const RelTy &Rel = Rels[RelocI]; 643 if (Rel.r_offset < Begin) 644 continue; 645 646 if (Rel.r_offset < Begin + Size) 647 return RelocI; 648 return -1; 649 } 650 return -1; 651 } 652 653 // .eh_frame is a sequence of CIE or FDE records. 654 // This function splits an input section into records and returns them. 655 template <class ELFT> void EhInputSection<ELFT>::split() { 656 // Early exit if already split. 657 if (!this->Pieces.empty()) 658 return; 659 660 if (this->NumRelocations) { 661 if (this->AreRelocsRela) 662 split(this->relas()); 663 else 664 split(this->rels()); 665 return; 666 } 667 split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 668 } 669 670 template <class ELFT> 671 template <class RelTy> 672 void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) { 673 ArrayRef<uint8_t> Data = this->Data; 674 unsigned RelI = 0; 675 for (size_t Off = 0, End = Data.size(); Off != End;) { 676 size_t Size = readEhRecordSize<ELFT>(this, Off); 677 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 678 // The empty record is the end marker. 679 if (Size == 4) 680 break; 681 Off += Size; 682 } 683 } 684 685 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 686 // Optimize the common case. 687 StringRef S((const char *)A.data(), A.size()); 688 if (EntSize == 1) 689 return S.find(0); 690 691 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 692 const char *B = S.begin() + I; 693 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 694 return I; 695 } 696 return StringRef::npos; 697 } 698 699 // Split SHF_STRINGS section. Such section is a sequence of 700 // null-terminated strings. 701 template <class ELFT> 702 void MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data, 703 size_t EntSize) { 704 size_t Off = 0; 705 bool IsAlloc = this->Flags & SHF_ALLOC; 706 while (!Data.empty()) { 707 size_t End = findNull(Data, EntSize); 708 if (End == StringRef::npos) 709 fatal(toString(this) + ": string is not null terminated"); 710 size_t Size = End + EntSize; 711 Pieces.emplace_back(Off, !IsAlloc); 712 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 713 Data = Data.slice(Size); 714 Off += Size; 715 } 716 } 717 718 // Split non-SHF_STRINGS section. Such section is a sequence of 719 // fixed size records. 720 template <class ELFT> 721 void MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data, 722 size_t EntSize) { 723 size_t Size = Data.size(); 724 assert((Size % EntSize) == 0); 725 bool IsAlloc = this->Flags & SHF_ALLOC; 726 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 727 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 728 Pieces.emplace_back(I, !IsAlloc); 729 } 730 } 731 732 template <class ELFT> 733 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F, 734 const Elf_Shdr *Header, 735 StringRef Name) 736 : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::Merge) {} 737 738 // This function is called after we obtain a complete list of input sections 739 // that need to be linked. This is responsible to split section contents 740 // into small chunks for further processing. 741 // 742 // Note that this function is called from parallel_for_each. This must be 743 // thread-safe (i.e. no memory allocation from the pools). 744 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() { 745 ArrayRef<uint8_t> Data = this->Data; 746 uintX_t EntSize = this->Entsize; 747 if (this->Flags & SHF_STRINGS) 748 splitStrings(Data, EntSize); 749 else 750 splitNonStrings(Data, EntSize); 751 752 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 753 for (uintX_t Off : LiveOffsets) 754 this->getSectionPiece(Off)->Live = true; 755 } 756 757 template <class ELFT> 758 bool MergeInputSection<ELFT>::classof(const InputSectionData *S) { 759 return S->kind() == InputSectionBase<ELFT>::Merge; 760 } 761 762 // Do binary search to get a section piece at a given input offset. 763 template <class ELFT> 764 SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) { 765 auto *This = static_cast<const MergeInputSection<ELFT> *>(this); 766 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 767 } 768 769 template <class It, class T, class Compare> 770 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 771 size_t Size = std::distance(First, Last); 772 assert(Size != 0); 773 while (Size != 1) { 774 size_t H = Size / 2; 775 const It MI = First + H; 776 Size -= H; 777 First = Comp(Value, *MI) ? First : First + H; 778 } 779 return Comp(Value, *First) ? First : First + 1; 780 } 781 782 template <class ELFT> 783 const SectionPiece * 784 MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const { 785 uintX_t Size = this->Data.size(); 786 if (Offset >= Size) 787 fatal(toString(this) + ": entry is past the end of the section"); 788 789 // Find the element this offset points to. 790 auto I = fastUpperBound( 791 Pieces.begin(), Pieces.end(), Offset, 792 [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; }); 793 --I; 794 return &*I; 795 } 796 797 // Returns the offset in an output section for a given input offset. 798 // Because contents of a mergeable section is not contiguous in output, 799 // it is not just an addition to a base output offset. 800 template <class ELFT> 801 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const { 802 // Initialize OffsetMap lazily. 803 std::call_once(InitOffsetMap, [&] { 804 OffsetMap.reserve(Pieces.size()); 805 for (const SectionPiece &Piece : Pieces) 806 OffsetMap[Piece.InputOff] = Piece.OutputOff; 807 }); 808 809 // Find a string starting at a given offset. 810 auto It = OffsetMap.find(Offset); 811 if (It != OffsetMap.end()) 812 return It->second; 813 814 if (!this->Live) 815 return 0; 816 817 // If Offset is not at beginning of a section piece, it is not in the map. 818 // In that case we need to search from the original section piece vector. 819 const SectionPiece &Piece = *this->getSectionPiece(Offset); 820 if (!Piece.Live) 821 return 0; 822 823 uintX_t Addend = Offset - Piece.InputOff; 824 return Piece.OutputOff + Addend; 825 } 826 827 template class elf::InputSectionBase<ELF32LE>; 828 template class elf::InputSectionBase<ELF32BE>; 829 template class elf::InputSectionBase<ELF64LE>; 830 template class elf::InputSectionBase<ELF64BE>; 831 832 template class elf::InputSection<ELF32LE>; 833 template class elf::InputSection<ELF32BE>; 834 template class elf::InputSection<ELF64LE>; 835 template class elf::InputSection<ELF64BE>; 836 837 template class elf::EhInputSection<ELF32LE>; 838 template class elf::EhInputSection<ELF32BE>; 839 template class elf::EhInputSection<ELF64LE>; 840 template class elf::EhInputSection<ELF64BE>; 841 842 template class elf::MergeInputSection<ELF32LE>; 843 template class elf::MergeInputSection<ELF32BE>; 844 template class elf::MergeInputSection<ELF64LE>; 845 template class elf::MergeInputSection<ELF64BE>; 846 847 template std::string lld::toString(const InputSectionBase<ELF32LE> *); 848 template std::string lld::toString(const InputSectionBase<ELF32BE> *); 849 template std::string lld::toString(const InputSectionBase<ELF64LE> *); 850 template std::string lld::toString(const InputSectionBase<ELF64BE> *); 851