1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 22 #include "llvm/Support/Compression.h" 23 #include "llvm/Support/Endian.h" 24 25 using namespace llvm; 26 using namespace llvm::ELF; 27 using namespace llvm::object; 28 using namespace llvm::support; 29 using namespace llvm::support::endian; 30 31 using namespace lld; 32 using namespace lld::elf; 33 34 template <class ELFT> 35 static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File, 36 const typename ELFT::Shdr *Hdr) { 37 if (!File || Hdr->sh_type == SHT_NOBITS) 38 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 39 return check(File->getObj().getSectionContents(Hdr)); 40 } 41 42 // ELF supports ZLIB-compressed section. Returns true if the section 43 // is compressed. 44 template <class ELFT> 45 static bool isCompressed(typename ELFT::uint Flags, StringRef Name) { 46 return (Flags & SHF_COMPRESSED) || Name.startswith(".zdebug"); 47 } 48 49 template <class ELFT> 50 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 51 uintX_t Flags, uint32_t Type, 52 uintX_t Entsize, uint32_t Link, 53 uint32_t Info, uintX_t Addralign, 54 ArrayRef<uint8_t> Data, StringRef Name, 55 Kind SectionKind) 56 : InputSectionData(SectionKind, Name, Data, isCompressed<ELFT>(Flags, Name), 57 !Config->GcSections || !(Flags & SHF_ALLOC)), 58 File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link), 59 Info(Info), Repl(this) { 60 NumRelocations = 0; 61 AreRelocsRela = false; 62 63 // The ELF spec states that a value of 0 means the section has 64 // no alignment constraits. 65 uint64_t V = std::max<uint64_t>(Addralign, 1); 66 if (!isPowerOf2_64(V)) 67 fatal(getFilename(File) + ": section sh_addralign is not a power of 2"); 68 69 // We reject object files having insanely large alignments even though 70 // they are allowed by the spec. I think 4GB is a reasonable limitation. 71 // We might want to relax this in the future. 72 if (V > UINT32_MAX) 73 fatal(getFilename(File) + ": section sh_addralign is too large"); 74 Alignment = V; 75 } 76 77 template <class ELFT> 78 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 79 const Elf_Shdr *Hdr, StringRef Name, 80 Kind SectionKind) 81 : InputSectionBase(File, Hdr->sh_flags, Hdr->sh_type, Hdr->sh_entsize, 82 Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, 83 getSectionContents(File, Hdr), Name, SectionKind) { 84 this->Offset = Hdr->sh_offset; 85 } 86 87 template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const { 88 if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) 89 return S->getSize(); 90 91 if (auto *D = dyn_cast<InputSection<ELFT>>(this)) 92 if (D->getThunksSize() > 0) 93 return D->getThunkOff() + D->getThunksSize(); 94 95 return Data.size(); 96 } 97 98 // Returns a string for an error message. 99 template <class SectionT> static std::string getName(SectionT *Sec) { 100 return (Sec->getFile()->getName() + "(" + Sec->Name + ")").str(); 101 } 102 103 template <class ELFT> 104 typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) const { 105 switch (kind()) { 106 case Regular: 107 return cast<InputSection<ELFT>>(this)->OutSecOff + Offset; 108 case Synthetic: 109 // For synthetic sections we treat offset -1 as the end of the section. 110 // The same approach is used for synthetic symbols (DefinedSynthetic). 111 return cast<InputSection<ELFT>>(this)->OutSecOff + 112 (Offset == uintX_t(-1) ? getSize() : Offset); 113 case EHFrame: 114 // The file crtbeginT.o has relocations pointing to the start of an empty 115 // .eh_frame that is known to be the first in the link. It does that to 116 // identify the start of the output .eh_frame. 117 return Offset; 118 case Merge: 119 return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset); 120 } 121 llvm_unreachable("invalid section kind"); 122 } 123 124 // Returns compressed data and its size when uncompressed. 125 template <class ELFT> 126 std::pair<ArrayRef<uint8_t>, uint64_t> 127 InputSectionBase<ELFT>::getElfCompressedData(ArrayRef<uint8_t> Data) { 128 // Compressed section with Elf_Chdr is the ELF standard. 129 if (Data.size() < sizeof(Elf_Chdr)) 130 fatal(getName(this) + ": corrupted compressed section"); 131 auto *Hdr = reinterpret_cast<const Elf_Chdr *>(Data.data()); 132 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) 133 fatal(getName(this) + ": unsupported compression type"); 134 return {Data.slice(sizeof(*Hdr)), Hdr->ch_size}; 135 } 136 137 // Returns compressed data and its size when uncompressed. 138 template <class ELFT> 139 std::pair<ArrayRef<uint8_t>, uint64_t> 140 InputSectionBase<ELFT>::getRawCompressedData(ArrayRef<uint8_t> Data) { 141 // Compressed sections without Elf_Chdr header contain this header 142 // instead. This is a GNU extension. 143 struct ZlibHeader { 144 char Magic[4]; // Should be "ZLIB" 145 char Size[8]; // Uncompressed size in big-endian 146 }; 147 148 if (Data.size() < sizeof(ZlibHeader)) 149 fatal(getName(this) + ": corrupted compressed section"); 150 auto *Hdr = reinterpret_cast<const ZlibHeader *>(Data.data()); 151 if (memcmp(Hdr->Magic, "ZLIB", 4)) 152 fatal(getName(this) + ": broken ZLIB-compressed section"); 153 return {Data.slice(sizeof(*Hdr)), read64be(Hdr->Size)}; 154 } 155 156 template <class ELFT> void InputSectionBase<ELFT>::uncompress() { 157 if (!zlib::isAvailable()) 158 fatal(getName(this) + 159 ": build lld with zlib to enable compressed sections support"); 160 161 // This section is compressed. Here we decompress it. Ideally, all 162 // compressed sections have SHF_COMPRESSED bit and their contents 163 // start with headers of Elf_Chdr type. However, sections whose 164 // names start with ".zdebug_" don't have the bit and contains a raw 165 // ZLIB-compressed data (which is a bad thing because section names 166 // shouldn't be significant in ELF.) We need to be able to read both. 167 ArrayRef<uint8_t> Buf; // Compressed data 168 size_t Size; // Uncompressed size 169 if (Flags & SHF_COMPRESSED) 170 std::tie(Buf, Size) = getElfCompressedData(Data); 171 else 172 std::tie(Buf, Size) = getRawCompressedData(Data); 173 174 // Uncompress Buf. 175 char *OutputBuf = BAlloc.Allocate<char>(Size); 176 if (zlib::uncompress(toStringRef(Buf), OutputBuf, Size) != zlib::StatusOK) 177 fatal(getName(this) + ": error while uncompressing section"); 178 Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size); 179 } 180 181 template <class ELFT> 182 typename ELFT::uint 183 InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) const { 184 return getOffset(Sym.Value); 185 } 186 187 template <class ELFT> 188 InputSectionBase<ELFT> *InputSectionBase<ELFT>::getLinkOrderDep() const { 189 if ((Flags & SHF_LINK_ORDER) && Link != 0) 190 return getFile()->getSections()[Link]; 191 return nullptr; 192 } 193 194 template <class ELFT> 195 InputSection<ELFT>::InputSection() : InputSectionBase<ELFT>() {} 196 197 template <class ELFT> 198 InputSection<ELFT>::InputSection(uintX_t Flags, uint32_t Type, 199 uintX_t Addralign, ArrayRef<uint8_t> Data, 200 StringRef Name, Kind K) 201 : InputSectionBase<ELFT>(nullptr, Flags, Type, 202 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign, 203 Data, Name, K) {} 204 205 template <class ELFT> 206 InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F, 207 const Elf_Shdr *Header, StringRef Name) 208 : InputSectionBase<ELFT>(F, Header, Name, Base::Regular) {} 209 210 template <class ELFT> 211 bool InputSection<ELFT>::classof(const InputSectionData *S) { 212 return S->kind() == Base::Regular || S->kind() == Base::Synthetic; 213 } 214 215 template <class ELFT> 216 InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() { 217 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 218 ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections(); 219 return Sections[this->Info]; 220 } 221 222 template <class ELFT> void InputSection<ELFT>::addThunk(const Thunk<ELFT> *T) { 223 Thunks.push_back(T); 224 } 225 226 template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const { 227 return this->Data.size(); 228 } 229 230 template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const { 231 uint64_t Total = 0; 232 for (const Thunk<ELFT> *T : Thunks) 233 Total += T->size(); 234 return Total; 235 } 236 237 // This is used for -r. We can't use memcpy to copy relocations because we need 238 // to update symbol table offset and section index for each relocation. So we 239 // copy relocations one by one. 240 template <class ELFT> 241 template <class RelTy> 242 void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 243 InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection(); 244 245 for (const RelTy &Rel : Rels) { 246 uint32_t Type = Rel.getType(Config->Mips64EL); 247 SymbolBody &Body = this->File->getRelocTargetSym(Rel); 248 249 Elf_Rela *P = reinterpret_cast<Elf_Rela *>(Buf); 250 Buf += sizeof(RelTy); 251 252 if (Config->Rela) 253 P->r_addend = getAddend<ELFT>(Rel); 254 P->r_offset = RelocatedSection->getOffset(Rel.r_offset); 255 P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL); 256 } 257 } 258 259 // Page(Expr) is the page address of the expression Expr, defined 260 // as (Expr & ~0xFFF). (This applies even if the machine page size 261 // supported by the platform has a different value.) 262 static uint64_t getAArch64Page(uint64_t Expr) { 263 return Expr & (~static_cast<uint64_t>(0xFFF)); 264 } 265 266 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 267 uint32_t P) { 268 switch (Type) { 269 case R_ARM_THM_JUMP11: 270 return P + 2; 271 case R_ARM_CALL: 272 case R_ARM_JUMP24: 273 case R_ARM_PC24: 274 case R_ARM_PLT32: 275 case R_ARM_PREL31: 276 case R_ARM_THM_JUMP19: 277 case R_ARM_THM_JUMP24: 278 return P + 4; 279 case R_ARM_THM_CALL: 280 // We don't want an interworking BLX to ARM 281 return P + 5; 282 default: 283 return A; 284 } 285 } 286 287 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 288 uint64_t P) { 289 switch (Type) { 290 case R_AARCH64_CALL26: 291 case R_AARCH64_CONDBR19: 292 case R_AARCH64_JUMP26: 293 case R_AARCH64_TSTBR14: 294 return P + 4; 295 default: 296 return A; 297 } 298 } 299 300 template <class ELFT> 301 static typename ELFT::uint getSymVA(uint32_t Type, typename ELFT::uint A, 302 typename ELFT::uint P, 303 const SymbolBody &Body, RelExpr Expr) { 304 switch (Expr) { 305 case R_HINT: 306 case R_TLSDESC_CALL: 307 llvm_unreachable("cannot relocate hint relocs"); 308 case R_TLSLD: 309 return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize(); 310 case R_TLSLD_PC: 311 return In<ELFT>::Got->getTlsIndexVA() + A - P; 312 case R_THUNK_ABS: 313 return Body.getThunkVA<ELFT>() + A; 314 case R_THUNK_PC: 315 case R_THUNK_PLT_PC: 316 return Body.getThunkVA<ELFT>() + A - P; 317 case R_PPC_TOC: 318 return getPPC64TocBase() + A; 319 case R_TLSGD: 320 return In<ELFT>::Got->getGlobalDynOffset(Body) + A - 321 In<ELFT>::Got->getSize(); 322 case R_TLSGD_PC: 323 return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 324 case R_TLSDESC: 325 return In<ELFT>::Got->getGlobalDynAddr(Body) + A; 326 case R_TLSDESC_PAGE: 327 return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) - 328 getAArch64Page(P); 329 case R_PLT: 330 return Body.getPltVA<ELFT>() + A; 331 case R_PLT_PC: 332 case R_PPC_PLT_OPD: 333 return Body.getPltVA<ELFT>() + A - P; 334 case R_SIZE: 335 return Body.getSize<ELFT>() + A; 336 case R_GOTREL: 337 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA(); 338 case R_GOTREL_FROM_END: 339 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() - 340 In<ELFT>::Got->getSize(); 341 case R_RELAX_TLS_GD_TO_IE_END: 342 case R_GOT_FROM_END: 343 return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize(); 344 case R_RELAX_TLS_GD_TO_IE_ABS: 345 case R_GOT: 346 return Body.getGotVA<ELFT>() + A; 347 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 348 case R_GOT_PAGE_PC: 349 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 350 case R_RELAX_TLS_GD_TO_IE: 351 case R_GOT_PC: 352 return Body.getGotVA<ELFT>() + A - P; 353 case R_GOTONLY_PC: 354 return In<ELFT>::Got->getVA() + A - P; 355 case R_GOTONLY_PC_FROM_END: 356 return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize(); 357 case R_RELAX_TLS_LD_TO_LE: 358 case R_RELAX_TLS_IE_TO_LE: 359 case R_RELAX_TLS_GD_TO_LE: 360 case R_TLS: 361 // A weak undefined TLS symbol resolves to the base of the TLS 362 // block, i.e. gets a value of zero. If we pass --gc-sections to 363 // lld and .tbss is not referenced, it gets reclaimed and we don't 364 // create a TLS program header. Therefore, we resolve this 365 // statically to zero. 366 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 367 Body.symbol()->isWeak()) 368 return 0; 369 if (Target->TcbSize) 370 return Body.getVA<ELFT>(A) + 371 alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align); 372 return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz; 373 case R_RELAX_TLS_GD_TO_LE_NEG: 374 case R_NEG_TLS: 375 return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A); 376 case R_ABS: 377 case R_RELAX_GOT_PC_NOPIC: 378 return Body.getVA<ELFT>(A); 379 case R_GOT_OFF: 380 return Body.getGotOffset<ELFT>() + A; 381 case R_MIPS_GOT_LOCAL_PAGE: 382 // If relocation against MIPS local symbol requires GOT entry, this entry 383 // should be initialized by 'page address'. This address is high 16-bits 384 // of sum the symbol's value and the addend. 385 return In<ELFT>::Got->getMipsLocalPageOffset(Body.getVA<ELFT>(A)); 386 case R_MIPS_GOT_OFF: 387 case R_MIPS_GOT_OFF32: 388 // In case of MIPS if a GOT relocation has non-zero addend this addend 389 // should be applied to the GOT entry content not to the GOT entry offset. 390 // That is why we use separate expression type. 391 return In<ELFT>::Got->getMipsGotOffset(Body, A); 392 case R_MIPS_TLSGD: 393 return In<ELFT>::Got->getGlobalDynOffset(Body) + 394 In<ELFT>::Got->getMipsTlsOffset() - MipsGPOffset; 395 case R_MIPS_TLSLD: 396 return In<ELFT>::Got->getTlsIndexOff() + In<ELFT>::Got->getMipsTlsOffset() - 397 MipsGPOffset; 398 case R_PPC_OPD: { 399 uint64_t SymVA = Body.getVA<ELFT>(A); 400 // If we have an undefined weak symbol, we might get here with a symbol 401 // address of zero. That could overflow, but the code must be unreachable, 402 // so don't bother doing anything at all. 403 if (!SymVA) 404 return 0; 405 if (Out<ELF64BE>::Opd) { 406 // If this is a local call, and we currently have the address of a 407 // function-descriptor, get the underlying code address instead. 408 uint64_t OpdStart = Out<ELF64BE>::Opd->Addr; 409 uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->Size; 410 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 411 if (InOpd) 412 SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]); 413 } 414 return SymVA - P; 415 } 416 case R_PC: 417 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { 418 // On ARM and AArch64 a branch to an undefined weak resolves to the 419 // next instruction, otherwise the place. 420 if (Config->EMachine == EM_ARM) 421 return getARMUndefinedRelativeWeakVA(Type, A, P); 422 if (Config->EMachine == EM_AARCH64) 423 return getAArch64UndefinedRelativeWeakVA(Type, A, P); 424 } 425 case R_RELAX_GOT_PC: 426 return Body.getVA<ELFT>(A) - P; 427 case R_PLT_PAGE_PC: 428 case R_PAGE_PC: 429 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) 430 return getAArch64Page(A); 431 return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P); 432 } 433 llvm_unreachable("Invalid expression"); 434 } 435 436 // This function applies relocations to sections without SHF_ALLOC bit. 437 // Such sections are never mapped to memory at runtime. Debug sections are 438 // an example. Relocations in non-alloc sections are much easier to 439 // handle than in allocated sections because it will never need complex 440 // treatement such as GOT or PLT (because at runtime no one refers them). 441 // So, we handle relocations for non-alloc sections directly in this 442 // function as a performance optimization. 443 template <class ELFT> 444 template <class RelTy> 445 void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 446 for (const RelTy &Rel : Rels) { 447 uint32_t Type = Rel.getType(Config->Mips64EL); 448 uintX_t Offset = this->getOffset(Rel.r_offset); 449 uint8_t *BufLoc = Buf + Offset; 450 uintX_t Addend = getAddend<ELFT>(Rel); 451 if (!RelTy::IsRela) 452 Addend += Target->getImplicitAddend(BufLoc, Type); 453 454 SymbolBody &Sym = this->File->getRelocTargetSym(Rel); 455 if (Target->getRelExpr(Type, Sym) != R_ABS) { 456 error(getName(this) + " has non-ABS reloc"); 457 return; 458 } 459 460 uintX_t AddrLoc = this->OutSec->Addr + Offset; 461 uint64_t SymVA = 0; 462 if (!Sym.isTls() || Out<ELFT>::TlsPhdr) 463 SymVA = SignExtend64<sizeof(uintX_t) * 8>( 464 getSymVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS)); 465 Target->relocateOne(BufLoc, Type, SymVA); 466 } 467 } 468 469 template <class ELFT> 470 void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) { 471 // scanReloc function in Writer.cpp constructs Relocations 472 // vector only for SHF_ALLOC'ed sections. For other sections, 473 // we handle relocations directly here. 474 auto *IS = dyn_cast<InputSection<ELFT>>(this); 475 if (IS && !(IS->Flags & SHF_ALLOC)) { 476 if (IS->AreRelocsRela) 477 IS->relocateNonAlloc(Buf, IS->relas()); 478 else 479 IS->relocateNonAlloc(Buf, IS->rels()); 480 return; 481 } 482 483 const unsigned Bits = sizeof(uintX_t) * 8; 484 for (const Relocation &Rel : Relocations) { 485 uintX_t Offset = getOffset(Rel.Offset); 486 uint8_t *BufLoc = Buf + Offset; 487 uint32_t Type = Rel.Type; 488 uintX_t A = Rel.Addend; 489 490 uintX_t AddrLoc = OutSec->Addr + Offset; 491 RelExpr Expr = Rel.Expr; 492 uint64_t SymVA = 493 SignExtend64<Bits>(getSymVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, Expr)); 494 495 switch (Expr) { 496 case R_RELAX_GOT_PC: 497 case R_RELAX_GOT_PC_NOPIC: 498 Target->relaxGot(BufLoc, SymVA); 499 break; 500 case R_RELAX_TLS_IE_TO_LE: 501 Target->relaxTlsIeToLe(BufLoc, Type, SymVA); 502 break; 503 case R_RELAX_TLS_LD_TO_LE: 504 Target->relaxTlsLdToLe(BufLoc, Type, SymVA); 505 break; 506 case R_RELAX_TLS_GD_TO_LE: 507 case R_RELAX_TLS_GD_TO_LE_NEG: 508 Target->relaxTlsGdToLe(BufLoc, Type, SymVA); 509 break; 510 case R_RELAX_TLS_GD_TO_IE: 511 case R_RELAX_TLS_GD_TO_IE_ABS: 512 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 513 case R_RELAX_TLS_GD_TO_IE_END: 514 Target->relaxTlsGdToIe(BufLoc, Type, SymVA); 515 break; 516 case R_PPC_PLT_OPD: 517 // Patch a nop (0x60000000) to a ld. 518 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 519 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 520 // fallthrough 521 default: 522 Target->relocateOne(BufLoc, Type, SymVA); 523 break; 524 } 525 } 526 } 527 528 template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) { 529 if (this->Type == SHT_NOBITS) 530 return; 531 532 if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) { 533 S->writeTo(Buf); 534 return; 535 } 536 537 // If -r is given, then an InputSection may be a relocation section. 538 if (this->Type == SHT_RELA) { 539 copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rela>()); 540 return; 541 } 542 if (this->Type == SHT_REL) { 543 copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rel>()); 544 return; 545 } 546 547 // Copy section contents from source object file to output file. 548 ArrayRef<uint8_t> Data = this->Data; 549 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 550 551 // Iterate over all relocation sections that apply to this section. 552 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 553 this->relocate(Buf, BufEnd); 554 555 // The section might have a data/code generated by the linker and need 556 // to be written after the section. Usually these are thunks - small piece 557 // of code used to jump between "incompatible" functions like PIC and non-PIC 558 // or if the jump target too far and its address does not fit to the short 559 // jump istruction. 560 if (!Thunks.empty()) { 561 Buf += OutSecOff + getThunkOff(); 562 for (const Thunk<ELFT> *T : Thunks) { 563 T->writeTo(Buf); 564 Buf += T->size(); 565 } 566 } 567 } 568 569 template <class ELFT> 570 void InputSection<ELFT>::replace(InputSection<ELFT> *Other) { 571 assert(Other->Alignment <= this->Alignment); 572 Other->Repl = this->Repl; 573 Other->Live = false; 574 } 575 576 template <class ELFT> 577 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F, 578 const Elf_Shdr *Header, StringRef Name) 579 : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::EHFrame) { 580 // Mark .eh_frame sections as live by default because there are 581 // usually no relocations that point to .eh_frames. Otherwise, 582 // the garbage collector would drop all .eh_frame sections. 583 this->Live = true; 584 } 585 586 template <class ELFT> 587 bool EhInputSection<ELFT>::classof(const InputSectionData *S) { 588 return S->kind() == InputSectionBase<ELFT>::EHFrame; 589 } 590 591 // Returns the index of the first relocation that points to a region between 592 // Begin and Begin+Size. 593 template <class IntTy, class RelTy> 594 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 595 unsigned &RelocI) { 596 // Start search from RelocI for fast access. That works because the 597 // relocations are sorted in .eh_frame. 598 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 599 const RelTy &Rel = Rels[RelocI]; 600 if (Rel.r_offset < Begin) 601 continue; 602 603 if (Rel.r_offset < Begin + Size) 604 return RelocI; 605 return -1; 606 } 607 return -1; 608 } 609 610 // .eh_frame is a sequence of CIE or FDE records. 611 // This function splits an input section into records and returns them. 612 template <class ELFT> void EhInputSection<ELFT>::split() { 613 // Early exit if already split. 614 if (!this->Pieces.empty()) 615 return; 616 617 if (this->NumRelocations) { 618 if (this->AreRelocsRela) 619 split(this->relas()); 620 else 621 split(this->rels()); 622 return; 623 } 624 split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 625 } 626 627 template <class ELFT> 628 template <class RelTy> 629 void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) { 630 ArrayRef<uint8_t> Data = this->Data; 631 unsigned RelI = 0; 632 for (size_t Off = 0, End = Data.size(); Off != End;) { 633 size_t Size = readEhRecordSize<ELFT>(Data.slice(Off)); 634 this->Pieces.emplace_back(Off, Data.slice(Off, Size), 635 getReloc(Off, Size, Rels, RelI)); 636 // The empty record is the end marker. 637 if (Size == 4) 638 break; 639 Off += Size; 640 } 641 } 642 643 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 644 // Optimize the common case. 645 StringRef S((const char *)A.data(), A.size()); 646 if (EntSize == 1) 647 return S.find(0); 648 649 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 650 const char *B = S.begin() + I; 651 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 652 return I; 653 } 654 return StringRef::npos; 655 } 656 657 // Split SHF_STRINGS section. Such section is a sequence of 658 // null-terminated strings. 659 template <class ELFT> 660 std::vector<SectionPiece> 661 MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 662 std::vector<SectionPiece> V; 663 size_t Off = 0; 664 bool IsAlloca = this->Flags & SHF_ALLOC; 665 while (!Data.empty()) { 666 size_t End = findNull(Data, EntSize); 667 if (End == StringRef::npos) 668 fatal(getName(this) + ": string is not null terminated"); 669 size_t Size = End + EntSize; 670 V.emplace_back(Off, !IsAlloca); 671 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 672 Data = Data.slice(Size); 673 Off += Size; 674 } 675 return V; 676 } 677 678 template <class ELFT> 679 ArrayRef<uint8_t> MergeInputSection<ELFT>::getData( 680 std::vector<SectionPiece>::const_iterator I) const { 681 auto Next = I + 1; 682 size_t End = Next == Pieces.end() ? this->Data.size() : Next->InputOff; 683 return this->Data.slice(I->InputOff, End - I->InputOff); 684 } 685 686 // Split non-SHF_STRINGS section. Such section is a sequence of 687 // fixed size records. 688 template <class ELFT> 689 std::vector<SectionPiece> 690 MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data, 691 size_t EntSize) { 692 std::vector<SectionPiece> V; 693 size_t Size = Data.size(); 694 assert((Size % EntSize) == 0); 695 bool IsAlloca = this->Flags & SHF_ALLOC; 696 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 697 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 698 V.emplace_back(I, !IsAlloca); 699 } 700 return V; 701 } 702 703 template <class ELFT> 704 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F, 705 const Elf_Shdr *Header, 706 StringRef Name) 707 : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::Merge) {} 708 709 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() { 710 ArrayRef<uint8_t> Data = this->Data; 711 uintX_t EntSize = this->Entsize; 712 if (this->Flags & SHF_STRINGS) 713 this->Pieces = splitStrings(Data, EntSize); 714 else 715 this->Pieces = splitNonStrings(Data, EntSize); 716 717 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 718 for (uintX_t Off : LiveOffsets) 719 this->getSectionPiece(Off)->Live = true; 720 } 721 722 template <class ELFT> 723 bool MergeInputSection<ELFT>::classof(const InputSectionData *S) { 724 return S->kind() == InputSectionBase<ELFT>::Merge; 725 } 726 727 // Do binary search to get a section piece at a given input offset. 728 template <class ELFT> 729 SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) { 730 auto *This = static_cast<const MergeInputSection<ELFT> *>(this); 731 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 732 } 733 734 template <class It, class T, class Compare> 735 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 736 size_t Size = std::distance(First, Last); 737 assert(Size != 0); 738 while (Size != 1) { 739 size_t H = Size / 2; 740 const It MI = First + H; 741 Size -= H; 742 First = Comp(Value, *MI) ? First : First + H; 743 } 744 return Comp(Value, *First) ? First : First + 1; 745 } 746 747 template <class ELFT> 748 const SectionPiece * 749 MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const { 750 uintX_t Size = this->Data.size(); 751 if (Offset >= Size) 752 fatal(getName(this) + ": entry is past the end of the section"); 753 754 // Find the element this offset points to. 755 auto I = fastUpperBound( 756 Pieces.begin(), Pieces.end(), Offset, 757 [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; }); 758 --I; 759 return &*I; 760 } 761 762 // Returns the offset in an output section for a given input offset. 763 // Because contents of a mergeable section is not contiguous in output, 764 // it is not just an addition to a base output offset. 765 template <class ELFT> 766 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const { 767 auto It = OffsetMap.find(Offset); 768 if (It != OffsetMap.end()) 769 return It->second; 770 771 if (!this->Live) 772 return 0; 773 774 // If Offset is not at beginning of a section piece, it is not in the map. 775 // In that case we need to search from the original section piece vector. 776 const SectionPiece &Piece = *this->getSectionPiece(Offset); 777 if (!Piece.Live) 778 return 0; 779 780 uintX_t Addend = Offset - Piece.InputOff; 781 return Piece.OutputOff + Addend; 782 } 783 784 // Create a map from input offsets to output offsets for all section pieces. 785 // It is called after finalize(). 786 template <class ELFT> void MergeInputSection<ELFT>::finalizePieces() { 787 OffsetMap.reserve(this->Pieces.size()); 788 auto HashI = Hashes.begin(); 789 for (auto I = Pieces.begin(), E = Pieces.end(); I != E; ++I) { 790 uint32_t Hash = *HashI; 791 ++HashI; 792 SectionPiece &Piece = *I; 793 if (!Piece.Live) 794 continue; 795 if (Piece.OutputOff == -1) { 796 // Offsets of tail-merged strings are computed lazily. 797 auto *OutSec = static_cast<MergeOutputSection<ELFT> *>(this->OutSec); 798 ArrayRef<uint8_t> D = this->getData(I); 799 StringRef S((const char *)D.data(), D.size()); 800 CachedHashStringRef V(S, Hash); 801 Piece.OutputOff = OutSec->getOffset(V); 802 } 803 OffsetMap[Piece.InputOff] = Piece.OutputOff; 804 } 805 } 806 807 template class elf::InputSectionBase<ELF32LE>; 808 template class elf::InputSectionBase<ELF32BE>; 809 template class elf::InputSectionBase<ELF64LE>; 810 template class elf::InputSectionBase<ELF64BE>; 811 812 template class elf::InputSection<ELF32LE>; 813 template class elf::InputSection<ELF32BE>; 814 template class elf::InputSection<ELF64LE>; 815 template class elf::InputSection<ELF64BE>; 816 817 template class elf::EhInputSection<ELF32LE>; 818 template class elf::EhInputSection<ELF32BE>; 819 template class elf::EhInputSection<ELF64LE>; 820 template class elf::EhInputSection<ELF64BE>; 821 822 template class elf::MergeInputSection<ELF32LE>; 823 template class elf::MergeInputSection<ELF32BE>; 824 template class elf::MergeInputSection<ELF64LE>; 825 template class elf::MergeInputSection<ELF64BE>; 826