1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputSection.h"
11 #include "Config.h"
12 #include "EhFrame.h"
13 #include "Error.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
16 #include "Memory.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Thunks.h"
22 #include "llvm/Object/Decompressor.h"
23 #include "llvm/Support/Compression.h"
24 #include "llvm/Support/Endian.h"
25 #include <mutex>
26 
27 using namespace llvm;
28 using namespace llvm::ELF;
29 using namespace llvm::object;
30 using namespace llvm::support;
31 using namespace llvm::support::endian;
32 
33 using namespace lld;
34 using namespace lld::elf;
35 
36 // Returns a string to construct an error message.
37 template <class ELFT>
38 std::string lld::toString(const InputSectionBase<ELFT> *Sec) {
39   // File can be absent if section is synthetic.
40   std::string FileName =
41       Sec->getFile() ? Sec->getFile()->getName() : "<internal>";
42   return (FileName + ":(" + Sec->Name + ")").str();
43 }
44 
45 template <class ELFT>
46 static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File,
47                                             const typename ELFT::Shdr *Hdr) {
48   if (!File || Hdr->sh_type == SHT_NOBITS)
49     return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size);
50   return check(File->getObj().getSectionContents(Hdr));
51 }
52 
53 template <class ELFT>
54 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
55                                          uintX_t Flags, uint32_t Type,
56                                          uintX_t Entsize, uint32_t Link,
57                                          uint32_t Info, uintX_t Addralign,
58                                          ArrayRef<uint8_t> Data, StringRef Name,
59                                          Kind SectionKind)
60     : InputSectionData(SectionKind, Name, Data,
61                        !Config->GcSections || !(Flags & SHF_ALLOC)),
62       File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link),
63       Info(Info), Repl(this) {
64   NumRelocations = 0;
65   AreRelocsRela = false;
66 
67   // The ELF spec states that a value of 0 means the section has
68   // no alignment constraits.
69   uint64_t V = std::max<uint64_t>(Addralign, 1);
70   if (!isPowerOf2_64(V))
71     fatal(toString(File) + ": section sh_addralign is not a power of 2");
72 
73   // We reject object files having insanely large alignments even though
74   // they are allowed by the spec. I think 4GB is a reasonable limitation.
75   // We might want to relax this in the future.
76   if (V > UINT32_MAX)
77     fatal(toString(File) + ": section sh_addralign is too large");
78   Alignment = V;
79 }
80 
81 template <class ELFT>
82 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
83                                          const Elf_Shdr *Hdr, StringRef Name,
84                                          Kind SectionKind)
85     : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type,
86                        Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info,
87                        Hdr->sh_addralign, getSectionContents(File, Hdr), Name,
88                        SectionKind) {
89   this->Offset = Hdr->sh_offset;
90 }
91 
92 template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const {
93   if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this))
94     return S->getSize();
95 
96   return Data.size();
97 }
98 
99 template <class ELFT>
100 typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) const {
101   switch (kind()) {
102   case Regular:
103     return cast<InputSection<ELFT>>(this)->OutSecOff + Offset;
104   case Synthetic:
105     // For synthetic sections we treat offset -1 as the end of the section.
106     // The same approach is used for synthetic symbols (DefinedSynthetic).
107     return cast<InputSection<ELFT>>(this)->OutSecOff +
108            (Offset == uintX_t(-1) ? getSize() : Offset);
109   case EHFrame:
110     // The file crtbeginT.o has relocations pointing to the start of an empty
111     // .eh_frame that is known to be the first in the link. It does that to
112     // identify the start of the output .eh_frame.
113     return Offset;
114   case Merge:
115     const MergeInputSection<ELFT> *MS = cast<MergeInputSection<ELFT>>(this);
116     if (MS->MergeSec)
117       return MS->MergeSec->OutSecOff + MS->getOffset(Offset);
118     return MS->getOffset(Offset);
119   }
120   llvm_unreachable("invalid section kind");
121 }
122 
123 template <class ELFT>
124 OutputSectionBase *InputSectionBase<ELFT>::getOutputSection() const {
125   if (auto *MS = dyn_cast<MergeInputSection<ELFT>>(this))
126     return MS->MergeSec ? MS->MergeSec->OutSec : nullptr;
127   return OutSec;
128 }
129 
130 // Uncompress section contents. Note that this function is called
131 // from parallel_for_each, so it must be thread-safe.
132 template <class ELFT> void InputSectionBase<ELFT>::uncompress() {
133   Decompressor Dec = check(Decompressor::create(
134       Name, toStringRef(Data), ELFT::TargetEndianness == llvm::support::little,
135       ELFT::Is64Bits));
136 
137   size_t Size = Dec.getDecompressedSize();
138   char *OutputBuf;
139   {
140     static std::mutex Mu;
141     std::lock_guard<std::mutex> Lock(Mu);
142     OutputBuf = BAlloc.Allocate<char>(Size);
143   }
144 
145   if (Error E = Dec.decompress({OutputBuf, Size}))
146     fatal(toString(this) +
147           ": decompress failed: " + llvm::toString(std::move(E)));
148   Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size);
149 }
150 
151 template <class ELFT>
152 typename ELFT::uint
153 InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) const {
154   return getOffset(Sym.Value);
155 }
156 
157 template <class ELFT>
158 InputSectionBase<ELFT> *InputSectionBase<ELFT>::getLinkOrderDep() const {
159   if ((Flags & SHF_LINK_ORDER) && Link != 0)
160     return getFile()->getSections()[Link];
161   return nullptr;
162 }
163 
164 // Returns a source location string. Used to construct an error message.
165 template <class ELFT>
166 std::string InputSectionBase<ELFT>::getLocation(typename ELFT::uint Offset) {
167   // First check if we can get desired values from debugging information.
168   std::string LineInfo = File->getLineInfo(this, Offset);
169   if (!LineInfo.empty())
170     return LineInfo;
171 
172   // File->SourceFile contains STT_FILE symbol that contains a
173   // source file name. If it's missing, we use an object file name.
174   std::string SrcFile = File->SourceFile;
175   if (SrcFile.empty())
176     SrcFile = toString(File);
177 
178   // Find a function symbol that encloses a given location.
179   for (SymbolBody *B : File->getSymbols())
180     if (auto *D = dyn_cast<DefinedRegular<ELFT>>(B))
181       if (D->Section == this && D->Type == STT_FUNC)
182         if (D->Value <= Offset && Offset < D->Value + D->Size)
183           return SrcFile + ":(function " + toString(*D) + ")";
184 
185   // If there's no symbol, print out the offset in the section.
186   return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
187 }
188 
189 template <class ELFT>
190 InputSection<ELFT>::InputSection() : InputSectionBase<ELFT>() {}
191 
192 template <class ELFT>
193 InputSection<ELFT>::InputSection(uintX_t Flags, uint32_t Type,
194                                  uintX_t Addralign, ArrayRef<uint8_t> Data,
195                                  StringRef Name, Kind K)
196     : InputSectionBase<ELFT>(nullptr, Flags, Type,
197                              /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign,
198                              Data, Name, K) {}
199 
200 template <class ELFT>
201 InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F,
202                                  const Elf_Shdr *Header, StringRef Name)
203     : InputSectionBase<ELFT>(F, Header, Name, Base::Regular) {}
204 
205 template <class ELFT>
206 bool InputSection<ELFT>::classof(const InputSectionData *S) {
207   return S->kind() == Base::Regular || S->kind() == Base::Synthetic;
208 }
209 
210 template <class ELFT>
211 InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() {
212   assert(this->Type == SHT_RELA || this->Type == SHT_REL);
213   ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections();
214   return Sections[this->Info];
215 }
216 
217 // This is used for -r and --emit-relocs. We can't use memcpy to copy
218 // relocations because we need to update symbol table offset and section index
219 // for each relocation. So we copy relocations one by one.
220 template <class ELFT>
221 template <class RelTy>
222 void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
223   InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection();
224 
225   // Loop is slow and have complexity O(N*M), where N - amount of
226   // relocations and M - amount of symbols in symbol table.
227   // That happens because getSymbolIndex(...) call below performs
228   // simple linear search.
229   for (const RelTy &Rel : Rels) {
230     uint32_t Type = Rel.getType(Config->Mips64EL);
231     SymbolBody &Body = this->File->getRelocTargetSym(Rel);
232 
233     Elf_Rela *P = reinterpret_cast<Elf_Rela *>(Buf);
234     Buf += sizeof(RelTy);
235 
236     if (Config->Rela)
237       P->r_addend = getAddend<ELFT>(Rel);
238 
239     // Output section VA is zero for -r, so r_offset is an offset within the
240     // section, but for --emit-relocs it is an virtual address.
241     P->r_offset = RelocatedSection->OutSec->Addr +
242                   RelocatedSection->getOffset(Rel.r_offset);
243     P->setSymbolAndType(In<ELFT>::SymTab->getSymbolIndex(&Body), Type,
244                         Config->Mips64EL);
245   }
246 }
247 
248 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A,
249                                               uint32_t P) {
250   switch (Type) {
251   case R_ARM_THM_JUMP11:
252     return P + 2;
253   case R_ARM_CALL:
254   case R_ARM_JUMP24:
255   case R_ARM_PC24:
256   case R_ARM_PLT32:
257   case R_ARM_PREL31:
258   case R_ARM_THM_JUMP19:
259   case R_ARM_THM_JUMP24:
260     return P + 4;
261   case R_ARM_THM_CALL:
262     // We don't want an interworking BLX to ARM
263     return P + 5;
264   default:
265     return A;
266   }
267 }
268 
269 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
270                                                   uint64_t P) {
271   switch (Type) {
272   case R_AARCH64_CALL26:
273   case R_AARCH64_CONDBR19:
274   case R_AARCH64_JUMP26:
275   case R_AARCH64_TSTBR14:
276     return P + 4;
277   default:
278     return A;
279   }
280 }
281 
282 template <class ELFT>
283 static typename ELFT::uint
284 getRelocTargetVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P,
285                  const SymbolBody &Body, RelExpr Expr) {
286   switch (Expr) {
287   case R_HINT:
288   case R_TLSDESC_CALL:
289     llvm_unreachable("cannot relocate hint relocs");
290   case R_TLSLD:
291     return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize();
292   case R_TLSLD_PC:
293     return In<ELFT>::Got->getTlsIndexVA() + A - P;
294   case R_PPC_TOC:
295     return getPPC64TocBase() + A;
296   case R_TLSGD:
297     return In<ELFT>::Got->getGlobalDynOffset(Body) + A -
298            In<ELFT>::Got->getSize();
299   case R_TLSGD_PC:
300     return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P;
301   case R_TLSDESC:
302     return In<ELFT>::Got->getGlobalDynAddr(Body) + A;
303   case R_TLSDESC_PAGE:
304     return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) -
305            getAArch64Page(P);
306   case R_PLT:
307     return Body.getPltVA<ELFT>() + A;
308   case R_PLT_PC:
309   case R_PPC_PLT_OPD:
310     return Body.getPltVA<ELFT>() + A - P;
311   case R_SIZE:
312     return Body.getSize<ELFT>() + A;
313   case R_GOTREL:
314     return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA();
315   case R_GOTREL_FROM_END:
316     return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() -
317            In<ELFT>::Got->getSize();
318   case R_RELAX_TLS_GD_TO_IE_END:
319   case R_GOT_FROM_END:
320     return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize();
321   case R_RELAX_TLS_GD_TO_IE_ABS:
322   case R_GOT:
323     return Body.getGotVA<ELFT>() + A;
324   case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
325   case R_GOT_PAGE_PC:
326     return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P);
327   case R_RELAX_TLS_GD_TO_IE:
328   case R_GOT_PC:
329     return Body.getGotVA<ELFT>() + A - P;
330   case R_GOTONLY_PC:
331     return In<ELFT>::Got->getVA() + A - P;
332   case R_GOTONLY_PC_FROM_END:
333     return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize();
334   case R_RELAX_TLS_LD_TO_LE:
335   case R_RELAX_TLS_IE_TO_LE:
336   case R_RELAX_TLS_GD_TO_LE:
337   case R_TLS:
338     // A weak undefined TLS symbol resolves to the base of the TLS
339     // block, i.e. gets a value of zero. If we pass --gc-sections to
340     // lld and .tbss is not referenced, it gets reclaimed and we don't
341     // create a TLS program header. Therefore, we resolve this
342     // statically to zero.
343     if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) &&
344         Body.symbol()->isWeak())
345       return 0;
346     if (Target->TcbSize)
347       return Body.getVA<ELFT>(A) +
348              alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align);
349     return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz;
350   case R_RELAX_TLS_GD_TO_LE_NEG:
351   case R_NEG_TLS:
352     return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A);
353   case R_ABS:
354   case R_RELAX_GOT_PC_NOPIC:
355     return Body.getVA<ELFT>(A);
356   case R_GOT_OFF:
357     return Body.getGotOffset<ELFT>() + A;
358   case R_MIPS_GOT_LOCAL_PAGE:
359     // If relocation against MIPS local symbol requires GOT entry, this entry
360     // should be initialized by 'page address'. This address is high 16-bits
361     // of sum the symbol's value and the addend.
362     return In<ELFT>::MipsGot->getVA() +
363            In<ELFT>::MipsGot->getPageEntryOffset(Body, A) -
364            In<ELFT>::MipsGot->getGp();
365   case R_MIPS_GOT_OFF:
366   case R_MIPS_GOT_OFF32:
367     // In case of MIPS if a GOT relocation has non-zero addend this addend
368     // should be applied to the GOT entry content not to the GOT entry offset.
369     // That is why we use separate expression type.
370     return In<ELFT>::MipsGot->getVA() +
371            In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) -
372            In<ELFT>::MipsGot->getGp();
373   case R_MIPS_GOTREL:
374     return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp();
375   case R_MIPS_TLSGD:
376     return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
377            In<ELFT>::MipsGot->getGlobalDynOffset(Body) -
378            In<ELFT>::MipsGot->getGp();
379   case R_MIPS_TLSLD:
380     return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
381            In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp();
382   case R_PPC_OPD: {
383     uint64_t SymVA = Body.getVA<ELFT>(A);
384     // If we have an undefined weak symbol, we might get here with a symbol
385     // address of zero. That could overflow, but the code must be unreachable,
386     // so don't bother doing anything at all.
387     if (!SymVA)
388       return 0;
389     if (Out<ELF64BE>::Opd) {
390       // If this is a local call, and we currently have the address of a
391       // function-descriptor, get the underlying code address instead.
392       uint64_t OpdStart = Out<ELF64BE>::Opd->Addr;
393       uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->Size;
394       bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd;
395       if (InOpd)
396         SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]);
397     }
398     return SymVA - P;
399   }
400   case R_PC:
401     if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) {
402       // On ARM and AArch64 a branch to an undefined weak resolves to the
403       // next instruction, otherwise the place.
404       if (Config->EMachine == EM_ARM)
405         return getARMUndefinedRelativeWeakVA(Type, A, P);
406       if (Config->EMachine == EM_AARCH64)
407         return getAArch64UndefinedRelativeWeakVA(Type, A, P);
408     }
409   case R_RELAX_GOT_PC:
410     return Body.getVA<ELFT>(A) - P;
411   case R_PLT_PAGE_PC:
412   case R_PAGE_PC:
413     if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
414       return getAArch64Page(A);
415     return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P);
416   }
417   llvm_unreachable("Invalid expression");
418 }
419 
420 // This function applies relocations to sections without SHF_ALLOC bit.
421 // Such sections are never mapped to memory at runtime. Debug sections are
422 // an example. Relocations in non-alloc sections are much easier to
423 // handle than in allocated sections because it will never need complex
424 // treatement such as GOT or PLT (because at runtime no one refers them).
425 // So, we handle relocations for non-alloc sections directly in this
426 // function as a performance optimization.
427 template <class ELFT>
428 template <class RelTy>
429 void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
430   for (const RelTy &Rel : Rels) {
431     uint32_t Type = Rel.getType(Config->Mips64EL);
432     uintX_t Offset = this->getOffset(Rel.r_offset);
433     uint8_t *BufLoc = Buf + Offset;
434     uintX_t Addend = getAddend<ELFT>(Rel);
435     if (!RelTy::IsRela)
436       Addend += Target->getImplicitAddend(BufLoc, Type);
437 
438     SymbolBody &Sym = this->File->getRelocTargetSym(Rel);
439     if (Target->getRelExpr(Type, Sym) != R_ABS) {
440       error(this->getLocation(Offset) + ": has non-ABS reloc");
441       return;
442     }
443 
444     uintX_t AddrLoc = this->OutSec->Addr + Offset;
445     uint64_t SymVA = 0;
446     if (!Sym.isTls() || Out<ELFT>::TlsPhdr)
447       SymVA = SignExtend64<sizeof(uintX_t) * 8>(
448           getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS));
449     Target->relocateOne(BufLoc, Type, SymVA);
450   }
451 }
452 
453 template <class ELFT>
454 void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) {
455   // scanReloc function in Writer.cpp constructs Relocations
456   // vector only for SHF_ALLOC'ed sections. For other sections,
457   // we handle relocations directly here.
458   auto *IS = dyn_cast<InputSection<ELFT>>(this);
459   if (IS && !(IS->Flags & SHF_ALLOC)) {
460     if (IS->AreRelocsRela)
461       IS->relocateNonAlloc(Buf, IS->relas());
462     else
463       IS->relocateNonAlloc(Buf, IS->rels());
464     return;
465   }
466 
467   const unsigned Bits = sizeof(uintX_t) * 8;
468   for (const Relocation &Rel : Relocations) {
469     uintX_t Offset = getOffset(Rel.Offset);
470     uint8_t *BufLoc = Buf + Offset;
471     uint32_t Type = Rel.Type;
472     uintX_t A = Rel.Addend;
473 
474     uintX_t AddrLoc = OutSec->Addr + Offset;
475     RelExpr Expr = Rel.Expr;
476     uint64_t TargetVA = SignExtend64<Bits>(
477         getRelocTargetVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, Expr));
478 
479     switch (Expr) {
480     case R_RELAX_GOT_PC:
481     case R_RELAX_GOT_PC_NOPIC:
482       Target->relaxGot(BufLoc, TargetVA);
483       break;
484     case R_RELAX_TLS_IE_TO_LE:
485       Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
486       break;
487     case R_RELAX_TLS_LD_TO_LE:
488       Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
489       break;
490     case R_RELAX_TLS_GD_TO_LE:
491     case R_RELAX_TLS_GD_TO_LE_NEG:
492       Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
493       break;
494     case R_RELAX_TLS_GD_TO_IE:
495     case R_RELAX_TLS_GD_TO_IE_ABS:
496     case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
497     case R_RELAX_TLS_GD_TO_IE_END:
498       Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
499       break;
500     case R_PPC_PLT_OPD:
501       // Patch a nop (0x60000000) to a ld.
502       if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000)
503         write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1)
504     // fallthrough
505     default:
506       Target->relocateOne(BufLoc, Type, TargetVA);
507       break;
508     }
509   }
510 }
511 
512 template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) {
513   if (this->Type == SHT_NOBITS)
514     return;
515 
516   if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) {
517     S->writeTo(Buf + OutSecOff);
518     return;
519   }
520 
521   // If -r or --emit-relocs is given, then an InputSection
522   // may be a relocation section.
523   if (this->Type == SHT_RELA) {
524     copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rela>());
525     return;
526   }
527   if (this->Type == SHT_REL) {
528     copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rel>());
529     return;
530   }
531 
532   // Copy section contents from source object file to output file.
533   ArrayRef<uint8_t> Data = this->Data;
534   memcpy(Buf + OutSecOff, Data.data(), Data.size());
535 
536   // Iterate over all relocation sections that apply to this section.
537   uint8_t *BufEnd = Buf + OutSecOff + Data.size();
538   this->relocate(Buf, BufEnd);
539 }
540 
541 template <class ELFT>
542 void InputSection<ELFT>::replace(InputSection<ELFT> *Other) {
543   this->Alignment = std::max(this->Alignment, Other->Alignment);
544   Other->Repl = this->Repl;
545   Other->Live = false;
546 }
547 
548 template <class ELFT>
549 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F,
550                                      const Elf_Shdr *Header, StringRef Name)
551     : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::EHFrame) {
552   // Mark .eh_frame sections as live by default because there are
553   // usually no relocations that point to .eh_frames. Otherwise,
554   // the garbage collector would drop all .eh_frame sections.
555   this->Live = true;
556 }
557 
558 template <class ELFT>
559 bool EhInputSection<ELFT>::classof(const InputSectionData *S) {
560   return S->kind() == InputSectionBase<ELFT>::EHFrame;
561 }
562 
563 // Returns the index of the first relocation that points to a region between
564 // Begin and Begin+Size.
565 template <class IntTy, class RelTy>
566 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
567                          unsigned &RelocI) {
568   // Start search from RelocI for fast access. That works because the
569   // relocations are sorted in .eh_frame.
570   for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
571     const RelTy &Rel = Rels[RelocI];
572     if (Rel.r_offset < Begin)
573       continue;
574 
575     if (Rel.r_offset < Begin + Size)
576       return RelocI;
577     return -1;
578   }
579   return -1;
580 }
581 
582 // .eh_frame is a sequence of CIE or FDE records.
583 // This function splits an input section into records and returns them.
584 template <class ELFT> void EhInputSection<ELFT>::split() {
585   // Early exit if already split.
586   if (!this->Pieces.empty())
587     return;
588 
589   if (this->NumRelocations) {
590     if (this->AreRelocsRela)
591       split(this->relas());
592     else
593       split(this->rels());
594     return;
595   }
596   split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr));
597 }
598 
599 template <class ELFT>
600 template <class RelTy>
601 void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) {
602   ArrayRef<uint8_t> Data = this->Data;
603   unsigned RelI = 0;
604   for (size_t Off = 0, End = Data.size(); Off != End;) {
605     size_t Size = readEhRecordSize<ELFT>(this, Off);
606     this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
607     // The empty record is the end marker.
608     if (Size == 4)
609       break;
610     Off += Size;
611   }
612 }
613 
614 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) {
615   // Optimize the common case.
616   StringRef S((const char *)A.data(), A.size());
617   if (EntSize == 1)
618     return S.find(0);
619 
620   for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
621     const char *B = S.begin() + I;
622     if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
623       return I;
624   }
625   return StringRef::npos;
626 }
627 
628 // Split SHF_STRINGS section. Such section is a sequence of
629 // null-terminated strings.
630 template <class ELFT>
631 void MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data,
632                                            size_t EntSize) {
633   size_t Off = 0;
634   bool IsAlloc = this->Flags & SHF_ALLOC;
635   while (!Data.empty()) {
636     size_t End = findNull(Data, EntSize);
637     if (End == StringRef::npos)
638       fatal(toString(this) + ": string is not null terminated");
639     size_t Size = End + EntSize;
640     Pieces.emplace_back(Off, !IsAlloc);
641     Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size))));
642     Data = Data.slice(Size);
643     Off += Size;
644   }
645 }
646 
647 // Split non-SHF_STRINGS section. Such section is a sequence of
648 // fixed size records.
649 template <class ELFT>
650 void MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data,
651                                               size_t EntSize) {
652   size_t Size = Data.size();
653   assert((Size % EntSize) == 0);
654   bool IsAlloc = this->Flags & SHF_ALLOC;
655   for (unsigned I = 0, N = Size; I != N; I += EntSize) {
656     Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize))));
657     Pieces.emplace_back(I, !IsAlloc);
658   }
659 }
660 
661 template <class ELFT>
662 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F,
663                                            const Elf_Shdr *Header,
664                                            StringRef Name)
665     : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::Merge) {}
666 
667 // This function is called after we obtain a complete list of input sections
668 // that need to be linked. This is responsible to split section contents
669 // into small chunks for further processing.
670 //
671 // Note that this function is called from parallel_for_each. This must be
672 // thread-safe (i.e. no memory allocation from the pools).
673 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() {
674   ArrayRef<uint8_t> Data = this->Data;
675   uintX_t EntSize = this->Entsize;
676   if (this->Flags & SHF_STRINGS)
677     splitStrings(Data, EntSize);
678   else
679     splitNonStrings(Data, EntSize);
680 
681   if (Config->GcSections && (this->Flags & SHF_ALLOC))
682     for (uintX_t Off : LiveOffsets)
683       this->getSectionPiece(Off)->Live = true;
684 }
685 
686 template <class ELFT>
687 bool MergeInputSection<ELFT>::classof(const InputSectionData *S) {
688   return S->kind() == InputSectionBase<ELFT>::Merge;
689 }
690 
691 // Do binary search to get a section piece at a given input offset.
692 template <class ELFT>
693 SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) {
694   auto *This = static_cast<const MergeInputSection<ELFT> *>(this);
695   return const_cast<SectionPiece *>(This->getSectionPiece(Offset));
696 }
697 
698 template <class It, class T, class Compare>
699 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
700   size_t Size = std::distance(First, Last);
701   assert(Size != 0);
702   while (Size != 1) {
703     size_t H = Size / 2;
704     const It MI = First + H;
705     Size -= H;
706     First = Comp(Value, *MI) ? First : First + H;
707   }
708   return Comp(Value, *First) ? First : First + 1;
709 }
710 
711 template <class ELFT>
712 const SectionPiece *
713 MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const {
714   uintX_t Size = this->Data.size();
715   if (Offset >= Size)
716     fatal(toString(this) + ": entry is past the end of the section");
717 
718   // Find the element this offset points to.
719   auto I = fastUpperBound(
720       Pieces.begin(), Pieces.end(), Offset,
721       [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; });
722   --I;
723   return &*I;
724 }
725 
726 // Returns the offset in an output section for a given input offset.
727 // Because contents of a mergeable section is not contiguous in output,
728 // it is not just an addition to a base output offset.
729 template <class ELFT>
730 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const {
731   // Initialize OffsetMap lazily.
732   std::call_once(InitOffsetMap, [&] {
733     OffsetMap.reserve(Pieces.size());
734     for (const SectionPiece &Piece : Pieces)
735       OffsetMap[Piece.InputOff] = Piece.OutputOff;
736   });
737 
738   // Find a string starting at a given offset.
739   auto It = OffsetMap.find(Offset);
740   if (It != OffsetMap.end())
741     return It->second;
742 
743   if (!this->Live)
744     return 0;
745 
746   // If Offset is not at beginning of a section piece, it is not in the map.
747   // In that case we need to search from the original section piece vector.
748   const SectionPiece &Piece = *this->getSectionPiece(Offset);
749   if (!Piece.Live)
750     return 0;
751 
752   uintX_t Addend = Offset - Piece.InputOff;
753   return Piece.OutputOff + Addend;
754 }
755 
756 template class elf::InputSectionBase<ELF32LE>;
757 template class elf::InputSectionBase<ELF32BE>;
758 template class elf::InputSectionBase<ELF64LE>;
759 template class elf::InputSectionBase<ELF64BE>;
760 
761 template class elf::InputSection<ELF32LE>;
762 template class elf::InputSection<ELF32BE>;
763 template class elf::InputSection<ELF64LE>;
764 template class elf::InputSection<ELF64BE>;
765 
766 template class elf::EhInputSection<ELF32LE>;
767 template class elf::EhInputSection<ELF32BE>;
768 template class elf::EhInputSection<ELF64LE>;
769 template class elf::EhInputSection<ELF64BE>;
770 
771 template class elf::MergeInputSection<ELF32LE>;
772 template class elf::MergeInputSection<ELF32BE>;
773 template class elf::MergeInputSection<ELF64LE>;
774 template class elf::MergeInputSection<ELF64BE>;
775 
776 template std::string lld::toString(const InputSectionBase<ELF32LE> *);
777 template std::string lld::toString(const InputSectionBase<ELF32BE> *);
778 template std::string lld::toString(const InputSectionBase<ELF64LE> *);
779 template std::string lld::toString(const InputSectionBase<ELF64BE> *);
780