1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "OutputSections.h" 16 #include "Target.h" 17 18 #include "llvm/Support/Endian.h" 19 20 using namespace llvm; 21 using namespace llvm::ELF; 22 using namespace llvm::object; 23 using namespace llvm::support::endian; 24 25 using namespace lld; 26 using namespace lld::elf; 27 28 template <class ELFT> 29 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 30 const Elf_Shdr *Header, 31 Kind SectionKind) 32 : Header(Header), File(File), SectionKind(SectionKind), Repl(this) { 33 // The garbage collector sets sections' Live bits. 34 // If GC is disabled, all sections are considered live by default. 35 Live = !Config->GcSections; 36 37 // The ELF spec states that a value of 0 means the section has 38 // no alignment constraits. 39 Align = std::max<uintX_t>(Header->sh_addralign, 1); 40 } 41 42 template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const { 43 if (auto *D = dyn_cast<InputSection<ELFT>>(this)) 44 if (D->getThunksSize() > 0) 45 return D->getThunkOff() + D->getThunksSize(); 46 return Header->sh_size; 47 } 48 49 template <class ELFT> StringRef InputSectionBase<ELFT>::getSectionName() const { 50 return check(File->getObj().getSectionName(this->Header)); 51 } 52 53 template <class ELFT> 54 ArrayRef<uint8_t> InputSectionBase<ELFT>::getSectionData() const { 55 return check(this->File->getObj().getSectionContents(this->Header)); 56 } 57 58 template <class ELFT> 59 typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) { 60 switch (SectionKind) { 61 case Regular: 62 return cast<InputSection<ELFT>>(this)->OutSecOff + Offset; 63 case EHFrame: 64 return cast<EhInputSection<ELFT>>(this)->getOffset(Offset); 65 case Merge: 66 return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset); 67 case MipsReginfo: 68 case MipsOptions: 69 // MIPS .reginfo and .MIPS.options sections are consumed by the linker, 70 // and the linker produces a single output section. It is possible that 71 // input files contain section symbol points to the corresponding input 72 // section. Redirect it to the produced output section. 73 if (Offset != 0) 74 fatal("Unsupported reference to the middle of '" + getSectionName() + 75 "' section"); 76 return this->OutSec->getVA(); 77 } 78 llvm_unreachable("invalid section kind"); 79 } 80 81 template <class ELFT> 82 typename ELFT::uint 83 InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) { 84 return getOffset(Sym.Value); 85 } 86 87 template <class ELFT> 88 InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F, 89 const Elf_Shdr *Header) 90 : InputSectionBase<ELFT>(F, Header, Base::Regular) {} 91 92 template <class ELFT> 93 bool InputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 94 return S->SectionKind == Base::Regular; 95 } 96 97 template <class ELFT> 98 InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() { 99 assert(this->Header->sh_type == SHT_RELA || this->Header->sh_type == SHT_REL); 100 ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections(); 101 return Sections[this->Header->sh_info]; 102 } 103 104 template <class ELFT> void InputSection<ELFT>::addThunk(SymbolBody &Body) { 105 Body.ThunkIndex = Thunks.size(); 106 Thunks.push_back(&Body); 107 } 108 109 template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const { 110 return this->Header->sh_size; 111 } 112 113 template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const { 114 return Thunks.size() * Target->ThunkSize; 115 } 116 117 // This is used for -r. We can't use memcpy to copy relocations because we need 118 // to update symbol table offset and section index for each relocation. So we 119 // copy relocations one by one. 120 template <class ELFT> 121 template <class RelTy> 122 void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 123 InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection(); 124 125 for (const RelTy &Rel : Rels) { 126 uint32_t Type = Rel.getType(Config->Mips64EL); 127 SymbolBody &Body = this->File->getRelocTargetSym(Rel); 128 129 RelTy *P = reinterpret_cast<RelTy *>(Buf); 130 Buf += sizeof(RelTy); 131 132 P->r_offset = RelocatedSection->getOffset(Rel.r_offset); 133 P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL); 134 } 135 } 136 137 // Page(Expr) is the page address of the expression Expr, defined 138 // as (Expr & ~0xFFF). (This applies even if the machine page size 139 // supported by the platform has a different value.) 140 static uint64_t getAArch64Page(uint64_t Expr) { 141 return Expr & (~static_cast<uint64_t>(0xFFF)); 142 } 143 144 // For computing values, each R_RELAX_TLS_* corresponds to whatever expression 145 // the target uses in the mode this is being relaxed into. For example, anything 146 // that relaxes to LE just needs an R_TLS since that is what is used if we 147 // had a local exec expression to begin with. 148 static RelExpr getRelaxedExpr(RelExpr Expr) { 149 switch (Expr) { 150 default: 151 return Expr; 152 case R_RELAX_TLS_GD_TO_LE: 153 if (Config->EMachine == EM_386) 154 return R_NEG_TLS; 155 return R_TLS; 156 case R_RELAX_TLS_GD_TO_IE: 157 if (Config->EMachine == EM_386) 158 return R_GOT_FROM_END; 159 return R_GOT_PC; 160 case R_RELAX_TLS_IE_TO_LE: 161 case R_RELAX_TLS_LD_TO_LE: 162 return R_TLS; 163 } 164 } 165 166 template <class ELFT> 167 static typename ELFT::uint 168 getSymVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P, 169 const SymbolBody &Body, uint8_t *BufLoc, 170 const elf::ObjectFile<ELFT> &File, RelExpr Expr) { 171 typedef typename ELFT::uint uintX_t; 172 Expr = getRelaxedExpr(Expr); 173 174 switch (Expr) { 175 case R_HINT: 176 llvm_unreachable("cannot relocate hint relocs"); 177 case R_RELAX_TLS_GD_TO_LE: 178 case R_RELAX_TLS_GD_TO_IE: 179 case R_RELAX_TLS_IE_TO_LE: 180 case R_RELAX_TLS_LD_TO_LE: 181 llvm_unreachable("Should have been mapped"); 182 case R_TLSLD: 183 return Out<ELFT>::Got->getTlsIndexOff() + A - 184 Out<ELFT>::Got->getNumEntries() * sizeof(uintX_t); 185 case R_TLSLD_PC: 186 return Out<ELFT>::Got->getTlsIndexVA() + A - P; 187 case R_THUNK: 188 return Body.getThunkVA<ELFT>(); 189 case R_PPC_TOC: 190 return getPPC64TocBase() + A; 191 case R_TLSGD: 192 return Out<ELFT>::Got->getGlobalDynOffset(Body) + A - 193 Out<ELFT>::Got->getNumEntries() * sizeof(uintX_t); 194 case R_TLSGD_PC: 195 return Out<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 196 case R_PLT: 197 return Body.getPltVA<ELFT>() + A; 198 case R_PLT_PC: 199 case R_PPC_PLT_OPD: 200 return Body.getPltVA<ELFT>() + A - P; 201 case R_SIZE: 202 return Body.getSize<ELFT>() + A; 203 case R_GOTREL: 204 return Body.getVA<ELFT>(A) - Out<ELFT>::Got->getVA(); 205 case R_GOT_FROM_END: 206 return Body.getGotOffset<ELFT>() + A - 207 Out<ELFT>::Got->getNumEntries() * sizeof(uintX_t); 208 case R_GOT: 209 return Body.getGotVA<ELFT>() + A; 210 case R_GOT_PAGE_PC: 211 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 212 case R_GOT_PC: 213 return Body.getGotVA<ELFT>() + A - P; 214 case R_GOTONLY_PC: 215 return Out<ELFT>::Got->getVA() + A - P; 216 case R_TLS: 217 if (Target->TcbSize) 218 return Body.getVA<ELFT>(A) + 219 alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align); 220 return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz; 221 case R_NEG_TLS: 222 return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A); 223 case R_ABS: 224 case R_RELAX_GOT_PC_NOPIC: 225 return Body.getVA<ELFT>(A); 226 case R_GOT_OFF: 227 return Body.getGotOffset<ELFT>() + A; 228 case R_MIPS_GOT_LOCAL_PAGE: 229 // If relocation against MIPS local symbol requires GOT entry, this entry 230 // should be initialized by 'page address'. This address is high 16-bits 231 // of sum the symbol's value and the addend. 232 return Out<ELFT>::Got->getMipsLocalPageOffset(Body.getVA<ELFT>(A)); 233 case R_MIPS_GOT_LOCAL: 234 // For non-local symbols GOT entries should contain their full 235 // addresses. But if such symbol cannot be preempted, we do not 236 // have to put them into the "global" part of GOT and use dynamic 237 // linker to determine their actual addresses. That is why we 238 // create GOT entries for them in the "local" part of GOT. 239 return Out<ELFT>::Got->getMipsLocalEntryOffset(Body.getVA<ELFT>(A)); 240 case R_PPC_OPD: { 241 uint64_t SymVA = Body.getVA<ELFT>(A); 242 // If we have an undefined weak symbol, we might get here with a symbol 243 // address of zero. That could overflow, but the code must be unreachable, 244 // so don't bother doing anything at all. 245 if (!SymVA) 246 return 0; 247 if (Out<ELF64BE>::Opd) { 248 // If this is a local call, and we currently have the address of a 249 // function-descriptor, get the underlying code address instead. 250 uint64_t OpdStart = Out<ELF64BE>::Opd->getVA(); 251 uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize(); 252 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 253 if (InOpd) 254 SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]); 255 } 256 return SymVA - P; 257 } 258 case R_PC: 259 case R_RELAX_GOT_PC: 260 return Body.getVA<ELFT>(A) - P; 261 case R_PAGE_PC: 262 return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P); 263 } 264 llvm_unreachable("Invalid expression"); 265 } 266 267 // This function applies relocations to sections without SHF_ALLOC bit. 268 // Such sections are never mapped to memory at runtime. Debug sections are 269 // an example. Relocations in non-alloc sections are much easier to 270 // handle than in allocated sections because it will never need complex 271 // treatement such as GOT or PLT (because at runtime no one refers them). 272 // So, we handle relocations for non-alloc sections directly in this 273 // function as a performance optimization. 274 template <class ELFT> 275 template <class RelTy> 276 void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 277 const unsigned Bits = sizeof(uintX_t) * 8; 278 for (const RelTy &Rel : Rels) { 279 uint32_t Type = Rel.getType(Config->Mips64EL); 280 uintX_t Offset = this->getOffset(Rel.r_offset); 281 uint8_t *BufLoc = Buf + Offset; 282 uintX_t Addend = getAddend<ELFT>(Rel); 283 if (!RelTy::IsRela) 284 Addend += Target->getImplicitAddend(BufLoc, Type); 285 286 SymbolBody &Sym = this->File->getRelocTargetSym(Rel); 287 if (Target->getRelExpr(Type, Sym) != R_ABS) { 288 error(this->getSectionName() + " has non-ABS reloc"); 289 return; 290 } 291 292 uintX_t AddrLoc = this->OutSec->getVA() + Offset; 293 uint64_t SymVA = SignExtend64<Bits>(getSymVA<ELFT>( 294 Type, Addend, AddrLoc, Sym, BufLoc, *this->File, R_ABS)); 295 Target->relocateOne(BufLoc, Type, SymVA); 296 } 297 } 298 299 template <class ELFT> 300 void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) { 301 // scanReloc function in Writer.cpp constructs Relocations 302 // vector only for SHF_ALLOC'ed sections. For other sections, 303 // we handle relocations directly here. 304 auto *IS = dyn_cast<InputSection<ELFT>>(this); 305 if (IS && !(IS->Header->sh_flags & SHF_ALLOC)) { 306 for (const Elf_Shdr *RelSec : IS->RelocSections) { 307 if (RelSec->sh_type == SHT_RELA) 308 IS->relocateNonAlloc(Buf, IS->File->getObj().relas(RelSec)); 309 else 310 IS->relocateNonAlloc(Buf, IS->File->getObj().rels(RelSec)); 311 } 312 return; 313 } 314 315 const unsigned Bits = sizeof(uintX_t) * 8; 316 for (const Relocation &Rel : Relocations) { 317 uintX_t Offset = Rel.Offset; 318 uint8_t *BufLoc = Buf + Offset; 319 uint32_t Type = Rel.Type; 320 uintX_t A = Rel.Addend; 321 322 uintX_t AddrLoc = OutSec->getVA() + Offset; 323 RelExpr Expr = Rel.Expr; 324 uint64_t SymVA = SignExtend64<Bits>( 325 getSymVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, BufLoc, *File, Expr)); 326 327 switch (Expr) { 328 case R_RELAX_GOT_PC: 329 case R_RELAX_GOT_PC_NOPIC: 330 Target->relaxGot(BufLoc, SymVA); 331 break; 332 case R_RELAX_TLS_IE_TO_LE: 333 Target->relaxTlsIeToLe(BufLoc, Type, SymVA); 334 break; 335 case R_RELAX_TLS_LD_TO_LE: 336 Target->relaxTlsLdToLe(BufLoc, Type, SymVA); 337 break; 338 case R_RELAX_TLS_GD_TO_LE: 339 Target->relaxTlsGdToLe(BufLoc, Type, SymVA); 340 break; 341 case R_RELAX_TLS_GD_TO_IE: 342 Target->relaxTlsGdToIe(BufLoc, Type, SymVA); 343 break; 344 case R_PPC_PLT_OPD: 345 // Patch a nop (0x60000000) to a ld. 346 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 347 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 348 // fallthrough 349 default: 350 Target->relocateOne(BufLoc, Type, SymVA); 351 break; 352 } 353 } 354 } 355 356 template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) { 357 if (this->Header->sh_type == SHT_NOBITS) 358 return; 359 ELFFile<ELFT> &EObj = this->File->getObj(); 360 361 // If -r is given, then an InputSection may be a relocation section. 362 if (this->Header->sh_type == SHT_RELA) { 363 copyRelocations(Buf + OutSecOff, EObj.relas(this->Header)); 364 return; 365 } 366 if (this->Header->sh_type == SHT_REL) { 367 copyRelocations(Buf + OutSecOff, EObj.rels(this->Header)); 368 return; 369 } 370 371 // Copy section contents from source object file to output file. 372 ArrayRef<uint8_t> Data = this->getSectionData(); 373 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 374 375 // Iterate over all relocation sections that apply to this section. 376 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 377 this->relocate(Buf, BufEnd); 378 379 // The section might have a data/code generated by the linker and need 380 // to be written after the section. Usually these are thunks - small piece 381 // of code used to jump between "incompatible" functions like PIC and non-PIC 382 // or if the jump target too far and its address does not fit to the short 383 // jump istruction. 384 if (!Thunks.empty()) { 385 Buf += OutSecOff + getThunkOff(); 386 for (const SymbolBody *S : Thunks) { 387 Target->writeThunk(Buf, S->getVA<ELFT>()); 388 Buf += Target->ThunkSize; 389 } 390 } 391 } 392 393 template <class ELFT> 394 void InputSection<ELFT>::replace(InputSection<ELFT> *Other) { 395 this->Align = std::max(this->Align, Other->Align); 396 Other->Repl = this->Repl; 397 Other->Live = false; 398 } 399 400 template <class ELFT> 401 SplitInputSection<ELFT>::SplitInputSection( 402 elf::ObjectFile<ELFT> *File, const Elf_Shdr *Header, 403 typename InputSectionBase<ELFT>::Kind SectionKind) 404 : InputSectionBase<ELFT>(File, Header, SectionKind) {} 405 406 template <class ELFT> 407 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F, 408 const Elf_Shdr *Header) 409 : SplitInputSection<ELFT>(F, Header, InputSectionBase<ELFT>::EHFrame) { 410 // Mark .eh_frame sections as live by default because there are 411 // usually no relocations that point to .eh_frames. Otherwise, 412 // the garbage collector would drop all .eh_frame sections. 413 this->Live = true; 414 } 415 416 template <class ELFT> 417 bool EhInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 418 return S->SectionKind == InputSectionBase<ELFT>::EHFrame; 419 } 420 421 // .eh_frame is a sequence of CIE or FDE records. 422 // This function splits an input section into records and returns them. 423 template <class ELFT> 424 void EhInputSection<ELFT>::split() { 425 ArrayRef<uint8_t> Data = this->getSectionData(); 426 for (size_t Off = 0, End = Data.size(); Off != End;) { 427 size_t Size = readEhRecordSize<ELFT>(Data.slice(Off)); 428 this->Pieces.emplace_back(Off, Data.slice(Off, Size)); 429 // The empty record is the end marker. 430 if (Size == 4) 431 break; 432 Off += Size; 433 } 434 } 435 436 template <class ELFT> 437 typename ELFT::uint EhInputSection<ELFT>::getOffset(uintX_t Offset) { 438 // The file crtbeginT.o has relocations pointing to the start of an empty 439 // .eh_frame that is known to be the first in the link. It does that to 440 // identify the start of the output .eh_frame. Handle this special case. 441 if (this->getSectionHdr()->sh_size == 0) 442 return Offset; 443 SectionPiece *Piece = this->getSectionPiece(Offset); 444 if (Piece->OutputOff == size_t(-1)) 445 return -1; // Not in the output 446 447 uintX_t Addend = Offset - Piece->InputOff; 448 return Piece->OutputOff + Addend; 449 } 450 451 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 452 // Optimize the common case. 453 StringRef S((const char *)A.data(), A.size()); 454 if (EntSize == 1) 455 return S.find(0); 456 457 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 458 const char *B = S.begin() + I; 459 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 460 return I; 461 } 462 return StringRef::npos; 463 } 464 465 // Split SHF_STRINGS section. Such section is a sequence of 466 // null-terminated strings. 467 static std::vector<SectionPiece> splitStrings(ArrayRef<uint8_t> Data, 468 size_t EntSize) { 469 std::vector<SectionPiece> V; 470 size_t Off = 0; 471 while (!Data.empty()) { 472 size_t End = findNull(Data, EntSize); 473 if (End == StringRef::npos) 474 fatal("string is not null terminated"); 475 size_t Size = End + EntSize; 476 V.emplace_back(Off, Data.slice(0, Size)); 477 Data = Data.slice(Size); 478 Off += Size; 479 } 480 return V; 481 } 482 483 // Split non-SHF_STRINGS section. Such section is a sequence of 484 // fixed size records. 485 static std::vector<SectionPiece> splitNonStrings(ArrayRef<uint8_t> Data, 486 size_t EntSize) { 487 std::vector<SectionPiece> V; 488 size_t Size = Data.size(); 489 assert((Size % EntSize) == 0); 490 for (unsigned I = 0, N = Size; I != N; I += EntSize) 491 V.emplace_back(I, Data.slice(I, EntSize)); 492 return V; 493 } 494 495 template <class ELFT> 496 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F, 497 const Elf_Shdr *Header) 498 : SplitInputSection<ELFT>(F, Header, InputSectionBase<ELFT>::Merge) {} 499 500 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() { 501 ArrayRef<uint8_t> Data = this->getSectionData(); 502 uintX_t EntSize = this->Header->sh_entsize; 503 if (this->Header->sh_flags & SHF_STRINGS) 504 this->Pieces = splitStrings(Data, EntSize); 505 else 506 this->Pieces = splitNonStrings(Data, EntSize); 507 508 if (Config->GcSections) 509 for (uintX_t Off : LiveOffsets) 510 this->getSectionPiece(Off)->Live = true; 511 } 512 513 template <class ELFT> 514 bool MergeInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 515 return S->SectionKind == InputSectionBase<ELFT>::Merge; 516 } 517 518 // Do binary search to get a section piece at a given input offset. 519 template <class ELFT> 520 SectionPiece *SplitInputSection<ELFT>::getSectionPiece(uintX_t Offset) { 521 ArrayRef<uint8_t> D = this->getSectionData(); 522 StringRef Data((const char *)D.data(), D.size()); 523 uintX_t Size = Data.size(); 524 if (Offset >= Size) 525 fatal("entry is past the end of the section"); 526 527 // Find the element this offset points to. 528 auto I = std::upper_bound( 529 Pieces.begin(), Pieces.end(), Offset, 530 [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; }); 531 --I; 532 return &*I; 533 } 534 535 // Returns the offset in an output section for a given input offset. 536 // Because contents of a mergeable section is not contiguous in output, 537 // it is not just an addition to a base output offset. 538 template <class ELFT> 539 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) { 540 auto It = OffsetMap.find(Offset); 541 if (It != OffsetMap.end()) 542 return It->second; 543 544 // If Offset is not at beginning of a section piece, it is not in the map. 545 // In that case we need to search from the original section piece vector. 546 SectionPiece &Piece = *this->getSectionPiece(Offset); 547 assert(Piece.Live); 548 uintX_t Addend = Offset - Piece.InputOff; 549 return Piece.OutputOff + Addend; 550 } 551 552 // Create a map from input offsets to output offsets for all section pieces. 553 // It is called after finalize(). 554 template <class ELFT> void MergeInputSection<ELFT>::finalizePieces() { 555 OffsetMap.grow(this->Pieces.size()); 556 for (SectionPiece &Piece : this->Pieces) { 557 if (!Piece.Live) 558 continue; 559 if (Piece.OutputOff == size_t(-1)) { 560 // Offsets of tail-merged strings are computed lazily. 561 auto *OutSec = static_cast<MergeOutputSection<ELFT> *>(this->OutSec); 562 ArrayRef<uint8_t> D = Piece.data(); 563 StringRef S((const char *)D.data(), D.size()); 564 Piece.OutputOff = OutSec->getOffset(S); 565 } 566 OffsetMap[Piece.InputOff] = Piece.OutputOff; 567 } 568 } 569 570 template <class ELFT> 571 MipsReginfoInputSection<ELFT>::MipsReginfoInputSection(elf::ObjectFile<ELFT> *F, 572 const Elf_Shdr *Hdr) 573 : InputSectionBase<ELFT>(F, Hdr, InputSectionBase<ELFT>::MipsReginfo) { 574 // Initialize this->Reginfo. 575 ArrayRef<uint8_t> D = this->getSectionData(); 576 if (D.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) { 577 error("invalid size of .reginfo section"); 578 return; 579 } 580 Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(D.data()); 581 } 582 583 template <class ELFT> 584 bool MipsReginfoInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 585 return S->SectionKind == InputSectionBase<ELFT>::MipsReginfo; 586 } 587 588 template <class ELFT> 589 MipsOptionsInputSection<ELFT>::MipsOptionsInputSection(elf::ObjectFile<ELFT> *F, 590 const Elf_Shdr *Hdr) 591 : InputSectionBase<ELFT>(F, Hdr, InputSectionBase<ELFT>::MipsOptions) { 592 // Find ODK_REGINFO option in the section's content. 593 ArrayRef<uint8_t> D = this->getSectionData(); 594 while (!D.empty()) { 595 if (D.size() < sizeof(Elf_Mips_Options<ELFT>)) { 596 error("invalid size of .MIPS.options section"); 597 break; 598 } 599 auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(D.data()); 600 if (O->kind == ODK_REGINFO) { 601 Reginfo = &O->getRegInfo(); 602 break; 603 } 604 D = D.slice(O->size); 605 } 606 } 607 608 template <class ELFT> 609 bool MipsOptionsInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 610 return S->SectionKind == InputSectionBase<ELFT>::MipsOptions; 611 } 612 613 template class elf::InputSectionBase<ELF32LE>; 614 template class elf::InputSectionBase<ELF32BE>; 615 template class elf::InputSectionBase<ELF64LE>; 616 template class elf::InputSectionBase<ELF64BE>; 617 618 template class elf::InputSection<ELF32LE>; 619 template class elf::InputSection<ELF32BE>; 620 template class elf::InputSection<ELF64LE>; 621 template class elf::InputSection<ELF64BE>; 622 623 template class elf::SplitInputSection<ELF32LE>; 624 template class elf::SplitInputSection<ELF32BE>; 625 template class elf::SplitInputSection<ELF64LE>; 626 template class elf::SplitInputSection<ELF64BE>; 627 628 template class elf::EhInputSection<ELF32LE>; 629 template class elf::EhInputSection<ELF32BE>; 630 template class elf::EhInputSection<ELF64LE>; 631 template class elf::EhInputSection<ELF64BE>; 632 633 template class elf::MergeInputSection<ELF32LE>; 634 template class elf::MergeInputSection<ELF32BE>; 635 template class elf::MergeInputSection<ELF64LE>; 636 template class elf::MergeInputSection<ELF64BE>; 637 638 template class elf::MipsReginfoInputSection<ELF32LE>; 639 template class elf::MipsReginfoInputSection<ELF32BE>; 640 template class elf::MipsReginfoInputSection<ELF64LE>; 641 template class elf::MipsReginfoInputSection<ELF64BE>; 642 643 template class elf::MipsOptionsInputSection<ELF32LE>; 644 template class elf::MipsOptionsInputSection<ELF32BE>; 645 template class elf::MipsOptionsInputSection<ELF64LE>; 646 template class elf::MipsOptionsInputSection<ELF64BE>; 647