1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 // The ELF spec states that a value of 0 means the section has 74 // no alignment constraints. 75 uint32_t v = std::max<uint32_t>(alignment, 1); 76 if (!isPowerOf2_64(v)) 77 fatal(toString(this) + ": sh_addralign is not a power of 2"); 78 this->alignment = v; 79 80 // In ELF, each section can be compressed by zlib, and if compressed, 81 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 82 // If that's the case, demangle section name so that we can handle a 83 // section as if it weren't compressed. 84 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 85 if (!zlib::isAvailable()) 86 error(toString(file) + ": contains a compressed section, " + 87 "but zlib is not available"); 88 switch (config->ekind) { 89 case ELF32LEKind: 90 parseCompressedHeader<ELF32LE>(); 91 break; 92 case ELF32BEKind: 93 parseCompressedHeader<ELF32BE>(); 94 break; 95 case ELF64LEKind: 96 parseCompressedHeader<ELF64LE>(); 97 break; 98 case ELF64BEKind: 99 parseCompressedHeader<ELF64BE>(); 100 break; 101 default: 102 llvm_unreachable("unknown ELFT"); 103 } 104 } 105 } 106 107 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 108 // SHF_GROUP is a marker that a section belongs to some comdat group. 109 // That flag doesn't make sense in an executable. 110 static uint64_t getFlags(uint64_t flags) { 111 flags &= ~(uint64_t)SHF_INFO_LINK; 112 if (!config->relocatable) 113 flags &= ~(uint64_t)SHF_GROUP; 114 return flags; 115 } 116 117 template <class ELFT> 118 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 119 const typename ELFT::Shdr &hdr, 120 StringRef name, Kind sectionKind) 121 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 122 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 123 hdr.sh_addralign, getSectionContents(file, hdr), name, 124 sectionKind) { 125 // We reject object files having insanely large alignments even though 126 // they are allowed by the spec. I think 4GB is a reasonable limitation. 127 // We might want to relax this in the future. 128 if (hdr.sh_addralign > UINT32_MAX) 129 fatal(toString(&file) + ": section sh_addralign is too large"); 130 } 131 132 size_t InputSectionBase::getSize() const { 133 if (auto *s = dyn_cast<SyntheticSection>(this)) 134 return s->getSize(); 135 if (uncompressedSize >= 0) 136 return uncompressedSize; 137 return rawData.size() - bytesDropped; 138 } 139 140 void InputSectionBase::uncompress() const { 141 size_t size = uncompressedSize; 142 char *uncompressedBuf; 143 { 144 static std::mutex mu; 145 std::lock_guard<std::mutex> lock(mu); 146 uncompressedBuf = bAlloc.Allocate<char>(size); 147 } 148 149 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 150 fatal(toString(this) + 151 ": uncompress failed: " + llvm::toString(std::move(e))); 152 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 153 uncompressedSize = -1; 154 } 155 156 uint64_t InputSectionBase::getOffsetInFile() const { 157 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 158 const uint8_t *secStart = data().begin(); 159 return secStart - fileStart; 160 } 161 162 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 163 if (relSecIdx == 0) 164 return {}; 165 RelsOrRelas<ELFT> ret; 166 const ELFFile<ELFT> obj = cast<ELFFileBase>(file)->getObj<ELFT>(); 167 typename ELFT::Shdr shdr = cantFail(obj.sections())[relSecIdx]; 168 if (shdr.sh_type == SHT_REL) { 169 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 170 obj.base() + shdr.sh_offset), 171 shdr.sh_size / sizeof(typename ELFT::Rel)); 172 } else { 173 assert(shdr.sh_type == SHT_RELA); 174 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 175 obj.base() + shdr.sh_offset), 176 shdr.sh_size / sizeof(typename ELFT::Rela)); 177 } 178 return ret; 179 } 180 181 uint64_t SectionBase::getOffset(uint64_t offset) const { 182 switch (kind()) { 183 case Output: { 184 auto *os = cast<OutputSection>(this); 185 // For output sections we treat offset -1 as the end of the section. 186 return offset == uint64_t(-1) ? os->size : offset; 187 } 188 case Regular: 189 case Synthetic: 190 return cast<InputSection>(this)->getOffset(offset); 191 case EHFrame: 192 // The file crtbeginT.o has relocations pointing to the start of an empty 193 // .eh_frame that is known to be the first in the link. It does that to 194 // identify the start of the output .eh_frame. 195 return offset; 196 case Merge: 197 const MergeInputSection *ms = cast<MergeInputSection>(this); 198 if (InputSection *isec = ms->getParent()) 199 return isec->getOffset(ms->getParentOffset(offset)); 200 return ms->getParentOffset(offset); 201 } 202 llvm_unreachable("invalid section kind"); 203 } 204 205 uint64_t SectionBase::getVA(uint64_t offset) const { 206 const OutputSection *out = getOutputSection(); 207 return (out ? out->addr : 0) + getOffset(offset); 208 } 209 210 OutputSection *SectionBase::getOutputSection() { 211 InputSection *sec; 212 if (auto *isec = dyn_cast<InputSection>(this)) 213 sec = isec; 214 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 215 sec = ms->getParent(); 216 else if (auto *eh = dyn_cast<EhInputSection>(this)) 217 sec = eh->getParent(); 218 else 219 return cast<OutputSection>(this); 220 return sec ? sec->getParent() : nullptr; 221 } 222 223 // When a section is compressed, `rawData` consists with a header followed 224 // by zlib-compressed data. This function parses a header to initialize 225 // `uncompressedSize` member and remove the header from `rawData`. 226 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 227 // Old-style header 228 if (name.startswith(".zdebug")) { 229 if (!toStringRef(rawData).startswith("ZLIB")) { 230 error(toString(this) + ": corrupted compressed section header"); 231 return; 232 } 233 rawData = rawData.slice(4); 234 235 if (rawData.size() < 8) { 236 error(toString(this) + ": corrupted compressed section header"); 237 return; 238 } 239 240 uncompressedSize = read64be(rawData.data()); 241 rawData = rawData.slice(8); 242 243 // Restore the original section name. 244 // (e.g. ".zdebug_info" -> ".debug_info") 245 name = saver.save("." + name.substr(2)); 246 return; 247 } 248 249 assert(flags & SHF_COMPRESSED); 250 flags &= ~(uint64_t)SHF_COMPRESSED; 251 252 // New-style header 253 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 254 error(toString(this) + ": corrupted compressed section"); 255 return; 256 } 257 258 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 259 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 260 error(toString(this) + ": unsupported compression type"); 261 return; 262 } 263 264 uncompressedSize = hdr->ch_size; 265 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 266 rawData = rawData.slice(sizeof(*hdr)); 267 } 268 269 InputSection *InputSectionBase::getLinkOrderDep() const { 270 assert(flags & SHF_LINK_ORDER); 271 if (!link) 272 return nullptr; 273 return cast<InputSection>(file->getSections()[link]); 274 } 275 276 // Find a function symbol that encloses a given location. 277 template <class ELFT> 278 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 279 for (Symbol *b : file->getSymbols()) 280 if (Defined *d = dyn_cast<Defined>(b)) 281 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 282 offset < d->value + d->size) 283 return d; 284 return nullptr; 285 } 286 287 // Returns a source location string. Used to construct an error message. 288 template <class ELFT> 289 std::string InputSectionBase::getLocation(uint64_t offset) { 290 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); 291 292 // We don't have file for synthetic sections. 293 if (getFile<ELFT>() == nullptr) 294 return (config->outputFile + ":(" + secAndOffset + ")") 295 .str(); 296 297 // First check if we can get desired values from debugging information. 298 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) 299 return info->FileName + ":" + std::to_string(info->Line) + ":(" + 300 secAndOffset + ")"; 301 302 // File->sourceFile contains STT_FILE symbol that contains a 303 // source file name. If it's missing, we use an object file name. 304 std::string srcFile = std::string(getFile<ELFT>()->sourceFile); 305 if (srcFile.empty()) 306 srcFile = toString(file); 307 308 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 309 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; 310 311 // If there's no symbol, print out the offset in the section. 312 return (srcFile + ":(" + secAndOffset + ")"); 313 } 314 315 // This function is intended to be used for constructing an error message. 316 // The returned message looks like this: 317 // 318 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 319 // 320 // Returns an empty string if there's no way to get line info. 321 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 322 return file->getSrcMsg(sym, *this, offset); 323 } 324 325 // Returns a filename string along with an optional section name. This 326 // function is intended to be used for constructing an error 327 // message. The returned message looks like this: 328 // 329 // path/to/foo.o:(function bar) 330 // 331 // or 332 // 333 // path/to/foo.o:(function bar) in archive path/to/bar.a 334 std::string InputSectionBase::getObjMsg(uint64_t off) { 335 std::string filename = std::string(file->getName()); 336 337 std::string archive; 338 if (!file->archiveName.empty()) 339 archive = " in archive " + file->archiveName; 340 341 // Find a symbol that encloses a given location. 342 for (Symbol *b : file->getSymbols()) 343 if (auto *d = dyn_cast<Defined>(b)) 344 if (d->section == this && d->value <= off && off < d->value + d->size) 345 return filename + ":(" + toString(*d) + ")" + archive; 346 347 // If there's no symbol, print out the offset in the section. 348 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 349 .str(); 350 } 351 352 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 353 354 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 355 uint32_t alignment, ArrayRef<uint8_t> data, 356 StringRef name, Kind k) 357 : InputSectionBase(f, flags, type, 358 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 359 name, k) {} 360 361 template <class ELFT> 362 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 363 StringRef name) 364 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 365 366 bool InputSection::classof(const SectionBase *s) { 367 return s->kind() == SectionBase::Regular || 368 s->kind() == SectionBase::Synthetic; 369 } 370 371 OutputSection *InputSection::getParent() const { 372 return cast_or_null<OutputSection>(parent); 373 } 374 375 // Copy SHT_GROUP section contents. Used only for the -r option. 376 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 377 // ELFT::Word is the 32-bit integral type in the target endianness. 378 using u32 = typename ELFT::Word; 379 ArrayRef<u32> from = getDataAs<u32>(); 380 auto *to = reinterpret_cast<u32 *>(buf); 381 382 // The first entry is not a section number but a flag. 383 *to++ = from[0]; 384 385 // Adjust section numbers because section numbers in an input object files are 386 // different in the output. We also need to handle combined or discarded 387 // members. 388 ArrayRef<InputSectionBase *> sections = file->getSections(); 389 std::unordered_set<uint32_t> seen; 390 for (uint32_t idx : from.slice(1)) { 391 OutputSection *osec = sections[idx]->getOutputSection(); 392 if (osec && seen.insert(osec->sectionIndex).second) 393 *to++ = osec->sectionIndex; 394 } 395 } 396 397 InputSectionBase *InputSection::getRelocatedSection() const { 398 if (!file || (type != SHT_RELA && type != SHT_REL)) 399 return nullptr; 400 ArrayRef<InputSectionBase *> sections = file->getSections(); 401 return sections[info]; 402 } 403 404 // This is used for -r and --emit-relocs. We can't use memcpy to copy 405 // relocations because we need to update symbol table offset and section index 406 // for each relocation. So we copy relocations one by one. 407 template <class ELFT, class RelTy> 408 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 409 InputSectionBase *sec = getRelocatedSection(); 410 411 for (const RelTy &rel : rels) { 412 RelType type = rel.getType(config->isMips64EL); 413 const ObjFile<ELFT> *file = getFile<ELFT>(); 414 Symbol &sym = file->getRelocTargetSym(rel); 415 416 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 417 buf += sizeof(RelTy); 418 419 if (RelTy::IsRela) 420 p->r_addend = getAddend<ELFT>(rel); 421 422 // Output section VA is zero for -r, so r_offset is an offset within the 423 // section, but for --emit-relocs it is a virtual address. 424 p->r_offset = sec->getVA(rel.r_offset); 425 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 426 config->isMips64EL); 427 428 if (sym.type == STT_SECTION) { 429 // We combine multiple section symbols into only one per 430 // section. This means we have to update the addend. That is 431 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 432 // section data. We do that by adding to the Relocation vector. 433 434 // .eh_frame is horribly special and can reference discarded sections. To 435 // avoid having to parse and recreate .eh_frame, we just replace any 436 // relocation in it pointing to discarded sections with R_*_NONE, which 437 // hopefully creates a frame that is ignored at runtime. Also, don't warn 438 // on .gcc_except_table and debug sections. 439 // 440 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 441 auto *d = dyn_cast<Defined>(&sym); 442 if (!d) { 443 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 444 sec->name != ".gcc_except_table" && sec->name != ".got2" && 445 sec->name != ".toc") { 446 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 447 Elf_Shdr_Impl<ELFT> sec = 448 CHECK(file->getObj().sections(), file)[secIdx]; 449 warn("relocation refers to a discarded section: " + 450 CHECK(file->getObj().getSectionName(sec), file) + 451 "\n>>> referenced by " + getObjMsg(p->r_offset)); 452 } 453 p->setSymbolAndType(0, 0, false); 454 continue; 455 } 456 SectionBase *section = d->section->repl; 457 if (!section->isLive()) { 458 p->setSymbolAndType(0, 0, false); 459 continue; 460 } 461 462 int64_t addend = getAddend<ELFT>(rel); 463 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 464 if (!RelTy::IsRela) 465 addend = target->getImplicitAddend(bufLoc, type); 466 467 if (config->emachine == EM_MIPS && 468 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 469 // Some MIPS relocations depend on "gp" value. By default, 470 // this value has 0x7ff0 offset from a .got section. But 471 // relocatable files produced by a compiler or a linker 472 // might redefine this default value and we must use it 473 // for a calculation of the relocation result. When we 474 // generate EXE or DSO it's trivial. Generating a relocatable 475 // output is more difficult case because the linker does 476 // not calculate relocations in this mode and loses 477 // individual "gp" values used by each input object file. 478 // As a workaround we add the "gp" value to the relocation 479 // addend and save it back to the file. 480 addend += sec->getFile<ELFT>()->mipsGp0; 481 } 482 483 if (RelTy::IsRela) 484 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 485 else if (config->relocatable && type != target->noneRel) 486 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 487 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 488 p->r_addend >= 0x8000) { 489 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 490 // indicates that r30 is relative to the input section .got2 491 // (r_addend>=0x8000), after linking, r30 should be relative to the output 492 // section .got2 . To compensate for the shift, adjust r_addend by 493 // ppc32Got2OutSecOff. 494 p->r_addend += sec->file->ppc32Got2OutSecOff; 495 } 496 } 497 } 498 499 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 500 // references specially. The general rule is that the value of the symbol in 501 // this context is the address of the place P. A further special case is that 502 // branch relocations to an undefined weak reference resolve to the next 503 // instruction. 504 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 505 uint32_t p) { 506 switch (type) { 507 // Unresolved branch relocations to weak references resolve to next 508 // instruction, this will be either 2 or 4 bytes on from P. 509 case R_ARM_THM_JUMP11: 510 return p + 2 + a; 511 case R_ARM_CALL: 512 case R_ARM_JUMP24: 513 case R_ARM_PC24: 514 case R_ARM_PLT32: 515 case R_ARM_PREL31: 516 case R_ARM_THM_JUMP19: 517 case R_ARM_THM_JUMP24: 518 return p + 4 + a; 519 case R_ARM_THM_CALL: 520 // We don't want an interworking BLX to ARM 521 return p + 5 + a; 522 // Unresolved non branch pc-relative relocations 523 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 524 // targets a weak-reference. 525 case R_ARM_MOVW_PREL_NC: 526 case R_ARM_MOVT_PREL: 527 case R_ARM_REL32: 528 case R_ARM_THM_ALU_PREL_11_0: 529 case R_ARM_THM_MOVW_PREL_NC: 530 case R_ARM_THM_MOVT_PREL: 531 case R_ARM_THM_PC12: 532 return p + a; 533 // p + a is unrepresentable as negative immediates can't be encoded. 534 case R_ARM_THM_PC8: 535 return p; 536 } 537 llvm_unreachable("ARM pc-relative relocation expected\n"); 538 } 539 540 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 541 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 542 switch (type) { 543 // Unresolved branch relocations to weak references resolve to next 544 // instruction, this is 4 bytes on from P. 545 case R_AARCH64_CALL26: 546 case R_AARCH64_CONDBR19: 547 case R_AARCH64_JUMP26: 548 case R_AARCH64_TSTBR14: 549 return p + 4; 550 // Unresolved non branch pc-relative relocations 551 case R_AARCH64_PREL16: 552 case R_AARCH64_PREL32: 553 case R_AARCH64_PREL64: 554 case R_AARCH64_ADR_PREL_LO21: 555 case R_AARCH64_LD_PREL_LO19: 556 case R_AARCH64_PLT32: 557 return p; 558 } 559 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 560 } 561 562 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 563 switch (type) { 564 case R_RISCV_BRANCH: 565 case R_RISCV_JAL: 566 case R_RISCV_CALL: 567 case R_RISCV_CALL_PLT: 568 case R_RISCV_RVC_BRANCH: 569 case R_RISCV_RVC_JUMP: 570 return p; 571 default: 572 return 0; 573 } 574 } 575 576 // ARM SBREL relocations are of the form S + A - B where B is the static base 577 // The ARM ABI defines base to be "addressing origin of the output segment 578 // defining the symbol S". We defined the "addressing origin"/static base to be 579 // the base of the PT_LOAD segment containing the Sym. 580 // The procedure call standard only defines a Read Write Position Independent 581 // RWPI variant so in practice we should expect the static base to be the base 582 // of the RW segment. 583 static uint64_t getARMStaticBase(const Symbol &sym) { 584 OutputSection *os = sym.getOutputSection(); 585 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 586 fatal("SBREL relocation to " + sym.getName() + " without static base"); 587 return os->ptLoad->firstSec->addr; 588 } 589 590 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 591 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 592 // is calculated using PCREL_HI20's symbol. 593 // 594 // This function returns the R_RISCV_PCREL_HI20 relocation from 595 // R_RISCV_PCREL_LO12's symbol and addend. 596 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 597 const Defined *d = cast<Defined>(sym); 598 if (!d->section) { 599 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 600 sym->getName()); 601 return nullptr; 602 } 603 InputSection *isec = cast<InputSection>(d->section); 604 605 if (addend != 0) 606 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 607 isec->getObjMsg(d->value) + " is ignored"); 608 609 // Relocations are sorted by offset, so we can use std::equal_range to do 610 // binary search. 611 Relocation r; 612 r.offset = d->value; 613 auto range = 614 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 615 [](const Relocation &lhs, const Relocation &rhs) { 616 return lhs.offset < rhs.offset; 617 }); 618 619 for (auto it = range.first; it != range.second; ++it) 620 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 621 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 622 return &*it; 623 624 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 625 " without an associated R_RISCV_PCREL_HI20 relocation"); 626 return nullptr; 627 } 628 629 // A TLS symbol's virtual address is relative to the TLS segment. Add a 630 // target-specific adjustment to produce a thread-pointer-relative offset. 631 static int64_t getTlsTpOffset(const Symbol &s) { 632 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 633 if (&s == ElfSym::tlsModuleBase) 634 return 0; 635 636 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 637 // while most others use Variant 1. At run time TP will be aligned to p_align. 638 639 // Variant 1. TP will be followed by an optional gap (which is the size of 2 640 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 641 // padding, then the static TLS blocks. The alignment padding is added so that 642 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 643 // 644 // Variant 2. Static TLS blocks, followed by alignment padding are placed 645 // before TP. The alignment padding is added so that (TP - padding - 646 // p_memsz) is congruent to p_vaddr modulo p_align. 647 PhdrEntry *tls = Out::tlsPhdr; 648 switch (config->emachine) { 649 // Variant 1. 650 case EM_ARM: 651 case EM_AARCH64: 652 return s.getVA(0) + config->wordsize * 2 + 653 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 654 case EM_MIPS: 655 case EM_PPC: 656 case EM_PPC64: 657 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 658 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 659 // data and 0xf000 of the program's TLS segment. 660 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 661 case EM_RISCV: 662 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 663 664 // Variant 2. 665 case EM_HEXAGON: 666 case EM_SPARCV9: 667 case EM_386: 668 case EM_X86_64: 669 return s.getVA(0) - tls->p_memsz - 670 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 671 default: 672 llvm_unreachable("unhandled Config->EMachine"); 673 } 674 } 675 676 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 677 int64_t a, uint64_t p, 678 const Symbol &sym, RelExpr expr) { 679 switch (expr) { 680 case R_ABS: 681 case R_DTPREL: 682 case R_RELAX_TLS_LD_TO_LE_ABS: 683 case R_RELAX_GOT_PC_NOPIC: 684 case R_RISCV_ADD: 685 return sym.getVA(a); 686 case R_ADDEND: 687 return a; 688 case R_ARM_SBREL: 689 return sym.getVA(a) - getARMStaticBase(sym); 690 case R_GOT: 691 case R_RELAX_TLS_GD_TO_IE_ABS: 692 return sym.getGotVA() + a; 693 case R_GOTONLY_PC: 694 return in.got->getVA() + a - p; 695 case R_GOTPLTONLY_PC: 696 return in.gotPlt->getVA() + a - p; 697 case R_GOTREL: 698 case R_PPC64_RELAX_TOC: 699 return sym.getVA(a) - in.got->getVA(); 700 case R_GOTPLTREL: 701 return sym.getVA(a) - in.gotPlt->getVA(); 702 case R_GOTPLT: 703 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 704 return sym.getGotVA() + a - in.gotPlt->getVA(); 705 case R_TLSLD_GOT_OFF: 706 case R_GOT_OFF: 707 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 708 return sym.getGotOffset() + a; 709 case R_AARCH64_GOT_PAGE_PC: 710 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 711 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 712 case R_AARCH64_GOT_PAGE: 713 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 714 case R_GOT_PC: 715 case R_RELAX_TLS_GD_TO_IE: 716 return sym.getGotVA() + a - p; 717 case R_MIPS_GOTREL: 718 return sym.getVA(a) - in.mipsGot->getGp(file); 719 case R_MIPS_GOT_GP: 720 return in.mipsGot->getGp(file) + a; 721 case R_MIPS_GOT_GP_PC: { 722 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 723 // is _gp_disp symbol. In that case we should use the following 724 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 725 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 726 // microMIPS variants of these relocations use slightly different 727 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 728 // to correctly handle less-significant bit of the microMIPS symbol. 729 uint64_t v = in.mipsGot->getGp(file) + a - p; 730 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 731 v += 4; 732 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 733 v -= 1; 734 return v; 735 } 736 case R_MIPS_GOT_LOCAL_PAGE: 737 // If relocation against MIPS local symbol requires GOT entry, this entry 738 // should be initialized by 'page address'. This address is high 16-bits 739 // of sum the symbol's value and the addend. 740 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 741 in.mipsGot->getGp(file); 742 case R_MIPS_GOT_OFF: 743 case R_MIPS_GOT_OFF32: 744 // In case of MIPS if a GOT relocation has non-zero addend this addend 745 // should be applied to the GOT entry content not to the GOT entry offset. 746 // That is why we use separate expression type. 747 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 748 in.mipsGot->getGp(file); 749 case R_MIPS_TLSGD: 750 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 751 in.mipsGot->getGp(file); 752 case R_MIPS_TLSLD: 753 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 754 in.mipsGot->getGp(file); 755 case R_AARCH64_PAGE_PC: { 756 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 757 return getAArch64Page(val) - getAArch64Page(p); 758 } 759 case R_RISCV_PC_INDIRECT: { 760 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 761 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 762 *hiRel->sym, hiRel->expr); 763 return 0; 764 } 765 case R_PC: 766 case R_ARM_PCA: { 767 uint64_t dest; 768 if (expr == R_ARM_PCA) 769 // Some PC relative ARM (Thumb) relocations align down the place. 770 p = p & 0xfffffffc; 771 if (sym.isUndefWeak()) { 772 // On ARM and AArch64 a branch to an undefined weak resolves to the next 773 // instruction, otherwise the place. On RISCV, resolve an undefined weak 774 // to the same instruction to cause an infinite loop (making the user 775 // aware of the issue) while ensuring no overflow. 776 if (config->emachine == EM_ARM) 777 dest = getARMUndefinedRelativeWeakVA(type, a, p); 778 else if (config->emachine == EM_AARCH64) 779 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 780 else if (config->emachine == EM_PPC) 781 dest = p; 782 else if (config->emachine == EM_RISCV) 783 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 784 else 785 dest = sym.getVA(a); 786 } else { 787 dest = sym.getVA(a); 788 } 789 return dest - p; 790 } 791 case R_PLT: 792 return sym.getPltVA() + a; 793 case R_PLT_PC: 794 case R_PPC64_CALL_PLT: 795 return sym.getPltVA() + a - p; 796 case R_PLT_GOTPLT: 797 return sym.getPltVA() + a - in.gotPlt->getVA(); 798 case R_PPC32_PLTREL: 799 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 800 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 801 // target VA computation. 802 return sym.getPltVA() - p; 803 case R_PPC64_CALL: { 804 uint64_t symVA = sym.getVA(a); 805 // If we have an undefined weak symbol, we might get here with a symbol 806 // address of zero. That could overflow, but the code must be unreachable, 807 // so don't bother doing anything at all. 808 if (!symVA) 809 return 0; 810 811 // PPC64 V2 ABI describes two entry points to a function. The global entry 812 // point is used for calls where the caller and callee (may) have different 813 // TOC base pointers and r2 needs to be modified to hold the TOC base for 814 // the callee. For local calls the caller and callee share the same 815 // TOC base and so the TOC pointer initialization code should be skipped by 816 // branching to the local entry point. 817 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 818 } 819 case R_PPC64_TOCBASE: 820 return getPPC64TocBase() + a; 821 case R_RELAX_GOT_PC: 822 case R_PPC64_RELAX_GOT_PC: 823 return sym.getVA(a) - p; 824 case R_RELAX_TLS_GD_TO_LE: 825 case R_RELAX_TLS_IE_TO_LE: 826 case R_RELAX_TLS_LD_TO_LE: 827 case R_TPREL: 828 // It is not very clear what to return if the symbol is undefined. With 829 // --noinhibit-exec, even a non-weak undefined reference may reach here. 830 // Just return A, which matches R_ABS, and the behavior of some dynamic 831 // loaders. 832 if (sym.isUndefined() || sym.isLazy()) 833 return a; 834 return getTlsTpOffset(sym) + a; 835 case R_RELAX_TLS_GD_TO_LE_NEG: 836 case R_TPREL_NEG: 837 if (sym.isUndefined()) 838 return a; 839 return -getTlsTpOffset(sym) + a; 840 case R_SIZE: 841 return sym.getSize() + a; 842 case R_TLSDESC: 843 return in.got->getGlobalDynAddr(sym) + a; 844 case R_TLSDESC_PC: 845 return in.got->getGlobalDynAddr(sym) + a - p; 846 case R_AARCH64_TLSDESC_PAGE: 847 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 848 getAArch64Page(p); 849 case R_TLSGD_GOT: 850 return in.got->getGlobalDynOffset(sym) + a; 851 case R_TLSGD_GOTPLT: 852 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 853 case R_TLSGD_PC: 854 return in.got->getGlobalDynAddr(sym) + a - p; 855 case R_TLSLD_GOTPLT: 856 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 857 case R_TLSLD_GOT: 858 return in.got->getTlsIndexOff() + a; 859 case R_TLSLD_PC: 860 return in.got->getTlsIndexVA() + a - p; 861 default: 862 llvm_unreachable("invalid expression"); 863 } 864 } 865 866 // This function applies relocations to sections without SHF_ALLOC bit. 867 // Such sections are never mapped to memory at runtime. Debug sections are 868 // an example. Relocations in non-alloc sections are much easier to 869 // handle than in allocated sections because it will never need complex 870 // treatment such as GOT or PLT (because at runtime no one refers them). 871 // So, we handle relocations for non-alloc sections directly in this 872 // function as a performance optimization. 873 template <class ELFT, class RelTy> 874 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 875 const unsigned bits = sizeof(typename ELFT::uint) * 8; 876 const bool isDebug = isDebugSection(*this); 877 const bool isDebugLocOrRanges = 878 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 879 const bool isDebugLine = isDebug && name == ".debug_line"; 880 Optional<uint64_t> tombstone; 881 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 882 if (patAndValue.first.match(this->name)) { 883 tombstone = patAndValue.second; 884 break; 885 } 886 887 for (const RelTy &rel : rels) { 888 RelType type = rel.getType(config->isMips64EL); 889 890 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 891 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 892 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 893 // need to keep this bug-compatible code for a while. 894 if (config->emachine == EM_386 && type == R_386_GOTPC) 895 continue; 896 897 uint64_t offset = rel.r_offset; 898 uint8_t *bufLoc = buf + offset; 899 int64_t addend = getAddend<ELFT>(rel); 900 if (!RelTy::IsRela) 901 addend += target->getImplicitAddend(bufLoc, type); 902 903 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 904 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 905 if (expr == R_NONE) 906 continue; 907 908 if (expr == R_SIZE) { 909 target->relocateNoSym(bufLoc, type, 910 SignExtend64<bits>(sym.getSize() + addend)); 911 continue; 912 } 913 914 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 915 // sections. 916 if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL && 917 expr != R_RISCV_ADD) { 918 std::string msg = getLocation<ELFT>(offset) + 919 ": has non-ABS relocation " + toString(type) + 920 " against symbol '" + toString(sym) + "'"; 921 if (expr != R_PC && expr != R_ARM_PCA) { 922 error(msg); 923 return; 924 } 925 926 // If the control reaches here, we found a PC-relative relocation in a 927 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 928 // at runtime, the notion of PC-relative doesn't make sense here. So, 929 // this is a usage error. However, GNU linkers historically accept such 930 // relocations without any errors and relocate them as if they were at 931 // address 0. For bug-compatibilty, we accept them with warnings. We 932 // know Steel Bank Common Lisp as of 2018 have this bug. 933 warn(msg); 934 target->relocateNoSym( 935 bufLoc, type, 936 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 937 continue; 938 } 939 940 if (tombstone || 941 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) { 942 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 943 // folded section symbols) to a tombstone value. Resolving to addend is 944 // unsatisfactory because the result address range may collide with a 945 // valid range of low address, or leave multiple CUs claiming ownership of 946 // the same range of code, which may confuse consumers. 947 // 948 // To address the problems, we use -1 as a tombstone value for most 949 // .debug_* sections. We have to ignore the addend because we don't want 950 // to resolve an address attribute (which may have a non-zero addend) to 951 // -1+addend (wrap around to a low address). 952 // 953 // R_DTPREL type relocations represent an offset into the dynamic thread 954 // vector. The computed value is st_value plus a non-negative offset. 955 // Negative values are invalid, so -1 can be used as the tombstone value. 956 // 957 // If the referenced symbol is discarded (made Undefined), or the 958 // section defining the referenced symbol is garbage collected, 959 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section` 960 // catches the ICF folded case. However, resolving a relocation in 961 // .debug_line to -1 would stop debugger users from setting breakpoints on 962 // the folded-in function, so exclude .debug_line. 963 // 964 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 965 // (base address selection entry), use 1 (which is used by GNU ld for 966 // .debug_ranges). 967 // 968 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 969 // value. Enable -1 in a future release. 970 auto *ds = dyn_cast<Defined>(&sym); 971 if (!sym.getOutputSection() || 972 (ds && ds->section->repl != ds->section && !isDebugLine)) { 973 // If -z dead-reloc-in-nonalloc= is specified, respect it. 974 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 975 : (isDebugLocOrRanges ? 1 : 0); 976 target->relocateNoSym(bufLoc, type, value); 977 continue; 978 } 979 } 980 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 981 } 982 } 983 984 // This is used when '-r' is given. 985 // For REL targets, InputSection::copyRelocations() may store artificial 986 // relocations aimed to update addends. They are handled in relocateAlloc() 987 // for allocatable sections, and this function does the same for 988 // non-allocatable sections, such as sections with debug information. 989 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 990 const unsigned bits = config->is64 ? 64 : 32; 991 992 for (const Relocation &rel : sec->relocations) { 993 // InputSection::copyRelocations() adds only R_ABS relocations. 994 assert(rel.expr == R_ABS); 995 uint8_t *bufLoc = buf + rel.offset; 996 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 997 target->relocate(bufLoc, rel, targetVA); 998 } 999 } 1000 1001 template <class ELFT> 1002 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 1003 if (flags & SHF_EXECINSTR) 1004 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 1005 1006 if (flags & SHF_ALLOC) { 1007 relocateAlloc(buf, bufEnd); 1008 return; 1009 } 1010 1011 auto *sec = cast<InputSection>(this); 1012 if (config->relocatable) { 1013 relocateNonAllocForRelocatable(sec, buf); 1014 } else { 1015 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 1016 if (rels.areRelocsRel()) 1017 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 1018 else 1019 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 1020 } 1021 } 1022 1023 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1024 assert(flags & SHF_ALLOC); 1025 const unsigned bits = config->wordsize * 8; 1026 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1027 1028 for (const Relocation &rel : relocations) { 1029 if (rel.expr == R_NONE) 1030 continue; 1031 uint64_t offset = rel.offset; 1032 uint8_t *bufLoc = buf + offset; 1033 RelType type = rel.type; 1034 1035 uint64_t addrLoc = getOutputSection()->addr + offset; 1036 if (auto *sec = dyn_cast<InputSection>(this)) 1037 addrLoc += sec->outSecOff; 1038 RelExpr expr = rel.expr; 1039 uint64_t targetVA = SignExtend64( 1040 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 1041 bits); 1042 1043 switch (expr) { 1044 case R_RELAX_GOT_PC: 1045 case R_RELAX_GOT_PC_NOPIC: 1046 target->relaxGot(bufLoc, rel, targetVA); 1047 break; 1048 case R_PPC64_RELAX_GOT_PC: { 1049 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1050 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1051 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1052 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1053 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1054 // and only relax the other if the saved offset matches. 1055 if (type == R_PPC64_GOT_PCREL34) 1056 lastPPCRelaxedRelocOff = offset; 1057 if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1058 break; 1059 target->relaxGot(bufLoc, rel, targetVA); 1060 break; 1061 } 1062 case R_PPC64_RELAX_TOC: 1063 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1064 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1065 // entry, there may be R_PPC64_TOC16_HA not paired with 1066 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1067 // opportunities but is safe. 1068 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1069 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1070 target->relocate(bufLoc, rel, targetVA); 1071 break; 1072 case R_RELAX_TLS_IE_TO_LE: 1073 target->relaxTlsIeToLe(bufLoc, rel, targetVA); 1074 break; 1075 case R_RELAX_TLS_LD_TO_LE: 1076 case R_RELAX_TLS_LD_TO_LE_ABS: 1077 target->relaxTlsLdToLe(bufLoc, rel, targetVA); 1078 break; 1079 case R_RELAX_TLS_GD_TO_LE: 1080 case R_RELAX_TLS_GD_TO_LE_NEG: 1081 target->relaxTlsGdToLe(bufLoc, rel, targetVA); 1082 break; 1083 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1084 case R_RELAX_TLS_GD_TO_IE: 1085 case R_RELAX_TLS_GD_TO_IE_ABS: 1086 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1087 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1088 target->relaxTlsGdToIe(bufLoc, rel, targetVA); 1089 break; 1090 case R_PPC64_CALL: 1091 // If this is a call to __tls_get_addr, it may be part of a TLS 1092 // sequence that has been relaxed and turned into a nop. In this 1093 // case, we don't want to handle it as a call. 1094 if (read32(bufLoc) == 0x60000000) // nop 1095 break; 1096 1097 // Patch a nop (0x60000000) to a ld. 1098 if (rel.sym->needsTocRestore) { 1099 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1100 // recursive calls even if the function is preemptible. This is not 1101 // wrong in the common case where the function is not preempted at 1102 // runtime. Just ignore. 1103 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1104 rel.sym->file != file) { 1105 // Use substr(6) to remove the "__plt_" prefix. 1106 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1107 lld::toString(*rel.sym).substr(6) + 1108 " lacks nop, can't restore toc"); 1109 break; 1110 } 1111 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1112 } 1113 target->relocate(bufLoc, rel, targetVA); 1114 break; 1115 default: 1116 target->relocate(bufLoc, rel, targetVA); 1117 break; 1118 } 1119 } 1120 1121 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1122 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1123 // insn. This is primarily used to relax and optimize jumps created with 1124 // basic block sections. 1125 if (isa<InputSection>(this)) { 1126 for (const JumpInstrMod &jumpMod : jumpInstrMods) { 1127 uint64_t offset = jumpMod.offset; 1128 uint8_t *bufLoc = buf + offset; 1129 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size); 1130 } 1131 } 1132 } 1133 1134 // For each function-defining prologue, find any calls to __morestack, 1135 // and replace them with calls to __morestack_non_split. 1136 static void switchMorestackCallsToMorestackNonSplit( 1137 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1138 1139 // If the target adjusted a function's prologue, all calls to 1140 // __morestack inside that function should be switched to 1141 // __morestack_non_split. 1142 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1143 if (!moreStackNonSplit) { 1144 error("Mixing split-stack objects requires a definition of " 1145 "__morestack_non_split"); 1146 return; 1147 } 1148 1149 // Sort both collections to compare addresses efficiently. 1150 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1151 return l->offset < r->offset; 1152 }); 1153 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1154 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1155 return l->value < r->value; 1156 }); 1157 1158 auto it = morestackCalls.begin(); 1159 for (Defined *f : functions) { 1160 // Find the first call to __morestack within the function. 1161 while (it != morestackCalls.end() && (*it)->offset < f->value) 1162 ++it; 1163 // Adjust all calls inside the function. 1164 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1165 (*it)->sym = moreStackNonSplit; 1166 ++it; 1167 } 1168 } 1169 } 1170 1171 static bool enclosingPrologueAttempted(uint64_t offset, 1172 const DenseSet<Defined *> &prologues) { 1173 for (Defined *f : prologues) 1174 if (f->value <= offset && offset < f->value + f->size) 1175 return true; 1176 return false; 1177 } 1178 1179 // If a function compiled for split stack calls a function not 1180 // compiled for split stack, then the caller needs its prologue 1181 // adjusted to ensure that the called function will have enough stack 1182 // available. Find those functions, and adjust their prologues. 1183 template <class ELFT> 1184 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1185 uint8_t *end) { 1186 if (!getFile<ELFT>()->splitStack) 1187 return; 1188 DenseSet<Defined *> prologues; 1189 std::vector<Relocation *> morestackCalls; 1190 1191 for (Relocation &rel : relocations) { 1192 // Local symbols can't possibly be cross-calls, and should have been 1193 // resolved long before this line. 1194 if (rel.sym->isLocal()) 1195 continue; 1196 1197 // Ignore calls into the split-stack api. 1198 if (rel.sym->getName().startswith("__morestack")) { 1199 if (rel.sym->getName().equals("__morestack")) 1200 morestackCalls.push_back(&rel); 1201 continue; 1202 } 1203 1204 // A relocation to non-function isn't relevant. Sometimes 1205 // __morestack is not marked as a function, so this check comes 1206 // after the name check. 1207 if (rel.sym->type != STT_FUNC) 1208 continue; 1209 1210 // If the callee's-file was compiled with split stack, nothing to do. In 1211 // this context, a "Defined" symbol is one "defined by the binary currently 1212 // being produced". So an "undefined" symbol might be provided by a shared 1213 // library. It is not possible to tell how such symbols were compiled, so be 1214 // conservative. 1215 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1216 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1217 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1218 continue; 1219 1220 if (enclosingPrologueAttempted(rel.offset, prologues)) 1221 continue; 1222 1223 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1224 prologues.insert(f); 1225 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1226 f->stOther)) 1227 continue; 1228 if (!getFile<ELFT>()->someNoSplitStack) 1229 error(lld::toString(this) + ": " + f->getName() + 1230 " (with -fsplit-stack) calls " + rel.sym->getName() + 1231 " (without -fsplit-stack), but couldn't adjust its prologue"); 1232 } 1233 } 1234 1235 if (target->needsMoreStackNonSplit) 1236 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1237 } 1238 1239 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1240 if (type == SHT_NOBITS) 1241 return; 1242 1243 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1244 s->writeTo(buf + outSecOff); 1245 return; 1246 } 1247 1248 // If -r or --emit-relocs is given, then an InputSection 1249 // may be a relocation section. 1250 if (type == SHT_RELA) { 1251 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1252 return; 1253 } 1254 if (type == SHT_REL) { 1255 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1256 return; 1257 } 1258 1259 // If -r is given, we may have a SHT_GROUP section. 1260 if (type == SHT_GROUP) { 1261 copyShtGroup<ELFT>(buf + outSecOff); 1262 return; 1263 } 1264 1265 // If this is a compressed section, uncompress section contents directly 1266 // to the buffer. 1267 if (uncompressedSize >= 0) { 1268 size_t size = uncompressedSize; 1269 if (Error e = zlib::uncompress(toStringRef(rawData), 1270 (char *)(buf + outSecOff), size)) 1271 fatal(toString(this) + 1272 ": uncompress failed: " + llvm::toString(std::move(e))); 1273 uint8_t *bufEnd = buf + outSecOff + size; 1274 relocate<ELFT>(buf + outSecOff, bufEnd); 1275 return; 1276 } 1277 1278 // Copy section contents from source object file to output file 1279 // and then apply relocations. 1280 memcpy(buf + outSecOff, data().data(), data().size()); 1281 uint8_t *bufEnd = buf + outSecOff + data().size(); 1282 relocate<ELFT>(buf + outSecOff, bufEnd); 1283 } 1284 1285 void InputSection::replace(InputSection *other) { 1286 alignment = std::max(alignment, other->alignment); 1287 1288 // When a section is replaced with another section that was allocated to 1289 // another partition, the replacement section (and its associated sections) 1290 // need to be placed in the main partition so that both partitions will be 1291 // able to access it. 1292 if (partition != other->partition) { 1293 partition = 1; 1294 for (InputSection *isec : dependentSections) 1295 isec->partition = 1; 1296 } 1297 1298 other->repl = repl; 1299 other->markDead(); 1300 } 1301 1302 template <class ELFT> 1303 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1304 const typename ELFT::Shdr &header, 1305 StringRef name) 1306 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1307 1308 SyntheticSection *EhInputSection::getParent() const { 1309 return cast_or_null<SyntheticSection>(parent); 1310 } 1311 1312 // Returns the index of the first relocation that points to a region between 1313 // Begin and Begin+Size. 1314 template <class IntTy, class RelTy> 1315 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1316 unsigned &relocI) { 1317 // Start search from RelocI for fast access. That works because the 1318 // relocations are sorted in .eh_frame. 1319 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1320 const RelTy &rel = rels[relocI]; 1321 if (rel.r_offset < begin) 1322 continue; 1323 1324 if (rel.r_offset < begin + size) 1325 return relocI; 1326 return -1; 1327 } 1328 return -1; 1329 } 1330 1331 // .eh_frame is a sequence of CIE or FDE records. 1332 // This function splits an input section into records and returns them. 1333 template <class ELFT> void EhInputSection::split() { 1334 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1335 if (rels.areRelocsRel()) 1336 split<ELFT>(rels.rels); 1337 else 1338 split<ELFT>(rels.relas); 1339 } 1340 1341 template <class ELFT, class RelTy> 1342 void EhInputSection::split(ArrayRef<RelTy> rels) { 1343 // getReloc expects the relocations to be sorted by r_offset. See the comment 1344 // in scanRelocs. 1345 SmallVector<RelTy, 0> storage; 1346 rels = sortRels(rels, storage); 1347 1348 unsigned relI = 0; 1349 for (size_t off = 0, end = data().size(); off != end;) { 1350 size_t size = readEhRecordSize(this, off); 1351 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1352 // The empty record is the end marker. 1353 if (size == 4) 1354 break; 1355 off += size; 1356 } 1357 } 1358 1359 static size_t findNull(StringRef s, size_t entSize) { 1360 // Optimize the common case. 1361 if (entSize == 1) 1362 return s.find(0); 1363 1364 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1365 const char *b = s.begin() + i; 1366 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1367 return i; 1368 } 1369 return StringRef::npos; 1370 } 1371 1372 SyntheticSection *MergeInputSection::getParent() const { 1373 return cast_or_null<SyntheticSection>(parent); 1374 } 1375 1376 // Split SHF_STRINGS section. Such section is a sequence of 1377 // null-terminated strings. 1378 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1379 size_t off = 0; 1380 bool isAlloc = flags & SHF_ALLOC; 1381 StringRef s = toStringRef(data); 1382 1383 while (!s.empty()) { 1384 size_t end = findNull(s, entSize); 1385 if (end == StringRef::npos) 1386 fatal(toString(this) + ": string is not null terminated"); 1387 size_t size = end + entSize; 1388 1389 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1390 s = s.substr(size); 1391 off += size; 1392 } 1393 } 1394 1395 // Split non-SHF_STRINGS section. Such section is a sequence of 1396 // fixed size records. 1397 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1398 size_t entSize) { 1399 size_t size = data.size(); 1400 assert((size % entSize) == 0); 1401 bool isAlloc = flags & SHF_ALLOC; 1402 1403 for (size_t i = 0; i != size; i += entSize) 1404 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1405 } 1406 1407 template <class ELFT> 1408 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1409 const typename ELFT::Shdr &header, 1410 StringRef name) 1411 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1412 1413 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1414 uint64_t entsize, ArrayRef<uint8_t> data, 1415 StringRef name) 1416 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1417 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1418 1419 // This function is called after we obtain a complete list of input sections 1420 // that need to be linked. This is responsible to split section contents 1421 // into small chunks for further processing. 1422 // 1423 // Note that this function is called from parallelForEach. This must be 1424 // thread-safe (i.e. no memory allocation from the pools). 1425 void MergeInputSection::splitIntoPieces() { 1426 assert(pieces.empty()); 1427 1428 if (flags & SHF_STRINGS) 1429 splitStrings(data(), entsize); 1430 else 1431 splitNonStrings(data(), entsize); 1432 } 1433 1434 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1435 if (this->data().size() <= offset) 1436 fatal(toString(this) + ": offset is outside the section"); 1437 1438 // If Offset is not at beginning of a section piece, it is not in the map. 1439 // In that case we need to do a binary search of the original section piece vector. 1440 auto it = partition_point( 1441 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1442 return &it[-1]; 1443 } 1444 1445 // Returns the offset in an output section for a given input offset. 1446 // Because contents of a mergeable section is not contiguous in output, 1447 // it is not just an addition to a base output offset. 1448 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1449 // If Offset is not at beginning of a section piece, it is not in the map. 1450 // In that case we need to search from the original section piece vector. 1451 const SectionPiece &piece = *getSectionPiece(offset); 1452 uint64_t addend = offset - piece.inputOff; 1453 return piece.outputOff + addend; 1454 } 1455 1456 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1457 StringRef); 1458 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1459 StringRef); 1460 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1461 StringRef); 1462 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1463 StringRef); 1464 1465 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1466 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1467 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1468 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1469 1470 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1471 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1472 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1473 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1474 1475 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1476 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1477 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1478 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1479 1480 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1481 const ELF32LE::Shdr &, StringRef); 1482 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1483 const ELF32BE::Shdr &, StringRef); 1484 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1485 const ELF64LE::Shdr &, StringRef); 1486 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1487 const ELF64BE::Shdr &, StringRef); 1488 1489 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1490 const ELF32LE::Shdr &, StringRef); 1491 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1492 const ELF32BE::Shdr &, StringRef); 1493 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1494 const ELF64LE::Shdr &, StringRef); 1495 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1496 const ELF64BE::Shdr &, StringRef); 1497 1498 template void EhInputSection::split<ELF32LE>(); 1499 template void EhInputSection::split<ELF32BE>(); 1500 template void EhInputSection::split<ELF64LE>(); 1501 template void EhInputSection::split<ELF64BE>(); 1502