1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "EhFrame.h"
12 #include "InputFiles.h"
13 #include "LinkerScript.h"
14 #include "OutputSections.h"
15 #include "Relocations.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Threading.h"
27 #include "llvm/Support/xxhash.h"
28 #include <algorithm>
29 #include <mutex>
30 #include <set>
31 #include <vector>
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::support;
37 using namespace llvm::support::endian;
38 using namespace llvm::sys;
39 
40 using namespace lld;
41 using namespace lld::elf;
42 
43 std::vector<InputSectionBase *> elf::InputSections;
44 
45 // Returns a string to construct an error message.
46 std::string lld::toString(const InputSectionBase *Sec) {
47   return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
48 }
49 
50 template <class ELFT>
51 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
52                                             const typename ELFT::Shdr &Hdr) {
53   if (Hdr.sh_type == SHT_NOBITS)
54     return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
55   return check(File.getObj().getSectionContents(&Hdr));
56 }
57 
58 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
59                                    uint32_t Type, uint64_t Entsize,
60                                    uint32_t Link, uint32_t Info,
61                                    uint32_t Alignment, ArrayRef<uint8_t> Data,
62                                    StringRef Name, Kind SectionKind)
63     : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
64                   Link),
65       File(File), RawData(Data) {
66   // In order to reduce memory allocation, we assume that mergeable
67   // sections are smaller than 4 GiB, which is not an unreasonable
68   // assumption as of 2017.
69   if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX)
70     error(toString(this) + ": section too large");
71 
72   NumRelocations = 0;
73   AreRelocsRela = false;
74 
75   // The ELF spec states that a value of 0 means the section has
76   // no alignment constraits.
77   uint32_t V = std::max<uint32_t>(Alignment, 1);
78   if (!isPowerOf2_64(V))
79     fatal(toString(this) + ": sh_addralign is not a power of 2");
80   this->Alignment = V;
81 
82   // In ELF, each section can be compressed by zlib, and if compressed,
83   // section name may be mangled by appending "z" (e.g. ".zdebug_info").
84   // If that's the case, demangle section name so that we can handle a
85   // section as if it weren't compressed.
86   if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) {
87     if (!zlib::isAvailable())
88       error(toString(File) + ": contains a compressed section, " +
89             "but zlib is not available");
90     parseCompressedHeader();
91   }
92 }
93 
94 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
95 // SHF_GROUP is a marker that a section belongs to some comdat group.
96 // That flag doesn't make sense in an executable.
97 static uint64_t getFlags(uint64_t Flags) {
98   Flags &= ~(uint64_t)SHF_INFO_LINK;
99   if (!Config->Relocatable)
100     Flags &= ~(uint64_t)SHF_GROUP;
101   return Flags;
102 }
103 
104 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
105 // March 2017) fail to infer section types for sections starting with
106 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
107 // SHF_INIT_ARRAY. As a result, the following assembler directive
108 // creates ".init_array.100" with SHT_PROGBITS, for example.
109 //
110 //   .section .init_array.100, "aw"
111 //
112 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
113 // incorrect inputs as if they were correct from the beginning.
114 static uint64_t getType(uint64_t Type, StringRef Name) {
115   if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
116     return SHT_INIT_ARRAY;
117   if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
118     return SHT_FINI_ARRAY;
119   return Type;
120 }
121 
122 template <class ELFT>
123 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
124                                    const typename ELFT::Shdr &Hdr,
125                                    StringRef Name, Kind SectionKind)
126     : InputSectionBase(&File, getFlags(Hdr.sh_flags),
127                        getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
128                        Hdr.sh_info, Hdr.sh_addralign,
129                        getSectionContents(File, Hdr), Name, SectionKind) {
130   // We reject object files having insanely large alignments even though
131   // they are allowed by the spec. I think 4GB is a reasonable limitation.
132   // We might want to relax this in the future.
133   if (Hdr.sh_addralign > UINT32_MAX)
134     fatal(toString(&File) + ": section sh_addralign is too large");
135 }
136 
137 size_t InputSectionBase::getSize() const {
138   if (auto *S = dyn_cast<SyntheticSection>(this))
139     return S->getSize();
140   if (UncompressedSize >= 0)
141     return UncompressedSize;
142   return RawData.size();
143 }
144 
145 void InputSectionBase::uncompress() const {
146   size_t Size = UncompressedSize;
147   char *UncompressedBuf;
148   {
149     static std::mutex Mu;
150     std::lock_guard<std::mutex> Lock(Mu);
151     UncompressedBuf = BAlloc.Allocate<char>(Size);
152   }
153 
154   if (Error E = zlib::uncompress(toStringRef(RawData), UncompressedBuf, Size))
155     fatal(toString(this) +
156           ": uncompress failed: " + llvm::toString(std::move(E)));
157   RawData = makeArrayRef((uint8_t *)UncompressedBuf, Size);
158   UncompressedSize = -1;
159 }
160 
161 uint64_t InputSectionBase::getOffsetInFile() const {
162   const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
163   const uint8_t *SecStart = data().begin();
164   return SecStart - FileStart;
165 }
166 
167 uint64_t SectionBase::getOffset(uint64_t Offset) const {
168   switch (kind()) {
169   case Output: {
170     auto *OS = cast<OutputSection>(this);
171     // For output sections we treat offset -1 as the end of the section.
172     return Offset == uint64_t(-1) ? OS->Size : Offset;
173   }
174   case Regular:
175   case Synthetic:
176     return cast<InputSection>(this)->getOffset(Offset);
177   case EHFrame:
178     // The file crtbeginT.o has relocations pointing to the start of an empty
179     // .eh_frame that is known to be the first in the link. It does that to
180     // identify the start of the output .eh_frame.
181     return Offset;
182   case Merge:
183     const MergeInputSection *MS = cast<MergeInputSection>(this);
184     if (InputSection *IS = MS->getParent())
185       return IS->getOffset(MS->getParentOffset(Offset));
186     return MS->getParentOffset(Offset);
187   }
188   llvm_unreachable("invalid section kind");
189 }
190 
191 uint64_t SectionBase::getVA(uint64_t Offset) const {
192   const OutputSection *Out = getOutputSection();
193   return (Out ? Out->Addr : 0) + getOffset(Offset);
194 }
195 
196 OutputSection *SectionBase::getOutputSection() {
197   InputSection *Sec;
198   if (auto *IS = dyn_cast<InputSection>(this))
199     Sec = IS;
200   else if (auto *MS = dyn_cast<MergeInputSection>(this))
201     Sec = MS->getParent();
202   else if (auto *EH = dyn_cast<EhInputSection>(this))
203     Sec = EH->getParent();
204   else
205     return cast<OutputSection>(this);
206   return Sec ? Sec->getParent() : nullptr;
207 }
208 
209 // When a section is compressed, `RawData` consists with a header followed
210 // by zlib-compressed data. This function parses a header to initialize
211 // `UncompressedSize` member and remove the header from `RawData`.
212 void InputSectionBase::parseCompressedHeader() {
213   using Chdr64 = typename ELF64LE::Chdr;
214   using Chdr32 = typename ELF32LE::Chdr;
215 
216   // Old-style header
217   if (Name.startswith(".zdebug")) {
218     if (!toStringRef(RawData).startswith("ZLIB")) {
219       error(toString(this) + ": corrupted compressed section header");
220       return;
221     }
222     RawData = RawData.slice(4);
223 
224     if (RawData.size() < 8) {
225       error(toString(this) + ": corrupted compressed section header");
226       return;
227     }
228 
229     UncompressedSize = read64be(RawData.data());
230     RawData = RawData.slice(8);
231 
232     // Restore the original section name.
233     // (e.g. ".zdebug_info" -> ".debug_info")
234     Name = Saver.save("." + Name.substr(2));
235     return;
236   }
237 
238   assert(Flags & SHF_COMPRESSED);
239   Flags &= ~(uint64_t)SHF_COMPRESSED;
240 
241   // New-style 64-bit header
242   if (Config->Is64) {
243     if (RawData.size() < sizeof(Chdr64)) {
244       error(toString(this) + ": corrupted compressed section");
245       return;
246     }
247 
248     auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data());
249     if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
250       error(toString(this) + ": unsupported compression type");
251       return;
252     }
253 
254     UncompressedSize = Hdr->ch_size;
255     Alignment = std::max<uint32_t>(Hdr->ch_addralign, 1);
256     RawData = RawData.slice(sizeof(*Hdr));
257     return;
258   }
259 
260   // New-style 32-bit header
261   if (RawData.size() < sizeof(Chdr32)) {
262     error(toString(this) + ": corrupted compressed section");
263     return;
264   }
265 
266   auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data());
267   if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
268     error(toString(this) + ": unsupported compression type");
269     return;
270   }
271 
272   UncompressedSize = Hdr->ch_size;
273   Alignment = std::max<uint32_t>(Hdr->ch_addralign, 1);
274   RawData = RawData.slice(sizeof(*Hdr));
275 }
276 
277 InputSection *InputSectionBase::getLinkOrderDep() const {
278   assert(Link);
279   assert(Flags & SHF_LINK_ORDER);
280   return cast<InputSection>(File->getSections()[Link]);
281 }
282 
283 // Find a function symbol that encloses a given location.
284 template <class ELFT>
285 Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) {
286   for (Symbol *B : File->getSymbols())
287     if (Defined *D = dyn_cast<Defined>(B))
288       if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset &&
289           Offset < D->Value + D->Size)
290         return D;
291   return nullptr;
292 }
293 
294 // Returns a source location string. Used to construct an error message.
295 template <class ELFT>
296 std::string InputSectionBase::getLocation(uint64_t Offset) {
297   std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str();
298 
299   // We don't have file for synthetic sections.
300   if (getFile<ELFT>() == nullptr)
301     return (Config->OutputFile + ":(" + SecAndOffset + ")")
302         .str();
303 
304   // First check if we can get desired values from debugging information.
305   if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset))
306     return Info->FileName + ":" + std::to_string(Info->Line) + ":(" +
307            SecAndOffset + ")";
308 
309   // File->SourceFile contains STT_FILE symbol that contains a
310   // source file name. If it's missing, we use an object file name.
311   std::string SrcFile = getFile<ELFT>()->SourceFile;
312   if (SrcFile.empty())
313     SrcFile = toString(File);
314 
315   if (Defined *D = getEnclosingFunction<ELFT>(Offset))
316     return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")";
317 
318   // If there's no symbol, print out the offset in the section.
319   return (SrcFile + ":(" + SecAndOffset + ")");
320 }
321 
322 // This function is intended to be used for constructing an error message.
323 // The returned message looks like this:
324 //
325 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
326 //
327 //  Returns an empty string if there's no way to get line info.
328 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
329   return File->getSrcMsg(Sym, *this, Offset);
330 }
331 
332 // Returns a filename string along with an optional section name. This
333 // function is intended to be used for constructing an error
334 // message. The returned message looks like this:
335 //
336 //   path/to/foo.o:(function bar)
337 //
338 // or
339 //
340 //   path/to/foo.o:(function bar) in archive path/to/bar.a
341 std::string InputSectionBase::getObjMsg(uint64_t Off) {
342   std::string Filename = File->getName();
343 
344   std::string Archive;
345   if (!File->ArchiveName.empty())
346     Archive = " in archive " + File->ArchiveName;
347 
348   // Find a symbol that encloses a given location.
349   for (Symbol *B : File->getSymbols())
350     if (auto *D = dyn_cast<Defined>(B))
351       if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
352         return Filename + ":(" + toString(*D) + ")" + Archive;
353 
354   // If there's no symbol, print out the offset in the section.
355   return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
356       .str();
357 }
358 
359 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
360 
361 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
362                            uint32_t Alignment, ArrayRef<uint8_t> Data,
363                            StringRef Name, Kind K)
364     : InputSectionBase(F, Flags, Type,
365                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
366                        Name, K) {}
367 
368 template <class ELFT>
369 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
370                            StringRef Name)
371     : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
372 
373 bool InputSection::classof(const SectionBase *S) {
374   return S->kind() == SectionBase::Regular ||
375          S->kind() == SectionBase::Synthetic;
376 }
377 
378 OutputSection *InputSection::getParent() const {
379   return cast_or_null<OutputSection>(Parent);
380 }
381 
382 // Copy SHT_GROUP section contents. Used only for the -r option.
383 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
384   // ELFT::Word is the 32-bit integral type in the target endianness.
385   using u32 = typename ELFT::Word;
386   ArrayRef<u32> From = getDataAs<u32>();
387   auto *To = reinterpret_cast<u32 *>(Buf);
388 
389   // The first entry is not a section number but a flag.
390   *To++ = From[0];
391 
392   // Adjust section numbers because section numbers in an input object
393   // files are different in the output.
394   ArrayRef<InputSectionBase *> Sections = File->getSections();
395   for (uint32_t Idx : From.slice(1))
396     *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
397 }
398 
399 InputSectionBase *InputSection::getRelocatedSection() const {
400   if (!File || (Type != SHT_RELA && Type != SHT_REL))
401     return nullptr;
402   ArrayRef<InputSectionBase *> Sections = File->getSections();
403   return Sections[Info];
404 }
405 
406 // This is used for -r and --emit-relocs. We can't use memcpy to copy
407 // relocations because we need to update symbol table offset and section index
408 // for each relocation. So we copy relocations one by one.
409 template <class ELFT, class RelTy>
410 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
411   InputSectionBase *Sec = getRelocatedSection();
412 
413   for (const RelTy &Rel : Rels) {
414     RelType Type = Rel.getType(Config->IsMips64EL);
415     Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
416 
417     auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
418     Buf += sizeof(RelTy);
419 
420     if (RelTy::IsRela)
421       P->r_addend = getAddend<ELFT>(Rel);
422 
423     // Output section VA is zero for -r, so r_offset is an offset within the
424     // section, but for --emit-relocs it is an virtual address.
425     P->r_offset = Sec->getVA(Rel.r_offset);
426     P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type,
427                         Config->IsMips64EL);
428 
429     if (Sym.Type == STT_SECTION) {
430       // We combine multiple section symbols into only one per
431       // section. This means we have to update the addend. That is
432       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
433       // section data. We do that by adding to the Relocation vector.
434 
435       // .eh_frame is horribly special and can reference discarded sections. To
436       // avoid having to parse and recreate .eh_frame, we just replace any
437       // relocation in it pointing to discarded sections with R_*_NONE, which
438       // hopefully creates a frame that is ignored at runtime.
439       auto *D = dyn_cast<Defined>(&Sym);
440       if (!D) {
441         error("STT_SECTION symbol should be defined");
442         continue;
443       }
444       SectionBase *Section = D->Section->Repl;
445       if (!Section->Live) {
446         P->setSymbolAndType(0, 0, false);
447         continue;
448       }
449 
450       int64_t Addend = getAddend<ELFT>(Rel);
451       const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset;
452       if (!RelTy::IsRela)
453         Addend = Target->getImplicitAddend(BufLoc, Type);
454 
455       if (Config->EMachine == EM_MIPS && Config->Relocatable &&
456           Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
457         // Some MIPS relocations depend on "gp" value. By default,
458         // this value has 0x7ff0 offset from a .got section. But
459         // relocatable files produced by a complier or a linker
460         // might redefine this default value and we must use it
461         // for a calculation of the relocation result. When we
462         // generate EXE or DSO it's trivial. Generating a relocatable
463         // output is more difficult case because the linker does
464         // not calculate relocations in this mode and loses
465         // individual "gp" values used by each input object file.
466         // As a workaround we add the "gp" value to the relocation
467         // addend and save it back to the file.
468         Addend += Sec->getFile<ELFT>()->MipsGp0;
469       }
470 
471       if (RelTy::IsRela)
472         P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
473       else if (Config->Relocatable && Type != Target->NoneRel)
474         Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
475     }
476   }
477 }
478 
479 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
480 // references specially. The general rule is that the value of the symbol in
481 // this context is the address of the place P. A further special case is that
482 // branch relocations to an undefined weak reference resolve to the next
483 // instruction.
484 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
485                                               uint32_t P) {
486   switch (Type) {
487   // Unresolved branch relocations to weak references resolve to next
488   // instruction, this will be either 2 or 4 bytes on from P.
489   case R_ARM_THM_JUMP11:
490     return P + 2 + A;
491   case R_ARM_CALL:
492   case R_ARM_JUMP24:
493   case R_ARM_PC24:
494   case R_ARM_PLT32:
495   case R_ARM_PREL31:
496   case R_ARM_THM_JUMP19:
497   case R_ARM_THM_JUMP24:
498     return P + 4 + A;
499   case R_ARM_THM_CALL:
500     // We don't want an interworking BLX to ARM
501     return P + 5 + A;
502   // Unresolved non branch pc-relative relocations
503   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
504   // targets a weak-reference.
505   case R_ARM_MOVW_PREL_NC:
506   case R_ARM_MOVT_PREL:
507   case R_ARM_REL32:
508   case R_ARM_THM_MOVW_PREL_NC:
509   case R_ARM_THM_MOVT_PREL:
510     return P + A;
511   }
512   llvm_unreachable("ARM pc-relative relocation expected\n");
513 }
514 
515 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
516 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
517                                                   uint64_t P) {
518   switch (Type) {
519   // Unresolved branch relocations to weak references resolve to next
520   // instruction, this is 4 bytes on from P.
521   case R_AARCH64_CALL26:
522   case R_AARCH64_CONDBR19:
523   case R_AARCH64_JUMP26:
524   case R_AARCH64_TSTBR14:
525     return P + 4 + A;
526   // Unresolved non branch pc-relative relocations
527   case R_AARCH64_PREL16:
528   case R_AARCH64_PREL32:
529   case R_AARCH64_PREL64:
530   case R_AARCH64_ADR_PREL_LO21:
531   case R_AARCH64_LD_PREL_LO19:
532     return P + A;
533   }
534   llvm_unreachable("AArch64 pc-relative relocation expected\n");
535 }
536 
537 // ARM SBREL relocations are of the form S + A - B where B is the static base
538 // The ARM ABI defines base to be "addressing origin of the output segment
539 // defining the symbol S". We defined the "addressing origin"/static base to be
540 // the base of the PT_LOAD segment containing the Sym.
541 // The procedure call standard only defines a Read Write Position Independent
542 // RWPI variant so in practice we should expect the static base to be the base
543 // of the RW segment.
544 static uint64_t getARMStaticBase(const Symbol &Sym) {
545   OutputSection *OS = Sym.getOutputSection();
546   if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
547     fatal("SBREL relocation to " + Sym.getName() + " without static base");
548   return OS->PtLoad->FirstSec->Addr;
549 }
550 
551 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
552 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
553 // is calculated using PCREL_HI20's symbol.
554 //
555 // This function returns the R_RISCV_PCREL_HI20 relocation from
556 // R_RISCV_PCREL_LO12's symbol and addend.
557 static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) {
558   const Defined *D = cast<Defined>(Sym);
559   InputSection *IS = cast<InputSection>(D->Section);
560 
561   if (Addend != 0)
562     warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
563          IS->getObjMsg(D->Value) + " is ignored");
564 
565   // Relocations are sorted by offset, so we can use std::equal_range to do
566   // binary search.
567   Relocation R;
568   R.Offset = D->Value;
569   auto Range =
570       std::equal_range(IS->Relocations.begin(), IS->Relocations.end(), R,
571                        [](const Relocation &LHS, const Relocation &RHS) {
572                          return LHS.Offset < RHS.Offset;
573                        });
574 
575   for (auto It = Range.first; It != Range.second; ++It)
576     if (It->Expr == R_PC)
577       return &*It;
578 
579   error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) +
580         " without an associated R_RISCV_PCREL_HI20 relocation");
581   return nullptr;
582 }
583 
584 // A TLS symbol's virtual address is relative to the TLS segment. Add a
585 // target-specific adjustment to produce a thread-pointer-relative offset.
586 static int64_t getTlsTpOffset() {
587   switch (Config->EMachine) {
588   case EM_ARM:
589   case EM_AARCH64:
590     // Variant 1. The thread pointer points to a TCB with a fixed 2-word size,
591     // followed by a variable amount of alignment padding, followed by the TLS
592     // segment.
593     return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align);
594   case EM_386:
595   case EM_X86_64:
596     // Variant 2. The TLS segment is located just before the thread pointer.
597     return -alignTo(Out::TlsPhdr->p_memsz, Out::TlsPhdr->p_align);
598   case EM_PPC64:
599     // The thread pointer points to a fixed offset from the start of the
600     // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit
601     // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the
602     // program's TLS segment.
603     return -0x7000;
604   default:
605     llvm_unreachable("unhandled Config->EMachine");
606   }
607 }
608 
609 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A,
610                                  uint64_t P, const Symbol &Sym, RelExpr Expr) {
611   switch (Expr) {
612   case R_ABS:
613   case R_DTPREL:
614   case R_RELAX_TLS_LD_TO_LE_ABS:
615   case R_RELAX_GOT_PC_NOPIC:
616     return Sym.getVA(A);
617   case R_ADDEND:
618     return A;
619   case R_ARM_SBREL:
620     return Sym.getVA(A) - getARMStaticBase(Sym);
621   case R_GOT:
622   case R_RELAX_TLS_GD_TO_IE_ABS:
623     return Sym.getGotVA() + A;
624   case R_GOTONLY_PC:
625     return In.Got->getVA() + A - P;
626   case R_GOTPLTONLY_PC:
627     return In.GotPlt->getVA() + A - P;
628   case R_GOTREL:
629   case R_PPC64_RELAX_TOC:
630     return Sym.getVA(A) - In.Got->getVA();
631   case R_GOTPLTREL:
632     return Sym.getVA(A) - In.GotPlt->getVA();
633   case R_GOTPLT:
634   case R_RELAX_TLS_GD_TO_IE_GOTPLT:
635     return Sym.getGotVA() + A - In.GotPlt->getVA();
636   case R_TLSLD_GOT_OFF:
637   case R_GOT_OFF:
638   case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
639     return Sym.getGotOffset() + A;
640   case R_AARCH64_GOT_PAGE_PC:
641   case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
642     return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
643   case R_GOT_PC:
644   case R_RELAX_TLS_GD_TO_IE:
645     return Sym.getGotVA() + A - P;
646   case R_HEXAGON_GOT:
647     return Sym.getGotVA() - In.GotPlt->getVA();
648   case R_MIPS_GOTREL:
649     return Sym.getVA(A) - In.MipsGot->getGp(File);
650   case R_MIPS_GOT_GP:
651     return In.MipsGot->getGp(File) + A;
652   case R_MIPS_GOT_GP_PC: {
653     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
654     // is _gp_disp symbol. In that case we should use the following
655     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
656     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
657     // microMIPS variants of these relocations use slightly different
658     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
659     // to correctly handle less-sugnificant bit of the microMIPS symbol.
660     uint64_t V = In.MipsGot->getGp(File) + A - P;
661     if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
662       V += 4;
663     if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
664       V -= 1;
665     return V;
666   }
667   case R_MIPS_GOT_LOCAL_PAGE:
668     // If relocation against MIPS local symbol requires GOT entry, this entry
669     // should be initialized by 'page address'. This address is high 16-bits
670     // of sum the symbol's value and the addend.
671     return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) -
672            In.MipsGot->getGp(File);
673   case R_MIPS_GOT_OFF:
674   case R_MIPS_GOT_OFF32:
675     // In case of MIPS if a GOT relocation has non-zero addend this addend
676     // should be applied to the GOT entry content not to the GOT entry offset.
677     // That is why we use separate expression type.
678     return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) -
679            In.MipsGot->getGp(File);
680   case R_MIPS_TLSGD:
681     return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) -
682            In.MipsGot->getGp(File);
683   case R_MIPS_TLSLD:
684     return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) -
685            In.MipsGot->getGp(File);
686   case R_AARCH64_PAGE_PC: {
687     uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A);
688     return getAArch64Page(Val) - getAArch64Page(P);
689   }
690   case R_RISCV_PC_INDIRECT: {
691     if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A))
692       return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(),
693                               *HiRel->Sym, HiRel->Expr);
694     return 0;
695   }
696   case R_PC: {
697     uint64_t Dest;
698     if (Sym.isUndefWeak()) {
699       // On ARM and AArch64 a branch to an undefined weak resolves to the
700       // next instruction, otherwise the place.
701       if (Config->EMachine == EM_ARM)
702         Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
703       else if (Config->EMachine == EM_AARCH64)
704         Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
705       else
706         Dest = Sym.getVA(A);
707     } else {
708       Dest = Sym.getVA(A);
709     }
710     return Dest - P;
711   }
712   case R_PLT:
713     return Sym.getPltVA() + A;
714   case R_PLT_PC:
715   case R_PPC_CALL_PLT:
716     return Sym.getPltVA() + A - P;
717   case R_PPC_CALL: {
718     uint64_t SymVA = Sym.getVA(A);
719     // If we have an undefined weak symbol, we might get here with a symbol
720     // address of zero. That could overflow, but the code must be unreachable,
721     // so don't bother doing anything at all.
722     if (!SymVA)
723       return 0;
724 
725     // PPC64 V2 ABI describes two entry points to a function. The global entry
726     // point is used for calls where the caller and callee (may) have different
727     // TOC base pointers and r2 needs to be modified to hold the TOC base for
728     // the callee. For local calls the caller and callee share the same
729     // TOC base and so the TOC pointer initialization code should be skipped by
730     // branching to the local entry point.
731     return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther);
732   }
733   case R_PPC_TOC:
734     return getPPC64TocBase() + A;
735   case R_RELAX_GOT_PC:
736     return Sym.getVA(A) - P;
737   case R_RELAX_TLS_GD_TO_LE:
738   case R_RELAX_TLS_IE_TO_LE:
739   case R_RELAX_TLS_LD_TO_LE:
740   case R_TLS:
741     // It is not very clear what to return if the symbol is undefined. With
742     // --noinhibit-exec, even a non-weak undefined reference may reach here.
743     // Just return A, which matches R_ABS, and the behavior of some dynamic
744     // loaders.
745     if (Sym.isUndefined())
746       return A;
747     return Sym.getVA(A) + getTlsTpOffset();
748   case R_RELAX_TLS_GD_TO_LE_NEG:
749   case R_NEG_TLS:
750     if (Sym.isUndefined())
751       return A;
752     return -Sym.getVA(0) - getTlsTpOffset() + A;
753   case R_SIZE:
754     return Sym.getSize() + A;
755   case R_TLSDESC:
756     return In.Got->getGlobalDynAddr(Sym) + A;
757   case R_AARCH64_TLSDESC_PAGE:
758     return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) -
759            getAArch64Page(P);
760   case R_TLSGD_GOT:
761     return In.Got->getGlobalDynOffset(Sym) + A;
762   case R_TLSGD_GOTPLT:
763     return In.Got->getVA() + In.Got->getGlobalDynOffset(Sym) + A - In.GotPlt->getVA();
764   case R_TLSGD_PC:
765     return In.Got->getGlobalDynAddr(Sym) + A - P;
766   case R_TLSLD_GOTPLT:
767     return In.Got->getVA() + In.Got->getTlsIndexOff() + A - In.GotPlt->getVA();
768   case R_TLSLD_GOT:
769     return In.Got->getTlsIndexOff() + A;
770   case R_TLSLD_PC:
771     return In.Got->getTlsIndexVA() + A - P;
772   default:
773     llvm_unreachable("invalid expression");
774   }
775 }
776 
777 // This function applies relocations to sections without SHF_ALLOC bit.
778 // Such sections are never mapped to memory at runtime. Debug sections are
779 // an example. Relocations in non-alloc sections are much easier to
780 // handle than in allocated sections because it will never need complex
781 // treatement such as GOT or PLT (because at runtime no one refers them).
782 // So, we handle relocations for non-alloc sections directly in this
783 // function as a performance optimization.
784 template <class ELFT, class RelTy>
785 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
786   const unsigned Bits = sizeof(typename ELFT::uint) * 8;
787 
788   for (const RelTy &Rel : Rels) {
789     RelType Type = Rel.getType(Config->IsMips64EL);
790 
791     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
792     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
793     // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
794     // need to keep this bug-compatible code for a while.
795     if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
796       continue;
797 
798     uint64_t Offset = getOffset(Rel.r_offset);
799     uint8_t *BufLoc = Buf + Offset;
800     int64_t Addend = getAddend<ELFT>(Rel);
801     if (!RelTy::IsRela)
802       Addend += Target->getImplicitAddend(BufLoc, Type);
803 
804     Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
805     RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
806     if (Expr == R_NONE)
807       continue;
808 
809     if (Expr != R_ABS && Expr != R_DTPREL) {
810       std::string Msg = getLocation<ELFT>(Offset) +
811                         ": has non-ABS relocation " + toString(Type) +
812                         " against symbol '" + toString(Sym) + "'";
813       if (Expr != R_PC) {
814         error(Msg);
815         return;
816       }
817 
818       // If the control reaches here, we found a PC-relative relocation in a
819       // non-ALLOC section. Since non-ALLOC section is not loaded into memory
820       // at runtime, the notion of PC-relative doesn't make sense here. So,
821       // this is a usage error. However, GNU linkers historically accept such
822       // relocations without any errors and relocate them as if they were at
823       // address 0. For bug-compatibilty, we accept them with warnings. We
824       // know Steel Bank Common Lisp as of 2018 have this bug.
825       warn(Msg);
826       Target->relocateOne(BufLoc, Type,
827                           SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
828       continue;
829     }
830 
831     if (Sym.isTls() && !Out::TlsPhdr)
832       Target->relocateOne(BufLoc, Type, 0);
833     else
834       Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
835   }
836 }
837 
838 // This is used when '-r' is given.
839 // For REL targets, InputSection::copyRelocations() may store artificial
840 // relocations aimed to update addends. They are handled in relocateAlloc()
841 // for allocatable sections, and this function does the same for
842 // non-allocatable sections, such as sections with debug information.
843 static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) {
844   const unsigned Bits = Config->Is64 ? 64 : 32;
845 
846   for (const Relocation &Rel : Sec->Relocations) {
847     // InputSection::copyRelocations() adds only R_ABS relocations.
848     assert(Rel.Expr == R_ABS);
849     uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff;
850     uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits);
851     Target->relocateOne(BufLoc, Rel.Type, TargetVA);
852   }
853 }
854 
855 template <class ELFT>
856 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
857   if (Flags & SHF_EXECINSTR)
858     adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd);
859 
860   if (Flags & SHF_ALLOC) {
861     relocateAlloc(Buf, BufEnd);
862     return;
863   }
864 
865   auto *Sec = cast<InputSection>(this);
866   if (Config->Relocatable)
867     relocateNonAllocForRelocatable(Sec, Buf);
868   else if (Sec->AreRelocsRela)
869     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
870   else
871     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
872 }
873 
874 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
875   assert(Flags & SHF_ALLOC);
876   const unsigned Bits = Config->Wordsize * 8;
877 
878   for (const Relocation &Rel : Relocations) {
879     uint64_t Offset = Rel.Offset;
880     if (auto *Sec = dyn_cast<InputSection>(this))
881       Offset += Sec->OutSecOff;
882     uint8_t *BufLoc = Buf + Offset;
883     RelType Type = Rel.Type;
884 
885     uint64_t AddrLoc = getOutputSection()->Addr + Offset;
886     RelExpr Expr = Rel.Expr;
887     uint64_t TargetVA = SignExtend64(
888         getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr),
889         Bits);
890 
891     switch (Expr) {
892     case R_RELAX_GOT_PC:
893     case R_RELAX_GOT_PC_NOPIC:
894       Target->relaxGot(BufLoc, Type, TargetVA);
895       break;
896     case R_PPC64_RELAX_TOC:
897       if (!tryRelaxPPC64TocIndirection(Type, Rel, BufLoc))
898         Target->relocateOne(BufLoc, Type, TargetVA);
899       break;
900     case R_RELAX_TLS_IE_TO_LE:
901       Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
902       break;
903     case R_RELAX_TLS_LD_TO_LE:
904     case R_RELAX_TLS_LD_TO_LE_ABS:
905       Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
906       break;
907     case R_RELAX_TLS_GD_TO_LE:
908     case R_RELAX_TLS_GD_TO_LE_NEG:
909       Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
910       break;
911     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
912     case R_RELAX_TLS_GD_TO_IE:
913     case R_RELAX_TLS_GD_TO_IE_ABS:
914     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
915     case R_RELAX_TLS_GD_TO_IE_GOTPLT:
916       Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
917       break;
918     case R_PPC_CALL:
919       // If this is a call to __tls_get_addr, it may be part of a TLS
920       // sequence that has been relaxed and turned into a nop. In this
921       // case, we don't want to handle it as a call.
922       if (read32(BufLoc) == 0x60000000) // nop
923         break;
924 
925       // Patch a nop (0x60000000) to a ld.
926       if (Rel.Sym->NeedsTocRestore) {
927         if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
928           error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
929           break;
930         }
931         write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
932       }
933       Target->relocateOne(BufLoc, Type, TargetVA);
934       break;
935     default:
936       Target->relocateOne(BufLoc, Type, TargetVA);
937       break;
938     }
939   }
940 }
941 
942 // For each function-defining prologue, find any calls to __morestack,
943 // and replace them with calls to __morestack_non_split.
944 static void switchMorestackCallsToMorestackNonSplit(
945     DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) {
946 
947   // If the target adjusted a function's prologue, all calls to
948   // __morestack inside that function should be switched to
949   // __morestack_non_split.
950   Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split");
951   if (!MoreStackNonSplit) {
952     error("Mixing split-stack objects requires a definition of "
953           "__morestack_non_split");
954     return;
955   }
956 
957   // Sort both collections to compare addresses efficiently.
958   llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) {
959     return L->Offset < R->Offset;
960   });
961   std::vector<Defined *> Functions(Prologues.begin(), Prologues.end());
962   llvm::sort(Functions, [](const Defined *L, const Defined *R) {
963     return L->Value < R->Value;
964   });
965 
966   auto It = MorestackCalls.begin();
967   for (Defined *F : Functions) {
968     // Find the first call to __morestack within the function.
969     while (It != MorestackCalls.end() && (*It)->Offset < F->Value)
970       ++It;
971     // Adjust all calls inside the function.
972     while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) {
973       (*It)->Sym = MoreStackNonSplit;
974       ++It;
975     }
976   }
977 }
978 
979 static bool enclosingPrologueAttempted(uint64_t Offset,
980                                        const DenseSet<Defined *> &Prologues) {
981   for (Defined *F : Prologues)
982     if (F->Value <= Offset && Offset < F->Value + F->Size)
983       return true;
984   return false;
985 }
986 
987 // If a function compiled for split stack calls a function not
988 // compiled for split stack, then the caller needs its prologue
989 // adjusted to ensure that the called function will have enough stack
990 // available. Find those functions, and adjust their prologues.
991 template <class ELFT>
992 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf,
993                                                          uint8_t *End) {
994   if (!getFile<ELFT>()->SplitStack)
995     return;
996   DenseSet<Defined *> Prologues;
997   std::vector<Relocation *> MorestackCalls;
998 
999   for (Relocation &Rel : Relocations) {
1000     // Local symbols can't possibly be cross-calls, and should have been
1001     // resolved long before this line.
1002     if (Rel.Sym->isLocal())
1003       continue;
1004 
1005     // Ignore calls into the split-stack api.
1006     if (Rel.Sym->getName().startswith("__morestack")) {
1007       if (Rel.Sym->getName().equals("__morestack"))
1008         MorestackCalls.push_back(&Rel);
1009       continue;
1010     }
1011 
1012     // A relocation to non-function isn't relevant. Sometimes
1013     // __morestack is not marked as a function, so this check comes
1014     // after the name check.
1015     if (Rel.Sym->Type != STT_FUNC)
1016       continue;
1017 
1018     // If the callee's-file was compiled with split stack, nothing to do.  In
1019     // this context, a "Defined" symbol is one "defined by the binary currently
1020     // being produced". So an "undefined" symbol might be provided by a shared
1021     // library. It is not possible to tell how such symbols were compiled, so be
1022     // conservative.
1023     if (Defined *D = dyn_cast<Defined>(Rel.Sym))
1024       if (InputSection *IS = cast_or_null<InputSection>(D->Section))
1025         if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack)
1026           continue;
1027 
1028     if (enclosingPrologueAttempted(Rel.Offset, Prologues))
1029       continue;
1030 
1031     if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) {
1032       Prologues.insert(F);
1033       if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value),
1034                                                    End, F->StOther))
1035         continue;
1036       if (!getFile<ELFT>()->SomeNoSplitStack)
1037         error(lld::toString(this) + ": " + F->getName() +
1038               " (with -fsplit-stack) calls " + Rel.Sym->getName() +
1039               " (without -fsplit-stack), but couldn't adjust its prologue");
1040     }
1041   }
1042 
1043   if (Target->NeedsMoreStackNonSplit)
1044     switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls);
1045 }
1046 
1047 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
1048   if (Type == SHT_NOBITS)
1049     return;
1050 
1051   if (auto *S = dyn_cast<SyntheticSection>(this)) {
1052     S->writeTo(Buf + OutSecOff);
1053     return;
1054   }
1055 
1056   // If -r or --emit-relocs is given, then an InputSection
1057   // may be a relocation section.
1058   if (Type == SHT_RELA) {
1059     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
1060     return;
1061   }
1062   if (Type == SHT_REL) {
1063     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
1064     return;
1065   }
1066 
1067   // If -r is given, we may have a SHT_GROUP section.
1068   if (Type == SHT_GROUP) {
1069     copyShtGroup<ELFT>(Buf + OutSecOff);
1070     return;
1071   }
1072 
1073   // If this is a compressed section, uncompress section contents directly
1074   // to the buffer.
1075   if (UncompressedSize >= 0) {
1076     size_t Size = UncompressedSize;
1077     if (Error E = zlib::uncompress(toStringRef(RawData),
1078                                    (char *)(Buf + OutSecOff), Size))
1079       fatal(toString(this) +
1080             ": uncompress failed: " + llvm::toString(std::move(E)));
1081     uint8_t *BufEnd = Buf + OutSecOff + Size;
1082     relocate<ELFT>(Buf, BufEnd);
1083     return;
1084   }
1085 
1086   // Copy section contents from source object file to output file
1087   // and then apply relocations.
1088   memcpy(Buf + OutSecOff, data().data(), data().size());
1089   uint8_t *BufEnd = Buf + OutSecOff + data().size();
1090   relocate<ELFT>(Buf, BufEnd);
1091 }
1092 
1093 void InputSection::replace(InputSection *Other) {
1094   Alignment = std::max(Alignment, Other->Alignment);
1095   Other->Repl = Repl;
1096   Other->Live = false;
1097 }
1098 
1099 template <class ELFT>
1100 EhInputSection::EhInputSection(ObjFile<ELFT> &F,
1101                                const typename ELFT::Shdr &Header,
1102                                StringRef Name)
1103     : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
1104 
1105 SyntheticSection *EhInputSection::getParent() const {
1106   return cast_or_null<SyntheticSection>(Parent);
1107 }
1108 
1109 // Returns the index of the first relocation that points to a region between
1110 // Begin and Begin+Size.
1111 template <class IntTy, class RelTy>
1112 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
1113                          unsigned &RelocI) {
1114   // Start search from RelocI for fast access. That works because the
1115   // relocations are sorted in .eh_frame.
1116   for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
1117     const RelTy &Rel = Rels[RelocI];
1118     if (Rel.r_offset < Begin)
1119       continue;
1120 
1121     if (Rel.r_offset < Begin + Size)
1122       return RelocI;
1123     return -1;
1124   }
1125   return -1;
1126 }
1127 
1128 // .eh_frame is a sequence of CIE or FDE records.
1129 // This function splits an input section into records and returns them.
1130 template <class ELFT> void EhInputSection::split() {
1131   if (AreRelocsRela)
1132     split<ELFT>(relas<ELFT>());
1133   else
1134     split<ELFT>(rels<ELFT>());
1135 }
1136 
1137 template <class ELFT, class RelTy>
1138 void EhInputSection::split(ArrayRef<RelTy> Rels) {
1139   unsigned RelI = 0;
1140   for (size_t Off = 0, End = data().size(); Off != End;) {
1141     size_t Size = readEhRecordSize(this, Off);
1142     Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
1143     // The empty record is the end marker.
1144     if (Size == 4)
1145       break;
1146     Off += Size;
1147   }
1148 }
1149 
1150 static size_t findNull(StringRef S, size_t EntSize) {
1151   // Optimize the common case.
1152   if (EntSize == 1)
1153     return S.find(0);
1154 
1155   for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
1156     const char *B = S.begin() + I;
1157     if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
1158       return I;
1159   }
1160   return StringRef::npos;
1161 }
1162 
1163 SyntheticSection *MergeInputSection::getParent() const {
1164   return cast_or_null<SyntheticSection>(Parent);
1165 }
1166 
1167 // Split SHF_STRINGS section. Such section is a sequence of
1168 // null-terminated strings.
1169 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
1170   size_t Off = 0;
1171   bool IsAlloc = Flags & SHF_ALLOC;
1172   StringRef S = toStringRef(Data);
1173 
1174   while (!S.empty()) {
1175     size_t End = findNull(S, EntSize);
1176     if (End == StringRef::npos)
1177       fatal(toString(this) + ": string is not null terminated");
1178     size_t Size = End + EntSize;
1179 
1180     Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
1181     S = S.substr(Size);
1182     Off += Size;
1183   }
1184 }
1185 
1186 // Split non-SHF_STRINGS section. Such section is a sequence of
1187 // fixed size records.
1188 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
1189                                         size_t EntSize) {
1190   size_t Size = Data.size();
1191   assert((Size % EntSize) == 0);
1192   bool IsAlloc = Flags & SHF_ALLOC;
1193 
1194   for (size_t I = 0; I != Size; I += EntSize)
1195     Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc);
1196 }
1197 
1198 template <class ELFT>
1199 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
1200                                      const typename ELFT::Shdr &Header,
1201                                      StringRef Name)
1202     : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
1203 
1204 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
1205                                      uint64_t Entsize, ArrayRef<uint8_t> Data,
1206                                      StringRef Name)
1207     : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
1208                        /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
1209 
1210 // This function is called after we obtain a complete list of input sections
1211 // that need to be linked. This is responsible to split section contents
1212 // into small chunks for further processing.
1213 //
1214 // Note that this function is called from parallelForEach. This must be
1215 // thread-safe (i.e. no memory allocation from the pools).
1216 void MergeInputSection::splitIntoPieces() {
1217   assert(Pieces.empty());
1218 
1219   if (Flags & SHF_STRINGS)
1220     splitStrings(data(), Entsize);
1221   else
1222     splitNonStrings(data(), Entsize);
1223 }
1224 
1225 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
1226   if (this->data().size() <= Offset)
1227     fatal(toString(this) + ": offset is outside the section");
1228 
1229   // If Offset is not at beginning of a section piece, it is not in the map.
1230   // In that case we need to  do a binary search of the original section piece vector.
1231   auto It = llvm::bsearch(Pieces,
1232                           [=](SectionPiece P) { return Offset < P.InputOff; });
1233   return &It[-1];
1234 }
1235 
1236 // Returns the offset in an output section for a given input offset.
1237 // Because contents of a mergeable section is not contiguous in output,
1238 // it is not just an addition to a base output offset.
1239 uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
1240   // If Offset is not at beginning of a section piece, it is not in the map.
1241   // In that case we need to search from the original section piece vector.
1242   const SectionPiece &Piece =
1243       *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset));
1244   uint64_t Addend = Offset - Piece.InputOff;
1245   return Piece.OutputOff + Addend;
1246 }
1247 
1248 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1249                                     StringRef);
1250 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1251                                     StringRef);
1252 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1253                                     StringRef);
1254 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1255                                     StringRef);
1256 
1257 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1258 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1259 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1260 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1261 
1262 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1263 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1264 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1265 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1266 
1267 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1268                                               const ELF32LE::Shdr &, StringRef);
1269 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1270                                               const ELF32BE::Shdr &, StringRef);
1271 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1272                                               const ELF64LE::Shdr &, StringRef);
1273 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1274                                               const ELF64BE::Shdr &, StringRef);
1275 
1276 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1277                                         const ELF32LE::Shdr &, StringRef);
1278 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1279                                         const ELF32BE::Shdr &, StringRef);
1280 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1281                                         const ELF64LE::Shdr &, StringRef);
1282 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1283                                         const ELF64BE::Shdr &, StringRef);
1284 
1285 template void EhInputSection::split<ELF32LE>();
1286 template void EhInputSection::split<ELF32BE>();
1287 template void EhInputSection::split<ELF64LE>();
1288 template void EhInputSection::split<ELF64BE>();
1289