1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/Threading.h" 28 #include <mutex> 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::support; 34 using namespace llvm::support::endian; 35 using namespace llvm::sys; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 std::vector<InputSectionBase *> elf::InputSections; 41 42 // Returns a string to construct an error message. 43 std::string lld::toString(const InputSectionBase *Sec) { 44 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 45 } 46 47 DenseMap<SectionBase *, int> elf::buildSectionOrder() { 48 // Build a map from symbols to their priorities. Symbols that didn't 49 // appear in the symbol ordering file have the lowest priority 0. 50 // All explicitly mentioned symbols have negative (higher) priorities. 51 DenseMap<StringRef, int> SymbolOrder; 52 int Priority = -Config->SymbolOrderingFile.size(); 53 for (StringRef S : Config->SymbolOrderingFile) 54 SymbolOrder.insert({S, Priority++}); 55 56 // Build a map from sections to their priorities. 57 DenseMap<SectionBase *, int> SectionOrder; 58 for (InputFile *File : ObjectFiles) { 59 for (SymbolBody *Body : File->getSymbols()) { 60 auto *D = dyn_cast<DefinedRegular>(Body); 61 if (!D || !D->Section) 62 continue; 63 int &Priority = SectionOrder[D->Section]; 64 Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); 65 } 66 } 67 return SectionOrder; 68 } 69 70 template <class ELFT> 71 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File, 72 const typename ELFT::Shdr *Hdr) { 73 if (!File || Hdr->sh_type == SHT_NOBITS) 74 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 75 return check(File->getObj().getSectionContents(Hdr)); 76 } 77 78 // Return true if a section with given section flags is live (will never be 79 // GCed) by default. If a section can be GCed, this function returns false. 80 static bool isLiveByDefault(uint64_t Flags, uint32_t Type) { 81 // If GC is enabled, all memory-mapped sections are subject of GC. 82 if (!Config->GcSections) 83 return true; 84 if (Flags & SHF_ALLOC) 85 return false; 86 87 // Besides that, relocation sections can also be GCed because their 88 // relocation target sections may be GCed. This doesn't really matter 89 // in most cases because the linker usually consumes relocation 90 // sections instead of emitting them, but -emit-reloc needs this. 91 return Type != SHT_REL && Type != SHT_RELA; 92 } 93 94 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 95 uint32_t Type, uint64_t Entsize, 96 uint32_t Link, uint32_t Info, 97 uint32_t Alignment, ArrayRef<uint8_t> Data, 98 StringRef Name, Kind SectionKind) 99 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 100 Link), 101 File(File), Data(Data), Repl(this) { 102 Live = isLiveByDefault(Flags, Type); 103 Assigned = false; 104 NumRelocations = 0; 105 AreRelocsRela = false; 106 107 // The ELF spec states that a value of 0 means the section has 108 // no alignment constraits. 109 uint32_t V = std::max<uint64_t>(Alignment, 1); 110 if (!isPowerOf2_64(V)) 111 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 112 this->Alignment = V; 113 } 114 115 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 116 // SHF_GROUP is a marker that a section belongs to some comdat group. 117 // That flag doesn't make sense in an executable. 118 static uint64_t getFlags(uint64_t Flags) { 119 Flags &= ~(uint64_t)SHF_INFO_LINK; 120 if (!Config->Relocatable) 121 Flags &= ~(uint64_t)SHF_GROUP; 122 return Flags; 123 } 124 125 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 126 // March 2017) fail to infer section types for sections starting with 127 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 128 // SHF_INIT_ARRAY. As a result, the following assembler directive 129 // creates ".init_array.100" with SHT_PROGBITS, for example. 130 // 131 // .section .init_array.100, "aw" 132 // 133 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 134 // incorrect inputs as if they were correct from the beginning. 135 static uint64_t getType(uint64_t Type, StringRef Name) { 136 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 137 return SHT_INIT_ARRAY; 138 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 139 return SHT_FINI_ARRAY; 140 return Type; 141 } 142 143 template <class ELFT> 144 InputSectionBase::InputSectionBase(ObjFile<ELFT> *File, 145 const typename ELFT::Shdr *Hdr, 146 StringRef Name, Kind SectionKind) 147 : InputSectionBase(File, getFlags(Hdr->sh_flags), 148 getType(Hdr->sh_type, Name), Hdr->sh_entsize, 149 Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, 150 getSectionContents(File, Hdr), Name, SectionKind) { 151 // We reject object files having insanely large alignments even though 152 // they are allowed by the spec. I think 4GB is a reasonable limitation. 153 // We might want to relax this in the future. 154 if (Hdr->sh_addralign > UINT32_MAX) 155 fatal(toString(File) + ": section sh_addralign is too large"); 156 } 157 158 size_t InputSectionBase::getSize() const { 159 if (auto *S = dyn_cast<SyntheticSection>(this)) 160 return S->getSize(); 161 162 return Data.size(); 163 } 164 165 uint64_t InputSectionBase::getOffsetInFile() const { 166 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 167 const uint8_t *SecStart = Data.begin(); 168 return SecStart - FileStart; 169 } 170 171 uint64_t SectionBase::getOffset(uint64_t Offset) const { 172 switch (kind()) { 173 case Output: { 174 auto *OS = cast<OutputSection>(this); 175 // For output sections we treat offset -1 as the end of the section. 176 return Offset == uint64_t(-1) ? OS->Size : Offset; 177 } 178 case Regular: 179 return cast<InputSection>(this)->OutSecOff + Offset; 180 case Synthetic: { 181 auto *IS = cast<InputSection>(this); 182 // For synthetic sections we treat offset -1 as the end of the section. 183 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 184 } 185 case EHFrame: 186 // The file crtbeginT.o has relocations pointing to the start of an empty 187 // .eh_frame that is known to be the first in the link. It does that to 188 // identify the start of the output .eh_frame. 189 return Offset; 190 case Merge: 191 const MergeInputSection *MS = cast<MergeInputSection>(this); 192 if (InputSection *IS = MS->getParent()) 193 return IS->OutSecOff + MS->getOffset(Offset); 194 return MS->getOffset(Offset); 195 } 196 llvm_unreachable("invalid section kind"); 197 } 198 199 OutputSection *SectionBase::getOutputSection() { 200 InputSection *Sec; 201 if (auto *IS = dyn_cast<InputSection>(this)) 202 Sec = cast<InputSection>(IS->Repl); 203 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 204 Sec = MS->getParent(); 205 else if (auto *EH = dyn_cast<EhInputSection>(this)) 206 Sec = EH->getParent(); 207 else 208 return cast<OutputSection>(this); 209 return Sec ? Sec->getParent() : nullptr; 210 } 211 212 // Uncompress section contents. Note that this function is called 213 // from parallelForEach, so it must be thread-safe. 214 void InputSectionBase::uncompress() { 215 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 216 Config->IsLE, Config->Is64)); 217 218 size_t Size = Dec.getDecompressedSize(); 219 UncompressBuf.reset(new char[Size]()); 220 if (Error E = Dec.decompress({UncompressBuf.get(), Size})) 221 fatal(toString(this) + 222 ": decompress failed: " + llvm::toString(std::move(E))); 223 224 this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size); 225 this->Flags &= ~(uint64_t)SHF_COMPRESSED; 226 } 227 228 uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const { 229 return getOffset(Sym.Value); 230 } 231 232 InputSection *InputSectionBase::getLinkOrderDep() const { 233 if ((Flags & SHF_LINK_ORDER) && Link != 0) { 234 InputSectionBase *L = File->getSections()[Link]; 235 if (auto *IS = dyn_cast<InputSection>(L)) 236 return IS; 237 error( 238 "Merge and .eh_frame sections are not supported with SHF_LINK_ORDER " + 239 toString(L)); 240 } 241 return nullptr; 242 } 243 244 // Returns a source location string. Used to construct an error message. 245 template <class ELFT> 246 std::string InputSectionBase::getLocation(uint64_t Offset) { 247 // We don't have file for synthetic sections. 248 if (getFile<ELFT>() == nullptr) 249 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 250 .str(); 251 252 // First check if we can get desired values from debugging information. 253 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 254 if (!LineInfo.empty()) 255 return LineInfo; 256 257 // File->SourceFile contains STT_FILE symbol that contains a 258 // source file name. If it's missing, we use an object file name. 259 std::string SrcFile = getFile<ELFT>()->SourceFile; 260 if (SrcFile.empty()) 261 SrcFile = toString(File); 262 263 // Find a function symbol that encloses a given location. 264 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 265 if (auto *D = dyn_cast<DefinedRegular>(B)) 266 if (D->Section == this && D->Type == STT_FUNC) 267 if (D->Value <= Offset && Offset < D->Value + D->Size) 268 return SrcFile + ":(function " + toString(*D) + ")"; 269 270 // If there's no symbol, print out the offset in the section. 271 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 272 } 273 274 // Returns a source location string. This function is intended to be 275 // used for constructing an error message. The returned message looks 276 // like this: 277 // 278 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 279 // 280 // Returns an empty string if there's no way to get line info. 281 template <class ELFT> std::string InputSectionBase::getSrcMsg(uint64_t Offset) { 282 // Synthetic sections don't have input files. 283 ObjFile<ELFT> *File = getFile<ELFT>(); 284 if (!File) 285 return ""; 286 287 Optional<DILineInfo> Info = File->getDILineInfo(this, Offset); 288 289 // File->SourceFile contains STT_FILE symbol, and that is a last resort. 290 if (!Info) 291 return File->SourceFile; 292 293 std::string Path = Info->FileName; 294 std::string Filename = path::filename(Path); 295 std::string Lineno = ":" + std::to_string(Info->Line); 296 if (Filename == Path) 297 return Filename + Lineno; 298 return Filename + Lineno + " (" + Path + Lineno + ")"; 299 } 300 301 // Returns a filename string along with an optional section name. This 302 // function is intended to be used for constructing an error 303 // message. The returned message looks like this: 304 // 305 // path/to/foo.o:(function bar) 306 // 307 // or 308 // 309 // path/to/foo.o:(function bar) in archive path/to/bar.a 310 template <class ELFT> std::string InputSectionBase::getObjMsg(uint64_t Off) { 311 // Synthetic sections don't have input files. 312 ObjFile<ELFT> *File = getFile<ELFT>(); 313 if (!File) 314 return ("(internal):(" + Name + "+0x" + utohexstr(Off) + ")").str(); 315 std::string Filename = File->getName(); 316 317 std::string Archive; 318 if (!File->ArchiveName.empty()) 319 Archive = (" in archive " + File->ArchiveName).str(); 320 321 // Find a symbol that encloses a given location. 322 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 323 if (auto *D = dyn_cast<DefinedRegular>(B)) 324 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 325 return Filename + ":(" + toString(*D) + ")" + Archive; 326 327 // If there's no symbol, print out the offset in the section. 328 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 329 .str(); 330 } 331 332 InputSectionBase InputSectionBase::Discarded; 333 334 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 335 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 336 : InputSectionBase(nullptr, Flags, Type, 337 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 338 Name, K) {} 339 340 template <class ELFT> 341 InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header, 342 StringRef Name) 343 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 344 345 bool InputSection::classof(const SectionBase *S) { 346 return S->kind() == SectionBase::Regular || 347 S->kind() == SectionBase::Synthetic; 348 } 349 350 bool InputSectionBase::classof(const SectionBase *S) { 351 return S->kind() != Output; 352 } 353 354 OutputSection *InputSection::getParent() const { 355 return cast_or_null<OutputSection>(Parent); 356 } 357 358 // Copy SHT_GROUP section contents. Used only for the -r option. 359 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 360 // ELFT::Word is the 32-bit integral type in the target endianness. 361 typedef typename ELFT::Word u32; 362 ArrayRef<u32> From = getDataAs<u32>(); 363 auto *To = reinterpret_cast<u32 *>(Buf); 364 365 // The first entry is not a section number but a flag. 366 *To++ = From[0]; 367 368 // Adjust section numbers because section numbers in an input object 369 // files are different in the output. 370 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 371 for (uint32_t Idx : From.slice(1)) 372 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 373 } 374 375 InputSectionBase *InputSection::getRelocatedSection() { 376 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 377 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 378 return Sections[this->Info]; 379 } 380 381 // This is used for -r and --emit-relocs. We can't use memcpy to copy 382 // relocations because we need to update symbol table offset and section index 383 // for each relocation. So we copy relocations one by one. 384 template <class ELFT, class RelTy> 385 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 386 InputSectionBase *RelocatedSection = getRelocatedSection(); 387 388 // Loop is slow and have complexity O(N*M), where N - amount of 389 // relocations and M - amount of symbols in symbol table. 390 // That happens because getSymbolIndex(...) call below performs 391 // simple linear search. 392 for (const RelTy &Rel : Rels) { 393 uint32_t Type = Rel.getType(Config->IsMips64EL); 394 SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); 395 396 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 397 Buf += sizeof(RelTy); 398 399 if (Config->IsRela) 400 P->r_addend = getAddend<ELFT>(Rel); 401 402 // Output section VA is zero for -r, so r_offset is an offset within the 403 // section, but for --emit-relocs it is an virtual address. 404 P->r_offset = RelocatedSection->getOutputSection()->Addr + 405 RelocatedSection->getOffset(Rel.r_offset); 406 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Body), Type, 407 Config->IsMips64EL); 408 409 if (Body.Type == STT_SECTION) { 410 // We combine multiple section symbols into only one per 411 // section. This means we have to update the addend. That is 412 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 413 // section data. We do that by adding to the Relocation vector. 414 415 // .eh_frame is horribly special and can reference discarded sections. To 416 // avoid having to parse and recreate .eh_frame, we just replace any 417 // relocation in it pointing to discarded sections with R_*_NONE, which 418 // hopefully creates a frame that is ignored at runtime. 419 SectionBase *Section = cast<DefinedRegular>(Body).Section; 420 if (Section == &InputSection::Discarded) { 421 P->setSymbolAndType(0, 0, false); 422 continue; 423 } 424 425 if (Config->IsRela) { 426 P->r_addend += Body.getVA() - Section->getOutputSection()->Addr; 427 } else if (Config->Relocatable) { 428 const uint8_t *BufLoc = RelocatedSection->Data.begin() + Rel.r_offset; 429 RelocatedSection->Relocations.push_back( 430 {R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type), 431 &Body}); 432 } 433 } 434 435 } 436 } 437 438 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 439 // references specially. The general rule is that the value of the symbol in 440 // this context is the address of the place P. A further special case is that 441 // branch relocations to an undefined weak reference resolve to the next 442 // instruction. 443 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 444 uint32_t P) { 445 switch (Type) { 446 // Unresolved branch relocations to weak references resolve to next 447 // instruction, this will be either 2 or 4 bytes on from P. 448 case R_ARM_THM_JUMP11: 449 return P + 2 + A; 450 case R_ARM_CALL: 451 case R_ARM_JUMP24: 452 case R_ARM_PC24: 453 case R_ARM_PLT32: 454 case R_ARM_PREL31: 455 case R_ARM_THM_JUMP19: 456 case R_ARM_THM_JUMP24: 457 return P + 4 + A; 458 case R_ARM_THM_CALL: 459 // We don't want an interworking BLX to ARM 460 return P + 5 + A; 461 // Unresolved non branch pc-relative relocations 462 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 463 // targets a weak-reference. 464 case R_ARM_MOVW_PREL_NC: 465 case R_ARM_MOVT_PREL: 466 case R_ARM_REL32: 467 case R_ARM_THM_MOVW_PREL_NC: 468 case R_ARM_THM_MOVT_PREL: 469 return P + A; 470 } 471 llvm_unreachable("ARM pc-relative relocation expected\n"); 472 } 473 474 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 475 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 476 uint64_t P) { 477 switch (Type) { 478 // Unresolved branch relocations to weak references resolve to next 479 // instruction, this is 4 bytes on from P. 480 case R_AARCH64_CALL26: 481 case R_AARCH64_CONDBR19: 482 case R_AARCH64_JUMP26: 483 case R_AARCH64_TSTBR14: 484 return P + 4 + A; 485 // Unresolved non branch pc-relative relocations 486 case R_AARCH64_PREL16: 487 case R_AARCH64_PREL32: 488 case R_AARCH64_PREL64: 489 case R_AARCH64_ADR_PREL_LO21: 490 case R_AARCH64_LD_PREL_LO19: 491 return P + A; 492 } 493 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 494 } 495 496 // ARM SBREL relocations are of the form S + A - B where B is the static base 497 // The ARM ABI defines base to be "addressing origin of the output segment 498 // defining the symbol S". We defined the "addressing origin"/static base to be 499 // the base of the PT_LOAD segment containing the Body. 500 // The procedure call standard only defines a Read Write Position Independent 501 // RWPI variant so in practice we should expect the static base to be the base 502 // of the RW segment. 503 static uint64_t getARMStaticBase(const SymbolBody &Body) { 504 OutputSection *OS = Body.getOutputSection(); 505 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 506 fatal("SBREL relocation to " + Body.getName() + " without static base"); 507 return OS->PtLoad->FirstSec->Addr; 508 } 509 510 static uint64_t getRelocTargetVA(uint32_t Type, int64_t A, uint64_t P, 511 const SymbolBody &Body, RelExpr Expr) { 512 switch (Expr) { 513 case R_ABS: 514 case R_RELAX_GOT_PC_NOPIC: 515 return Body.getVA(A); 516 case R_ARM_SBREL: 517 return Body.getVA(A) - getARMStaticBase(Body); 518 case R_GOT: 519 case R_RELAX_TLS_GD_TO_IE_ABS: 520 return Body.getGotVA() + A; 521 case R_GOTONLY_PC: 522 return InX::Got->getVA() + A - P; 523 case R_GOTONLY_PC_FROM_END: 524 return InX::Got->getVA() + A - P + InX::Got->getSize(); 525 case R_GOTREL: 526 return Body.getVA(A) - InX::Got->getVA(); 527 case R_GOTREL_FROM_END: 528 return Body.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 529 case R_GOT_FROM_END: 530 case R_RELAX_TLS_GD_TO_IE_END: 531 return Body.getGotOffset() + A - InX::Got->getSize(); 532 case R_GOT_OFF: 533 return Body.getGotOffset() + A; 534 case R_GOT_PAGE_PC: 535 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 536 return getAArch64Page(Body.getGotVA() + A) - getAArch64Page(P); 537 case R_GOT_PC: 538 case R_RELAX_TLS_GD_TO_IE: 539 return Body.getGotVA() + A - P; 540 case R_HINT: 541 case R_NONE: 542 case R_TLSDESC_CALL: 543 llvm_unreachable("cannot relocate hint relocs"); 544 case R_MIPS_GOTREL: 545 return Body.getVA(A) - InX::MipsGot->getGp(); 546 case R_MIPS_GOT_GP: 547 return InX::MipsGot->getGp() + A; 548 case R_MIPS_GOT_GP_PC: { 549 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 550 // is _gp_disp symbol. In that case we should use the following 551 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 552 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 553 uint64_t V = InX::MipsGot->getGp() + A - P; 554 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 555 V += 4; 556 return V; 557 } 558 case R_MIPS_GOT_LOCAL_PAGE: 559 // If relocation against MIPS local symbol requires GOT entry, this entry 560 // should be initialized by 'page address'. This address is high 16-bits 561 // of sum the symbol's value and the addend. 562 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Body, A) - 563 InX::MipsGot->getGp(); 564 case R_MIPS_GOT_OFF: 565 case R_MIPS_GOT_OFF32: 566 // In case of MIPS if a GOT relocation has non-zero addend this addend 567 // should be applied to the GOT entry content not to the GOT entry offset. 568 // That is why we use separate expression type. 569 return InX::MipsGot->getVA() + InX::MipsGot->getBodyEntryOffset(Body, A) - 570 InX::MipsGot->getGp(); 571 case R_MIPS_TLSGD: 572 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 573 InX::MipsGot->getGlobalDynOffset(Body) - InX::MipsGot->getGp(); 574 case R_MIPS_TLSLD: 575 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 576 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 577 case R_PAGE_PC: 578 case R_PLT_PAGE_PC: { 579 uint64_t Dest; 580 if (Body.isUndefWeak()) 581 Dest = getAArch64Page(A); 582 else 583 Dest = getAArch64Page(Body.getVA(A)); 584 return Dest - getAArch64Page(P); 585 } 586 case R_PC: { 587 uint64_t Dest; 588 if (Body.isUndefWeak()) { 589 // On ARM and AArch64 a branch to an undefined weak resolves to the 590 // next instruction, otherwise the place. 591 if (Config->EMachine == EM_ARM) 592 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 593 else if (Config->EMachine == EM_AARCH64) 594 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 595 else 596 Dest = Body.getVA(A); 597 } else { 598 Dest = Body.getVA(A); 599 } 600 return Dest - P; 601 } 602 case R_PLT: 603 return Body.getPltVA() + A; 604 case R_PLT_PC: 605 case R_PPC_PLT_OPD: 606 return Body.getPltVA() + A - P; 607 case R_PPC_OPD: { 608 uint64_t SymVA = Body.getVA(A); 609 // If we have an undefined weak symbol, we might get here with a symbol 610 // address of zero. That could overflow, but the code must be unreachable, 611 // so don't bother doing anything at all. 612 if (!SymVA) 613 return 0; 614 if (Out::Opd) { 615 // If this is a local call, and we currently have the address of a 616 // function-descriptor, get the underlying code address instead. 617 uint64_t OpdStart = Out::Opd->Addr; 618 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 619 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 620 if (InOpd) 621 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 622 } 623 return SymVA - P; 624 } 625 case R_PPC_TOC: 626 return getPPC64TocBase() + A; 627 case R_RELAX_GOT_PC: 628 return Body.getVA(A) - P; 629 case R_RELAX_TLS_GD_TO_LE: 630 case R_RELAX_TLS_IE_TO_LE: 631 case R_RELAX_TLS_LD_TO_LE: 632 case R_TLS: 633 // A weak undefined TLS symbol resolves to the base of the TLS 634 // block, i.e. gets a value of zero. If we pass --gc-sections to 635 // lld and .tbss is not referenced, it gets reclaimed and we don't 636 // create a TLS program header. Therefore, we resolve this 637 // statically to zero. 638 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 639 Body.symbol()->isWeak()) 640 return 0; 641 if (Target->TcbSize) 642 return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 643 return Body.getVA(A) - Out::TlsPhdr->p_memsz; 644 case R_RELAX_TLS_GD_TO_LE_NEG: 645 case R_NEG_TLS: 646 return Out::TlsPhdr->p_memsz - Body.getVA(A); 647 case R_SIZE: 648 return A; // Body.getSize was already folded into the addend. 649 case R_TLSDESC: 650 return InX::Got->getGlobalDynAddr(Body) + A; 651 case R_TLSDESC_PAGE: 652 return getAArch64Page(InX::Got->getGlobalDynAddr(Body) + A) - 653 getAArch64Page(P); 654 case R_TLSGD: 655 return InX::Got->getGlobalDynOffset(Body) + A - InX::Got->getSize(); 656 case R_TLSGD_PC: 657 return InX::Got->getGlobalDynAddr(Body) + A - P; 658 case R_TLSLD: 659 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 660 case R_TLSLD_PC: 661 return InX::Got->getTlsIndexVA() + A - P; 662 } 663 llvm_unreachable("Invalid expression"); 664 } 665 666 // This function applies relocations to sections without SHF_ALLOC bit. 667 // Such sections are never mapped to memory at runtime. Debug sections are 668 // an example. Relocations in non-alloc sections are much easier to 669 // handle than in allocated sections because it will never need complex 670 // treatement such as GOT or PLT (because at runtime no one refers them). 671 // So, we handle relocations for non-alloc sections directly in this 672 // function as a performance optimization. 673 template <class ELFT, class RelTy> 674 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 675 for (const RelTy &Rel : Rels) { 676 uint32_t Type = Rel.getType(Config->IsMips64EL); 677 uint64_t Offset = getOffset(Rel.r_offset); 678 uint8_t *BufLoc = Buf + Offset; 679 int64_t Addend = getAddend<ELFT>(Rel); 680 if (!RelTy::IsRela) 681 Addend += Target->getImplicitAddend(BufLoc, Type); 682 683 SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 684 RelExpr Expr = Target->getRelExpr(Type, Sym, *File, BufLoc); 685 if (Expr == R_NONE) 686 continue; 687 if (Expr != R_ABS) { 688 error(this->getLocation<ELFT>(Offset) + ": has non-ABS reloc"); 689 return; 690 } 691 692 uint64_t AddrLoc = getParent()->Addr + Offset; 693 uint64_t SymVA = 0; 694 if (!Sym.isTls() || Out::TlsPhdr) 695 SymVA = SignExtend64<sizeof(typename ELFT::uint) * 8>( 696 getRelocTargetVA(Type, Addend, AddrLoc, Sym, R_ABS)); 697 Target->relocateOne(BufLoc, Type, SymVA); 698 } 699 } 700 701 template <class ELFT> ObjFile<ELFT> *InputSectionBase::getFile() const { 702 return cast_or_null<ObjFile<ELFT>>(File); 703 } 704 705 template <class ELFT> 706 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 707 if (Flags & SHF_ALLOC) 708 relocateAlloc(Buf, BufEnd); 709 else 710 relocateNonAlloc<ELFT>(Buf, BufEnd); 711 } 712 713 template <class ELFT> 714 void InputSectionBase::relocateNonAlloc(uint8_t *Buf, uint8_t *BufEnd) { 715 // scanReloc function in Writer.cpp constructs Relocations 716 // vector only for SHF_ALLOC'ed sections. For other sections, 717 // we handle relocations directly here. 718 auto *IS = cast<InputSection>(this); 719 assert(!(IS->Flags & SHF_ALLOC)); 720 if (IS->AreRelocsRela) 721 IS->relocateNonAlloc<ELFT>(Buf, IS->template relas<ELFT>()); 722 else 723 IS->relocateNonAlloc<ELFT>(Buf, IS->template rels<ELFT>()); 724 } 725 726 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 727 assert(Flags & SHF_ALLOC); 728 const unsigned Bits = Config->Wordsize * 8; 729 for (const Relocation &Rel : Relocations) { 730 uint64_t Offset = getOffset(Rel.Offset); 731 uint8_t *BufLoc = Buf + Offset; 732 uint32_t Type = Rel.Type; 733 734 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 735 RelExpr Expr = Rel.Expr; 736 uint64_t TargetVA = SignExtend64( 737 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 738 739 switch (Expr) { 740 case R_RELAX_GOT_PC: 741 case R_RELAX_GOT_PC_NOPIC: 742 Target->relaxGot(BufLoc, TargetVA); 743 break; 744 case R_RELAX_TLS_IE_TO_LE: 745 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 746 break; 747 case R_RELAX_TLS_LD_TO_LE: 748 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 749 break; 750 case R_RELAX_TLS_GD_TO_LE: 751 case R_RELAX_TLS_GD_TO_LE_NEG: 752 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 753 break; 754 case R_RELAX_TLS_GD_TO_IE: 755 case R_RELAX_TLS_GD_TO_IE_ABS: 756 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 757 case R_RELAX_TLS_GD_TO_IE_END: 758 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 759 break; 760 case R_PPC_PLT_OPD: 761 // Patch a nop (0x60000000) to a ld. 762 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 763 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 764 LLVM_FALLTHROUGH; 765 default: 766 Target->relocateOne(BufLoc, Type, TargetVA); 767 break; 768 } 769 } 770 } 771 772 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 773 if (this->Type == SHT_NOBITS) 774 return; 775 776 if (auto *S = dyn_cast<SyntheticSection>(this)) { 777 S->writeTo(Buf + OutSecOff); 778 return; 779 } 780 781 // If -r or --emit-relocs is given, then an InputSection 782 // may be a relocation section. 783 if (this->Type == SHT_RELA) { 784 copyRelocations<ELFT>(Buf + OutSecOff, 785 this->template getDataAs<typename ELFT::Rela>()); 786 return; 787 } 788 if (this->Type == SHT_REL) { 789 copyRelocations<ELFT>(Buf + OutSecOff, 790 this->template getDataAs<typename ELFT::Rel>()); 791 return; 792 } 793 794 // If -r is given, we may have a SHT_GROUP section. 795 if (this->Type == SHT_GROUP) { 796 copyShtGroup<ELFT>(Buf + OutSecOff); 797 return; 798 } 799 800 // Copy section contents from source object file to output file 801 // and then apply relocations. 802 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 803 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 804 this->relocate<ELFT>(Buf, BufEnd); 805 } 806 807 void InputSection::replace(InputSection *Other) { 808 this->Alignment = std::max(this->Alignment, Other->Alignment); 809 Other->Repl = this->Repl; 810 Other->Live = false; 811 } 812 813 template <class ELFT> 814 EhInputSection::EhInputSection(ObjFile<ELFT> *F, 815 const typename ELFT::Shdr *Header, 816 StringRef Name) 817 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { 818 // Mark .eh_frame sections as live by default because there are 819 // usually no relocations that point to .eh_frames. Otherwise, 820 // the garbage collector would drop all .eh_frame sections. 821 this->Live = true; 822 } 823 824 SyntheticSection *EhInputSection::getParent() const { 825 return cast_or_null<SyntheticSection>(Parent); 826 } 827 828 bool EhInputSection::classof(const SectionBase *S) { 829 return S->kind() == InputSectionBase::EHFrame; 830 } 831 832 // Returns the index of the first relocation that points to a region between 833 // Begin and Begin+Size. 834 template <class IntTy, class RelTy> 835 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 836 unsigned &RelocI) { 837 // Start search from RelocI for fast access. That works because the 838 // relocations are sorted in .eh_frame. 839 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 840 const RelTy &Rel = Rels[RelocI]; 841 if (Rel.r_offset < Begin) 842 continue; 843 844 if (Rel.r_offset < Begin + Size) 845 return RelocI; 846 return -1; 847 } 848 return -1; 849 } 850 851 // .eh_frame is a sequence of CIE or FDE records. 852 // This function splits an input section into records and returns them. 853 template <class ELFT> void EhInputSection::split() { 854 // Early exit if already split. 855 if (!this->Pieces.empty()) 856 return; 857 858 if (this->NumRelocations) { 859 if (this->AreRelocsRela) 860 split<ELFT>(this->relas<ELFT>()); 861 else 862 split<ELFT>(this->rels<ELFT>()); 863 return; 864 } 865 split<ELFT>(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 866 } 867 868 template <class ELFT, class RelTy> 869 void EhInputSection::split(ArrayRef<RelTy> Rels) { 870 ArrayRef<uint8_t> Data = this->Data; 871 unsigned RelI = 0; 872 for (size_t Off = 0, End = Data.size(); Off != End;) { 873 size_t Size = readEhRecordSize<ELFT>(this, Off); 874 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 875 // The empty record is the end marker. 876 if (Size == 4) 877 break; 878 Off += Size; 879 } 880 } 881 882 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 883 // Optimize the common case. 884 StringRef S((const char *)A.data(), A.size()); 885 if (EntSize == 1) 886 return S.find(0); 887 888 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 889 const char *B = S.begin() + I; 890 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 891 return I; 892 } 893 return StringRef::npos; 894 } 895 896 SyntheticSection *MergeInputSection::getParent() const { 897 return cast_or_null<SyntheticSection>(Parent); 898 } 899 900 // Split SHF_STRINGS section. Such section is a sequence of 901 // null-terminated strings. 902 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 903 size_t Off = 0; 904 bool IsAlloc = this->Flags & SHF_ALLOC; 905 while (!Data.empty()) { 906 size_t End = findNull(Data, EntSize); 907 if (End == StringRef::npos) 908 fatal(toString(this) + ": string is not null terminated"); 909 size_t Size = End + EntSize; 910 Pieces.emplace_back(Off, !IsAlloc); 911 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 912 Data = Data.slice(Size); 913 Off += Size; 914 } 915 } 916 917 // Split non-SHF_STRINGS section. Such section is a sequence of 918 // fixed size records. 919 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 920 size_t EntSize) { 921 size_t Size = Data.size(); 922 assert((Size % EntSize) == 0); 923 bool IsAlloc = this->Flags & SHF_ALLOC; 924 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 925 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 926 Pieces.emplace_back(I, !IsAlloc); 927 } 928 } 929 930 template <class ELFT> 931 MergeInputSection::MergeInputSection(ObjFile<ELFT> *F, 932 const typename ELFT::Shdr *Header, 933 StringRef Name) 934 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 935 936 // This function is called after we obtain a complete list of input sections 937 // that need to be linked. This is responsible to split section contents 938 // into small chunks for further processing. 939 // 940 // Note that this function is called from parallelForEach. This must be 941 // thread-safe (i.e. no memory allocation from the pools). 942 void MergeInputSection::splitIntoPieces() { 943 assert(Pieces.empty()); 944 ArrayRef<uint8_t> Data = this->Data; 945 uint64_t EntSize = this->Entsize; 946 if (this->Flags & SHF_STRINGS) 947 splitStrings(Data, EntSize); 948 else 949 splitNonStrings(Data, EntSize); 950 951 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 952 for (uint64_t Off : LiveOffsets) 953 this->getSectionPiece(Off)->Live = true; 954 } 955 956 bool MergeInputSection::classof(const SectionBase *S) { 957 return S->kind() == InputSectionBase::Merge; 958 } 959 960 // Do binary search to get a section piece at a given input offset. 961 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 962 auto *This = static_cast<const MergeInputSection *>(this); 963 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 964 } 965 966 template <class It, class T, class Compare> 967 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 968 size_t Size = std::distance(First, Last); 969 assert(Size != 0); 970 while (Size != 1) { 971 size_t H = Size / 2; 972 const It MI = First + H; 973 Size -= H; 974 First = Comp(Value, *MI) ? First : First + H; 975 } 976 return Comp(Value, *First) ? First : First + 1; 977 } 978 979 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 980 uint64_t Size = this->Data.size(); 981 if (Offset >= Size) 982 fatal(toString(this) + ": entry is past the end of the section"); 983 984 // Find the element this offset points to. 985 auto I = fastUpperBound( 986 Pieces.begin(), Pieces.end(), Offset, 987 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 988 --I; 989 return &*I; 990 } 991 992 // Returns the offset in an output section for a given input offset. 993 // Because contents of a mergeable section is not contiguous in output, 994 // it is not just an addition to a base output offset. 995 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 996 // Initialize OffsetMap lazily. 997 llvm::call_once(InitOffsetMap, [&] { 998 OffsetMap.reserve(Pieces.size()); 999 for (const SectionPiece &Piece : Pieces) 1000 OffsetMap[Piece.InputOff] = Piece.OutputOff; 1001 }); 1002 1003 // Find a string starting at a given offset. 1004 auto It = OffsetMap.find(Offset); 1005 if (It != OffsetMap.end()) 1006 return It->second; 1007 1008 if (!this->Live) 1009 return 0; 1010 1011 // If Offset is not at beginning of a section piece, it is not in the map. 1012 // In that case we need to search from the original section piece vector. 1013 const SectionPiece &Piece = *this->getSectionPiece(Offset); 1014 if (!Piece.Live) 1015 return 0; 1016 1017 uint64_t Addend = Offset - Piece.InputOff; 1018 return Piece.OutputOff + Addend; 1019 } 1020 1021 template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *, 1022 StringRef); 1023 template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *, 1024 StringRef); 1025 template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *, 1026 StringRef); 1027 template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *, 1028 StringRef); 1029 1030 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1031 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1032 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1033 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1034 1035 template std::string InputSectionBase::getSrcMsg<ELF32LE>(uint64_t); 1036 template std::string InputSectionBase::getSrcMsg<ELF32BE>(uint64_t); 1037 template std::string InputSectionBase::getSrcMsg<ELF64LE>(uint64_t); 1038 template std::string InputSectionBase::getSrcMsg<ELF64BE>(uint64_t); 1039 1040 template std::string InputSectionBase::getObjMsg<ELF32LE>(uint64_t); 1041 template std::string InputSectionBase::getObjMsg<ELF32BE>(uint64_t); 1042 template std::string InputSectionBase::getObjMsg<ELF64LE>(uint64_t); 1043 template std::string InputSectionBase::getObjMsg<ELF64BE>(uint64_t); 1044 1045 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1046 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1047 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1048 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1049 1050 template ObjFile<ELF32LE> *InputSectionBase::getFile<ELF32LE>() const; 1051 template ObjFile<ELF32BE> *InputSectionBase::getFile<ELF32BE>() const; 1052 template ObjFile<ELF64LE> *InputSectionBase::getFile<ELF64LE>() const; 1053 template ObjFile<ELF64BE> *InputSectionBase::getFile<ELF64BE>() const; 1054 1055 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *, 1056 const ELF32LE::Shdr *, StringRef); 1057 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *, 1058 const ELF32BE::Shdr *, StringRef); 1059 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *, 1060 const ELF64LE::Shdr *, StringRef); 1061 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *, 1062 const ELF64BE::Shdr *, StringRef); 1063 1064 template EhInputSection::EhInputSection(ObjFile<ELF32LE> *, 1065 const ELF32LE::Shdr *, StringRef); 1066 template EhInputSection::EhInputSection(ObjFile<ELF32BE> *, 1067 const ELF32BE::Shdr *, StringRef); 1068 template EhInputSection::EhInputSection(ObjFile<ELF64LE> *, 1069 const ELF64LE::Shdr *, StringRef); 1070 template EhInputSection::EhInputSection(ObjFile<ELF64BE> *, 1071 const ELF64BE::Shdr *, StringRef); 1072 1073 template void EhInputSection::split<ELF32LE>(); 1074 template void EhInputSection::split<ELF32BE>(); 1075 template void EhInputSection::split<ELF64LE>(); 1076 template void EhInputSection::split<ELF64BE>(); 1077