1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "InputFiles.h" 14 #include "LinkerScript.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Object/Decompressor.h" 24 #include "llvm/Support/Compiler.h" 25 #include "llvm/Support/Compression.h" 26 #include "llvm/Support/Endian.h" 27 #include "llvm/Support/Threading.h" 28 #include "llvm/Support/xxhash.h" 29 #include <mutex> 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::support; 35 using namespace llvm::support::endian; 36 using namespace llvm::sys; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 std::vector<InputSectionBase *> elf::InputSections; 42 43 // Returns a string to construct an error message. 44 std::string lld::toString(const InputSectionBase *Sec) { 45 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 46 } 47 48 template <class ELFT> 49 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File, 50 const typename ELFT::Shdr &Hdr) { 51 if (Hdr.sh_type == SHT_NOBITS) 52 return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size); 53 return check(File.getObj().getSectionContents(&Hdr)); 54 } 55 56 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 57 uint32_t Type, uint64_t Entsize, 58 uint32_t Link, uint32_t Info, 59 uint32_t Alignment, ArrayRef<uint8_t> Data, 60 StringRef Name, Kind SectionKind) 61 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 62 Link), 63 File(File), Data(Data) { 64 // In order to reduce memory allocation, we assume that mergeable 65 // sections are smaller than 4 GiB, which is not an unreasonable 66 // assumption as of 2017. 67 if (SectionKind == SectionBase::Merge && Data.size() > UINT32_MAX) 68 error(toString(this) + ": section too large"); 69 70 NumRelocations = 0; 71 AreRelocsRela = false; 72 73 // The ELF spec states that a value of 0 means the section has 74 // no alignment constraits. 75 uint32_t V = std::max<uint64_t>(Alignment, 1); 76 if (!isPowerOf2_64(V)) 77 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 78 this->Alignment = V; 79 } 80 81 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 82 // SHF_GROUP is a marker that a section belongs to some comdat group. 83 // That flag doesn't make sense in an executable. 84 static uint64_t getFlags(uint64_t Flags) { 85 Flags &= ~(uint64_t)SHF_INFO_LINK; 86 if (!Config->Relocatable) 87 Flags &= ~(uint64_t)SHF_GROUP; 88 return Flags; 89 } 90 91 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 92 // March 2017) fail to infer section types for sections starting with 93 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 94 // SHF_INIT_ARRAY. As a result, the following assembler directive 95 // creates ".init_array.100" with SHT_PROGBITS, for example. 96 // 97 // .section .init_array.100, "aw" 98 // 99 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 100 // incorrect inputs as if they were correct from the beginning. 101 static uint64_t getType(uint64_t Type, StringRef Name) { 102 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 103 return SHT_INIT_ARRAY; 104 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 105 return SHT_FINI_ARRAY; 106 return Type; 107 } 108 109 template <class ELFT> 110 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File, 111 const typename ELFT::Shdr &Hdr, 112 StringRef Name, Kind SectionKind) 113 : InputSectionBase(&File, getFlags(Hdr.sh_flags), 114 getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link, 115 Hdr.sh_info, Hdr.sh_addralign, 116 getSectionContents(File, Hdr), Name, SectionKind) { 117 // We reject object files having insanely large alignments even though 118 // they are allowed by the spec. I think 4GB is a reasonable limitation. 119 // We might want to relax this in the future. 120 if (Hdr.sh_addralign > UINT32_MAX) 121 fatal(toString(&File) + ": section sh_addralign is too large"); 122 } 123 124 size_t InputSectionBase::getSize() const { 125 if (auto *S = dyn_cast<SyntheticSection>(this)) 126 return S->getSize(); 127 128 return Data.size(); 129 } 130 131 uint64_t InputSectionBase::getOffsetInFile() const { 132 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 133 const uint8_t *SecStart = Data.begin(); 134 return SecStart - FileStart; 135 } 136 137 uint64_t SectionBase::getOffset(uint64_t Offset) const { 138 switch (kind()) { 139 case Output: { 140 auto *OS = cast<OutputSection>(this); 141 // For output sections we treat offset -1 as the end of the section. 142 return Offset == uint64_t(-1) ? OS->Size : Offset; 143 } 144 case Regular: 145 return cast<InputSection>(this)->OutSecOff + Offset; 146 case Synthetic: { 147 auto *IS = cast<InputSection>(this); 148 // For synthetic sections we treat offset -1 as the end of the section. 149 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 150 } 151 case EHFrame: 152 // The file crtbeginT.o has relocations pointing to the start of an empty 153 // .eh_frame that is known to be the first in the link. It does that to 154 // identify the start of the output .eh_frame. 155 return Offset; 156 case Merge: 157 const MergeInputSection *MS = cast<MergeInputSection>(this); 158 if (InputSection *IS = MS->getParent()) 159 return IS->OutSecOff + MS->getOffset(Offset); 160 return MS->getOffset(Offset); 161 } 162 llvm_unreachable("invalid section kind"); 163 } 164 165 OutputSection *SectionBase::getOutputSection() { 166 InputSection *Sec; 167 if (auto *IS = dyn_cast<InputSection>(this)) 168 return IS->getParent(); 169 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 170 Sec = MS->getParent(); 171 else if (auto *EH = dyn_cast<EhInputSection>(this)) 172 Sec = EH->getParent(); 173 else 174 return cast<OutputSection>(this); 175 return Sec ? Sec->getParent() : nullptr; 176 } 177 178 // Decompress section contents if required. Note that this function 179 // is called from parallelForEach, so it must be thread-safe. 180 void InputSectionBase::maybeDecompress() { 181 if (DecompressBuf) 182 return; 183 if (!(Flags & SHF_COMPRESSED) && !Name.startswith(".zdebug")) 184 return; 185 186 // Decompress a section. 187 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 188 Config->IsLE, Config->Is64)); 189 190 size_t Size = Dec.getDecompressedSize(); 191 DecompressBuf.reset(new char[Size + Name.size()]()); 192 if (Error E = Dec.decompress({DecompressBuf.get(), Size})) 193 fatal(toString(this) + 194 ": decompress failed: " + llvm::toString(std::move(E))); 195 196 Data = makeArrayRef((uint8_t *)DecompressBuf.get(), Size); 197 Flags &= ~(uint64_t)SHF_COMPRESSED; 198 199 // A section name may have been altered if compressed. If that's 200 // the case, restore the original name. (i.e. ".zdebug_" -> ".debug_") 201 if (Name.startswith(".zdebug")) { 202 DecompressBuf[Size] = '.'; 203 memcpy(&DecompressBuf[Size + 1], Name.data() + 2, Name.size() - 2); 204 Name = StringRef(&DecompressBuf[Size], Name.size() - 1); 205 } 206 } 207 208 InputSection *InputSectionBase::getLinkOrderDep() const { 209 if ((Flags & SHF_LINK_ORDER) && Link != 0) { 210 InputSectionBase *L = File->getSections()[Link]; 211 if (auto *IS = dyn_cast<InputSection>(L)) 212 return IS; 213 error("a section with SHF_LINK_ORDER should not refer a non-regular " 214 "section: " + 215 toString(L)); 216 } 217 return nullptr; 218 } 219 220 // Returns a source location string. Used to construct an error message. 221 template <class ELFT> 222 std::string InputSectionBase::getLocation(uint64_t Offset) { 223 // We don't have file for synthetic sections. 224 if (getFile<ELFT>() == nullptr) 225 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 226 .str(); 227 228 // First check if we can get desired values from debugging information. 229 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 230 if (!LineInfo.empty()) 231 return LineInfo; 232 233 // File->SourceFile contains STT_FILE symbol that contains a 234 // source file name. If it's missing, we use an object file name. 235 std::string SrcFile = getFile<ELFT>()->SourceFile; 236 if (SrcFile.empty()) 237 SrcFile = toString(File); 238 239 // Find a function symbol that encloses a given location. 240 for (Symbol *B : File->getSymbols()) 241 if (auto *D = dyn_cast<Defined>(B)) 242 if (D->Section == this && D->Type == STT_FUNC) 243 if (D->Value <= Offset && Offset < D->Value + D->Size) 244 return SrcFile + ":(function " + toString(*D) + ")"; 245 246 // If there's no symbol, print out the offset in the section. 247 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 248 } 249 250 // This function is intended to be used for constructing an error message. 251 // The returned message looks like this: 252 // 253 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 254 // 255 // Returns an empty string if there's no way to get line info. 256 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { 257 // Synthetic sections don't have input files. 258 if (!File) 259 return ""; 260 return File->getSrcMsg(Sym, *this, Offset); 261 } 262 263 // Returns a filename string along with an optional section name. This 264 // function is intended to be used for constructing an error 265 // message. The returned message looks like this: 266 // 267 // path/to/foo.o:(function bar) 268 // 269 // or 270 // 271 // path/to/foo.o:(function bar) in archive path/to/bar.a 272 std::string InputSectionBase::getObjMsg(uint64_t Off) { 273 // Synthetic sections don't have input files. 274 if (!File) 275 return ("<internal>:(" + Name + "+0x" + utohexstr(Off) + ")").str(); 276 std::string Filename = File->getName(); 277 278 std::string Archive; 279 if (!File->ArchiveName.empty()) 280 Archive = " in archive " + File->ArchiveName; 281 282 // Find a symbol that encloses a given location. 283 for (Symbol *B : File->getSymbols()) 284 if (auto *D = dyn_cast<Defined>(B)) 285 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 286 return Filename + ":(" + toString(*D) + ")" + Archive; 287 288 // If there's no symbol, print out the offset in the section. 289 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 290 .str(); 291 } 292 293 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 294 295 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type, 296 uint32_t Alignment, ArrayRef<uint8_t> Data, 297 StringRef Name, Kind K) 298 : InputSectionBase(F, Flags, Type, 299 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 300 Name, K) {} 301 302 template <class ELFT> 303 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header, 304 StringRef Name) 305 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 306 307 bool InputSection::classof(const SectionBase *S) { 308 return S->kind() == SectionBase::Regular || 309 S->kind() == SectionBase::Synthetic; 310 } 311 312 OutputSection *InputSection::getParent() const { 313 return cast_or_null<OutputSection>(Parent); 314 } 315 316 // Copy SHT_GROUP section contents. Used only for the -r option. 317 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 318 // ELFT::Word is the 32-bit integral type in the target endianness. 319 typedef typename ELFT::Word u32; 320 ArrayRef<u32> From = getDataAs<u32>(); 321 auto *To = reinterpret_cast<u32 *>(Buf); 322 323 // The first entry is not a section number but a flag. 324 *To++ = From[0]; 325 326 // Adjust section numbers because section numbers in an input object 327 // files are different in the output. 328 ArrayRef<InputSectionBase *> Sections = File->getSections(); 329 for (uint32_t Idx : From.slice(1)) 330 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 331 } 332 333 InputSectionBase *InputSection::getRelocatedSection() { 334 assert(Type == SHT_RELA || Type == SHT_REL); 335 ArrayRef<InputSectionBase *> Sections = File->getSections(); 336 return Sections[Info]; 337 } 338 339 // This is used for -r and --emit-relocs. We can't use memcpy to copy 340 // relocations because we need to update symbol table offset and section index 341 // for each relocation. So we copy relocations one by one. 342 template <class ELFT, class RelTy> 343 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 344 InputSectionBase *Sec = getRelocatedSection(); 345 346 for (const RelTy &Rel : Rels) { 347 RelType Type = Rel.getType(Config->IsMips64EL); 348 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 349 350 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 351 Buf += sizeof(RelTy); 352 353 if (RelTy::IsRela) 354 P->r_addend = getAddend<ELFT>(Rel); 355 356 // Output section VA is zero for -r, so r_offset is an offset within the 357 // section, but for --emit-relocs it is an virtual address. 358 P->r_offset = Sec->getOutputSection()->Addr + Sec->getOffset(Rel.r_offset); 359 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Sym), Type, 360 Config->IsMips64EL); 361 362 if (Sym.Type == STT_SECTION) { 363 // We combine multiple section symbols into only one per 364 // section. This means we have to update the addend. That is 365 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 366 // section data. We do that by adding to the Relocation vector. 367 368 // .eh_frame is horribly special and can reference discarded sections. To 369 // avoid having to parse and recreate .eh_frame, we just replace any 370 // relocation in it pointing to discarded sections with R_*_NONE, which 371 // hopefully creates a frame that is ignored at runtime. 372 auto *D = dyn_cast<Defined>(&Sym); 373 if (!D) { 374 error("STT_SECTION symbol should be defined"); 375 continue; 376 } 377 SectionBase *Section = D->Section; 378 if (Section == &InputSection::Discarded) { 379 P->setSymbolAndType(0, 0, false); 380 continue; 381 } 382 383 if (RelTy::IsRela) { 384 P->r_addend = 385 Sym.getVA(getAddend<ELFT>(Rel)) - Section->getOutputSection()->Addr; 386 } else if (Config->Relocatable) { 387 const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset; 388 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, 389 Target->getImplicitAddend(BufLoc, Type), 390 &Sym}); 391 } 392 } 393 394 } 395 } 396 397 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 398 // references specially. The general rule is that the value of the symbol in 399 // this context is the address of the place P. A further special case is that 400 // branch relocations to an undefined weak reference resolve to the next 401 // instruction. 402 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 403 uint32_t P) { 404 switch (Type) { 405 // Unresolved branch relocations to weak references resolve to next 406 // instruction, this will be either 2 or 4 bytes on from P. 407 case R_ARM_THM_JUMP11: 408 return P + 2 + A; 409 case R_ARM_CALL: 410 case R_ARM_JUMP24: 411 case R_ARM_PC24: 412 case R_ARM_PLT32: 413 case R_ARM_PREL31: 414 case R_ARM_THM_JUMP19: 415 case R_ARM_THM_JUMP24: 416 return P + 4 + A; 417 case R_ARM_THM_CALL: 418 // We don't want an interworking BLX to ARM 419 return P + 5 + A; 420 // Unresolved non branch pc-relative relocations 421 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 422 // targets a weak-reference. 423 case R_ARM_MOVW_PREL_NC: 424 case R_ARM_MOVT_PREL: 425 case R_ARM_REL32: 426 case R_ARM_THM_MOVW_PREL_NC: 427 case R_ARM_THM_MOVT_PREL: 428 return P + A; 429 } 430 llvm_unreachable("ARM pc-relative relocation expected\n"); 431 } 432 433 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 434 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 435 uint64_t P) { 436 switch (Type) { 437 // Unresolved branch relocations to weak references resolve to next 438 // instruction, this is 4 bytes on from P. 439 case R_AARCH64_CALL26: 440 case R_AARCH64_CONDBR19: 441 case R_AARCH64_JUMP26: 442 case R_AARCH64_TSTBR14: 443 return P + 4 + A; 444 // Unresolved non branch pc-relative relocations 445 case R_AARCH64_PREL16: 446 case R_AARCH64_PREL32: 447 case R_AARCH64_PREL64: 448 case R_AARCH64_ADR_PREL_LO21: 449 case R_AARCH64_LD_PREL_LO19: 450 return P + A; 451 } 452 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 453 } 454 455 // ARM SBREL relocations are of the form S + A - B where B is the static base 456 // The ARM ABI defines base to be "addressing origin of the output segment 457 // defining the symbol S". We defined the "addressing origin"/static base to be 458 // the base of the PT_LOAD segment containing the Sym. 459 // The procedure call standard only defines a Read Write Position Independent 460 // RWPI variant so in practice we should expect the static base to be the base 461 // of the RW segment. 462 static uint64_t getARMStaticBase(const Symbol &Sym) { 463 OutputSection *OS = Sym.getOutputSection(); 464 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 465 fatal("SBREL relocation to " + Sym.getName() + " without static base"); 466 return OS->PtLoad->FirstSec->Addr; 467 } 468 469 static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P, 470 const Symbol &Sym, RelExpr Expr) { 471 switch (Expr) { 472 case R_INVALID: 473 return 0; 474 case R_ABS: 475 case R_RELAX_GOT_PC_NOPIC: 476 return Sym.getVA(A); 477 case R_ADDEND: 478 return A; 479 case R_ARM_SBREL: 480 return Sym.getVA(A) - getARMStaticBase(Sym); 481 case R_GOT: 482 case R_RELAX_TLS_GD_TO_IE_ABS: 483 return Sym.getGotVA() + A; 484 case R_GOTONLY_PC: 485 return InX::Got->getVA() + A - P; 486 case R_GOTONLY_PC_FROM_END: 487 return InX::Got->getVA() + A - P + InX::Got->getSize(); 488 case R_GOTREL: 489 return Sym.getVA(A) - InX::Got->getVA(); 490 case R_GOTREL_FROM_END: 491 return Sym.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 492 case R_GOT_FROM_END: 493 case R_RELAX_TLS_GD_TO_IE_END: 494 return Sym.getGotOffset() + A - InX::Got->getSize(); 495 case R_GOT_OFF: 496 return Sym.getGotOffset() + A; 497 case R_GOT_PAGE_PC: 498 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 499 return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); 500 case R_GOT_PC: 501 case R_RELAX_TLS_GD_TO_IE: 502 return Sym.getGotVA() + A - P; 503 case R_HINT: 504 case R_NONE: 505 case R_TLSDESC_CALL: 506 llvm_unreachable("cannot relocate hint relocs"); 507 case R_MIPS_GOTREL: 508 return Sym.getVA(A) - InX::MipsGot->getGp(); 509 case R_MIPS_GOT_GP: 510 return InX::MipsGot->getGp() + A; 511 case R_MIPS_GOT_GP_PC: { 512 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 513 // is _gp_disp symbol. In that case we should use the following 514 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 515 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 516 // microMIPS variants of these relocations use slightly different 517 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 518 // to correctly handle less-sugnificant bit of the microMIPS symbol. 519 uint64_t V = InX::MipsGot->getGp() + A - P; 520 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 521 V += 4; 522 if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) 523 V -= 1; 524 return V; 525 } 526 case R_MIPS_GOT_LOCAL_PAGE: 527 // If relocation against MIPS local symbol requires GOT entry, this entry 528 // should be initialized by 'page address'. This address is high 16-bits 529 // of sum the symbol's value and the addend. 530 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Sym, A) - 531 InX::MipsGot->getGp(); 532 case R_MIPS_GOT_OFF: 533 case R_MIPS_GOT_OFF32: 534 // In case of MIPS if a GOT relocation has non-zero addend this addend 535 // should be applied to the GOT entry content not to the GOT entry offset. 536 // That is why we use separate expression type. 537 return InX::MipsGot->getVA() + InX::MipsGot->getSymEntryOffset(Sym, A) - 538 InX::MipsGot->getGp(); 539 case R_MIPS_TLSGD: 540 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 541 InX::MipsGot->getGlobalDynOffset(Sym) - InX::MipsGot->getGp(); 542 case R_MIPS_TLSLD: 543 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 544 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 545 case R_PAGE_PC: 546 case R_PLT_PAGE_PC: { 547 uint64_t Dest; 548 if (Sym.isUndefWeak()) 549 Dest = getAArch64Page(A); 550 else 551 Dest = getAArch64Page(Sym.getVA(A)); 552 return Dest - getAArch64Page(P); 553 } 554 case R_PC: { 555 uint64_t Dest; 556 if (Sym.isUndefWeak()) { 557 // On ARM and AArch64 a branch to an undefined weak resolves to the 558 // next instruction, otherwise the place. 559 if (Config->EMachine == EM_ARM) 560 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 561 else if (Config->EMachine == EM_AARCH64) 562 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 563 else 564 Dest = Sym.getVA(A); 565 } else { 566 Dest = Sym.getVA(A); 567 } 568 return Dest - P; 569 } 570 case R_PLT: 571 return Sym.getPltVA() + A; 572 case R_PLT_PC: 573 case R_PPC_PLT_OPD: 574 return Sym.getPltVA() + A - P; 575 case R_PPC_OPD: { 576 uint64_t SymVA = Sym.getVA(A); 577 // If we have an undefined weak symbol, we might get here with a symbol 578 // address of zero. That could overflow, but the code must be unreachable, 579 // so don't bother doing anything at all. 580 if (!SymVA) 581 return 0; 582 if (Out::Opd) { 583 // If this is a local call, and we currently have the address of a 584 // function-descriptor, get the underlying code address instead. 585 uint64_t OpdStart = Out::Opd->Addr; 586 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 587 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 588 if (InOpd) 589 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 590 } 591 return SymVA - P; 592 } 593 case R_PPC_TOC: 594 return getPPC64TocBase() + A; 595 case R_RELAX_GOT_PC: 596 return Sym.getVA(A) - P; 597 case R_RELAX_TLS_GD_TO_LE: 598 case R_RELAX_TLS_IE_TO_LE: 599 case R_RELAX_TLS_LD_TO_LE: 600 case R_TLS: 601 // A weak undefined TLS symbol resolves to the base of the TLS 602 // block, i.e. gets a value of zero. If we pass --gc-sections to 603 // lld and .tbss is not referenced, it gets reclaimed and we don't 604 // create a TLS program header. Therefore, we resolve this 605 // statically to zero. 606 if (Sym.isTls() && Sym.isUndefWeak()) 607 return 0; 608 if (Target->TcbSize) 609 return Sym.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 610 return Sym.getVA(A) - Out::TlsPhdr->p_memsz; 611 case R_RELAX_TLS_GD_TO_LE_NEG: 612 case R_NEG_TLS: 613 return Out::TlsPhdr->p_memsz - Sym.getVA(A); 614 case R_SIZE: 615 return Sym.getSize() + A; 616 case R_TLSDESC: 617 return InX::Got->getGlobalDynAddr(Sym) + A; 618 case R_TLSDESC_PAGE: 619 return getAArch64Page(InX::Got->getGlobalDynAddr(Sym) + A) - 620 getAArch64Page(P); 621 case R_TLSGD: 622 return InX::Got->getGlobalDynOffset(Sym) + A - InX::Got->getSize(); 623 case R_TLSGD_PC: 624 return InX::Got->getGlobalDynAddr(Sym) + A - P; 625 case R_TLSLD: 626 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 627 case R_TLSLD_PC: 628 return InX::Got->getTlsIndexVA() + A - P; 629 } 630 llvm_unreachable("Invalid expression"); 631 } 632 633 // This function applies relocations to sections without SHF_ALLOC bit. 634 // Such sections are never mapped to memory at runtime. Debug sections are 635 // an example. Relocations in non-alloc sections are much easier to 636 // handle than in allocated sections because it will never need complex 637 // treatement such as GOT or PLT (because at runtime no one refers them). 638 // So, we handle relocations for non-alloc sections directly in this 639 // function as a performance optimization. 640 template <class ELFT, class RelTy> 641 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 642 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 643 644 for (const RelTy &Rel : Rels) { 645 RelType Type = Rel.getType(Config->IsMips64EL); 646 647 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 648 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 649 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 650 // need to keep this bug-compatible code for a while. 651 if (Config->EMachine == EM_386 && Type == R_386_GOTPC) 652 continue; 653 654 uint64_t Offset = getOffset(Rel.r_offset); 655 uint8_t *BufLoc = Buf + Offset; 656 int64_t Addend = getAddend<ELFT>(Rel); 657 if (!RelTy::IsRela) 658 Addend += Target->getImplicitAddend(BufLoc, Type); 659 660 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 661 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 662 if (Expr == R_NONE) 663 continue; 664 665 if (Expr != R_ABS) { 666 std::string Msg = getLocation<ELFT>(Offset) + 667 ": has non-ABS relocation " + toString(Type) + 668 " against symbol '" + toString(Sym) + "'"; 669 if (Expr != R_PC) { 670 error(Msg); 671 return; 672 } 673 674 // If the control reaches here, we found a PC-relative relocation in a 675 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 676 // at runtime, the notion of PC-relative doesn't make sense here. So, 677 // this is a usage error. However, GNU linkers historically accept such 678 // relocations without any errors and relocate them as if they were at 679 // address 0. For bug-compatibilty, we accept them with warnings. We 680 // know Steel Bank Common Lisp as of 2018 have this bug. 681 warn(Msg); 682 Target->relocateOne(BufLoc, Type, 683 SignExtend64<Bits>(Sym.getVA(Addend - Offset))); 684 continue; 685 } 686 687 if (Sym.isTls() && !Out::TlsPhdr) 688 Target->relocateOne(BufLoc, Type, 0); 689 else 690 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 691 } 692 } 693 694 template <class ELFT> 695 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 696 if (Flags & SHF_ALLOC) { 697 relocateAlloc(Buf, BufEnd); 698 return; 699 } 700 701 auto *Sec = cast<InputSection>(this); 702 if (Sec->AreRelocsRela) 703 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 704 else 705 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 706 } 707 708 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 709 assert(Flags & SHF_ALLOC); 710 const unsigned Bits = Config->Wordsize * 8; 711 712 for (const Relocation &Rel : Relocations) { 713 uint64_t Offset = getOffset(Rel.Offset); 714 uint8_t *BufLoc = Buf + Offset; 715 RelType Type = Rel.Type; 716 717 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 718 RelExpr Expr = Rel.Expr; 719 uint64_t TargetVA = SignExtend64( 720 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 721 722 switch (Expr) { 723 case R_RELAX_GOT_PC: 724 case R_RELAX_GOT_PC_NOPIC: 725 Target->relaxGot(BufLoc, TargetVA); 726 break; 727 case R_RELAX_TLS_IE_TO_LE: 728 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 729 break; 730 case R_RELAX_TLS_LD_TO_LE: 731 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 732 break; 733 case R_RELAX_TLS_GD_TO_LE: 734 case R_RELAX_TLS_GD_TO_LE_NEG: 735 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 736 break; 737 case R_RELAX_TLS_GD_TO_IE: 738 case R_RELAX_TLS_GD_TO_IE_ABS: 739 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 740 case R_RELAX_TLS_GD_TO_IE_END: 741 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 742 break; 743 case R_PPC_PLT_OPD: 744 // Patch a nop (0x60000000) to a ld. 745 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 746 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 747 LLVM_FALLTHROUGH; 748 default: 749 Target->relocateOne(BufLoc, Type, TargetVA); 750 break; 751 } 752 } 753 } 754 755 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 756 if (Type == SHT_NOBITS) 757 return; 758 759 if (auto *S = dyn_cast<SyntheticSection>(this)) { 760 S->writeTo(Buf + OutSecOff); 761 return; 762 } 763 764 // If -r or --emit-relocs is given, then an InputSection 765 // may be a relocation section. 766 if (Type == SHT_RELA) { 767 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>()); 768 return; 769 } 770 if (Type == SHT_REL) { 771 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>()); 772 return; 773 } 774 775 // If -r is given, we may have a SHT_GROUP section. 776 if (Type == SHT_GROUP) { 777 copyShtGroup<ELFT>(Buf + OutSecOff); 778 return; 779 } 780 781 // Copy section contents from source object file to output file 782 // and then apply relocations. 783 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 784 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 785 relocate<ELFT>(Buf, BufEnd); 786 } 787 788 void InputSection::replace(InputSection *Other) { 789 Alignment = std::max(Alignment, Other->Alignment); 790 Other->Repl = Repl; 791 Other->Live = false; 792 } 793 794 template <class ELFT> 795 EhInputSection::EhInputSection(ObjFile<ELFT> &F, 796 const typename ELFT::Shdr &Header, 797 StringRef Name) 798 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} 799 800 SyntheticSection *EhInputSection::getParent() const { 801 return cast_or_null<SyntheticSection>(Parent); 802 } 803 804 // Returns the index of the first relocation that points to a region between 805 // Begin and Begin+Size. 806 template <class IntTy, class RelTy> 807 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 808 unsigned &RelocI) { 809 // Start search from RelocI for fast access. That works because the 810 // relocations are sorted in .eh_frame. 811 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 812 const RelTy &Rel = Rels[RelocI]; 813 if (Rel.r_offset < Begin) 814 continue; 815 816 if (Rel.r_offset < Begin + Size) 817 return RelocI; 818 return -1; 819 } 820 return -1; 821 } 822 823 // .eh_frame is a sequence of CIE or FDE records. 824 // This function splits an input section into records and returns them. 825 template <class ELFT> void EhInputSection::split() { 826 // Early exit if already split. 827 if (!Pieces.empty()) 828 return; 829 830 if (AreRelocsRela) 831 split<ELFT>(relas<ELFT>()); 832 else 833 split<ELFT>(rels<ELFT>()); 834 } 835 836 template <class ELFT, class RelTy> 837 void EhInputSection::split(ArrayRef<RelTy> Rels) { 838 unsigned RelI = 0; 839 for (size_t Off = 0, End = Data.size(); Off != End;) { 840 size_t Size = readEhRecordSize(this, Off); 841 Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 842 // The empty record is the end marker. 843 if (Size == 4) 844 break; 845 Off += Size; 846 } 847 } 848 849 static size_t findNull(StringRef S, size_t EntSize) { 850 // Optimize the common case. 851 if (EntSize == 1) 852 return S.find(0); 853 854 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 855 const char *B = S.begin() + I; 856 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 857 return I; 858 } 859 return StringRef::npos; 860 } 861 862 SyntheticSection *MergeInputSection::getParent() const { 863 return cast_or_null<SyntheticSection>(Parent); 864 } 865 866 // Split SHF_STRINGS section. Such section is a sequence of 867 // null-terminated strings. 868 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 869 size_t Off = 0; 870 bool IsAlloc = Flags & SHF_ALLOC; 871 StringRef S = toStringRef(Data); 872 873 while (!S.empty()) { 874 size_t End = findNull(S, EntSize); 875 if (End == StringRef::npos) 876 fatal(toString(this) + ": string is not null terminated"); 877 size_t Size = End + EntSize; 878 879 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 880 S = S.substr(Size); 881 Off += Size; 882 } 883 } 884 885 // Split non-SHF_STRINGS section. Such section is a sequence of 886 // fixed size records. 887 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 888 size_t EntSize) { 889 size_t Size = Data.size(); 890 assert((Size % EntSize) == 0); 891 bool IsAlloc = Flags & SHF_ALLOC; 892 893 for (size_t I = 0; I != Size; I += EntSize) 894 Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))), 895 !IsAlloc); 896 } 897 898 template <class ELFT> 899 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F, 900 const typename ELFT::Shdr &Header, 901 StringRef Name) 902 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 903 904 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type, 905 uint64_t Entsize, ArrayRef<uint8_t> Data, 906 StringRef Name) 907 : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0, 908 /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {} 909 910 // This function is called after we obtain a complete list of input sections 911 // that need to be linked. This is responsible to split section contents 912 // into small chunks for further processing. 913 // 914 // Note that this function is called from parallelForEach. This must be 915 // thread-safe (i.e. no memory allocation from the pools). 916 void MergeInputSection::splitIntoPieces() { 917 assert(Pieces.empty()); 918 919 if (Flags & SHF_STRINGS) 920 splitStrings(Data, Entsize); 921 else 922 splitNonStrings(Data, Entsize); 923 924 if (Config->GcSections && (Flags & SHF_ALLOC)) 925 for (uint64_t Off : LiveOffsets) 926 getSectionPiece(Off)->Live = true; 927 } 928 929 // Do binary search to get a section piece at a given input offset. 930 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 931 auto *This = static_cast<const MergeInputSection *>(this); 932 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 933 } 934 935 template <class It, class T, class Compare> 936 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 937 size_t Size = std::distance(First, Last); 938 assert(Size != 0); 939 while (Size != 1) { 940 size_t H = Size / 2; 941 const It MI = First + H; 942 Size -= H; 943 First = Comp(Value, *MI) ? First : First + H; 944 } 945 return Comp(Value, *First) ? First : First + 1; 946 } 947 948 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 949 if (Data.size() <= Offset) 950 fatal(toString(this) + ": entry is past the end of the section"); 951 952 // Find the element this offset points to. 953 auto I = fastUpperBound( 954 Pieces.begin(), Pieces.end(), Offset, 955 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 956 --I; 957 return &*I; 958 } 959 960 // Returns the offset in an output section for a given input offset. 961 // Because contents of a mergeable section is not contiguous in output, 962 // it is not just an addition to a base output offset. 963 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 964 if (!Live) 965 return 0; 966 967 // Initialize OffsetMap lazily. 968 llvm::call_once(InitOffsetMap, [&] { 969 OffsetMap.reserve(Pieces.size()); 970 for (size_t I = 0; I < Pieces.size(); ++I) 971 OffsetMap[Pieces[I].InputOff] = I; 972 }); 973 974 // Find a string starting at a given offset. 975 auto It = OffsetMap.find(Offset); 976 if (It != OffsetMap.end()) 977 return Pieces[It->second].OutputOff; 978 979 // If Offset is not at beginning of a section piece, it is not in the map. 980 // In that case we need to search from the original section piece vector. 981 const SectionPiece &Piece = *getSectionPiece(Offset); 982 if (!Piece.Live) 983 return 0; 984 985 uint64_t Addend = Offset - Piece.InputOff; 986 return Piece.OutputOff + Addend; 987 } 988 989 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 990 StringRef); 991 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 992 StringRef); 993 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 994 StringRef); 995 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 996 StringRef); 997 998 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 999 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1000 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1001 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1002 1003 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1004 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1005 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1006 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1007 1008 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1009 const ELF32LE::Shdr &, StringRef); 1010 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1011 const ELF32BE::Shdr &, StringRef); 1012 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1013 const ELF64LE::Shdr &, StringRef); 1014 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1015 const ELF64BE::Shdr &, StringRef); 1016 1017 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1018 const ELF32LE::Shdr &, StringRef); 1019 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1020 const ELF32BE::Shdr &, StringRef); 1021 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1022 const ELF64LE::Shdr &, StringRef); 1023 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1024 const ELF64BE::Shdr &, StringRef); 1025 1026 template void EhInputSection::split<ELF32LE>(); 1027 template void EhInputSection::split<ELF32BE>(); 1028 template void EhInputSection::split<ELF64LE>(); 1029 template void EhInputSection::split<ELF64BE>(); 1030