1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 using namespace llvm::sys; 39 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::InputSections; 44 45 // Returns a string to construct an error message. 46 std::string lld::toString(const InputSectionBase *Sec) { 47 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 48 } 49 50 template <class ELFT> 51 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File, 52 const typename ELFT::Shdr &Hdr) { 53 if (Hdr.sh_type == SHT_NOBITS) 54 return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size); 55 return check(File.getObj().getSectionContents(&Hdr)); 56 } 57 58 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 59 uint32_t Type, uint64_t Entsize, 60 uint32_t Link, uint32_t Info, 61 uint32_t Alignment, ArrayRef<uint8_t> Data, 62 StringRef Name, Kind SectionKind) 63 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 64 Link), 65 File(File), RawData(Data) { 66 // In order to reduce memory allocation, we assume that mergeable 67 // sections are smaller than 4 GiB, which is not an unreasonable 68 // assumption as of 2017. 69 if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX) 70 error(toString(this) + ": section too large"); 71 72 NumRelocations = 0; 73 AreRelocsRela = false; 74 Debug = Name.startswith(".debug") || Name.startswith(".zdebug"); 75 76 // The ELF spec states that a value of 0 means the section has 77 // no alignment constraits. 78 uint32_t V = std::max<uint64_t>(Alignment, 1); 79 if (!isPowerOf2_64(V)) 80 fatal(toString(this) + ": sh_addralign is not a power of 2"); 81 this->Alignment = V; 82 83 // In ELF, each section can be compressed by zlib, and if compressed, 84 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 85 // If that's the case, demangle section name so that we can handle a 86 // section as if it weren't compressed. 87 if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) { 88 if (!zlib::isAvailable()) 89 error(toString(File) + ": contains a compressed section, " + 90 "but zlib is not available"); 91 parseCompressedHeader(); 92 } 93 } 94 95 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 96 // SHF_GROUP is a marker that a section belongs to some comdat group. 97 // That flag doesn't make sense in an executable. 98 static uint64_t getFlags(uint64_t Flags) { 99 Flags &= ~(uint64_t)SHF_INFO_LINK; 100 if (!Config->Relocatable) 101 Flags &= ~(uint64_t)SHF_GROUP; 102 return Flags; 103 } 104 105 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 106 // March 2017) fail to infer section types for sections starting with 107 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 108 // SHF_INIT_ARRAY. As a result, the following assembler directive 109 // creates ".init_array.100" with SHT_PROGBITS, for example. 110 // 111 // .section .init_array.100, "aw" 112 // 113 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 114 // incorrect inputs as if they were correct from the beginning. 115 static uint64_t getType(uint64_t Type, StringRef Name) { 116 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 117 return SHT_INIT_ARRAY; 118 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 119 return SHT_FINI_ARRAY; 120 return Type; 121 } 122 123 template <class ELFT> 124 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File, 125 const typename ELFT::Shdr &Hdr, 126 StringRef Name, Kind SectionKind) 127 : InputSectionBase(&File, getFlags(Hdr.sh_flags), 128 getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link, 129 Hdr.sh_info, Hdr.sh_addralign, 130 getSectionContents(File, Hdr), Name, SectionKind) { 131 // We reject object files having insanely large alignments even though 132 // they are allowed by the spec. I think 4GB is a reasonable limitation. 133 // We might want to relax this in the future. 134 if (Hdr.sh_addralign > UINT32_MAX) 135 fatal(toString(&File) + ": section sh_addralign is too large"); 136 } 137 138 size_t InputSectionBase::getSize() const { 139 if (auto *S = dyn_cast<SyntheticSection>(this)) 140 return S->getSize(); 141 if (UncompressedSize >= 0) 142 return UncompressedSize; 143 return RawData.size(); 144 } 145 146 void InputSectionBase::uncompress() const { 147 size_t Size = UncompressedSize; 148 char *UncompressedBuf; 149 { 150 static std::mutex Mu; 151 std::lock_guard<std::mutex> Lock(Mu); 152 UncompressedBuf = BAlloc.Allocate<char>(Size); 153 } 154 155 if (Error E = zlib::uncompress(toStringRef(RawData), UncompressedBuf, Size)) 156 fatal(toString(this) + 157 ": uncompress failed: " + llvm::toString(std::move(E))); 158 RawData = makeArrayRef((uint8_t *)UncompressedBuf, Size); 159 UncompressedSize = -1; 160 } 161 162 uint64_t InputSectionBase::getOffsetInFile() const { 163 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 164 const uint8_t *SecStart = data().begin(); 165 return SecStart - FileStart; 166 } 167 168 uint64_t SectionBase::getOffset(uint64_t Offset) const { 169 switch (kind()) { 170 case Output: { 171 auto *OS = cast<OutputSection>(this); 172 // For output sections we treat offset -1 as the end of the section. 173 return Offset == uint64_t(-1) ? OS->Size : Offset; 174 } 175 case Regular: 176 case Synthetic: 177 return cast<InputSection>(this)->getOffset(Offset); 178 case EHFrame: 179 // The file crtbeginT.o has relocations pointing to the start of an empty 180 // .eh_frame that is known to be the first in the link. It does that to 181 // identify the start of the output .eh_frame. 182 return Offset; 183 case Merge: 184 const MergeInputSection *MS = cast<MergeInputSection>(this); 185 if (InputSection *IS = MS->getParent()) 186 return IS->getOffset(MS->getParentOffset(Offset)); 187 return MS->getParentOffset(Offset); 188 } 189 llvm_unreachable("invalid section kind"); 190 } 191 192 uint64_t SectionBase::getVA(uint64_t Offset) const { 193 const OutputSection *Out = getOutputSection(); 194 return (Out ? Out->Addr : 0) + getOffset(Offset); 195 } 196 197 OutputSection *SectionBase::getOutputSection() { 198 InputSection *Sec; 199 if (auto *IS = dyn_cast<InputSection>(this)) 200 Sec = IS; 201 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 202 Sec = MS->getParent(); 203 else if (auto *EH = dyn_cast<EhInputSection>(this)) 204 Sec = EH->getParent(); 205 else 206 return cast<OutputSection>(this); 207 return Sec ? Sec->getParent() : nullptr; 208 } 209 210 // When a section is compressed, `RawData` consists with a header followed 211 // by zlib-compressed data. This function parses a header to initialize 212 // `UncompressedSize` member and remove the header from `RawData`. 213 void InputSectionBase::parseCompressedHeader() { 214 using Chdr64 = typename ELF64LE::Chdr; 215 using Chdr32 = typename ELF32LE::Chdr; 216 217 // Old-style header 218 if (Name.startswith(".zdebug")) { 219 if (!toStringRef(RawData).startswith("ZLIB")) { 220 error(toString(this) + ": corrupted compressed section header"); 221 return; 222 } 223 RawData = RawData.slice(4); 224 225 if (RawData.size() < 8) { 226 error(toString(this) + ": corrupted compressed section header"); 227 return; 228 } 229 230 UncompressedSize = read64be(RawData.data()); 231 RawData = RawData.slice(8); 232 233 // Restore the original section name. 234 // (e.g. ".zdebug_info" -> ".debug_info") 235 Name = Saver.save("." + Name.substr(2)); 236 return; 237 } 238 239 assert(Flags & SHF_COMPRESSED); 240 Flags &= ~(uint64_t)SHF_COMPRESSED; 241 242 // New-style 64-bit header 243 if (Config->Is64) { 244 if (RawData.size() < sizeof(Chdr64)) { 245 error(toString(this) + ": corrupted compressed section"); 246 return; 247 } 248 249 auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data()); 250 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { 251 error(toString(this) + ": unsupported compression type"); 252 return; 253 } 254 255 UncompressedSize = Hdr->ch_size; 256 Alignment = std::max<uint64_t>(Hdr->ch_addralign, 1); 257 RawData = RawData.slice(sizeof(*Hdr)); 258 return; 259 } 260 261 // New-style 32-bit header 262 if (RawData.size() < sizeof(Chdr32)) { 263 error(toString(this) + ": corrupted compressed section"); 264 return; 265 } 266 267 auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data()); 268 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { 269 error(toString(this) + ": unsupported compression type"); 270 return; 271 } 272 273 UncompressedSize = Hdr->ch_size; 274 Alignment = std::max<uint64_t>(Hdr->ch_addralign, 1); 275 RawData = RawData.slice(sizeof(*Hdr)); 276 } 277 278 InputSection *InputSectionBase::getLinkOrderDep() const { 279 assert(Link); 280 assert(Flags & SHF_LINK_ORDER); 281 return cast<InputSection>(File->getSections()[Link]); 282 } 283 284 // Find a function symbol that encloses a given location. 285 template <class ELFT> 286 Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) { 287 for (Symbol *B : File->getSymbols()) 288 if (Defined *D = dyn_cast<Defined>(B)) 289 if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset && 290 Offset < D->Value + D->Size) 291 return D; 292 return nullptr; 293 } 294 295 // Returns a source location string. Used to construct an error message. 296 template <class ELFT> 297 std::string InputSectionBase::getLocation(uint64_t Offset) { 298 std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str(); 299 300 // We don't have file for synthetic sections. 301 if (getFile<ELFT>() == nullptr) 302 return (Config->OutputFile + ":(" + SecAndOffset + ")") 303 .str(); 304 305 // First check if we can get desired values from debugging information. 306 if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset)) 307 return Info->FileName + ":" + std::to_string(Info->Line) + ":(" + 308 SecAndOffset + ")"; 309 310 // File->SourceFile contains STT_FILE symbol that contains a 311 // source file name. If it's missing, we use an object file name. 312 std::string SrcFile = getFile<ELFT>()->SourceFile; 313 if (SrcFile.empty()) 314 SrcFile = toString(File); 315 316 if (Defined *D = getEnclosingFunction<ELFT>(Offset)) 317 return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")"; 318 319 // If there's no symbol, print out the offset in the section. 320 return (SrcFile + ":(" + SecAndOffset + ")"); 321 } 322 323 // This function is intended to be used for constructing an error message. 324 // The returned message looks like this: 325 // 326 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 327 // 328 // Returns an empty string if there's no way to get line info. 329 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { 330 return File->getSrcMsg(Sym, *this, Offset); 331 } 332 333 // Returns a filename string along with an optional section name. This 334 // function is intended to be used for constructing an error 335 // message. The returned message looks like this: 336 // 337 // path/to/foo.o:(function bar) 338 // 339 // or 340 // 341 // path/to/foo.o:(function bar) in archive path/to/bar.a 342 std::string InputSectionBase::getObjMsg(uint64_t Off) { 343 std::string Filename = File->getName(); 344 345 std::string Archive; 346 if (!File->ArchiveName.empty()) 347 Archive = " in archive " + File->ArchiveName; 348 349 // Find a symbol that encloses a given location. 350 for (Symbol *B : File->getSymbols()) 351 if (auto *D = dyn_cast<Defined>(B)) 352 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 353 return Filename + ":(" + toString(*D) + ")" + Archive; 354 355 // If there's no symbol, print out the offset in the section. 356 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 357 .str(); 358 } 359 360 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 361 362 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type, 363 uint32_t Alignment, ArrayRef<uint8_t> Data, 364 StringRef Name, Kind K) 365 : InputSectionBase(F, Flags, Type, 366 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 367 Name, K) {} 368 369 template <class ELFT> 370 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header, 371 StringRef Name) 372 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 373 374 bool InputSection::classof(const SectionBase *S) { 375 return S->kind() == SectionBase::Regular || 376 S->kind() == SectionBase::Synthetic; 377 } 378 379 OutputSection *InputSection::getParent() const { 380 return cast_or_null<OutputSection>(Parent); 381 } 382 383 // Copy SHT_GROUP section contents. Used only for the -r option. 384 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 385 // ELFT::Word is the 32-bit integral type in the target endianness. 386 using u32 = typename ELFT::Word; 387 ArrayRef<u32> From = getDataAs<u32>(); 388 auto *To = reinterpret_cast<u32 *>(Buf); 389 390 // The first entry is not a section number but a flag. 391 *To++ = From[0]; 392 393 // Adjust section numbers because section numbers in an input object 394 // files are different in the output. 395 ArrayRef<InputSectionBase *> Sections = File->getSections(); 396 for (uint32_t Idx : From.slice(1)) 397 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 398 } 399 400 InputSectionBase *InputSection::getRelocatedSection() const { 401 if (!File || (Type != SHT_RELA && Type != SHT_REL)) 402 return nullptr; 403 ArrayRef<InputSectionBase *> Sections = File->getSections(); 404 return Sections[Info]; 405 } 406 407 // This is used for -r and --emit-relocs. We can't use memcpy to copy 408 // relocations because we need to update symbol table offset and section index 409 // for each relocation. So we copy relocations one by one. 410 template <class ELFT, class RelTy> 411 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 412 InputSectionBase *Sec = getRelocatedSection(); 413 414 for (const RelTy &Rel : Rels) { 415 RelType Type = Rel.getType(Config->IsMips64EL); 416 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 417 418 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 419 Buf += sizeof(RelTy); 420 421 if (RelTy::IsRela) 422 P->r_addend = getAddend<ELFT>(Rel); 423 424 // Output section VA is zero for -r, so r_offset is an offset within the 425 // section, but for --emit-relocs it is an virtual address. 426 P->r_offset = Sec->getVA(Rel.r_offset); 427 P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type, 428 Config->IsMips64EL); 429 430 if (Sym.Type == STT_SECTION) { 431 // We combine multiple section symbols into only one per 432 // section. This means we have to update the addend. That is 433 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 434 // section data. We do that by adding to the Relocation vector. 435 436 // .eh_frame is horribly special and can reference discarded sections. To 437 // avoid having to parse and recreate .eh_frame, we just replace any 438 // relocation in it pointing to discarded sections with R_*_NONE, which 439 // hopefully creates a frame that is ignored at runtime. 440 auto *D = dyn_cast<Defined>(&Sym); 441 if (!D) { 442 error("STT_SECTION symbol should be defined"); 443 continue; 444 } 445 SectionBase *Section = D->Section->Repl; 446 if (!Section->Live) { 447 P->setSymbolAndType(0, 0, false); 448 continue; 449 } 450 451 int64_t Addend = getAddend<ELFT>(Rel); 452 const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset; 453 if (!RelTy::IsRela) 454 Addend = Target->getImplicitAddend(BufLoc, Type); 455 456 if (Config->EMachine == EM_MIPS && Config->Relocatable && 457 Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) { 458 // Some MIPS relocations depend on "gp" value. By default, 459 // this value has 0x7ff0 offset from a .got section. But 460 // relocatable files produced by a complier or a linker 461 // might redefine this default value and we must use it 462 // for a calculation of the relocation result. When we 463 // generate EXE or DSO it's trivial. Generating a relocatable 464 // output is more difficult case because the linker does 465 // not calculate relocations in this mode and loses 466 // individual "gp" values used by each input object file. 467 // As a workaround we add the "gp" value to the relocation 468 // addend and save it back to the file. 469 Addend += Sec->getFile<ELFT>()->MipsGp0; 470 } 471 472 if (RelTy::IsRela) 473 P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr; 474 else if (Config->Relocatable) 475 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym}); 476 } 477 } 478 } 479 480 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 481 // references specially. The general rule is that the value of the symbol in 482 // this context is the address of the place P. A further special case is that 483 // branch relocations to an undefined weak reference resolve to the next 484 // instruction. 485 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 486 uint32_t P) { 487 switch (Type) { 488 // Unresolved branch relocations to weak references resolve to next 489 // instruction, this will be either 2 or 4 bytes on from P. 490 case R_ARM_THM_JUMP11: 491 return P + 2 + A; 492 case R_ARM_CALL: 493 case R_ARM_JUMP24: 494 case R_ARM_PC24: 495 case R_ARM_PLT32: 496 case R_ARM_PREL31: 497 case R_ARM_THM_JUMP19: 498 case R_ARM_THM_JUMP24: 499 return P + 4 + A; 500 case R_ARM_THM_CALL: 501 // We don't want an interworking BLX to ARM 502 return P + 5 + A; 503 // Unresolved non branch pc-relative relocations 504 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 505 // targets a weak-reference. 506 case R_ARM_MOVW_PREL_NC: 507 case R_ARM_MOVT_PREL: 508 case R_ARM_REL32: 509 case R_ARM_THM_MOVW_PREL_NC: 510 case R_ARM_THM_MOVT_PREL: 511 return P + A; 512 } 513 llvm_unreachable("ARM pc-relative relocation expected\n"); 514 } 515 516 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 517 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 518 uint64_t P) { 519 switch (Type) { 520 // Unresolved branch relocations to weak references resolve to next 521 // instruction, this is 4 bytes on from P. 522 case R_AARCH64_CALL26: 523 case R_AARCH64_CONDBR19: 524 case R_AARCH64_JUMP26: 525 case R_AARCH64_TSTBR14: 526 return P + 4 + A; 527 // Unresolved non branch pc-relative relocations 528 case R_AARCH64_PREL16: 529 case R_AARCH64_PREL32: 530 case R_AARCH64_PREL64: 531 case R_AARCH64_ADR_PREL_LO21: 532 case R_AARCH64_LD_PREL_LO19: 533 return P + A; 534 } 535 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 536 } 537 538 // ARM SBREL relocations are of the form S + A - B where B is the static base 539 // The ARM ABI defines base to be "addressing origin of the output segment 540 // defining the symbol S". We defined the "addressing origin"/static base to be 541 // the base of the PT_LOAD segment containing the Sym. 542 // The procedure call standard only defines a Read Write Position Independent 543 // RWPI variant so in practice we should expect the static base to be the base 544 // of the RW segment. 545 static uint64_t getARMStaticBase(const Symbol &Sym) { 546 OutputSection *OS = Sym.getOutputSection(); 547 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 548 fatal("SBREL relocation to " + Sym.getName() + " without static base"); 549 return OS->PtLoad->FirstSec->Addr; 550 } 551 552 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 553 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 554 // is calculated using PCREL_HI20's symbol. 555 // 556 // This function returns the R_RISCV_PCREL_HI20 relocation from 557 // R_RISCV_PCREL_LO12's symbol and addend. 558 static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) { 559 const Defined *D = cast<Defined>(Sym); 560 InputSection *IS = cast<InputSection>(D->Section); 561 562 if (Addend != 0) 563 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 564 IS->getObjMsg(D->Value) + " is ignored"); 565 566 // Relocations are sorted by offset, so we can use std::equal_range to do 567 // binary search. 568 Relocation R; 569 R.Offset = D->Value; 570 auto Range = 571 std::equal_range(IS->Relocations.begin(), IS->Relocations.end(), R, 572 [](const Relocation &LHS, const Relocation &RHS) { 573 return LHS.Offset < RHS.Offset; 574 }); 575 576 for (auto It = Range.first; It != Range.second; ++It) 577 if (It->Expr == R_PC) 578 return &*It; 579 580 error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) + 581 " without an associated R_RISCV_PCREL_HI20 relocation"); 582 return nullptr; 583 } 584 585 // A TLS symbol's virtual address is relative to the TLS segment. Add a 586 // target-specific adjustment to produce a thread-pointer-relative offset. 587 static int64_t getTlsTpOffset() { 588 switch (Config->EMachine) { 589 case EM_ARM: 590 case EM_AARCH64: 591 // Variant 1. The thread pointer points to a TCB with a fixed 2-word size, 592 // followed by a variable amount of alignment padding, followed by the TLS 593 // segment. 594 // 595 // NB: While the ARM/AArch64 ABI formally has a 2-word TCB size, lld 596 // effectively increases the TCB size to 8 words for Android compatibility. 597 // It accomplishes this by increasing the segment's alignment. 598 return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align); 599 case EM_386: 600 case EM_X86_64: 601 // Variant 2. The TLS segment is located just before the thread pointer. 602 return -Out::TlsPhdr->p_memsz; 603 case EM_PPC64: 604 // The thread pointer points to a fixed offset from the start of the 605 // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit 606 // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the 607 // program's TLS segment. 608 return -0x7000; 609 default: 610 llvm_unreachable("unhandled Config->EMachine"); 611 } 612 } 613 614 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A, 615 uint64_t P, const Symbol &Sym, RelExpr Expr) { 616 switch (Expr) { 617 case R_ABS: 618 case R_DTPREL: 619 case R_RELAX_TLS_LD_TO_LE_ABS: 620 case R_RELAX_GOT_PC_NOPIC: 621 return Sym.getVA(A); 622 case R_ADDEND: 623 return A; 624 case R_ARM_SBREL: 625 return Sym.getVA(A) - getARMStaticBase(Sym); 626 case R_GOT: 627 case R_RELAX_TLS_GD_TO_IE_ABS: 628 return Sym.getGotVA() + A; 629 case R_GOTONLY_PC: 630 return In.Got->getVA() + A - P; 631 case R_GOTPLTONLY_PC: 632 return In.GotPlt->getVA() + A - P; 633 case R_GOTREL: 634 return Sym.getVA(A) - In.Got->getVA(); 635 case R_GOTPLTREL: 636 return Sym.getVA(A) - In.GotPlt->getVA(); 637 case R_GOTPLT: 638 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 639 return Sym.getGotVA() + A - In.GotPlt->getVA(); 640 case R_TLSLD_GOT_OFF: 641 case R_GOT_OFF: 642 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 643 return Sym.getGotOffset() + A; 644 case R_AARCH64_GOT_PAGE_PC: 645 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 646 return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); 647 case R_GOT_PC: 648 case R_RELAX_TLS_GD_TO_IE: 649 return Sym.getGotVA() + A - P; 650 case R_HEXAGON_GOT: 651 return Sym.getGotVA() - In.GotPlt->getVA(); 652 case R_MIPS_GOTREL: 653 return Sym.getVA(A) - In.MipsGot->getGp(File); 654 case R_MIPS_GOT_GP: 655 return In.MipsGot->getGp(File) + A; 656 case R_MIPS_GOT_GP_PC: { 657 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 658 // is _gp_disp symbol. In that case we should use the following 659 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 660 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 661 // microMIPS variants of these relocations use slightly different 662 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 663 // to correctly handle less-sugnificant bit of the microMIPS symbol. 664 uint64_t V = In.MipsGot->getGp(File) + A - P; 665 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 666 V += 4; 667 if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) 668 V -= 1; 669 return V; 670 } 671 case R_MIPS_GOT_LOCAL_PAGE: 672 // If relocation against MIPS local symbol requires GOT entry, this entry 673 // should be initialized by 'page address'. This address is high 16-bits 674 // of sum the symbol's value and the addend. 675 return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) - 676 In.MipsGot->getGp(File); 677 case R_MIPS_GOT_OFF: 678 case R_MIPS_GOT_OFF32: 679 // In case of MIPS if a GOT relocation has non-zero addend this addend 680 // should be applied to the GOT entry content not to the GOT entry offset. 681 // That is why we use separate expression type. 682 return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) - 683 In.MipsGot->getGp(File); 684 case R_MIPS_TLSGD: 685 return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) - 686 In.MipsGot->getGp(File); 687 case R_MIPS_TLSLD: 688 return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) - 689 In.MipsGot->getGp(File); 690 case R_AARCH64_PAGE_PC: { 691 uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A); 692 return getAArch64Page(Val) - getAArch64Page(P); 693 } 694 case R_RISCV_PC_INDIRECT: { 695 if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A)) 696 return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(), 697 *HiRel->Sym, HiRel->Expr); 698 return 0; 699 } 700 case R_PC: { 701 uint64_t Dest; 702 if (Sym.isUndefWeak()) { 703 // On ARM and AArch64 a branch to an undefined weak resolves to the 704 // next instruction, otherwise the place. 705 if (Config->EMachine == EM_ARM) 706 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 707 else if (Config->EMachine == EM_AARCH64) 708 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 709 else 710 Dest = Sym.getVA(A); 711 } else { 712 Dest = Sym.getVA(A); 713 } 714 return Dest - P; 715 } 716 case R_PLT: 717 return Sym.getPltVA() + A; 718 case R_PLT_PC: 719 case R_PPC_CALL_PLT: 720 return Sym.getPltVA() + A - P; 721 case R_PPC_CALL: { 722 uint64_t SymVA = Sym.getVA(A); 723 // If we have an undefined weak symbol, we might get here with a symbol 724 // address of zero. That could overflow, but the code must be unreachable, 725 // so don't bother doing anything at all. 726 if (!SymVA) 727 return 0; 728 729 // PPC64 V2 ABI describes two entry points to a function. The global entry 730 // point is used for calls where the caller and callee (may) have different 731 // TOC base pointers and r2 needs to be modified to hold the TOC base for 732 // the callee. For local calls the caller and callee share the same 733 // TOC base and so the TOC pointer initialization code should be skipped by 734 // branching to the local entry point. 735 return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther); 736 } 737 case R_PPC_TOC: 738 return getPPC64TocBase() + A; 739 case R_RELAX_GOT_PC: 740 return Sym.getVA(A) - P; 741 case R_RELAX_TLS_GD_TO_LE: 742 case R_RELAX_TLS_IE_TO_LE: 743 case R_RELAX_TLS_LD_TO_LE: 744 case R_TLS: 745 // A weak undefined TLS symbol resolves to the base of the TLS 746 // block, i.e. gets a value of zero. If we pass --gc-sections to 747 // lld and .tbss is not referenced, it gets reclaimed and we don't 748 // create a TLS program header. Therefore, we resolve this 749 // statically to zero. 750 if (Sym.isTls() && Sym.isUndefWeak()) 751 return 0; 752 return Sym.getVA(A) + getTlsTpOffset(); 753 case R_RELAX_TLS_GD_TO_LE_NEG: 754 case R_NEG_TLS: 755 return Out::TlsPhdr->p_memsz - Sym.getVA(A); 756 case R_SIZE: 757 return Sym.getSize() + A; 758 case R_TLSDESC: 759 return In.Got->getGlobalDynAddr(Sym) + A; 760 case R_AARCH64_TLSDESC_PAGE: 761 return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) - 762 getAArch64Page(P); 763 case R_TLSGD_GOT: 764 return In.Got->getGlobalDynOffset(Sym) + A; 765 case R_TLSGD_GOTPLT: 766 return In.Got->getVA() + In.Got->getGlobalDynOffset(Sym) + A - In.GotPlt->getVA(); 767 case R_TLSGD_PC: 768 return In.Got->getGlobalDynAddr(Sym) + A - P; 769 case R_TLSLD_GOTPLT: 770 return In.Got->getVA() + In.Got->getTlsIndexOff() + A - In.GotPlt->getVA(); 771 case R_TLSLD_GOT: 772 return In.Got->getTlsIndexOff() + A; 773 case R_TLSLD_PC: 774 return In.Got->getTlsIndexVA() + A - P; 775 default: 776 llvm_unreachable("invalid expression"); 777 } 778 } 779 780 // This function applies relocations to sections without SHF_ALLOC bit. 781 // Such sections are never mapped to memory at runtime. Debug sections are 782 // an example. Relocations in non-alloc sections are much easier to 783 // handle than in allocated sections because it will never need complex 784 // treatement such as GOT or PLT (because at runtime no one refers them). 785 // So, we handle relocations for non-alloc sections directly in this 786 // function as a performance optimization. 787 template <class ELFT, class RelTy> 788 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 789 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 790 791 for (const RelTy &Rel : Rels) { 792 RelType Type = Rel.getType(Config->IsMips64EL); 793 794 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 795 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 796 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 797 // need to keep this bug-compatible code for a while. 798 if (Config->EMachine == EM_386 && Type == R_386_GOTPC) 799 continue; 800 801 uint64_t Offset = getOffset(Rel.r_offset); 802 uint8_t *BufLoc = Buf + Offset; 803 int64_t Addend = getAddend<ELFT>(Rel); 804 if (!RelTy::IsRela) 805 Addend += Target->getImplicitAddend(BufLoc, Type); 806 807 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 808 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 809 if (Expr == R_NONE) 810 continue; 811 812 if (Expr != R_ABS && Expr != R_DTPREL) { 813 std::string Msg = getLocation<ELFT>(Offset) + 814 ": has non-ABS relocation " + toString(Type) + 815 " against symbol '" + toString(Sym) + "'"; 816 if (Expr != R_PC) { 817 error(Msg); 818 return; 819 } 820 821 // If the control reaches here, we found a PC-relative relocation in a 822 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 823 // at runtime, the notion of PC-relative doesn't make sense here. So, 824 // this is a usage error. However, GNU linkers historically accept such 825 // relocations without any errors and relocate them as if they were at 826 // address 0. For bug-compatibilty, we accept them with warnings. We 827 // know Steel Bank Common Lisp as of 2018 have this bug. 828 warn(Msg); 829 Target->relocateOne(BufLoc, Type, 830 SignExtend64<Bits>(Sym.getVA(Addend - Offset))); 831 continue; 832 } 833 834 if (Sym.isTls() && !Out::TlsPhdr) 835 Target->relocateOne(BufLoc, Type, 0); 836 else 837 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 838 } 839 } 840 841 // This is used when '-r' is given. 842 // For REL targets, InputSection::copyRelocations() may store artificial 843 // relocations aimed to update addends. They are handled in relocateAlloc() 844 // for allocatable sections, and this function does the same for 845 // non-allocatable sections, such as sections with debug information. 846 static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) { 847 const unsigned Bits = Config->Is64 ? 64 : 32; 848 849 for (const Relocation &Rel : Sec->Relocations) { 850 // InputSection::copyRelocations() adds only R_ABS relocations. 851 assert(Rel.Expr == R_ABS); 852 uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff; 853 uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits); 854 Target->relocateOne(BufLoc, Rel.Type, TargetVA); 855 } 856 } 857 858 template <class ELFT> 859 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 860 if (Flags & SHF_EXECINSTR) 861 adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd); 862 863 if (Flags & SHF_ALLOC) { 864 relocateAlloc(Buf, BufEnd); 865 return; 866 } 867 868 auto *Sec = cast<InputSection>(this); 869 if (Config->Relocatable) 870 relocateNonAllocForRelocatable(Sec, Buf); 871 else if (Sec->AreRelocsRela) 872 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 873 else 874 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 875 } 876 877 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 878 assert(Flags & SHF_ALLOC); 879 const unsigned Bits = Config->Wordsize * 8; 880 881 for (const Relocation &Rel : Relocations) { 882 uint64_t Offset = Rel.Offset; 883 if (auto *Sec = dyn_cast<InputSection>(this)) 884 Offset += Sec->OutSecOff; 885 uint8_t *BufLoc = Buf + Offset; 886 RelType Type = Rel.Type; 887 888 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 889 RelExpr Expr = Rel.Expr; 890 uint64_t TargetVA = SignExtend64( 891 getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), 892 Bits); 893 894 switch (Expr) { 895 case R_RELAX_GOT_PC: 896 case R_RELAX_GOT_PC_NOPIC: 897 Target->relaxGot(BufLoc, TargetVA); 898 break; 899 case R_RELAX_TLS_IE_TO_LE: 900 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 901 break; 902 case R_RELAX_TLS_LD_TO_LE: 903 case R_RELAX_TLS_LD_TO_LE_ABS: 904 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 905 break; 906 case R_RELAX_TLS_GD_TO_LE: 907 case R_RELAX_TLS_GD_TO_LE_NEG: 908 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 909 break; 910 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 911 case R_RELAX_TLS_GD_TO_IE: 912 case R_RELAX_TLS_GD_TO_IE_ABS: 913 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 914 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 915 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 916 break; 917 case R_PPC_CALL: 918 // If this is a call to __tls_get_addr, it may be part of a TLS 919 // sequence that has been relaxed and turned into a nop. In this 920 // case, we don't want to handle it as a call. 921 if (read32(BufLoc) == 0x60000000) // nop 922 break; 923 924 // Patch a nop (0x60000000) to a ld. 925 if (Rel.Sym->NeedsTocRestore) { 926 if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) { 927 error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc"); 928 break; 929 } 930 write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 931 } 932 Target->relocateOne(BufLoc, Type, TargetVA); 933 break; 934 default: 935 Target->relocateOne(BufLoc, Type, TargetVA); 936 break; 937 } 938 } 939 } 940 941 // For each function-defining prologue, find any calls to __morestack, 942 // and replace them with calls to __morestack_non_split. 943 static void switchMorestackCallsToMorestackNonSplit( 944 DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) { 945 946 // If the target adjusted a function's prologue, all calls to 947 // __morestack inside that function should be switched to 948 // __morestack_non_split. 949 Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split"); 950 if (!MoreStackNonSplit) { 951 error("Mixing split-stack objects requires a definition of " 952 "__morestack_non_split"); 953 return; 954 } 955 956 // Sort both collections to compare addresses efficiently. 957 llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) { 958 return L->Offset < R->Offset; 959 }); 960 std::vector<Defined *> Functions(Prologues.begin(), Prologues.end()); 961 llvm::sort(Functions, [](const Defined *L, const Defined *R) { 962 return L->Value < R->Value; 963 }); 964 965 auto It = MorestackCalls.begin(); 966 for (Defined *F : Functions) { 967 // Find the first call to __morestack within the function. 968 while (It != MorestackCalls.end() && (*It)->Offset < F->Value) 969 ++It; 970 // Adjust all calls inside the function. 971 while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) { 972 (*It)->Sym = MoreStackNonSplit; 973 ++It; 974 } 975 } 976 } 977 978 static bool enclosingPrologueAttempted(uint64_t Offset, 979 const DenseSet<Defined *> &Prologues) { 980 for (Defined *F : Prologues) 981 if (F->Value <= Offset && Offset < F->Value + F->Size) 982 return true; 983 return false; 984 } 985 986 // If a function compiled for split stack calls a function not 987 // compiled for split stack, then the caller needs its prologue 988 // adjusted to ensure that the called function will have enough stack 989 // available. Find those functions, and adjust their prologues. 990 template <class ELFT> 991 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf, 992 uint8_t *End) { 993 if (!getFile<ELFT>()->SplitStack) 994 return; 995 DenseSet<Defined *> Prologues; 996 std::vector<Relocation *> MorestackCalls; 997 998 for (Relocation &Rel : Relocations) { 999 // Local symbols can't possibly be cross-calls, and should have been 1000 // resolved long before this line. 1001 if (Rel.Sym->isLocal()) 1002 continue; 1003 1004 // Ignore calls into the split-stack api. 1005 if (Rel.Sym->getName().startswith("__morestack")) { 1006 if (Rel.Sym->getName().equals("__morestack")) 1007 MorestackCalls.push_back(&Rel); 1008 continue; 1009 } 1010 1011 // A relocation to non-function isn't relevant. Sometimes 1012 // __morestack is not marked as a function, so this check comes 1013 // after the name check. 1014 if (Rel.Sym->Type != STT_FUNC) 1015 continue; 1016 1017 // If the callee's-file was compiled with split stack, nothing to do. In 1018 // this context, a "Defined" symbol is one "defined by the binary currently 1019 // being produced". So an "undefined" symbol might be provided by a shared 1020 // library. It is not possible to tell how such symbols were compiled, so be 1021 // conservative. 1022 if (Defined *D = dyn_cast<Defined>(Rel.Sym)) 1023 if (InputSection *IS = cast_or_null<InputSection>(D->Section)) 1024 if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack) 1025 continue; 1026 1027 if (enclosingPrologueAttempted(Rel.Offset, Prologues)) 1028 continue; 1029 1030 if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) { 1031 Prologues.insert(F); 1032 if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value), 1033 End, F->StOther)) 1034 continue; 1035 if (!getFile<ELFT>()->SomeNoSplitStack) 1036 error(lld::toString(this) + ": " + F->getName() + 1037 " (with -fsplit-stack) calls " + Rel.Sym->getName() + 1038 " (without -fsplit-stack), but couldn't adjust its prologue"); 1039 } 1040 } 1041 1042 if (Target->NeedsMoreStackNonSplit) 1043 switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls); 1044 } 1045 1046 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 1047 if (Type == SHT_NOBITS) 1048 return; 1049 1050 if (auto *S = dyn_cast<SyntheticSection>(this)) { 1051 S->writeTo(Buf + OutSecOff); 1052 return; 1053 } 1054 1055 // If -r or --emit-relocs is given, then an InputSection 1056 // may be a relocation section. 1057 if (Type == SHT_RELA) { 1058 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>()); 1059 return; 1060 } 1061 if (Type == SHT_REL) { 1062 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>()); 1063 return; 1064 } 1065 1066 // If -r is given, we may have a SHT_GROUP section. 1067 if (Type == SHT_GROUP) { 1068 copyShtGroup<ELFT>(Buf + OutSecOff); 1069 return; 1070 } 1071 1072 // If this is a compressed section, uncompress section contents directly 1073 // to the buffer. 1074 if (UncompressedSize >= 0) { 1075 size_t Size = UncompressedSize; 1076 if (Error E = zlib::uncompress(toStringRef(RawData), 1077 (char *)(Buf + OutSecOff), Size)) 1078 fatal(toString(this) + 1079 ": uncompress failed: " + llvm::toString(std::move(E))); 1080 uint8_t *BufEnd = Buf + OutSecOff + Size; 1081 relocate<ELFT>(Buf, BufEnd); 1082 return; 1083 } 1084 1085 // Copy section contents from source object file to output file 1086 // and then apply relocations. 1087 memcpy(Buf + OutSecOff, data().data(), data().size()); 1088 uint8_t *BufEnd = Buf + OutSecOff + data().size(); 1089 relocate<ELFT>(Buf, BufEnd); 1090 } 1091 1092 void InputSection::replace(InputSection *Other) { 1093 Alignment = std::max(Alignment, Other->Alignment); 1094 Other->Repl = Repl; 1095 Other->Live = false; 1096 } 1097 1098 template <class ELFT> 1099 EhInputSection::EhInputSection(ObjFile<ELFT> &F, 1100 const typename ELFT::Shdr &Header, 1101 StringRef Name) 1102 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} 1103 1104 SyntheticSection *EhInputSection::getParent() const { 1105 return cast_or_null<SyntheticSection>(Parent); 1106 } 1107 1108 // Returns the index of the first relocation that points to a region between 1109 // Begin and Begin+Size. 1110 template <class IntTy, class RelTy> 1111 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 1112 unsigned &RelocI) { 1113 // Start search from RelocI for fast access. That works because the 1114 // relocations are sorted in .eh_frame. 1115 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 1116 const RelTy &Rel = Rels[RelocI]; 1117 if (Rel.r_offset < Begin) 1118 continue; 1119 1120 if (Rel.r_offset < Begin + Size) 1121 return RelocI; 1122 return -1; 1123 } 1124 return -1; 1125 } 1126 1127 // .eh_frame is a sequence of CIE or FDE records. 1128 // This function splits an input section into records and returns them. 1129 template <class ELFT> void EhInputSection::split() { 1130 if (AreRelocsRela) 1131 split<ELFT>(relas<ELFT>()); 1132 else 1133 split<ELFT>(rels<ELFT>()); 1134 } 1135 1136 template <class ELFT, class RelTy> 1137 void EhInputSection::split(ArrayRef<RelTy> Rels) { 1138 unsigned RelI = 0; 1139 for (size_t Off = 0, End = data().size(); Off != End;) { 1140 size_t Size = readEhRecordSize(this, Off); 1141 Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 1142 // The empty record is the end marker. 1143 if (Size == 4) 1144 break; 1145 Off += Size; 1146 } 1147 } 1148 1149 static size_t findNull(StringRef S, size_t EntSize) { 1150 // Optimize the common case. 1151 if (EntSize == 1) 1152 return S.find(0); 1153 1154 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 1155 const char *B = S.begin() + I; 1156 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 1157 return I; 1158 } 1159 return StringRef::npos; 1160 } 1161 1162 SyntheticSection *MergeInputSection::getParent() const { 1163 return cast_or_null<SyntheticSection>(Parent); 1164 } 1165 1166 // Split SHF_STRINGS section. Such section is a sequence of 1167 // null-terminated strings. 1168 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 1169 size_t Off = 0; 1170 bool IsAlloc = Flags & SHF_ALLOC; 1171 StringRef S = toStringRef(Data); 1172 1173 while (!S.empty()) { 1174 size_t End = findNull(S, EntSize); 1175 if (End == StringRef::npos) 1176 fatal(toString(this) + ": string is not null terminated"); 1177 size_t Size = End + EntSize; 1178 1179 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 1180 S = S.substr(Size); 1181 Off += Size; 1182 } 1183 } 1184 1185 // Split non-SHF_STRINGS section. Such section is a sequence of 1186 // fixed size records. 1187 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 1188 size_t EntSize) { 1189 size_t Size = Data.size(); 1190 assert((Size % EntSize) == 0); 1191 bool IsAlloc = Flags & SHF_ALLOC; 1192 1193 for (size_t I = 0; I != Size; I += EntSize) 1194 Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc); 1195 } 1196 1197 template <class ELFT> 1198 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F, 1199 const typename ELFT::Shdr &Header, 1200 StringRef Name) 1201 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 1202 1203 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type, 1204 uint64_t Entsize, ArrayRef<uint8_t> Data, 1205 StringRef Name) 1206 : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0, 1207 /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {} 1208 1209 // This function is called after we obtain a complete list of input sections 1210 // that need to be linked. This is responsible to split section contents 1211 // into small chunks for further processing. 1212 // 1213 // Note that this function is called from parallelForEach. This must be 1214 // thread-safe (i.e. no memory allocation from the pools). 1215 void MergeInputSection::splitIntoPieces() { 1216 assert(Pieces.empty()); 1217 1218 if (Flags & SHF_STRINGS) 1219 splitStrings(data(), Entsize); 1220 else 1221 splitNonStrings(data(), Entsize); 1222 } 1223 1224 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 1225 if (this->data().size() <= Offset) 1226 fatal(toString(this) + ": offset is outside the section"); 1227 1228 // If Offset is not at beginning of a section piece, it is not in the map. 1229 // In that case we need to do a binary search of the original section piece vector. 1230 auto It = llvm::bsearch(Pieces, 1231 [=](SectionPiece P) { return Offset < P.InputOff; }); 1232 return &It[-1]; 1233 } 1234 1235 // Returns the offset in an output section for a given input offset. 1236 // Because contents of a mergeable section is not contiguous in output, 1237 // it is not just an addition to a base output offset. 1238 uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const { 1239 // If Offset is not at beginning of a section piece, it is not in the map. 1240 // In that case we need to search from the original section piece vector. 1241 const SectionPiece &Piece = 1242 *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset)); 1243 uint64_t Addend = Offset - Piece.InputOff; 1244 return Piece.OutputOff + Addend; 1245 } 1246 1247 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1248 StringRef); 1249 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1250 StringRef); 1251 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1252 StringRef); 1253 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1254 StringRef); 1255 1256 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1257 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1258 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1259 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1260 1261 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1262 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1263 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1264 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1265 1266 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1267 const ELF32LE::Shdr &, StringRef); 1268 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1269 const ELF32BE::Shdr &, StringRef); 1270 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1271 const ELF64LE::Shdr &, StringRef); 1272 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1273 const ELF64BE::Shdr &, StringRef); 1274 1275 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1276 const ELF32LE::Shdr &, StringRef); 1277 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1278 const ELF32BE::Shdr &, StringRef); 1279 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1280 const ELF64LE::Shdr &, StringRef); 1281 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1282 const ELF64BE::Shdr &, StringRef); 1283 1284 template void EhInputSection::split<ELF32LE>(); 1285 template void EhInputSection::split<ELF32BE>(); 1286 template void EhInputSection::split<ELF64LE>(); 1287 template void EhInputSection::split<ELF64BE>(); 1288