1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <vector> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 using namespace llvm::sys; 33 using namespace lld; 34 using namespace lld::elf; 35 36 SmallVector<InputSectionBase *, 0> elf::inputSections; 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t alignment, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 58 link), 59 file(file), rawData(data) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(alignment, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->alignment = v; 72 73 // In ELF, each section can be compressed by zlib, and if compressed, 74 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 75 // If that's the case, demangle section name so that we can handle a 76 // section as if it weren't compressed. 77 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 78 if (!zlib::isAvailable()) 79 error(toString(file) + ": contains a compressed section, " + 80 "but zlib is not available"); 81 invokeELFT(parseCompressedHeader); 82 } 83 } 84 85 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 86 // SHF_GROUP is a marker that a section belongs to some comdat group. 87 // That flag doesn't make sense in an executable. 88 static uint64_t getFlags(uint64_t flags) { 89 flags &= ~(uint64_t)SHF_INFO_LINK; 90 if (!config->relocatable) 91 flags &= ~(uint64_t)SHF_GROUP; 92 return flags; 93 } 94 95 template <class ELFT> 96 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 97 const typename ELFT::Shdr &hdr, 98 StringRef name, Kind sectionKind) 99 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 100 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 101 hdr.sh_addralign, getSectionContents(file, hdr), name, 102 sectionKind) { 103 // We reject object files having insanely large alignments even though 104 // they are allowed by the spec. I think 4GB is a reasonable limitation. 105 // We might want to relax this in the future. 106 if (hdr.sh_addralign > UINT32_MAX) 107 fatal(toString(&file) + ": section sh_addralign is too large"); 108 } 109 110 size_t InputSectionBase::getSize() const { 111 if (auto *s = dyn_cast<SyntheticSection>(this)) 112 return s->getSize(); 113 if (uncompressedSize >= 0) 114 return uncompressedSize; 115 return rawData.size() - bytesDropped; 116 } 117 118 void InputSectionBase::uncompress() const { 119 size_t size = uncompressedSize; 120 char *uncompressedBuf; 121 { 122 static std::mutex mu; 123 std::lock_guard<std::mutex> lock(mu); 124 uncompressedBuf = bAlloc().Allocate<char>(size); 125 } 126 127 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 128 fatal(toString(this) + 129 ": uncompress failed: " + llvm::toString(std::move(e))); 130 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 131 uncompressedSize = -1; 132 } 133 134 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 135 if (relSecIdx == 0) 136 return {}; 137 RelsOrRelas<ELFT> ret; 138 typename ELFT::Shdr shdr = 139 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 140 if (shdr.sh_type == SHT_REL) { 141 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 142 file->mb.getBufferStart() + shdr.sh_offset), 143 shdr.sh_size / sizeof(typename ELFT::Rel)); 144 } else { 145 assert(shdr.sh_type == SHT_RELA); 146 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 147 file->mb.getBufferStart() + shdr.sh_offset), 148 shdr.sh_size / sizeof(typename ELFT::Rela)); 149 } 150 return ret; 151 } 152 153 uint64_t SectionBase::getOffset(uint64_t offset) const { 154 switch (kind()) { 155 case Output: { 156 auto *os = cast<OutputSection>(this); 157 // For output sections we treat offset -1 as the end of the section. 158 return offset == uint64_t(-1) ? os->size : offset; 159 } 160 case Regular: 161 case Synthetic: 162 return cast<InputSection>(this)->outSecOff + offset; 163 case EHFrame: 164 // The file crtbeginT.o has relocations pointing to the start of an empty 165 // .eh_frame that is known to be the first in the link. It does that to 166 // identify the start of the output .eh_frame. 167 return offset; 168 case Merge: 169 const MergeInputSection *ms = cast<MergeInputSection>(this); 170 if (InputSection *isec = ms->getParent()) 171 return isec->outSecOff + ms->getParentOffset(offset); 172 return ms->getParentOffset(offset); 173 } 174 llvm_unreachable("invalid section kind"); 175 } 176 177 uint64_t SectionBase::getVA(uint64_t offset) const { 178 const OutputSection *out = getOutputSection(); 179 return (out ? out->addr : 0) + getOffset(offset); 180 } 181 182 OutputSection *SectionBase::getOutputSection() { 183 InputSection *sec; 184 if (auto *isec = dyn_cast<InputSection>(this)) 185 sec = isec; 186 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 187 sec = ms->getParent(); 188 else if (auto *eh = dyn_cast<EhInputSection>(this)) 189 sec = eh->getParent(); 190 else 191 return cast<OutputSection>(this); 192 return sec ? sec->getParent() : nullptr; 193 } 194 195 // When a section is compressed, `rawData` consists with a header followed 196 // by zlib-compressed data. This function parses a header to initialize 197 // `uncompressedSize` member and remove the header from `rawData`. 198 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 199 // Old-style header 200 if (!(flags & SHF_COMPRESSED)) { 201 assert(name.startswith(".zdebug")); 202 if (!toStringRef(rawData).startswith("ZLIB")) { 203 error(toString(this) + ": corrupted compressed section header"); 204 return; 205 } 206 rawData = rawData.slice(4); 207 208 if (rawData.size() < 8) { 209 error(toString(this) + ": corrupted compressed section header"); 210 return; 211 } 212 213 uncompressedSize = read64be(rawData.data()); 214 rawData = rawData.slice(8); 215 216 // Restore the original section name. 217 // (e.g. ".zdebug_info" -> ".debug_info") 218 name = saver().save("." + name.substr(2)); 219 return; 220 } 221 222 flags &= ~(uint64_t)SHF_COMPRESSED; 223 224 // New-style header 225 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 226 error(toString(this) + ": corrupted compressed section"); 227 return; 228 } 229 230 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 231 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 232 error(toString(this) + ": unsupported compression type"); 233 return; 234 } 235 236 uncompressedSize = hdr->ch_size; 237 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 238 rawData = rawData.slice(sizeof(*hdr)); 239 } 240 241 InputSection *InputSectionBase::getLinkOrderDep() const { 242 assert(flags & SHF_LINK_ORDER); 243 if (!link) 244 return nullptr; 245 return cast<InputSection>(file->getSections()[link]); 246 } 247 248 // Find a function symbol that encloses a given location. 249 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 250 for (Symbol *b : file->getSymbols()) 251 if (Defined *d = dyn_cast<Defined>(b)) 252 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 253 offset < d->value + d->size) 254 return d; 255 return nullptr; 256 } 257 258 // Returns an object file location string. Used to construct an error message. 259 std::string InputSectionBase::getLocation(uint64_t offset) { 260 std::string secAndOffset = 261 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 262 263 // We don't have file for synthetic sections. 264 if (file == nullptr) 265 return (config->outputFile + ":(" + secAndOffset).str(); 266 267 std::string filename = toString(file); 268 if (Defined *d = getEnclosingFunction(offset)) 269 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 270 271 return filename + ":(" + secAndOffset; 272 } 273 274 // This function is intended to be used for constructing an error message. 275 // The returned message looks like this: 276 // 277 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 278 // 279 // Returns an empty string if there's no way to get line info. 280 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 281 return file->getSrcMsg(sym, *this, offset); 282 } 283 284 // Returns a filename string along with an optional section name. This 285 // function is intended to be used for constructing an error 286 // message. The returned message looks like this: 287 // 288 // path/to/foo.o:(function bar) 289 // 290 // or 291 // 292 // path/to/foo.o:(function bar) in archive path/to/bar.a 293 std::string InputSectionBase::getObjMsg(uint64_t off) { 294 std::string filename = std::string(file->getName()); 295 296 std::string archive; 297 if (!file->archiveName.empty()) 298 archive = (" in archive " + file->archiveName).str(); 299 300 // Find a symbol that encloses a given location. getObjMsg may be called 301 // before ObjFile::initializeLocalSymbols where local symbols are initialized. 302 for (Symbol *b : file->getSymbols()) 303 if (auto *d = dyn_cast_or_null<Defined>(b)) 304 if (d->section == this && d->value <= off && off < d->value + d->size) 305 return filename + ":(" + toString(*d) + ")" + archive; 306 307 // If there's no symbol, print out the offset in the section. 308 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 309 .str(); 310 } 311 312 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 313 314 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 315 uint32_t alignment, ArrayRef<uint8_t> data, 316 StringRef name, Kind k) 317 : InputSectionBase(f, flags, type, 318 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 319 name, k) {} 320 321 template <class ELFT> 322 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 323 StringRef name) 324 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 325 326 // Copy SHT_GROUP section contents. Used only for the -r option. 327 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 328 // ELFT::Word is the 32-bit integral type in the target endianness. 329 using u32 = typename ELFT::Word; 330 ArrayRef<u32> from = getDataAs<u32>(); 331 auto *to = reinterpret_cast<u32 *>(buf); 332 333 // The first entry is not a section number but a flag. 334 *to++ = from[0]; 335 336 // Adjust section numbers because section numbers in an input object files are 337 // different in the output. We also need to handle combined or discarded 338 // members. 339 ArrayRef<InputSectionBase *> sections = file->getSections(); 340 DenseSet<uint32_t> seen; 341 for (uint32_t idx : from.slice(1)) { 342 OutputSection *osec = sections[idx]->getOutputSection(); 343 if (osec && seen.insert(osec->sectionIndex).second) 344 *to++ = osec->sectionIndex; 345 } 346 } 347 348 InputSectionBase *InputSection::getRelocatedSection() const { 349 if (!file || (type != SHT_RELA && type != SHT_REL)) 350 return nullptr; 351 ArrayRef<InputSectionBase *> sections = file->getSections(); 352 return sections[info]; 353 } 354 355 // This is used for -r and --emit-relocs. We can't use memcpy to copy 356 // relocations because we need to update symbol table offset and section index 357 // for each relocation. So we copy relocations one by one. 358 template <class ELFT, class RelTy> 359 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 360 const TargetInfo &target = *elf::target; 361 InputSectionBase *sec = getRelocatedSection(); 362 (void)sec->data(); // uncompress if needed 363 364 for (const RelTy &rel : rels) { 365 RelType type = rel.getType(config->isMips64EL); 366 const ObjFile<ELFT> *file = getFile<ELFT>(); 367 Symbol &sym = file->getRelocTargetSym(rel); 368 369 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 370 buf += sizeof(RelTy); 371 372 if (RelTy::IsRela) 373 p->r_addend = getAddend<ELFT>(rel); 374 375 // Output section VA is zero for -r, so r_offset is an offset within the 376 // section, but for --emit-relocs it is a virtual address. 377 p->r_offset = sec->getVA(rel.r_offset); 378 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 379 config->isMips64EL); 380 381 if (sym.type == STT_SECTION) { 382 // We combine multiple section symbols into only one per 383 // section. This means we have to update the addend. That is 384 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 385 // section data. We do that by adding to the Relocation vector. 386 387 // .eh_frame is horribly special and can reference discarded sections. To 388 // avoid having to parse and recreate .eh_frame, we just replace any 389 // relocation in it pointing to discarded sections with R_*_NONE, which 390 // hopefully creates a frame that is ignored at runtime. Also, don't warn 391 // on .gcc_except_table and debug sections. 392 // 393 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 394 auto *d = dyn_cast<Defined>(&sym); 395 if (!d) { 396 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 397 sec->name != ".gcc_except_table" && sec->name != ".got2" && 398 sec->name != ".toc") { 399 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 400 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 401 warn("relocation refers to a discarded section: " + 402 CHECK(file->getObj().getSectionName(sec), file) + 403 "\n>>> referenced by " + getObjMsg(p->r_offset)); 404 } 405 p->setSymbolAndType(0, 0, false); 406 continue; 407 } 408 SectionBase *section = d->section; 409 if (!section->isLive()) { 410 p->setSymbolAndType(0, 0, false); 411 continue; 412 } 413 414 int64_t addend = getAddend<ELFT>(rel); 415 const uint8_t *bufLoc = sec->rawData.begin() + rel.r_offset; 416 if (!RelTy::IsRela) 417 addend = target.getImplicitAddend(bufLoc, type); 418 419 if (config->emachine == EM_MIPS && 420 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 421 // Some MIPS relocations depend on "gp" value. By default, 422 // this value has 0x7ff0 offset from a .got section. But 423 // relocatable files produced by a compiler or a linker 424 // might redefine this default value and we must use it 425 // for a calculation of the relocation result. When we 426 // generate EXE or DSO it's trivial. Generating a relocatable 427 // output is more difficult case because the linker does 428 // not calculate relocations in this mode and loses 429 // individual "gp" values used by each input object file. 430 // As a workaround we add the "gp" value to the relocation 431 // addend and save it back to the file. 432 addend += sec->getFile<ELFT>()->mipsGp0; 433 } 434 435 if (RelTy::IsRela) 436 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 437 else if (config->relocatable && type != target.noneRel) 438 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 439 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 440 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 441 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 442 // indicates that r30 is relative to the input section .got2 443 // (r_addend>=0x8000), after linking, r30 should be relative to the output 444 // section .got2 . To compensate for the shift, adjust r_addend by 445 // ppc32Got->outSecOff. 446 p->r_addend += sec->file->ppc32Got2->outSecOff; 447 } 448 } 449 } 450 451 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 452 // references specially. The general rule is that the value of the symbol in 453 // this context is the address of the place P. A further special case is that 454 // branch relocations to an undefined weak reference resolve to the next 455 // instruction. 456 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 457 uint32_t p) { 458 switch (type) { 459 // Unresolved branch relocations to weak references resolve to next 460 // instruction, this will be either 2 or 4 bytes on from P. 461 case R_ARM_THM_JUMP8: 462 case R_ARM_THM_JUMP11: 463 return p + 2 + a; 464 case R_ARM_CALL: 465 case R_ARM_JUMP24: 466 case R_ARM_PC24: 467 case R_ARM_PLT32: 468 case R_ARM_PREL31: 469 case R_ARM_THM_JUMP19: 470 case R_ARM_THM_JUMP24: 471 return p + 4 + a; 472 case R_ARM_THM_CALL: 473 // We don't want an interworking BLX to ARM 474 return p + 5 + a; 475 // Unresolved non branch pc-relative relocations 476 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 477 // targets a weak-reference. 478 case R_ARM_MOVW_PREL_NC: 479 case R_ARM_MOVT_PREL: 480 case R_ARM_REL32: 481 case R_ARM_THM_ALU_PREL_11_0: 482 case R_ARM_THM_MOVW_PREL_NC: 483 case R_ARM_THM_MOVT_PREL: 484 case R_ARM_THM_PC12: 485 return p + a; 486 // p + a is unrepresentable as negative immediates can't be encoded. 487 case R_ARM_THM_PC8: 488 return p; 489 } 490 llvm_unreachable("ARM pc-relative relocation expected\n"); 491 } 492 493 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 494 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 495 switch (type) { 496 // Unresolved branch relocations to weak references resolve to next 497 // instruction, this is 4 bytes on from P. 498 case R_AARCH64_CALL26: 499 case R_AARCH64_CONDBR19: 500 case R_AARCH64_JUMP26: 501 case R_AARCH64_TSTBR14: 502 return p + 4; 503 // Unresolved non branch pc-relative relocations 504 case R_AARCH64_PREL16: 505 case R_AARCH64_PREL32: 506 case R_AARCH64_PREL64: 507 case R_AARCH64_ADR_PREL_LO21: 508 case R_AARCH64_LD_PREL_LO19: 509 case R_AARCH64_PLT32: 510 return p; 511 } 512 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 513 } 514 515 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 516 switch (type) { 517 case R_RISCV_BRANCH: 518 case R_RISCV_JAL: 519 case R_RISCV_CALL: 520 case R_RISCV_CALL_PLT: 521 case R_RISCV_RVC_BRANCH: 522 case R_RISCV_RVC_JUMP: 523 return p; 524 default: 525 return 0; 526 } 527 } 528 529 // ARM SBREL relocations are of the form S + A - B where B is the static base 530 // The ARM ABI defines base to be "addressing origin of the output segment 531 // defining the symbol S". We defined the "addressing origin"/static base to be 532 // the base of the PT_LOAD segment containing the Sym. 533 // The procedure call standard only defines a Read Write Position Independent 534 // RWPI variant so in practice we should expect the static base to be the base 535 // of the RW segment. 536 static uint64_t getARMStaticBase(const Symbol &sym) { 537 OutputSection *os = sym.getOutputSection(); 538 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 539 fatal("SBREL relocation to " + sym.getName() + " without static base"); 540 return os->ptLoad->firstSec->addr; 541 } 542 543 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 544 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 545 // is calculated using PCREL_HI20's symbol. 546 // 547 // This function returns the R_RISCV_PCREL_HI20 relocation from 548 // R_RISCV_PCREL_LO12's symbol and addend. 549 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 550 const Defined *d = cast<Defined>(sym); 551 if (!d->section) { 552 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 553 sym->getName()); 554 return nullptr; 555 } 556 InputSection *isec = cast<InputSection>(d->section); 557 558 if (addend != 0) 559 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 560 isec->getObjMsg(d->value) + " is ignored"); 561 562 // Relocations are sorted by offset, so we can use std::equal_range to do 563 // binary search. 564 Relocation r; 565 r.offset = d->value; 566 auto range = 567 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 568 [](const Relocation &lhs, const Relocation &rhs) { 569 return lhs.offset < rhs.offset; 570 }); 571 572 for (auto it = range.first; it != range.second; ++it) 573 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 574 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 575 return &*it; 576 577 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 578 " without an associated R_RISCV_PCREL_HI20 relocation"); 579 return nullptr; 580 } 581 582 // A TLS symbol's virtual address is relative to the TLS segment. Add a 583 // target-specific adjustment to produce a thread-pointer-relative offset. 584 static int64_t getTlsTpOffset(const Symbol &s) { 585 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 586 if (&s == ElfSym::tlsModuleBase) 587 return 0; 588 589 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 590 // while most others use Variant 1. At run time TP will be aligned to p_align. 591 592 // Variant 1. TP will be followed by an optional gap (which is the size of 2 593 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 594 // padding, then the static TLS blocks. The alignment padding is added so that 595 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 596 // 597 // Variant 2. Static TLS blocks, followed by alignment padding are placed 598 // before TP. The alignment padding is added so that (TP - padding - 599 // p_memsz) is congruent to p_vaddr modulo p_align. 600 PhdrEntry *tls = Out::tlsPhdr; 601 switch (config->emachine) { 602 // Variant 1. 603 case EM_ARM: 604 case EM_AARCH64: 605 return s.getVA(0) + config->wordsize * 2 + 606 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 607 case EM_MIPS: 608 case EM_PPC: 609 case EM_PPC64: 610 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 611 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 612 // data and 0xf000 of the program's TLS segment. 613 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 614 case EM_RISCV: 615 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 616 617 // Variant 2. 618 case EM_HEXAGON: 619 case EM_SPARCV9: 620 case EM_386: 621 case EM_X86_64: 622 return s.getVA(0) - tls->p_memsz - 623 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 624 default: 625 llvm_unreachable("unhandled Config->EMachine"); 626 } 627 } 628 629 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 630 int64_t a, uint64_t p, 631 const Symbol &sym, RelExpr expr) { 632 switch (expr) { 633 case R_ABS: 634 case R_DTPREL: 635 case R_RELAX_TLS_LD_TO_LE_ABS: 636 case R_RELAX_GOT_PC_NOPIC: 637 case R_RISCV_ADD: 638 return sym.getVA(a); 639 case R_ADDEND: 640 return a; 641 case R_ARM_SBREL: 642 return sym.getVA(a) - getARMStaticBase(sym); 643 case R_GOT: 644 case R_RELAX_TLS_GD_TO_IE_ABS: 645 return sym.getGotVA() + a; 646 case R_GOTONLY_PC: 647 return in.got->getVA() + a - p; 648 case R_GOTPLTONLY_PC: 649 return in.gotPlt->getVA() + a - p; 650 case R_GOTREL: 651 case R_PPC64_RELAX_TOC: 652 return sym.getVA(a) - in.got->getVA(); 653 case R_GOTPLTREL: 654 return sym.getVA(a) - in.gotPlt->getVA(); 655 case R_GOTPLT: 656 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 657 return sym.getGotVA() + a - in.gotPlt->getVA(); 658 case R_TLSLD_GOT_OFF: 659 case R_GOT_OFF: 660 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 661 return sym.getGotOffset() + a; 662 case R_AARCH64_GOT_PAGE_PC: 663 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 664 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 665 case R_AARCH64_GOT_PAGE: 666 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 667 case R_GOT_PC: 668 case R_RELAX_TLS_GD_TO_IE: 669 return sym.getGotVA() + a - p; 670 case R_MIPS_GOTREL: 671 return sym.getVA(a) - in.mipsGot->getGp(file); 672 case R_MIPS_GOT_GP: 673 return in.mipsGot->getGp(file) + a; 674 case R_MIPS_GOT_GP_PC: { 675 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 676 // is _gp_disp symbol. In that case we should use the following 677 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 678 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 679 // microMIPS variants of these relocations use slightly different 680 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 681 // to correctly handle less-significant bit of the microMIPS symbol. 682 uint64_t v = in.mipsGot->getGp(file) + a - p; 683 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 684 v += 4; 685 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 686 v -= 1; 687 return v; 688 } 689 case R_MIPS_GOT_LOCAL_PAGE: 690 // If relocation against MIPS local symbol requires GOT entry, this entry 691 // should be initialized by 'page address'. This address is high 16-bits 692 // of sum the symbol's value and the addend. 693 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 694 in.mipsGot->getGp(file); 695 case R_MIPS_GOT_OFF: 696 case R_MIPS_GOT_OFF32: 697 // In case of MIPS if a GOT relocation has non-zero addend this addend 698 // should be applied to the GOT entry content not to the GOT entry offset. 699 // That is why we use separate expression type. 700 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 701 in.mipsGot->getGp(file); 702 case R_MIPS_TLSGD: 703 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 704 in.mipsGot->getGp(file); 705 case R_MIPS_TLSLD: 706 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 707 in.mipsGot->getGp(file); 708 case R_AARCH64_PAGE_PC: { 709 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 710 return getAArch64Page(val) - getAArch64Page(p); 711 } 712 case R_RISCV_PC_INDIRECT: { 713 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 714 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 715 *hiRel->sym, hiRel->expr); 716 return 0; 717 } 718 case R_PC: 719 case R_ARM_PCA: { 720 uint64_t dest; 721 if (expr == R_ARM_PCA) 722 // Some PC relative ARM (Thumb) relocations align down the place. 723 p = p & 0xfffffffc; 724 if (sym.isUndefWeak()) { 725 // On ARM and AArch64 a branch to an undefined weak resolves to the next 726 // instruction, otherwise the place. On RISCV, resolve an undefined weak 727 // to the same instruction to cause an infinite loop (making the user 728 // aware of the issue) while ensuring no overflow. 729 if (config->emachine == EM_ARM) 730 dest = getARMUndefinedRelativeWeakVA(type, a, p); 731 else if (config->emachine == EM_AARCH64) 732 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 733 else if (config->emachine == EM_PPC) 734 dest = p; 735 else if (config->emachine == EM_RISCV) 736 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 737 else 738 dest = sym.getVA(a); 739 } else { 740 dest = sym.getVA(a); 741 } 742 return dest - p; 743 } 744 case R_PLT: 745 return sym.getPltVA() + a; 746 case R_PLT_PC: 747 case R_PPC64_CALL_PLT: 748 return sym.getPltVA() + a - p; 749 case R_PLT_GOTPLT: 750 return sym.getPltVA() + a - in.gotPlt->getVA(); 751 case R_PPC32_PLTREL: 752 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 753 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 754 // target VA computation. 755 return sym.getPltVA() - p; 756 case R_PPC64_CALL: { 757 uint64_t symVA = sym.getVA(a); 758 // If we have an undefined weak symbol, we might get here with a symbol 759 // address of zero. That could overflow, but the code must be unreachable, 760 // so don't bother doing anything at all. 761 if (!symVA) 762 return 0; 763 764 // PPC64 V2 ABI describes two entry points to a function. The global entry 765 // point is used for calls where the caller and callee (may) have different 766 // TOC base pointers and r2 needs to be modified to hold the TOC base for 767 // the callee. For local calls the caller and callee share the same 768 // TOC base and so the TOC pointer initialization code should be skipped by 769 // branching to the local entry point. 770 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 771 } 772 case R_PPC64_TOCBASE: 773 return getPPC64TocBase() + a; 774 case R_RELAX_GOT_PC: 775 case R_PPC64_RELAX_GOT_PC: 776 return sym.getVA(a) - p; 777 case R_RELAX_TLS_GD_TO_LE: 778 case R_RELAX_TLS_IE_TO_LE: 779 case R_RELAX_TLS_LD_TO_LE: 780 case R_TPREL: 781 // It is not very clear what to return if the symbol is undefined. With 782 // --noinhibit-exec, even a non-weak undefined reference may reach here. 783 // Just return A, which matches R_ABS, and the behavior of some dynamic 784 // loaders. 785 if (sym.isUndefined()) 786 return a; 787 return getTlsTpOffset(sym) + a; 788 case R_RELAX_TLS_GD_TO_LE_NEG: 789 case R_TPREL_NEG: 790 if (sym.isUndefined()) 791 return a; 792 return -getTlsTpOffset(sym) + a; 793 case R_SIZE: 794 return sym.getSize() + a; 795 case R_TLSDESC: 796 return in.got->getTlsDescAddr(sym) + a; 797 case R_TLSDESC_PC: 798 return in.got->getTlsDescAddr(sym) + a - p; 799 case R_TLSDESC_GOTPLT: 800 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 801 case R_AARCH64_TLSDESC_PAGE: 802 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 803 case R_TLSGD_GOT: 804 return in.got->getGlobalDynOffset(sym) + a; 805 case R_TLSGD_GOTPLT: 806 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 807 case R_TLSGD_PC: 808 return in.got->getGlobalDynAddr(sym) + a - p; 809 case R_TLSLD_GOTPLT: 810 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 811 case R_TLSLD_GOT: 812 return in.got->getTlsIndexOff() + a; 813 case R_TLSLD_PC: 814 return in.got->getTlsIndexVA() + a - p; 815 default: 816 llvm_unreachable("invalid expression"); 817 } 818 } 819 820 // This function applies relocations to sections without SHF_ALLOC bit. 821 // Such sections are never mapped to memory at runtime. Debug sections are 822 // an example. Relocations in non-alloc sections are much easier to 823 // handle than in allocated sections because it will never need complex 824 // treatment such as GOT or PLT (because at runtime no one refers them). 825 // So, we handle relocations for non-alloc sections directly in this 826 // function as a performance optimization. 827 template <class ELFT, class RelTy> 828 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 829 const unsigned bits = sizeof(typename ELFT::uint) * 8; 830 const TargetInfo &target = *elf::target; 831 const bool isDebug = isDebugSection(*this); 832 const bool isDebugLocOrRanges = 833 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 834 const bool isDebugLine = isDebug && name == ".debug_line"; 835 Optional<uint64_t> tombstone; 836 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 837 if (patAndValue.first.match(this->name)) { 838 tombstone = patAndValue.second; 839 break; 840 } 841 842 for (const RelTy &rel : rels) { 843 RelType type = rel.getType(config->isMips64EL); 844 845 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 846 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 847 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 848 // need to keep this bug-compatible code for a while. 849 if (config->emachine == EM_386 && type == R_386_GOTPC) 850 continue; 851 852 uint64_t offset = rel.r_offset; 853 uint8_t *bufLoc = buf + offset; 854 int64_t addend = getAddend<ELFT>(rel); 855 if (!RelTy::IsRela) 856 addend += target.getImplicitAddend(bufLoc, type); 857 858 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 859 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 860 if (expr == R_NONE) 861 continue; 862 863 if (tombstone || 864 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 865 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 866 // folded section symbols) to a tombstone value. Resolving to addend is 867 // unsatisfactory because the result address range may collide with a 868 // valid range of low address, or leave multiple CUs claiming ownership of 869 // the same range of code, which may confuse consumers. 870 // 871 // To address the problems, we use -1 as a tombstone value for most 872 // .debug_* sections. We have to ignore the addend because we don't want 873 // to resolve an address attribute (which may have a non-zero addend) to 874 // -1+addend (wrap around to a low address). 875 // 876 // R_DTPREL type relocations represent an offset into the dynamic thread 877 // vector. The computed value is st_value plus a non-negative offset. 878 // Negative values are invalid, so -1 can be used as the tombstone value. 879 // 880 // If the referenced symbol is discarded (made Undefined), or the 881 // section defining the referenced symbol is garbage collected, 882 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 883 // case. However, resolving a relocation in .debug_line to -1 would stop 884 // debugger users from setting breakpoints on the folded-in function, so 885 // exclude .debug_line. 886 // 887 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 888 // (base address selection entry), use 1 (which is used by GNU ld for 889 // .debug_ranges). 890 // 891 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 892 // value. Enable -1 in a future release. 893 auto *ds = dyn_cast<Defined>(&sym); 894 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 895 // If -z dead-reloc-in-nonalloc= is specified, respect it. 896 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 897 : (isDebugLocOrRanges ? 1 : 0); 898 target.relocateNoSym(bufLoc, type, value); 899 continue; 900 } 901 } 902 903 // For a relocatable link, only tombstone values are applied. 904 if (config->relocatable) 905 continue; 906 907 if (expr == R_SIZE) { 908 target.relocateNoSym(bufLoc, type, 909 SignExtend64<bits>(sym.getSize() + addend)); 910 continue; 911 } 912 913 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 914 // sections. 915 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || 916 expr == R_RISCV_ADD) { 917 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 918 continue; 919 } 920 921 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 922 toString(type) + " against symbol '" + toString(sym) + 923 "'"; 924 if (expr != R_PC && expr != R_ARM_PCA) { 925 error(msg); 926 return; 927 } 928 929 // If the control reaches here, we found a PC-relative relocation in a 930 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 931 // at runtime, the notion of PC-relative doesn't make sense here. So, 932 // this is a usage error. However, GNU linkers historically accept such 933 // relocations without any errors and relocate them as if they were at 934 // address 0. For bug-compatibilty, we accept them with warnings. We 935 // know Steel Bank Common Lisp as of 2018 have this bug. 936 warn(msg); 937 target.relocateNoSym( 938 bufLoc, type, 939 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 940 } 941 } 942 943 // This is used when '-r' is given. 944 // For REL targets, InputSection::copyRelocations() may store artificial 945 // relocations aimed to update addends. They are handled in relocateAlloc() 946 // for allocatable sections, and this function does the same for 947 // non-allocatable sections, such as sections with debug information. 948 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 949 const unsigned bits = config->is64 ? 64 : 32; 950 951 for (const Relocation &rel : sec->relocations) { 952 // InputSection::copyRelocations() adds only R_ABS relocations. 953 assert(rel.expr == R_ABS); 954 uint8_t *bufLoc = buf + rel.offset; 955 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 956 target->relocate(bufLoc, rel, targetVA); 957 } 958 } 959 960 template <class ELFT> 961 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 962 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 963 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 964 965 if (flags & SHF_ALLOC) { 966 relocateAlloc(buf, bufEnd); 967 return; 968 } 969 970 auto *sec = cast<InputSection>(this); 971 if (config->relocatable) 972 relocateNonAllocForRelocatable(sec, buf); 973 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 974 // locations with tombstone values. 975 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 976 if (rels.areRelocsRel()) 977 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 978 else 979 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 980 } 981 982 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 983 assert(flags & SHF_ALLOC); 984 const unsigned bits = config->wordsize * 8; 985 const TargetInfo &target = *elf::target; 986 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 987 AArch64Relaxer aarch64relaxer(relocations); 988 for (size_t i = 0, size = relocations.size(); i != size; ++i) { 989 const Relocation &rel = relocations[i]; 990 if (rel.expr == R_NONE) 991 continue; 992 uint64_t offset = rel.offset; 993 uint8_t *bufLoc = buf + offset; 994 995 uint64_t secAddr = getOutputSection()->addr; 996 if (auto *sec = dyn_cast<InputSection>(this)) 997 secAddr += sec->outSecOff; 998 const uint64_t addrLoc = secAddr + offset; 999 const uint64_t targetVA = 1000 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 1001 *rel.sym, rel.expr), 1002 bits); 1003 switch (rel.expr) { 1004 case R_RELAX_GOT_PC: 1005 case R_RELAX_GOT_PC_NOPIC: 1006 target.relaxGot(bufLoc, rel, targetVA); 1007 break; 1008 case R_AARCH64_GOT_PAGE_PC: 1009 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr( 1010 rel, relocations[i + 1], secAddr, buf)) { 1011 ++i; 1012 continue; 1013 } 1014 target.relocate(bufLoc, rel, targetVA); 1015 break; 1016 case R_AARCH64_PAGE_PC: 1017 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpAdd( 1018 rel, relocations[i + 1], secAddr, buf)) { 1019 ++i; 1020 continue; 1021 } 1022 target.relocate(bufLoc, rel, targetVA); 1023 break; 1024 case R_PPC64_RELAX_GOT_PC: { 1025 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1026 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1027 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1028 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1029 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1030 // and only relax the other if the saved offset matches. 1031 if (rel.type == R_PPC64_GOT_PCREL34) 1032 lastPPCRelaxedRelocOff = offset; 1033 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1034 break; 1035 target.relaxGot(bufLoc, rel, targetVA); 1036 break; 1037 } 1038 case R_PPC64_RELAX_TOC: 1039 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1040 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1041 // entry, there may be R_PPC64_TOC16_HA not paired with 1042 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1043 // opportunities but is safe. 1044 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1045 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1046 target.relocate(bufLoc, rel, targetVA); 1047 break; 1048 case R_RELAX_TLS_IE_TO_LE: 1049 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1050 break; 1051 case R_RELAX_TLS_LD_TO_LE: 1052 case R_RELAX_TLS_LD_TO_LE_ABS: 1053 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1054 break; 1055 case R_RELAX_TLS_GD_TO_LE: 1056 case R_RELAX_TLS_GD_TO_LE_NEG: 1057 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1058 break; 1059 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1060 case R_RELAX_TLS_GD_TO_IE: 1061 case R_RELAX_TLS_GD_TO_IE_ABS: 1062 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1063 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1064 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1065 break; 1066 case R_PPC64_CALL: 1067 // If this is a call to __tls_get_addr, it may be part of a TLS 1068 // sequence that has been relaxed and turned into a nop. In this 1069 // case, we don't want to handle it as a call. 1070 if (read32(bufLoc) == 0x60000000) // nop 1071 break; 1072 1073 // Patch a nop (0x60000000) to a ld. 1074 if (rel.sym->needsTocRestore) { 1075 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1076 // recursive calls even if the function is preemptible. This is not 1077 // wrong in the common case where the function is not preempted at 1078 // runtime. Just ignore. 1079 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1080 rel.sym->file != file) { 1081 // Use substr(6) to remove the "__plt_" prefix. 1082 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1083 lld::toString(*rel.sym).substr(6) + 1084 " lacks nop, can't restore toc"); 1085 break; 1086 } 1087 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1088 } 1089 target.relocate(bufLoc, rel, targetVA); 1090 break; 1091 default: 1092 target.relocate(bufLoc, rel, targetVA); 1093 break; 1094 } 1095 } 1096 1097 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1098 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1099 // insn. This is primarily used to relax and optimize jumps created with 1100 // basic block sections. 1101 if (jumpInstrMod) { 1102 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1103 jumpInstrMod->size); 1104 } 1105 } 1106 1107 // For each function-defining prologue, find any calls to __morestack, 1108 // and replace them with calls to __morestack_non_split. 1109 static void switchMorestackCallsToMorestackNonSplit( 1110 DenseSet<Defined *> &prologues, 1111 SmallVector<Relocation *, 0> &morestackCalls) { 1112 1113 // If the target adjusted a function's prologue, all calls to 1114 // __morestack inside that function should be switched to 1115 // __morestack_non_split. 1116 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1117 if (!moreStackNonSplit) { 1118 error("mixing split-stack objects requires a definition of " 1119 "__morestack_non_split"); 1120 return; 1121 } 1122 1123 // Sort both collections to compare addresses efficiently. 1124 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1125 return l->offset < r->offset; 1126 }); 1127 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1128 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1129 return l->value < r->value; 1130 }); 1131 1132 auto it = morestackCalls.begin(); 1133 for (Defined *f : functions) { 1134 // Find the first call to __morestack within the function. 1135 while (it != morestackCalls.end() && (*it)->offset < f->value) 1136 ++it; 1137 // Adjust all calls inside the function. 1138 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1139 (*it)->sym = moreStackNonSplit; 1140 ++it; 1141 } 1142 } 1143 } 1144 1145 static bool enclosingPrologueAttempted(uint64_t offset, 1146 const DenseSet<Defined *> &prologues) { 1147 for (Defined *f : prologues) 1148 if (f->value <= offset && offset < f->value + f->size) 1149 return true; 1150 return false; 1151 } 1152 1153 // If a function compiled for split stack calls a function not 1154 // compiled for split stack, then the caller needs its prologue 1155 // adjusted to ensure that the called function will have enough stack 1156 // available. Find those functions, and adjust their prologues. 1157 template <class ELFT> 1158 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1159 uint8_t *end) { 1160 DenseSet<Defined *> prologues; 1161 SmallVector<Relocation *, 0> morestackCalls; 1162 1163 for (Relocation &rel : relocations) { 1164 // Ignore calls into the split-stack api. 1165 if (rel.sym->getName().startswith("__morestack")) { 1166 if (rel.sym->getName().equals("__morestack")) 1167 morestackCalls.push_back(&rel); 1168 continue; 1169 } 1170 1171 // A relocation to non-function isn't relevant. Sometimes 1172 // __morestack is not marked as a function, so this check comes 1173 // after the name check. 1174 if (rel.sym->type != STT_FUNC) 1175 continue; 1176 1177 // If the callee's-file was compiled with split stack, nothing to do. In 1178 // this context, a "Defined" symbol is one "defined by the binary currently 1179 // being produced". So an "undefined" symbol might be provided by a shared 1180 // library. It is not possible to tell how such symbols were compiled, so be 1181 // conservative. 1182 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1183 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1184 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1185 continue; 1186 1187 if (enclosingPrologueAttempted(rel.offset, prologues)) 1188 continue; 1189 1190 if (Defined *f = getEnclosingFunction(rel.offset)) { 1191 prologues.insert(f); 1192 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1193 f->stOther)) 1194 continue; 1195 if (!getFile<ELFT>()->someNoSplitStack) 1196 error(lld::toString(this) + ": " + f->getName() + 1197 " (with -fsplit-stack) calls " + rel.sym->getName() + 1198 " (without -fsplit-stack), but couldn't adjust its prologue"); 1199 } 1200 } 1201 1202 if (target->needsMoreStackNonSplit) 1203 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1204 } 1205 1206 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1207 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1208 return; 1209 // If -r or --emit-relocs is given, then an InputSection 1210 // may be a relocation section. 1211 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1212 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1213 return; 1214 } 1215 if (LLVM_UNLIKELY(type == SHT_REL)) { 1216 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1217 return; 1218 } 1219 1220 // If -r is given, we may have a SHT_GROUP section. 1221 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1222 copyShtGroup<ELFT>(buf); 1223 return; 1224 } 1225 1226 // If this is a compressed section, uncompress section contents directly 1227 // to the buffer. 1228 if (uncompressedSize >= 0) { 1229 size_t size = uncompressedSize; 1230 if (Error e = zlib::uncompress(toStringRef(rawData), (char *)buf, size)) 1231 fatal(toString(this) + 1232 ": uncompress failed: " + llvm::toString(std::move(e))); 1233 uint8_t *bufEnd = buf + size; 1234 relocate<ELFT>(buf, bufEnd); 1235 return; 1236 } 1237 1238 // Copy section contents from source object file to output file 1239 // and then apply relocations. 1240 memcpy(buf, rawData.data(), rawData.size()); 1241 relocate<ELFT>(buf, buf + rawData.size()); 1242 } 1243 1244 void InputSection::replace(InputSection *other) { 1245 alignment = std::max(alignment, other->alignment); 1246 1247 // When a section is replaced with another section that was allocated to 1248 // another partition, the replacement section (and its associated sections) 1249 // need to be placed in the main partition so that both partitions will be 1250 // able to access it. 1251 if (partition != other->partition) { 1252 partition = 1; 1253 for (InputSection *isec : dependentSections) 1254 isec->partition = 1; 1255 } 1256 1257 other->repl = repl; 1258 other->markDead(); 1259 } 1260 1261 template <class ELFT> 1262 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1263 const typename ELFT::Shdr &header, 1264 StringRef name) 1265 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1266 1267 SyntheticSection *EhInputSection::getParent() const { 1268 return cast_or_null<SyntheticSection>(parent); 1269 } 1270 1271 // Returns the index of the first relocation that points to a region between 1272 // Begin and Begin+Size. 1273 template <class IntTy, class RelTy> 1274 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1275 unsigned &relocI) { 1276 // Start search from RelocI for fast access. That works because the 1277 // relocations are sorted in .eh_frame. 1278 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1279 const RelTy &rel = rels[relocI]; 1280 if (rel.r_offset < begin) 1281 continue; 1282 1283 if (rel.r_offset < begin + size) 1284 return relocI; 1285 return -1; 1286 } 1287 return -1; 1288 } 1289 1290 // .eh_frame is a sequence of CIE or FDE records. 1291 // This function splits an input section into records and returns them. 1292 template <class ELFT> void EhInputSection::split() { 1293 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1294 // getReloc expects the relocations to be sorted by r_offset. See the comment 1295 // in scanRelocs. 1296 if (rels.areRelocsRel()) { 1297 SmallVector<typename ELFT::Rel, 0> storage; 1298 split<ELFT>(sortRels(rels.rels, storage)); 1299 } else { 1300 SmallVector<typename ELFT::Rela, 0> storage; 1301 split<ELFT>(sortRels(rels.relas, storage)); 1302 } 1303 } 1304 1305 template <class ELFT, class RelTy> 1306 void EhInputSection::split(ArrayRef<RelTy> rels) { 1307 ArrayRef<uint8_t> d = rawData; 1308 const char *msg = nullptr; 1309 unsigned relI = 0; 1310 while (!d.empty()) { 1311 if (d.size() < 4) { 1312 msg = "CIE/FDE too small"; 1313 break; 1314 } 1315 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1316 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1317 // but we do not support that format yet. 1318 if (size == UINT32_MAX) { 1319 msg = "CIE/FDE too large"; 1320 break; 1321 } 1322 size += 4; 1323 if (size > d.size()) { 1324 msg = "CIE/FDE ends past the end of the section"; 1325 break; 1326 } 1327 1328 uint64_t off = d.data() - rawData.data(); 1329 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1330 d = d.slice(size); 1331 } 1332 if (msg) 1333 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1334 getObjMsg(d.data() - rawData.data())); 1335 } 1336 1337 static size_t findNull(StringRef s, size_t entSize) { 1338 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1339 const char *b = s.begin() + i; 1340 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1341 return i; 1342 } 1343 llvm_unreachable(""); 1344 } 1345 1346 SyntheticSection *MergeInputSection::getParent() const { 1347 return cast_or_null<SyntheticSection>(parent); 1348 } 1349 1350 // Split SHF_STRINGS section. Such section is a sequence of 1351 // null-terminated strings. 1352 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1353 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1354 const char *p = s.data(), *end = s.data() + s.size(); 1355 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1356 fatal(toString(this) + ": string is not null terminated"); 1357 if (entSize == 1) { 1358 // Optimize the common case. 1359 do { 1360 size_t size = strlen(p) + 1; 1361 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1362 p += size; 1363 } while (p != end); 1364 } else { 1365 do { 1366 size_t size = findNull(StringRef(p, end - p), entSize) + entSize; 1367 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1368 p += size; 1369 } while (p != end); 1370 } 1371 } 1372 1373 // Split non-SHF_STRINGS section. Such section is a sequence of 1374 // fixed size records. 1375 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1376 size_t entSize) { 1377 size_t size = data.size(); 1378 assert((size % entSize) == 0); 1379 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1380 1381 pieces.resize_for_overwrite(size / entSize); 1382 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1383 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1384 } 1385 1386 template <class ELFT> 1387 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1388 const typename ELFT::Shdr &header, 1389 StringRef name) 1390 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1391 1392 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1393 uint64_t entsize, ArrayRef<uint8_t> data, 1394 StringRef name) 1395 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1396 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1397 1398 // This function is called after we obtain a complete list of input sections 1399 // that need to be linked. This is responsible to split section contents 1400 // into small chunks for further processing. 1401 // 1402 // Note that this function is called from parallelForEach. This must be 1403 // thread-safe (i.e. no memory allocation from the pools). 1404 void MergeInputSection::splitIntoPieces() { 1405 assert(pieces.empty()); 1406 1407 if (flags & SHF_STRINGS) 1408 splitStrings(toStringRef(data()), entsize); 1409 else 1410 splitNonStrings(data(), entsize); 1411 } 1412 1413 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1414 if (this->rawData.size() <= offset) 1415 fatal(toString(this) + ": offset is outside the section"); 1416 1417 // If Offset is not at beginning of a section piece, it is not in the map. 1418 // In that case we need to do a binary search of the original section piece vector. 1419 auto it = partition_point( 1420 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1421 return &it[-1]; 1422 } 1423 1424 // Returns the offset in an output section for a given input offset. 1425 // Because contents of a mergeable section is not contiguous in output, 1426 // it is not just an addition to a base output offset. 1427 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1428 // If Offset is not at beginning of a section piece, it is not in the map. 1429 // In that case we need to search from the original section piece vector. 1430 const SectionPiece &piece = *getSectionPiece(offset); 1431 uint64_t addend = offset - piece.inputOff; 1432 return piece.outputOff + addend; 1433 } 1434 1435 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1436 StringRef); 1437 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1438 StringRef); 1439 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1440 StringRef); 1441 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1442 StringRef); 1443 1444 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1445 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1446 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1447 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1448 1449 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1450 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1451 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1452 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1453 1454 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1455 const ELF32LE::Shdr &, StringRef); 1456 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1457 const ELF32BE::Shdr &, StringRef); 1458 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1459 const ELF64LE::Shdr &, StringRef); 1460 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1461 const ELF64BE::Shdr &, StringRef); 1462 1463 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1464 const ELF32LE::Shdr &, StringRef); 1465 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1466 const ELF32BE::Shdr &, StringRef); 1467 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1468 const ELF64LE::Shdr &, StringRef); 1469 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1470 const ELF64BE::Shdr &, StringRef); 1471 1472 template void EhInputSection::split<ELF32LE>(); 1473 template void EhInputSection::split<ELF32BE>(); 1474 template void EhInputSection::split<ELF64LE>(); 1475 template void EhInputSection::split<ELF64BE>(); 1476