1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/Threading.h" 28 #include <mutex> 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::support; 34 using namespace llvm::support::endian; 35 using namespace llvm::sys; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 std::vector<InputSectionBase *> elf::InputSections; 41 42 // Returns a string to construct an error message. 43 std::string lld::toString(const InputSectionBase *Sec) { 44 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 45 } 46 47 DenseMap<SectionBase *, int> elf::buildSectionOrder() { 48 // Build a map from symbols to their priorities. Symbols that didn't 49 // appear in the symbol ordering file have the lowest priority 0. 50 // All explicitly mentioned symbols have negative (higher) priorities. 51 DenseMap<StringRef, int> SymbolOrder; 52 int Priority = -Config->SymbolOrderingFile.size(); 53 for (StringRef S : Config->SymbolOrderingFile) 54 SymbolOrder.insert({S, Priority++}); 55 56 // Build a map from sections to their priorities. 57 DenseMap<SectionBase *, int> SectionOrder; 58 for (InputFile *File : ObjectFiles) { 59 for (SymbolBody *Body : File->getSymbols()) { 60 auto *D = dyn_cast<DefinedRegular>(Body); 61 if (!D || !D->Section) 62 continue; 63 int &Priority = SectionOrder[D->Section]; 64 Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); 65 } 66 } 67 return SectionOrder; 68 } 69 70 template <class ELFT> 71 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File, 72 const typename ELFT::Shdr *Hdr) { 73 if (!File || Hdr->sh_type == SHT_NOBITS) 74 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 75 return check(File->getObj().getSectionContents(Hdr)); 76 } 77 78 // Return true if a section with given section flags is live (will never be 79 // GCed) by default. If a section can be GCed, this function returns false. 80 static bool isLiveByDefault(uint64_t Flags, uint32_t Type) { 81 // If GC is enabled, all memory-mapped sections are subject of GC. 82 if (!Config->GcSections) 83 return true; 84 if (Flags & SHF_ALLOC) 85 return false; 86 87 // Besides that, relocation sections can also be GCed because their 88 // relocation target sections may be GCed. This doesn't really matter 89 // in most cases because the linker usually consumes relocation 90 // sections instead of emitting them, but -emit-reloc needs this. 91 return Type != SHT_REL && Type != SHT_RELA; 92 } 93 94 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 95 uint32_t Type, uint64_t Entsize, 96 uint32_t Link, uint32_t Info, 97 uint32_t Alignment, ArrayRef<uint8_t> Data, 98 StringRef Name, Kind SectionKind) 99 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 100 Link), 101 File(File), Data(Data), Repl(this) { 102 Live = isLiveByDefault(Flags, Type); 103 Assigned = false; 104 NumRelocations = 0; 105 AreRelocsRela = false; 106 107 // The ELF spec states that a value of 0 means the section has 108 // no alignment constraits. 109 uint32_t V = std::max<uint64_t>(Alignment, 1); 110 if (!isPowerOf2_64(V)) 111 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 112 this->Alignment = V; 113 } 114 115 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 116 // SHF_GROUP is a marker that a section belongs to some comdat group. 117 // That flag doesn't make sense in an executable. 118 static uint64_t getFlags(uint64_t Flags) { 119 Flags &= ~(uint64_t)SHF_INFO_LINK; 120 if (!Config->Relocatable) 121 Flags &= ~(uint64_t)SHF_GROUP; 122 return Flags; 123 } 124 125 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 126 // March 2017) fail to infer section types for sections starting with 127 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 128 // SHF_INIT_ARRAY. As a result, the following assembler directive 129 // creates ".init_array.100" with SHT_PROGBITS, for example. 130 // 131 // .section .init_array.100, "aw" 132 // 133 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 134 // incorrect inputs as if they were correct from the beginning. 135 static uint64_t getType(uint64_t Type, StringRef Name) { 136 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 137 return SHT_INIT_ARRAY; 138 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 139 return SHT_FINI_ARRAY; 140 return Type; 141 } 142 143 template <class ELFT> 144 InputSectionBase::InputSectionBase(ObjFile<ELFT> *File, 145 const typename ELFT::Shdr *Hdr, 146 StringRef Name, Kind SectionKind) 147 : InputSectionBase(File, getFlags(Hdr->sh_flags), 148 getType(Hdr->sh_type, Name), Hdr->sh_entsize, 149 Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, 150 getSectionContents(File, Hdr), Name, SectionKind) { 151 // We reject object files having insanely large alignments even though 152 // they are allowed by the spec. I think 4GB is a reasonable limitation. 153 // We might want to relax this in the future. 154 if (Hdr->sh_addralign > UINT32_MAX) 155 fatal(toString(File) + ": section sh_addralign is too large"); 156 } 157 158 size_t InputSectionBase::getSize() const { 159 if (auto *S = dyn_cast<SyntheticSection>(this)) 160 return S->getSize(); 161 162 return Data.size(); 163 } 164 165 uint64_t InputSectionBase::getOffsetInFile() const { 166 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 167 const uint8_t *SecStart = Data.begin(); 168 return SecStart - FileStart; 169 } 170 171 uint64_t SectionBase::getOffset(uint64_t Offset) const { 172 switch (kind()) { 173 case Output: { 174 auto *OS = cast<OutputSection>(this); 175 // For output sections we treat offset -1 as the end of the section. 176 return Offset == uint64_t(-1) ? OS->Size : Offset; 177 } 178 case Regular: 179 return cast<InputSection>(this)->OutSecOff + Offset; 180 case Synthetic: { 181 auto *IS = cast<InputSection>(this); 182 // For synthetic sections we treat offset -1 as the end of the section. 183 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 184 } 185 case EHFrame: 186 // The file crtbeginT.o has relocations pointing to the start of an empty 187 // .eh_frame that is known to be the first in the link. It does that to 188 // identify the start of the output .eh_frame. 189 return Offset; 190 case Merge: 191 const MergeInputSection *MS = cast<MergeInputSection>(this); 192 if (InputSection *IS = MS->getParent()) 193 return IS->OutSecOff + MS->getOffset(Offset); 194 return MS->getOffset(Offset); 195 } 196 llvm_unreachable("invalid section kind"); 197 } 198 199 OutputSection *SectionBase::getOutputSection() { 200 InputSection *Sec; 201 if (auto *IS = dyn_cast<InputSection>(this)) 202 Sec = cast<InputSection>(IS->Repl); 203 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 204 Sec = MS->getParent(); 205 else if (auto *EH = dyn_cast<EhInputSection>(this)) 206 Sec = EH->getParent(); 207 else 208 return cast<OutputSection>(this); 209 return Sec ? Sec->getParent() : nullptr; 210 } 211 212 // Uncompress section contents. Note that this function is called 213 // from parallelForEach, so it must be thread-safe. 214 void InputSectionBase::uncompress() { 215 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 216 Config->IsLE, Config->Is64)); 217 218 size_t Size = Dec.getDecompressedSize(); 219 UncompressBuf.reset(new char[Size]()); 220 if (Error E = Dec.decompress({UncompressBuf.get(), Size})) 221 fatal(toString(this) + 222 ": decompress failed: " + llvm::toString(std::move(E))); 223 224 this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size); 225 this->Flags &= ~(uint64_t)SHF_COMPRESSED; 226 } 227 228 uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const { 229 return getOffset(Sym.Value); 230 } 231 232 InputSection *InputSectionBase::getLinkOrderDep() const { 233 if ((Flags & SHF_LINK_ORDER) && Link != 0) { 234 InputSectionBase *L = File->getSections()[Link]; 235 if (auto *IS = dyn_cast<InputSection>(L)) 236 return IS; 237 error("a section with SHF_LINK_ORDER should not refer a non-regular " 238 "section: " + 239 toString(L)); 240 } 241 return nullptr; 242 } 243 244 // Returns a source location string. Used to construct an error message. 245 template <class ELFT> 246 std::string InputSectionBase::getLocation(uint64_t Offset) { 247 // We don't have file for synthetic sections. 248 if (getFile<ELFT>() == nullptr) 249 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 250 .str(); 251 252 // First check if we can get desired values from debugging information. 253 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 254 if (!LineInfo.empty()) 255 return LineInfo; 256 257 // File->SourceFile contains STT_FILE symbol that contains a 258 // source file name. If it's missing, we use an object file name. 259 std::string SrcFile = getFile<ELFT>()->SourceFile; 260 if (SrcFile.empty()) 261 SrcFile = toString(File); 262 263 // Find a function symbol that encloses a given location. 264 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 265 if (auto *D = dyn_cast<DefinedRegular>(B)) 266 if (D->Section == this && D->Type == STT_FUNC) 267 if (D->Value <= Offset && Offset < D->Value + D->Size) 268 return SrcFile + ":(function " + toString(*D) + ")"; 269 270 // If there's no symbol, print out the offset in the section. 271 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 272 } 273 274 // Returns a source location string. This function is intended to be 275 // used for constructing an error message. The returned message looks 276 // like this: 277 // 278 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 279 // 280 // Returns an empty string if there's no way to get line info. 281 template <class ELFT> std::string InputSectionBase::getSrcMsg(uint64_t Offset) { 282 // Synthetic sections don't have input files. 283 ObjFile<ELFT> *File = getFile<ELFT>(); 284 if (!File) 285 return ""; 286 287 Optional<DILineInfo> Info = File->getDILineInfo(this, Offset); 288 289 // File->SourceFile contains STT_FILE symbol, and that is a last resort. 290 if (!Info) 291 return File->SourceFile; 292 293 std::string Path = Info->FileName; 294 std::string Filename = path::filename(Path); 295 std::string Lineno = ":" + std::to_string(Info->Line); 296 if (Filename == Path) 297 return Filename + Lineno; 298 return Filename + Lineno + " (" + Path + Lineno + ")"; 299 } 300 301 // Returns a filename string along with an optional section name. This 302 // function is intended to be used for constructing an error 303 // message. The returned message looks like this: 304 // 305 // path/to/foo.o:(function bar) 306 // 307 // or 308 // 309 // path/to/foo.o:(function bar) in archive path/to/bar.a 310 template <class ELFT> std::string InputSectionBase::getObjMsg(uint64_t Off) { 311 // Synthetic sections don't have input files. 312 ObjFile<ELFT> *File = getFile<ELFT>(); 313 if (!File) 314 return ("(internal):(" + Name + "+0x" + utohexstr(Off) + ")").str(); 315 std::string Filename = File->getName(); 316 317 std::string Archive; 318 if (!File->ArchiveName.empty()) 319 Archive = (" in archive " + File->ArchiveName).str(); 320 321 // Find a symbol that encloses a given location. 322 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 323 if (auto *D = dyn_cast<DefinedRegular>(B)) 324 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 325 return Filename + ":(" + toString(*D) + ")" + Archive; 326 327 // If there's no symbol, print out the offset in the section. 328 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 329 .str(); 330 } 331 332 InputSectionBase InputSectionBase::Discarded; 333 334 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 335 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 336 : InputSectionBase(nullptr, Flags, Type, 337 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 338 Name, K) {} 339 340 template <class ELFT> 341 InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header, 342 StringRef Name) 343 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 344 345 bool InputSection::classof(const SectionBase *S) { 346 return S->kind() == SectionBase::Regular || 347 S->kind() == SectionBase::Synthetic; 348 } 349 350 bool InputSectionBase::classof(const SectionBase *S) { 351 return S->kind() != Output; 352 } 353 354 OutputSection *InputSection::getParent() const { 355 return cast_or_null<OutputSection>(Parent); 356 } 357 358 // Copy SHT_GROUP section contents. Used only for the -r option. 359 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 360 // ELFT::Word is the 32-bit integral type in the target endianness. 361 typedef typename ELFT::Word u32; 362 ArrayRef<u32> From = getDataAs<u32>(); 363 auto *To = reinterpret_cast<u32 *>(Buf); 364 365 // The first entry is not a section number but a flag. 366 *To++ = From[0]; 367 368 // Adjust section numbers because section numbers in an input object 369 // files are different in the output. 370 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 371 for (uint32_t Idx : From.slice(1)) 372 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 373 } 374 375 InputSectionBase *InputSection::getRelocatedSection() { 376 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 377 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 378 return Sections[this->Info]; 379 } 380 381 // This is used for -r and --emit-relocs. We can't use memcpy to copy 382 // relocations because we need to update symbol table offset and section index 383 // for each relocation. So we copy relocations one by one. 384 template <class ELFT, class RelTy> 385 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 386 InputSectionBase *RelocatedSection = getRelocatedSection(); 387 for (const RelTy &Rel : Rels) { 388 uint32_t Type = Rel.getType(Config->IsMips64EL); 389 SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); 390 391 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 392 Buf += sizeof(RelTy); 393 394 if (Config->IsRela) 395 P->r_addend = getAddend<ELFT>(Rel); 396 397 // Output section VA is zero for -r, so r_offset is an offset within the 398 // section, but for --emit-relocs it is an virtual address. 399 P->r_offset = RelocatedSection->getOutputSection()->Addr + 400 RelocatedSection->getOffset(Rel.r_offset); 401 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Body), Type, 402 Config->IsMips64EL); 403 404 if (Body.Type == STT_SECTION) { 405 // We combine multiple section symbols into only one per 406 // section. This means we have to update the addend. That is 407 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 408 // section data. We do that by adding to the Relocation vector. 409 410 // .eh_frame is horribly special and can reference discarded sections. To 411 // avoid having to parse and recreate .eh_frame, we just replace any 412 // relocation in it pointing to discarded sections with R_*_NONE, which 413 // hopefully creates a frame that is ignored at runtime. 414 SectionBase *Section = cast<DefinedRegular>(Body).Section; 415 if (Section == &InputSection::Discarded) { 416 P->setSymbolAndType(0, 0, false); 417 continue; 418 } 419 420 if (Config->IsRela) { 421 P->r_addend += Body.getVA() - Section->getOutputSection()->Addr; 422 } else if (Config->Relocatable) { 423 const uint8_t *BufLoc = RelocatedSection->Data.begin() + Rel.r_offset; 424 RelocatedSection->Relocations.push_back( 425 {R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type), 426 &Body}); 427 } 428 } 429 430 } 431 } 432 433 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 434 // references specially. The general rule is that the value of the symbol in 435 // this context is the address of the place P. A further special case is that 436 // branch relocations to an undefined weak reference resolve to the next 437 // instruction. 438 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 439 uint32_t P) { 440 switch (Type) { 441 // Unresolved branch relocations to weak references resolve to next 442 // instruction, this will be either 2 or 4 bytes on from P. 443 case R_ARM_THM_JUMP11: 444 return P + 2 + A; 445 case R_ARM_CALL: 446 case R_ARM_JUMP24: 447 case R_ARM_PC24: 448 case R_ARM_PLT32: 449 case R_ARM_PREL31: 450 case R_ARM_THM_JUMP19: 451 case R_ARM_THM_JUMP24: 452 return P + 4 + A; 453 case R_ARM_THM_CALL: 454 // We don't want an interworking BLX to ARM 455 return P + 5 + A; 456 // Unresolved non branch pc-relative relocations 457 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 458 // targets a weak-reference. 459 case R_ARM_MOVW_PREL_NC: 460 case R_ARM_MOVT_PREL: 461 case R_ARM_REL32: 462 case R_ARM_THM_MOVW_PREL_NC: 463 case R_ARM_THM_MOVT_PREL: 464 return P + A; 465 } 466 llvm_unreachable("ARM pc-relative relocation expected\n"); 467 } 468 469 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 470 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 471 uint64_t P) { 472 switch (Type) { 473 // Unresolved branch relocations to weak references resolve to next 474 // instruction, this is 4 bytes on from P. 475 case R_AARCH64_CALL26: 476 case R_AARCH64_CONDBR19: 477 case R_AARCH64_JUMP26: 478 case R_AARCH64_TSTBR14: 479 return P + 4 + A; 480 // Unresolved non branch pc-relative relocations 481 case R_AARCH64_PREL16: 482 case R_AARCH64_PREL32: 483 case R_AARCH64_PREL64: 484 case R_AARCH64_ADR_PREL_LO21: 485 case R_AARCH64_LD_PREL_LO19: 486 return P + A; 487 } 488 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 489 } 490 491 // ARM SBREL relocations are of the form S + A - B where B is the static base 492 // The ARM ABI defines base to be "addressing origin of the output segment 493 // defining the symbol S". We defined the "addressing origin"/static base to be 494 // the base of the PT_LOAD segment containing the Body. 495 // The procedure call standard only defines a Read Write Position Independent 496 // RWPI variant so in practice we should expect the static base to be the base 497 // of the RW segment. 498 static uint64_t getARMStaticBase(const SymbolBody &Body) { 499 OutputSection *OS = Body.getOutputSection(); 500 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 501 fatal("SBREL relocation to " + Body.getName() + " without static base"); 502 return OS->PtLoad->FirstSec->Addr; 503 } 504 505 static uint64_t getRelocTargetVA(uint32_t Type, int64_t A, uint64_t P, 506 const SymbolBody &Body, RelExpr Expr) { 507 switch (Expr) { 508 case R_ABS: 509 case R_RELAX_GOT_PC_NOPIC: 510 return Body.getVA(A); 511 case R_ARM_SBREL: 512 return Body.getVA(A) - getARMStaticBase(Body); 513 case R_GOT: 514 case R_RELAX_TLS_GD_TO_IE_ABS: 515 return Body.getGotVA() + A; 516 case R_GOTONLY_PC: 517 return InX::Got->getVA() + A - P; 518 case R_GOTONLY_PC_FROM_END: 519 return InX::Got->getVA() + A - P + InX::Got->getSize(); 520 case R_GOTREL: 521 return Body.getVA(A) - InX::Got->getVA(); 522 case R_GOTREL_FROM_END: 523 return Body.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 524 case R_GOT_FROM_END: 525 case R_RELAX_TLS_GD_TO_IE_END: 526 return Body.getGotOffset() + A - InX::Got->getSize(); 527 case R_GOT_OFF: 528 return Body.getGotOffset() + A; 529 case R_GOT_PAGE_PC: 530 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 531 return getAArch64Page(Body.getGotVA() + A) - getAArch64Page(P); 532 case R_GOT_PC: 533 case R_RELAX_TLS_GD_TO_IE: 534 return Body.getGotVA() + A - P; 535 case R_HINT: 536 case R_NONE: 537 case R_TLSDESC_CALL: 538 llvm_unreachable("cannot relocate hint relocs"); 539 case R_MIPS_GOTREL: 540 return Body.getVA(A) - InX::MipsGot->getGp(); 541 case R_MIPS_GOT_GP: 542 return InX::MipsGot->getGp() + A; 543 case R_MIPS_GOT_GP_PC: { 544 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 545 // is _gp_disp symbol. In that case we should use the following 546 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 547 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 548 uint64_t V = InX::MipsGot->getGp() + A - P; 549 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 550 V += 4; 551 return V; 552 } 553 case R_MIPS_GOT_LOCAL_PAGE: 554 // If relocation against MIPS local symbol requires GOT entry, this entry 555 // should be initialized by 'page address'. This address is high 16-bits 556 // of sum the symbol's value and the addend. 557 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Body, A) - 558 InX::MipsGot->getGp(); 559 case R_MIPS_GOT_OFF: 560 case R_MIPS_GOT_OFF32: 561 // In case of MIPS if a GOT relocation has non-zero addend this addend 562 // should be applied to the GOT entry content not to the GOT entry offset. 563 // That is why we use separate expression type. 564 return InX::MipsGot->getVA() + InX::MipsGot->getBodyEntryOffset(Body, A) - 565 InX::MipsGot->getGp(); 566 case R_MIPS_TLSGD: 567 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 568 InX::MipsGot->getGlobalDynOffset(Body) - InX::MipsGot->getGp(); 569 case R_MIPS_TLSLD: 570 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 571 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 572 case R_PAGE_PC: 573 case R_PLT_PAGE_PC: { 574 uint64_t Dest; 575 if (Body.isUndefWeak()) 576 Dest = getAArch64Page(A); 577 else 578 Dest = getAArch64Page(Body.getVA(A)); 579 return Dest - getAArch64Page(P); 580 } 581 case R_PC: { 582 uint64_t Dest; 583 if (Body.isUndefWeak()) { 584 // On ARM and AArch64 a branch to an undefined weak resolves to the 585 // next instruction, otherwise the place. 586 if (Config->EMachine == EM_ARM) 587 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 588 else if (Config->EMachine == EM_AARCH64) 589 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 590 else 591 Dest = Body.getVA(A); 592 } else { 593 Dest = Body.getVA(A); 594 } 595 return Dest - P; 596 } 597 case R_PLT: 598 return Body.getPltVA() + A; 599 case R_PLT_PC: 600 case R_PPC_PLT_OPD: 601 return Body.getPltVA() + A - P; 602 case R_PPC_OPD: { 603 uint64_t SymVA = Body.getVA(A); 604 // If we have an undefined weak symbol, we might get here with a symbol 605 // address of zero. That could overflow, but the code must be unreachable, 606 // so don't bother doing anything at all. 607 if (!SymVA) 608 return 0; 609 if (Out::Opd) { 610 // If this is a local call, and we currently have the address of a 611 // function-descriptor, get the underlying code address instead. 612 uint64_t OpdStart = Out::Opd->Addr; 613 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 614 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 615 if (InOpd) 616 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 617 } 618 return SymVA - P; 619 } 620 case R_PPC_TOC: 621 return getPPC64TocBase() + A; 622 case R_RELAX_GOT_PC: 623 return Body.getVA(A) - P; 624 case R_RELAX_TLS_GD_TO_LE: 625 case R_RELAX_TLS_IE_TO_LE: 626 case R_RELAX_TLS_LD_TO_LE: 627 case R_TLS: 628 // A weak undefined TLS symbol resolves to the base of the TLS 629 // block, i.e. gets a value of zero. If we pass --gc-sections to 630 // lld and .tbss is not referenced, it gets reclaimed and we don't 631 // create a TLS program header. Therefore, we resolve this 632 // statically to zero. 633 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 634 Body.symbol()->isWeak()) 635 return 0; 636 if (Target->TcbSize) 637 return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 638 return Body.getVA(A) - Out::TlsPhdr->p_memsz; 639 case R_RELAX_TLS_GD_TO_LE_NEG: 640 case R_NEG_TLS: 641 return Out::TlsPhdr->p_memsz - Body.getVA(A); 642 case R_SIZE: 643 return A; // Body.getSize was already folded into the addend. 644 case R_TLSDESC: 645 return InX::Got->getGlobalDynAddr(Body) + A; 646 case R_TLSDESC_PAGE: 647 return getAArch64Page(InX::Got->getGlobalDynAddr(Body) + A) - 648 getAArch64Page(P); 649 case R_TLSGD: 650 return InX::Got->getGlobalDynOffset(Body) + A - InX::Got->getSize(); 651 case R_TLSGD_PC: 652 return InX::Got->getGlobalDynAddr(Body) + A - P; 653 case R_TLSLD: 654 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 655 case R_TLSLD_PC: 656 return InX::Got->getTlsIndexVA() + A - P; 657 } 658 llvm_unreachable("Invalid expression"); 659 } 660 661 // This function applies relocations to sections without SHF_ALLOC bit. 662 // Such sections are never mapped to memory at runtime. Debug sections are 663 // an example. Relocations in non-alloc sections are much easier to 664 // handle than in allocated sections because it will never need complex 665 // treatement such as GOT or PLT (because at runtime no one refers them). 666 // So, we handle relocations for non-alloc sections directly in this 667 // function as a performance optimization. 668 template <class ELFT, class RelTy> 669 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 670 for (const RelTy &Rel : Rels) { 671 uint32_t Type = Rel.getType(Config->IsMips64EL); 672 uint64_t Offset = getOffset(Rel.r_offset); 673 uint8_t *BufLoc = Buf + Offset; 674 int64_t Addend = getAddend<ELFT>(Rel); 675 if (!RelTy::IsRela) 676 Addend += Target->getImplicitAddend(BufLoc, Type); 677 678 SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 679 RelExpr Expr = Target->getRelExpr(Type, Sym, *File, BufLoc); 680 if (Expr == R_NONE) 681 continue; 682 if (Expr != R_ABS) { 683 error(this->getLocation<ELFT>(Offset) + ": has non-ABS reloc"); 684 return; 685 } 686 687 uint64_t AddrLoc = getParent()->Addr + Offset; 688 uint64_t SymVA = 0; 689 if (!Sym.isTls() || Out::TlsPhdr) 690 SymVA = SignExtend64<sizeof(typename ELFT::uint) * 8>( 691 getRelocTargetVA(Type, Addend, AddrLoc, Sym, R_ABS)); 692 Target->relocateOne(BufLoc, Type, SymVA); 693 } 694 } 695 696 template <class ELFT> ObjFile<ELFT> *InputSectionBase::getFile() const { 697 return cast_or_null<ObjFile<ELFT>>(File); 698 } 699 700 template <class ELFT> 701 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 702 if (Flags & SHF_ALLOC) 703 relocateAlloc(Buf, BufEnd); 704 else 705 relocateNonAlloc<ELFT>(Buf, BufEnd); 706 } 707 708 template <class ELFT> 709 void InputSectionBase::relocateNonAlloc(uint8_t *Buf, uint8_t *BufEnd) { 710 // scanReloc function in Writer.cpp constructs Relocations 711 // vector only for SHF_ALLOC'ed sections. For other sections, 712 // we handle relocations directly here. 713 auto *IS = cast<InputSection>(this); 714 assert(!(IS->Flags & SHF_ALLOC)); 715 if (IS->AreRelocsRela) 716 IS->relocateNonAlloc<ELFT>(Buf, IS->template relas<ELFT>()); 717 else 718 IS->relocateNonAlloc<ELFT>(Buf, IS->template rels<ELFT>()); 719 } 720 721 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 722 assert(Flags & SHF_ALLOC); 723 const unsigned Bits = Config->Wordsize * 8; 724 for (const Relocation &Rel : Relocations) { 725 uint64_t Offset = getOffset(Rel.Offset); 726 uint8_t *BufLoc = Buf + Offset; 727 uint32_t Type = Rel.Type; 728 729 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 730 RelExpr Expr = Rel.Expr; 731 uint64_t TargetVA = SignExtend64( 732 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 733 734 switch (Expr) { 735 case R_RELAX_GOT_PC: 736 case R_RELAX_GOT_PC_NOPIC: 737 Target->relaxGot(BufLoc, TargetVA); 738 break; 739 case R_RELAX_TLS_IE_TO_LE: 740 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 741 break; 742 case R_RELAX_TLS_LD_TO_LE: 743 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 744 break; 745 case R_RELAX_TLS_GD_TO_LE: 746 case R_RELAX_TLS_GD_TO_LE_NEG: 747 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 748 break; 749 case R_RELAX_TLS_GD_TO_IE: 750 case R_RELAX_TLS_GD_TO_IE_ABS: 751 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 752 case R_RELAX_TLS_GD_TO_IE_END: 753 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 754 break; 755 case R_PPC_PLT_OPD: 756 // Patch a nop (0x60000000) to a ld. 757 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 758 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 759 LLVM_FALLTHROUGH; 760 default: 761 Target->relocateOne(BufLoc, Type, TargetVA); 762 break; 763 } 764 } 765 } 766 767 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 768 if (this->Type == SHT_NOBITS) 769 return; 770 771 if (auto *S = dyn_cast<SyntheticSection>(this)) { 772 S->writeTo(Buf + OutSecOff); 773 return; 774 } 775 776 // If -r or --emit-relocs is given, then an InputSection 777 // may be a relocation section. 778 if (this->Type == SHT_RELA) { 779 copyRelocations<ELFT>(Buf + OutSecOff, 780 this->template getDataAs<typename ELFT::Rela>()); 781 return; 782 } 783 if (this->Type == SHT_REL) { 784 copyRelocations<ELFT>(Buf + OutSecOff, 785 this->template getDataAs<typename ELFT::Rel>()); 786 return; 787 } 788 789 // If -r is given, we may have a SHT_GROUP section. 790 if (this->Type == SHT_GROUP) { 791 copyShtGroup<ELFT>(Buf + OutSecOff); 792 return; 793 } 794 795 // Copy section contents from source object file to output file 796 // and then apply relocations. 797 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 798 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 799 this->relocate<ELFT>(Buf, BufEnd); 800 } 801 802 void InputSection::replace(InputSection *Other) { 803 this->Alignment = std::max(this->Alignment, Other->Alignment); 804 Other->Repl = this->Repl; 805 Other->Live = false; 806 } 807 808 template <class ELFT> 809 EhInputSection::EhInputSection(ObjFile<ELFT> *F, 810 const typename ELFT::Shdr *Header, 811 StringRef Name) 812 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { 813 // Mark .eh_frame sections as live by default because there are 814 // usually no relocations that point to .eh_frames. Otherwise, 815 // the garbage collector would drop all .eh_frame sections. 816 this->Live = true; 817 } 818 819 SyntheticSection *EhInputSection::getParent() const { 820 return cast_or_null<SyntheticSection>(Parent); 821 } 822 823 bool EhInputSection::classof(const SectionBase *S) { 824 return S->kind() == InputSectionBase::EHFrame; 825 } 826 827 // Returns the index of the first relocation that points to a region between 828 // Begin and Begin+Size. 829 template <class IntTy, class RelTy> 830 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 831 unsigned &RelocI) { 832 // Start search from RelocI for fast access. That works because the 833 // relocations are sorted in .eh_frame. 834 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 835 const RelTy &Rel = Rels[RelocI]; 836 if (Rel.r_offset < Begin) 837 continue; 838 839 if (Rel.r_offset < Begin + Size) 840 return RelocI; 841 return -1; 842 } 843 return -1; 844 } 845 846 // .eh_frame is a sequence of CIE or FDE records. 847 // This function splits an input section into records and returns them. 848 template <class ELFT> void EhInputSection::split() { 849 // Early exit if already split. 850 if (!this->Pieces.empty()) 851 return; 852 853 if (this->NumRelocations) { 854 if (this->AreRelocsRela) 855 split<ELFT>(this->relas<ELFT>()); 856 else 857 split<ELFT>(this->rels<ELFT>()); 858 return; 859 } 860 split<ELFT>(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 861 } 862 863 template <class ELFT, class RelTy> 864 void EhInputSection::split(ArrayRef<RelTy> Rels) { 865 ArrayRef<uint8_t> Data = this->Data; 866 unsigned RelI = 0; 867 for (size_t Off = 0, End = Data.size(); Off != End;) { 868 size_t Size = readEhRecordSize<ELFT>(this, Off); 869 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 870 // The empty record is the end marker. 871 if (Size == 4) 872 break; 873 Off += Size; 874 } 875 } 876 877 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 878 // Optimize the common case. 879 StringRef S((const char *)A.data(), A.size()); 880 if (EntSize == 1) 881 return S.find(0); 882 883 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 884 const char *B = S.begin() + I; 885 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 886 return I; 887 } 888 return StringRef::npos; 889 } 890 891 SyntheticSection *MergeInputSection::getParent() const { 892 return cast_or_null<SyntheticSection>(Parent); 893 } 894 895 // Split SHF_STRINGS section. Such section is a sequence of 896 // null-terminated strings. 897 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 898 size_t Off = 0; 899 bool IsAlloc = this->Flags & SHF_ALLOC; 900 while (!Data.empty()) { 901 size_t End = findNull(Data, EntSize); 902 if (End == StringRef::npos) 903 fatal(toString(this) + ": string is not null terminated"); 904 size_t Size = End + EntSize; 905 Pieces.emplace_back(Off, !IsAlloc); 906 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 907 Data = Data.slice(Size); 908 Off += Size; 909 } 910 } 911 912 // Split non-SHF_STRINGS section. Such section is a sequence of 913 // fixed size records. 914 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 915 size_t EntSize) { 916 size_t Size = Data.size(); 917 assert((Size % EntSize) == 0); 918 bool IsAlloc = this->Flags & SHF_ALLOC; 919 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 920 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 921 Pieces.emplace_back(I, !IsAlloc); 922 } 923 } 924 925 template <class ELFT> 926 MergeInputSection::MergeInputSection(ObjFile<ELFT> *F, 927 const typename ELFT::Shdr *Header, 928 StringRef Name) 929 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 930 931 // This function is called after we obtain a complete list of input sections 932 // that need to be linked. This is responsible to split section contents 933 // into small chunks for further processing. 934 // 935 // Note that this function is called from parallelForEach. This must be 936 // thread-safe (i.e. no memory allocation from the pools). 937 void MergeInputSection::splitIntoPieces() { 938 assert(Pieces.empty()); 939 ArrayRef<uint8_t> Data = this->Data; 940 uint64_t EntSize = this->Entsize; 941 if (this->Flags & SHF_STRINGS) 942 splitStrings(Data, EntSize); 943 else 944 splitNonStrings(Data, EntSize); 945 946 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 947 for (uint64_t Off : LiveOffsets) 948 this->getSectionPiece(Off)->Live = true; 949 } 950 951 bool MergeInputSection::classof(const SectionBase *S) { 952 return S->kind() == InputSectionBase::Merge; 953 } 954 955 // Do binary search to get a section piece at a given input offset. 956 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 957 auto *This = static_cast<const MergeInputSection *>(this); 958 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 959 } 960 961 template <class It, class T, class Compare> 962 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 963 size_t Size = std::distance(First, Last); 964 assert(Size != 0); 965 while (Size != 1) { 966 size_t H = Size / 2; 967 const It MI = First + H; 968 Size -= H; 969 First = Comp(Value, *MI) ? First : First + H; 970 } 971 return Comp(Value, *First) ? First : First + 1; 972 } 973 974 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 975 uint64_t Size = this->Data.size(); 976 if (Offset >= Size) 977 fatal(toString(this) + ": entry is past the end of the section"); 978 979 // Find the element this offset points to. 980 auto I = fastUpperBound( 981 Pieces.begin(), Pieces.end(), Offset, 982 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 983 --I; 984 return &*I; 985 } 986 987 // Returns the offset in an output section for a given input offset. 988 // Because contents of a mergeable section is not contiguous in output, 989 // it is not just an addition to a base output offset. 990 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 991 // Initialize OffsetMap lazily. 992 llvm::call_once(InitOffsetMap, [&] { 993 OffsetMap.reserve(Pieces.size()); 994 for (const SectionPiece &Piece : Pieces) 995 OffsetMap[Piece.InputOff] = Piece.OutputOff; 996 }); 997 998 // Find a string starting at a given offset. 999 auto It = OffsetMap.find(Offset); 1000 if (It != OffsetMap.end()) 1001 return It->second; 1002 1003 if (!this->Live) 1004 return 0; 1005 1006 // If Offset is not at beginning of a section piece, it is not in the map. 1007 // In that case we need to search from the original section piece vector. 1008 const SectionPiece &Piece = *this->getSectionPiece(Offset); 1009 if (!Piece.Live) 1010 return 0; 1011 1012 uint64_t Addend = Offset - Piece.InputOff; 1013 return Piece.OutputOff + Addend; 1014 } 1015 1016 template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *, 1017 StringRef); 1018 template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *, 1019 StringRef); 1020 template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *, 1021 StringRef); 1022 template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *, 1023 StringRef); 1024 1025 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1026 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1027 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1028 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1029 1030 template std::string InputSectionBase::getSrcMsg<ELF32LE>(uint64_t); 1031 template std::string InputSectionBase::getSrcMsg<ELF32BE>(uint64_t); 1032 template std::string InputSectionBase::getSrcMsg<ELF64LE>(uint64_t); 1033 template std::string InputSectionBase::getSrcMsg<ELF64BE>(uint64_t); 1034 1035 template std::string InputSectionBase::getObjMsg<ELF32LE>(uint64_t); 1036 template std::string InputSectionBase::getObjMsg<ELF32BE>(uint64_t); 1037 template std::string InputSectionBase::getObjMsg<ELF64LE>(uint64_t); 1038 template std::string InputSectionBase::getObjMsg<ELF64BE>(uint64_t); 1039 1040 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1041 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1042 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1043 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1044 1045 template ObjFile<ELF32LE> *InputSectionBase::getFile<ELF32LE>() const; 1046 template ObjFile<ELF32BE> *InputSectionBase::getFile<ELF32BE>() const; 1047 template ObjFile<ELF64LE> *InputSectionBase::getFile<ELF64LE>() const; 1048 template ObjFile<ELF64BE> *InputSectionBase::getFile<ELF64BE>() const; 1049 1050 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *, 1051 const ELF32LE::Shdr *, StringRef); 1052 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *, 1053 const ELF32BE::Shdr *, StringRef); 1054 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *, 1055 const ELF64LE::Shdr *, StringRef); 1056 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *, 1057 const ELF64BE::Shdr *, StringRef); 1058 1059 template EhInputSection::EhInputSection(ObjFile<ELF32LE> *, 1060 const ELF32LE::Shdr *, StringRef); 1061 template EhInputSection::EhInputSection(ObjFile<ELF32BE> *, 1062 const ELF32BE::Shdr *, StringRef); 1063 template EhInputSection::EhInputSection(ObjFile<ELF64LE> *, 1064 const ELF64LE::Shdr *, StringRef); 1065 template EhInputSection::EhInputSection(ObjFile<ELF64BE> *, 1066 const ELF64BE::Shdr *, StringRef); 1067 1068 template void EhInputSection::split<ELF32LE>(); 1069 template void EhInputSection::split<ELF32BE>(); 1070 template void EhInputSection::split<ELF64LE>(); 1071 template void EhInputSection::split<ELF64BE>(); 1072