1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputSection.h"
11 #include "Config.h"
12 #include "EhFrame.h"
13 #include "InputFiles.h"
14 #include "LinkerScript.h"
15 #include "OutputSections.h"
16 #include "Relocations.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Object/Decompressor.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Compression.h"
26 #include "llvm/Support/Endian.h"
27 #include "llvm/Support/Threading.h"
28 #include "llvm/Support/xxhash.h"
29 #include <mutex>
30 
31 using namespace llvm;
32 using namespace llvm::ELF;
33 using namespace llvm::object;
34 using namespace llvm::support;
35 using namespace llvm::support::endian;
36 using namespace llvm::sys;
37 
38 using namespace lld;
39 using namespace lld::elf;
40 
41 std::vector<InputSectionBase *> elf::InputSections;
42 
43 // Returns a string to construct an error message.
44 std::string lld::toString(const InputSectionBase *Sec) {
45   return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
46 }
47 
48 template <class ELFT>
49 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
50                                             const typename ELFT::Shdr &Hdr) {
51   if (Hdr.sh_type == SHT_NOBITS)
52     return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
53   return check(File.getObj().getSectionContents(&Hdr));
54 }
55 
56 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
57                                    uint32_t Type, uint64_t Entsize,
58                                    uint32_t Link, uint32_t Info,
59                                    uint32_t Alignment, ArrayRef<uint8_t> Data,
60                                    StringRef Name, Kind SectionKind)
61     : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
62                   Link),
63       File(File), Data(Data) {
64   // In order to reduce memory allocation, we assume that mergeable
65   // sections are smaller than 4 GiB, which is not an unreasonable
66   // assumption as of 2017.
67   if (SectionKind == SectionBase::Merge && Data.size() > UINT32_MAX)
68     error(toString(this) + ": section too large");
69 
70   NumRelocations = 0;
71   AreRelocsRela = false;
72 
73   // The ELF spec states that a value of 0 means the section has
74   // no alignment constraits.
75   uint32_t V = std::max<uint64_t>(Alignment, 1);
76   if (!isPowerOf2_64(V))
77     fatal(toString(File) + ": section sh_addralign is not a power of 2");
78   this->Alignment = V;
79 }
80 
81 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
82 // SHF_GROUP is a marker that a section belongs to some comdat group.
83 // That flag doesn't make sense in an executable.
84 static uint64_t getFlags(uint64_t Flags) {
85   Flags &= ~(uint64_t)SHF_INFO_LINK;
86   if (!Config->Relocatable)
87     Flags &= ~(uint64_t)SHF_GROUP;
88   return Flags;
89 }
90 
91 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
92 // March 2017) fail to infer section types for sections starting with
93 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
94 // SHF_INIT_ARRAY. As a result, the following assembler directive
95 // creates ".init_array.100" with SHT_PROGBITS, for example.
96 //
97 //   .section .init_array.100, "aw"
98 //
99 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
100 // incorrect inputs as if they were correct from the beginning.
101 static uint64_t getType(uint64_t Type, StringRef Name) {
102   if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
103     return SHT_INIT_ARRAY;
104   if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
105     return SHT_FINI_ARRAY;
106   return Type;
107 }
108 
109 template <class ELFT>
110 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
111                                    const typename ELFT::Shdr &Hdr,
112                                    StringRef Name, Kind SectionKind)
113     : InputSectionBase(&File, getFlags(Hdr.sh_flags),
114                        getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
115                        Hdr.sh_info, Hdr.sh_addralign,
116                        getSectionContents(File, Hdr), Name, SectionKind) {
117   // We reject object files having insanely large alignments even though
118   // they are allowed by the spec. I think 4GB is a reasonable limitation.
119   // We might want to relax this in the future.
120   if (Hdr.sh_addralign > UINT32_MAX)
121     fatal(toString(&File) + ": section sh_addralign is too large");
122 }
123 
124 size_t InputSectionBase::getSize() const {
125   if (auto *S = dyn_cast<SyntheticSection>(this))
126     return S->getSize();
127 
128   return Data.size();
129 }
130 
131 uint64_t InputSectionBase::getOffsetInFile() const {
132   const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
133   const uint8_t *SecStart = Data.begin();
134   return SecStart - FileStart;
135 }
136 
137 uint64_t SectionBase::getOffset(uint64_t Offset) const {
138   switch (kind()) {
139   case Output: {
140     auto *OS = cast<OutputSection>(this);
141     // For output sections we treat offset -1 as the end of the section.
142     return Offset == uint64_t(-1) ? OS->Size : Offset;
143   }
144   case Regular:
145   case Synthetic:
146     return cast<InputSection>(this)->getOffset(Offset);
147   case EHFrame:
148     // The file crtbeginT.o has relocations pointing to the start of an empty
149     // .eh_frame that is known to be the first in the link. It does that to
150     // identify the start of the output .eh_frame.
151     return Offset;
152   case Merge:
153     const MergeInputSection *MS = cast<MergeInputSection>(this);
154     if (InputSection *IS = MS->getParent())
155       return IS->getOffset(MS->getParentOffset(Offset));
156     return MS->getParentOffset(Offset);
157   }
158   llvm_unreachable("invalid section kind");
159 }
160 
161 uint64_t SectionBase::getVA(uint64_t Offset) const {
162   const OutputSection *Out = getOutputSection();
163   return (Out ? Out->Addr : 0) + getOffset(Offset);
164 }
165 
166 OutputSection *SectionBase::getOutputSection() {
167   InputSection *Sec;
168   if (auto *IS = dyn_cast<InputSection>(this))
169     Sec = IS;
170   else if (auto *MS = dyn_cast<MergeInputSection>(this))
171     Sec = MS->getParent();
172   else if (auto *EH = dyn_cast<EhInputSection>(this))
173     Sec = EH->getParent();
174   else
175     return cast<OutputSection>(this);
176   return Sec ? Sec->getParent() : nullptr;
177 }
178 
179 // Decompress section contents if required. Note that this function
180 // is called from parallelForEach, so it must be thread-safe.
181 void InputSectionBase::maybeDecompress() {
182   if (DecompressBuf)
183     return;
184   if (!(Flags & SHF_COMPRESSED) && !Name.startswith(".zdebug"))
185     return;
186 
187   // Decompress a section.
188   Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data),
189                                                 Config->IsLE, Config->Is64));
190 
191   size_t Size = Dec.getDecompressedSize();
192   DecompressBuf.reset(new char[Size + Name.size()]());
193   if (Error E = Dec.decompress({DecompressBuf.get(), Size}))
194     fatal(toString(this) +
195           ": decompress failed: " + llvm::toString(std::move(E)));
196 
197   Data = makeArrayRef((uint8_t *)DecompressBuf.get(), Size);
198   Flags &= ~(uint64_t)SHF_COMPRESSED;
199 
200   // A section name may have been altered if compressed. If that's
201   // the case, restore the original name. (i.e. ".zdebug_" -> ".debug_")
202   if (Name.startswith(".zdebug")) {
203     DecompressBuf[Size] = '.';
204     memcpy(&DecompressBuf[Size + 1], Name.data() + 2, Name.size() - 2);
205     Name = StringRef(&DecompressBuf[Size], Name.size() - 1);
206   }
207 }
208 
209 InputSection *InputSectionBase::getLinkOrderDep() const {
210   assert(Link);
211   assert(Flags & SHF_LINK_ORDER);
212   return cast<InputSection>(File->getSections()[Link]);
213 }
214 
215 // Returns a source location string. Used to construct an error message.
216 template <class ELFT>
217 std::string InputSectionBase::getLocation(uint64_t Offset) {
218   // We don't have file for synthetic sections.
219   if (getFile<ELFT>() == nullptr)
220     return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")")
221         .str();
222 
223   // First check if we can get desired values from debugging information.
224   std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset);
225   if (!LineInfo.empty())
226     return LineInfo;
227 
228   // File->SourceFile contains STT_FILE symbol that contains a
229   // source file name. If it's missing, we use an object file name.
230   std::string SrcFile = getFile<ELFT>()->SourceFile;
231   if (SrcFile.empty())
232     SrcFile = toString(File);
233 
234   // Find a function symbol that encloses a given location.
235   for (Symbol *B : File->getSymbols())
236     if (auto *D = dyn_cast<Defined>(B))
237       if (D->Section == this && D->Type == STT_FUNC)
238         if (D->Value <= Offset && Offset < D->Value + D->Size)
239           return SrcFile + ":(function " + toString(*D) + ")";
240 
241   // If there's no symbol, print out the offset in the section.
242   return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
243 }
244 
245 // This function is intended to be used for constructing an error message.
246 // The returned message looks like this:
247 //
248 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
249 //
250 //  Returns an empty string if there's no way to get line info.
251 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
252   // Synthetic sections don't have input files.
253   if (!File)
254     return "";
255   return File->getSrcMsg(Sym, *this, Offset);
256 }
257 
258 // Returns a filename string along with an optional section name. This
259 // function is intended to be used for constructing an error
260 // message. The returned message looks like this:
261 //
262 //   path/to/foo.o:(function bar)
263 //
264 // or
265 //
266 //   path/to/foo.o:(function bar) in archive path/to/bar.a
267 std::string InputSectionBase::getObjMsg(uint64_t Off) {
268   // Synthetic sections don't have input files.
269   if (!File)
270     return ("<internal>:(" + Name + "+0x" + utohexstr(Off) + ")").str();
271   std::string Filename = File->getName();
272 
273   std::string Archive;
274   if (!File->ArchiveName.empty())
275     Archive = " in archive " + File->ArchiveName;
276 
277   // Find a symbol that encloses a given location.
278   for (Symbol *B : File->getSymbols())
279     if (auto *D = dyn_cast<Defined>(B))
280       if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
281         return Filename + ":(" + toString(*D) + ")" + Archive;
282 
283   // If there's no symbol, print out the offset in the section.
284   return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
285       .str();
286 }
287 
288 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
289 
290 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
291                            uint32_t Alignment, ArrayRef<uint8_t> Data,
292                            StringRef Name, Kind K)
293     : InputSectionBase(F, Flags, Type,
294                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
295                        Name, K) {}
296 
297 template <class ELFT>
298 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
299                            StringRef Name)
300     : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
301 
302 bool InputSection::classof(const SectionBase *S) {
303   return S->kind() == SectionBase::Regular ||
304          S->kind() == SectionBase::Synthetic;
305 }
306 
307 OutputSection *InputSection::getParent() const {
308   return cast_or_null<OutputSection>(Parent);
309 }
310 
311 // Copy SHT_GROUP section contents. Used only for the -r option.
312 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
313   // ELFT::Word is the 32-bit integral type in the target endianness.
314   typedef typename ELFT::Word u32;
315   ArrayRef<u32> From = getDataAs<u32>();
316   auto *To = reinterpret_cast<u32 *>(Buf);
317 
318   // The first entry is not a section number but a flag.
319   *To++ = From[0];
320 
321   // Adjust section numbers because section numbers in an input object
322   // files are different in the output.
323   ArrayRef<InputSectionBase *> Sections = File->getSections();
324   for (uint32_t Idx : From.slice(1))
325     *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
326 }
327 
328 InputSectionBase *InputSection::getRelocatedSection() const {
329   if (!File || (Type != SHT_RELA && Type != SHT_REL))
330     return nullptr;
331   ArrayRef<InputSectionBase *> Sections = File->getSections();
332   return Sections[Info];
333 }
334 
335 // This is used for -r and --emit-relocs. We can't use memcpy to copy
336 // relocations because we need to update symbol table offset and section index
337 // for each relocation. So we copy relocations one by one.
338 template <class ELFT, class RelTy>
339 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
340   InputSectionBase *Sec = getRelocatedSection();
341 
342   for (const RelTy &Rel : Rels) {
343     RelType Type = Rel.getType(Config->IsMips64EL);
344     Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
345 
346     auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
347     Buf += sizeof(RelTy);
348 
349     if (RelTy::IsRela)
350       P->r_addend = getAddend<ELFT>(Rel);
351 
352     // Output section VA is zero for -r, so r_offset is an offset within the
353     // section, but for --emit-relocs it is an virtual address.
354     P->r_offset = Sec->getVA(Rel.r_offset);
355     P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Sym), Type,
356                         Config->IsMips64EL);
357 
358     if (Sym.Type == STT_SECTION) {
359       // We combine multiple section symbols into only one per
360       // section. This means we have to update the addend. That is
361       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
362       // section data. We do that by adding to the Relocation vector.
363 
364       // .eh_frame is horribly special and can reference discarded sections. To
365       // avoid having to parse and recreate .eh_frame, we just replace any
366       // relocation in it pointing to discarded sections with R_*_NONE, which
367       // hopefully creates a frame that is ignored at runtime.
368       auto *D = dyn_cast<Defined>(&Sym);
369       if (!D) {
370         error("STT_SECTION symbol should be defined");
371         continue;
372       }
373       SectionBase *Section = D->Section;
374       if (Section == &InputSection::Discarded) {
375         P->setSymbolAndType(0, 0, false);
376         continue;
377       }
378 
379       int64_t Addend = getAddend<ELFT>(Rel);
380       const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset;
381       if (!RelTy::IsRela)
382         Addend = Target->getImplicitAddend(BufLoc, Type);
383 
384       if (Config->EMachine == EM_MIPS && Config->Relocatable &&
385           Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
386         // Some MIPS relocations depend on "gp" value. By default,
387         // this value has 0x7ff0 offset from a .got section. But
388         // relocatable files produced by a complier or a linker
389         // might redefine this default value and we must use it
390         // for a calculation of the relocation result. When we
391         // generate EXE or DSO it's trivial. Generating a relocatable
392         // output is more difficult case because the linker does
393         // not calculate relocations in this mode and loses
394         // individual "gp" values used by each input object file.
395         // As a workaround we add the "gp" value to the relocation
396         // addend and save it back to the file.
397         Addend += Sec->getFile<ELFT>()->MipsGp0;
398       }
399 
400       if (RelTy::IsRela)
401         P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
402       else if (Config->Relocatable)
403         Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
404     }
405   }
406 }
407 
408 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
409 // references specially. The general rule is that the value of the symbol in
410 // this context is the address of the place P. A further special case is that
411 // branch relocations to an undefined weak reference resolve to the next
412 // instruction.
413 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
414                                               uint32_t P) {
415   switch (Type) {
416   // Unresolved branch relocations to weak references resolve to next
417   // instruction, this will be either 2 or 4 bytes on from P.
418   case R_ARM_THM_JUMP11:
419     return P + 2 + A;
420   case R_ARM_CALL:
421   case R_ARM_JUMP24:
422   case R_ARM_PC24:
423   case R_ARM_PLT32:
424   case R_ARM_PREL31:
425   case R_ARM_THM_JUMP19:
426   case R_ARM_THM_JUMP24:
427     return P + 4 + A;
428   case R_ARM_THM_CALL:
429     // We don't want an interworking BLX to ARM
430     return P + 5 + A;
431   // Unresolved non branch pc-relative relocations
432   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
433   // targets a weak-reference.
434   case R_ARM_MOVW_PREL_NC:
435   case R_ARM_MOVT_PREL:
436   case R_ARM_REL32:
437   case R_ARM_THM_MOVW_PREL_NC:
438   case R_ARM_THM_MOVT_PREL:
439     return P + A;
440   }
441   llvm_unreachable("ARM pc-relative relocation expected\n");
442 }
443 
444 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
445 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
446                                                   uint64_t P) {
447   switch (Type) {
448   // Unresolved branch relocations to weak references resolve to next
449   // instruction, this is 4 bytes on from P.
450   case R_AARCH64_CALL26:
451   case R_AARCH64_CONDBR19:
452   case R_AARCH64_JUMP26:
453   case R_AARCH64_TSTBR14:
454     return P + 4 + A;
455   // Unresolved non branch pc-relative relocations
456   case R_AARCH64_PREL16:
457   case R_AARCH64_PREL32:
458   case R_AARCH64_PREL64:
459   case R_AARCH64_ADR_PREL_LO21:
460   case R_AARCH64_LD_PREL_LO19:
461     return P + A;
462   }
463   llvm_unreachable("AArch64 pc-relative relocation expected\n");
464 }
465 
466 // ARM SBREL relocations are of the form S + A - B where B is the static base
467 // The ARM ABI defines base to be "addressing origin of the output segment
468 // defining the symbol S". We defined the "addressing origin"/static base to be
469 // the base of the PT_LOAD segment containing the Sym.
470 // The procedure call standard only defines a Read Write Position Independent
471 // RWPI variant so in practice we should expect the static base to be the base
472 // of the RW segment.
473 static uint64_t getARMStaticBase(const Symbol &Sym) {
474   OutputSection *OS = Sym.getOutputSection();
475   if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
476     fatal("SBREL relocation to " + Sym.getName() + " without static base");
477   return OS->PtLoad->FirstSec->Addr;
478 }
479 
480 static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P,
481                                  const Symbol &Sym, RelExpr Expr) {
482   switch (Expr) {
483   case R_INVALID:
484     return 0;
485   case R_ABS:
486   case R_RELAX_GOT_PC_NOPIC:
487     return Sym.getVA(A);
488   case R_ADDEND:
489     return A;
490   case R_ARM_SBREL:
491     return Sym.getVA(A) - getARMStaticBase(Sym);
492   case R_GOT:
493   case R_RELAX_TLS_GD_TO_IE_ABS:
494     return Sym.getGotVA() + A;
495   case R_GOTONLY_PC:
496     return InX::Got->getVA() + A - P;
497   case R_GOTONLY_PC_FROM_END:
498     return InX::Got->getVA() + A - P + InX::Got->getSize();
499   case R_GOTREL:
500     return Sym.getVA(A) - InX::Got->getVA();
501   case R_GOTREL_FROM_END:
502     return Sym.getVA(A) - InX::Got->getVA() - InX::Got->getSize();
503   case R_GOT_FROM_END:
504   case R_RELAX_TLS_GD_TO_IE_END:
505     return Sym.getGotOffset() + A - InX::Got->getSize();
506   case R_GOT_OFF:
507     return Sym.getGotOffset() + A;
508   case R_GOT_PAGE_PC:
509   case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
510     return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
511   case R_GOT_PC:
512   case R_RELAX_TLS_GD_TO_IE:
513     return Sym.getGotVA() + A - P;
514   case R_HINT:
515   case R_NONE:
516   case R_TLSDESC_CALL:
517     llvm_unreachable("cannot relocate hint relocs");
518   case R_MIPS_GOTREL:
519     return Sym.getVA(A) - InX::MipsGot->getGp();
520   case R_MIPS_GOT_GP:
521     return InX::MipsGot->getGp() + A;
522   case R_MIPS_GOT_GP_PC: {
523     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
524     // is _gp_disp symbol. In that case we should use the following
525     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
526     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
527     // microMIPS variants of these relocations use slightly different
528     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
529     // to correctly handle less-sugnificant bit of the microMIPS symbol.
530     uint64_t V = InX::MipsGot->getGp() + A - P;
531     if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
532       V += 4;
533     if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
534       V -= 1;
535     return V;
536   }
537   case R_MIPS_GOT_LOCAL_PAGE:
538     // If relocation against MIPS local symbol requires GOT entry, this entry
539     // should be initialized by 'page address'. This address is high 16-bits
540     // of sum the symbol's value and the addend.
541     return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Sym, A) -
542            InX::MipsGot->getGp();
543   case R_MIPS_GOT_OFF:
544   case R_MIPS_GOT_OFF32:
545     // In case of MIPS if a GOT relocation has non-zero addend this addend
546     // should be applied to the GOT entry content not to the GOT entry offset.
547     // That is why we use separate expression type.
548     return InX::MipsGot->getVA() + InX::MipsGot->getSymEntryOffset(Sym, A) -
549            InX::MipsGot->getGp();
550   case R_MIPS_TLSGD:
551     return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() +
552            InX::MipsGot->getGlobalDynOffset(Sym) - InX::MipsGot->getGp();
553   case R_MIPS_TLSLD:
554     return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() +
555            InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp();
556   case R_PAGE_PC:
557   case R_PLT_PAGE_PC: {
558     uint64_t Dest;
559     if (Sym.isUndefWeak())
560       Dest = getAArch64Page(A);
561     else
562       Dest = getAArch64Page(Sym.getVA(A));
563     return Dest - getAArch64Page(P);
564   }
565   case R_PC: {
566     uint64_t Dest;
567     if (Sym.isUndefWeak()) {
568       // On ARM and AArch64 a branch to an undefined weak resolves to the
569       // next instruction, otherwise the place.
570       if (Config->EMachine == EM_ARM)
571         Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
572       else if (Config->EMachine == EM_AARCH64)
573         Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
574       else
575         Dest = Sym.getVA(A);
576     } else {
577       Dest = Sym.getVA(A);
578     }
579     return Dest - P;
580   }
581   case R_PLT:
582     return Sym.getPltVA() + A;
583   case R_PLT_PC:
584   case R_PPC_CALL_PLT:
585     return Sym.getPltVA() + A - P;
586   case R_PPC_CALL: {
587     uint64_t SymVA = Sym.getVA(A);
588     // If we have an undefined weak symbol, we might get here with a symbol
589     // address of zero. That could overflow, but the code must be unreachable,
590     // so don't bother doing anything at all.
591     if (!SymVA)
592       return 0;
593 
594     // PPC64 V2 ABI describes two entry points to a function. The global entry
595     // point sets up the TOC base pointer. When calling a local function, the
596     // call should branch to the local entry point rather than the global entry
597     // point. Section 3.4.1 describes using the 3 most significant bits of the
598     // st_other field to find out how many instructions there are between the
599     // local and global entry point.
600     uint8_t StOther = (Sym.StOther >> 5) & 7;
601     if (StOther == 0 || StOther == 1)
602       return SymVA - P;
603 
604     return SymVA - P + (1LL << StOther);
605   }
606   case R_PPC_TOC:
607     return getPPC64TocBase() + A;
608   case R_RELAX_GOT_PC:
609     return Sym.getVA(A) - P;
610   case R_RELAX_TLS_GD_TO_LE:
611   case R_RELAX_TLS_IE_TO_LE:
612   case R_RELAX_TLS_LD_TO_LE:
613   case R_TLS:
614     // A weak undefined TLS symbol resolves to the base of the TLS
615     // block, i.e. gets a value of zero. If we pass --gc-sections to
616     // lld and .tbss is not referenced, it gets reclaimed and we don't
617     // create a TLS program header. Therefore, we resolve this
618     // statically to zero.
619     if (Sym.isTls() && Sym.isUndefWeak())
620       return 0;
621     if (Target->TcbSize)
622       return Sym.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align);
623     return Sym.getVA(A) - Out::TlsPhdr->p_memsz;
624   case R_RELAX_TLS_GD_TO_LE_NEG:
625   case R_NEG_TLS:
626     return Out::TlsPhdr->p_memsz - Sym.getVA(A);
627   case R_SIZE:
628     return Sym.getSize() + A;
629   case R_TLSDESC:
630     return InX::Got->getGlobalDynAddr(Sym) + A;
631   case R_TLSDESC_PAGE:
632     return getAArch64Page(InX::Got->getGlobalDynAddr(Sym) + A) -
633            getAArch64Page(P);
634   case R_TLSGD:
635     return InX::Got->getGlobalDynOffset(Sym) + A - InX::Got->getSize();
636   case R_TLSGD_PC:
637     return InX::Got->getGlobalDynAddr(Sym) + A - P;
638   case R_TLSLD:
639     return InX::Got->getTlsIndexOff() + A - InX::Got->getSize();
640   case R_TLSLD_PC:
641     return InX::Got->getTlsIndexVA() + A - P;
642   }
643   llvm_unreachable("Invalid expression");
644 }
645 
646 // This function applies relocations to sections without SHF_ALLOC bit.
647 // Such sections are never mapped to memory at runtime. Debug sections are
648 // an example. Relocations in non-alloc sections are much easier to
649 // handle than in allocated sections because it will never need complex
650 // treatement such as GOT or PLT (because at runtime no one refers them).
651 // So, we handle relocations for non-alloc sections directly in this
652 // function as a performance optimization.
653 template <class ELFT, class RelTy>
654 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
655   const unsigned Bits = sizeof(typename ELFT::uint) * 8;
656 
657   for (const RelTy &Rel : Rels) {
658     RelType Type = Rel.getType(Config->IsMips64EL);
659 
660     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
661     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
662     // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
663     // need to keep this bug-compatible code for a while.
664     if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
665       continue;
666 
667     uint64_t Offset = getOffset(Rel.r_offset);
668     uint8_t *BufLoc = Buf + Offset;
669     int64_t Addend = getAddend<ELFT>(Rel);
670     if (!RelTy::IsRela)
671       Addend += Target->getImplicitAddend(BufLoc, Type);
672 
673     Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
674     RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
675     if (Expr == R_NONE)
676       continue;
677 
678     if (Expr != R_ABS) {
679       std::string Msg = getLocation<ELFT>(Offset) +
680                         ": has non-ABS relocation " + toString(Type) +
681                         " against symbol '" + toString(Sym) + "'";
682       if (Expr != R_PC) {
683         error(Msg);
684         return;
685       }
686 
687       // If the control reaches here, we found a PC-relative relocation in a
688       // non-ALLOC section. Since non-ALLOC section is not loaded into memory
689       // at runtime, the notion of PC-relative doesn't make sense here. So,
690       // this is a usage error. However, GNU linkers historically accept such
691       // relocations without any errors and relocate them as if they were at
692       // address 0. For bug-compatibilty, we accept them with warnings. We
693       // know Steel Bank Common Lisp as of 2018 have this bug.
694       warn(Msg);
695       Target->relocateOne(BufLoc, Type,
696                           SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
697       continue;
698     }
699 
700     if (Sym.isTls() && !Out::TlsPhdr)
701       Target->relocateOne(BufLoc, Type, 0);
702     else
703       Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
704   }
705 }
706 
707 template <class ELFT>
708 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
709   if (Flags & SHF_ALLOC) {
710     relocateAlloc(Buf, BufEnd);
711     return;
712   }
713 
714   auto *Sec = cast<InputSection>(this);
715   if (Sec->AreRelocsRela)
716     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
717   else
718     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
719 }
720 
721 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
722   assert(Flags & SHF_ALLOC);
723   const unsigned Bits = Config->Wordsize * 8;
724 
725   for (const Relocation &Rel : Relocations) {
726     uint64_t Offset = Rel.Offset;
727     if (auto *Sec = dyn_cast<InputSection>(this))
728       Offset += Sec->OutSecOff;
729     uint8_t *BufLoc = Buf + Offset;
730     RelType Type = Rel.Type;
731 
732     uint64_t AddrLoc = getOutputSection()->Addr + Offset;
733     RelExpr Expr = Rel.Expr;
734     uint64_t TargetVA = SignExtend64(
735         getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits);
736 
737     switch (Expr) {
738     case R_RELAX_GOT_PC:
739     case R_RELAX_GOT_PC_NOPIC:
740       Target->relaxGot(BufLoc, TargetVA);
741       break;
742     case R_RELAX_TLS_IE_TO_LE:
743       Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
744       break;
745     case R_RELAX_TLS_LD_TO_LE:
746       Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
747       break;
748     case R_RELAX_TLS_GD_TO_LE:
749     case R_RELAX_TLS_GD_TO_LE_NEG:
750       Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
751       break;
752     case R_RELAX_TLS_GD_TO_IE:
753     case R_RELAX_TLS_GD_TO_IE_ABS:
754     case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
755     case R_RELAX_TLS_GD_TO_IE_END:
756       Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
757       break;
758     case R_PPC_CALL:
759       // Patch a nop (0x60000000) to a ld.
760       if (Rel.Sym->NeedsTocRestore) {
761         if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
762           error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
763           break;
764         }
765         write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
766       }
767       Target->relocateOne(BufLoc, Type, TargetVA);
768       break;
769     default:
770       Target->relocateOne(BufLoc, Type, TargetVA);
771       break;
772     }
773   }
774 }
775 
776 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
777   if (Type == SHT_NOBITS)
778     return;
779 
780   if (auto *S = dyn_cast<SyntheticSection>(this)) {
781     S->writeTo(Buf + OutSecOff);
782     return;
783   }
784 
785   // If -r or --emit-relocs is given, then an InputSection
786   // may be a relocation section.
787   if (Type == SHT_RELA) {
788     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
789     return;
790   }
791   if (Type == SHT_REL) {
792     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
793     return;
794   }
795 
796   // If -r is given, we may have a SHT_GROUP section.
797   if (Type == SHT_GROUP) {
798     copyShtGroup<ELFT>(Buf + OutSecOff);
799     return;
800   }
801 
802   // Copy section contents from source object file to output file
803   // and then apply relocations.
804   memcpy(Buf + OutSecOff, Data.data(), Data.size());
805   uint8_t *BufEnd = Buf + OutSecOff + Data.size();
806   relocate<ELFT>(Buf, BufEnd);
807 }
808 
809 void InputSection::replace(InputSection *Other) {
810   Alignment = std::max(Alignment, Other->Alignment);
811   Other->Repl = Repl;
812   Other->Live = false;
813 }
814 
815 template <class ELFT>
816 EhInputSection::EhInputSection(ObjFile<ELFT> &F,
817                                const typename ELFT::Shdr &Header,
818                                StringRef Name)
819     : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
820 
821 SyntheticSection *EhInputSection::getParent() const {
822   return cast_or_null<SyntheticSection>(Parent);
823 }
824 
825 // Returns the index of the first relocation that points to a region between
826 // Begin and Begin+Size.
827 template <class IntTy, class RelTy>
828 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
829                          unsigned &RelocI) {
830   // Start search from RelocI for fast access. That works because the
831   // relocations are sorted in .eh_frame.
832   for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
833     const RelTy &Rel = Rels[RelocI];
834     if (Rel.r_offset < Begin)
835       continue;
836 
837     if (Rel.r_offset < Begin + Size)
838       return RelocI;
839     return -1;
840   }
841   return -1;
842 }
843 
844 // .eh_frame is a sequence of CIE or FDE records.
845 // This function splits an input section into records and returns them.
846 template <class ELFT> void EhInputSection::split() {
847   if (AreRelocsRela)
848     split<ELFT>(relas<ELFT>());
849   else
850     split<ELFT>(rels<ELFT>());
851 }
852 
853 template <class ELFT, class RelTy>
854 void EhInputSection::split(ArrayRef<RelTy> Rels) {
855   unsigned RelI = 0;
856   for (size_t Off = 0, End = Data.size(); Off != End;) {
857     size_t Size = readEhRecordSize(this, Off);
858     Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
859     // The empty record is the end marker.
860     if (Size == 4)
861       break;
862     Off += Size;
863   }
864 }
865 
866 static size_t findNull(StringRef S, size_t EntSize) {
867   // Optimize the common case.
868   if (EntSize == 1)
869     return S.find(0);
870 
871   for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
872     const char *B = S.begin() + I;
873     if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
874       return I;
875   }
876   return StringRef::npos;
877 }
878 
879 SyntheticSection *MergeInputSection::getParent() const {
880   return cast_or_null<SyntheticSection>(Parent);
881 }
882 
883 // Split SHF_STRINGS section. Such section is a sequence of
884 // null-terminated strings.
885 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
886   size_t Off = 0;
887   bool IsAlloc = Flags & SHF_ALLOC;
888   StringRef S = toStringRef(Data);
889 
890   while (!S.empty()) {
891     size_t End = findNull(S, EntSize);
892     if (End == StringRef::npos)
893       fatal(toString(this) + ": string is not null terminated");
894     size_t Size = End + EntSize;
895 
896     Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
897     S = S.substr(Size);
898     Off += Size;
899   }
900 }
901 
902 // Split non-SHF_STRINGS section. Such section is a sequence of
903 // fixed size records.
904 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
905                                         size_t EntSize) {
906   size_t Size = Data.size();
907   assert((Size % EntSize) == 0);
908   bool IsAlloc = Flags & SHF_ALLOC;
909 
910   for (size_t I = 0; I != Size; I += EntSize)
911     Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))),
912                         !IsAlloc);
913 }
914 
915 template <class ELFT>
916 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
917                                      const typename ELFT::Shdr &Header,
918                                      StringRef Name)
919     : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
920 
921 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
922                                      uint64_t Entsize, ArrayRef<uint8_t> Data,
923                                      StringRef Name)
924     : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
925                        /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
926 
927 // This function is called after we obtain a complete list of input sections
928 // that need to be linked. This is responsible to split section contents
929 // into small chunks for further processing.
930 //
931 // Note that this function is called from parallelForEach. This must be
932 // thread-safe (i.e. no memory allocation from the pools).
933 void MergeInputSection::splitIntoPieces() {
934   assert(Pieces.empty());
935 
936   if (Flags & SHF_STRINGS)
937     splitStrings(Data, Entsize);
938   else
939     splitNonStrings(Data, Entsize);
940 
941   OffsetMap.reserve(Pieces.size());
942   for (size_t I = 0, E = Pieces.size(); I != E; ++I)
943     OffsetMap[Pieces[I].InputOff] = I;
944 }
945 
946 template <class It, class T, class Compare>
947 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
948   size_t Size = std::distance(First, Last);
949   assert(Size != 0);
950   while (Size != 1) {
951     size_t H = Size / 2;
952     const It MI = First + H;
953     Size -= H;
954     First = Comp(Value, *MI) ? First : First + H;
955   }
956   return Comp(Value, *First) ? First : First + 1;
957 }
958 
959 // Do binary search to get a section piece at a given input offset.
960 static SectionPiece *findSectionPiece(MergeInputSection *Sec, uint64_t Offset) {
961   if (Sec->Data.size() <= Offset)
962     fatal(toString(Sec) + ": entry is past the end of the section");
963 
964   // Find the element this offset points to.
965   auto I = fastUpperBound(
966       Sec->Pieces.begin(), Sec->Pieces.end(), Offset,
967       [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; });
968   --I;
969   return &*I;
970 }
971 
972 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
973   // Find a piece starting at a given offset.
974   auto It = OffsetMap.find(Offset);
975   if (It != OffsetMap.end())
976     return &Pieces[It->second];
977 
978   // If Offset is not at beginning of a section piece, it is not in the map.
979   // In that case we need to search from the original section piece vector.
980   return findSectionPiece(this, Offset);
981 }
982 
983 // Returns the offset in an output section for a given input offset.
984 // Because contents of a mergeable section is not contiguous in output,
985 // it is not just an addition to a base output offset.
986 uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
987   // Find a string starting at a given offset.
988   auto It = OffsetMap.find(Offset);
989   if (It != OffsetMap.end())
990     return Pieces[It->second].OutputOff;
991 
992   // If Offset is not at beginning of a section piece, it is not in the map.
993   // In that case we need to search from the original section piece vector.
994   const SectionPiece &Piece =
995       *findSectionPiece(const_cast<MergeInputSection *>(this), Offset);
996   uint64_t Addend = Offset - Piece.InputOff;
997   return Piece.OutputOff + Addend;
998 }
999 
1000 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1001                                     StringRef);
1002 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1003                                     StringRef);
1004 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1005                                     StringRef);
1006 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1007                                     StringRef);
1008 
1009 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1010 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1011 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1012 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1013 
1014 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1015 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1016 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1017 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1018 
1019 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1020                                               const ELF32LE::Shdr &, StringRef);
1021 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1022                                               const ELF32BE::Shdr &, StringRef);
1023 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1024                                               const ELF64LE::Shdr &, StringRef);
1025 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1026                                               const ELF64BE::Shdr &, StringRef);
1027 
1028 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1029                                         const ELF32LE::Shdr &, StringRef);
1030 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1031                                         const ELF32BE::Shdr &, StringRef);
1032 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1033                                         const ELF64LE::Shdr &, StringRef);
1034 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1035                                         const ELF64BE::Shdr &, StringRef);
1036 
1037 template void EhInputSection::split<ELF32LE>();
1038 template void EhInputSection::split<ELF32BE>();
1039 template void EhInputSection::split<ELF64LE>();
1040 template void EhInputSection::split<ELF64BE>();
1041