1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/Threading.h" 28 #include <mutex> 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::support; 34 using namespace llvm::support::endian; 35 using namespace llvm::sys; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 std::vector<InputSectionBase *> elf::InputSections; 41 42 // Returns a string to construct an error message. 43 std::string lld::toString(const InputSectionBase *Sec) { 44 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 45 } 46 47 template <class ELFT> DenseMap<SectionBase *, int> elf::buildSectionOrder() { 48 // Build a map from symbols to their priorities. Symbols that didn't 49 // appear in the symbol ordering file have the lowest priority 0. 50 // All explicitly mentioned symbols have negative (higher) priorities. 51 DenseMap<StringRef, int> SymbolOrder; 52 int Priority = -Config->SymbolOrderingFile.size(); 53 for (StringRef S : Config->SymbolOrderingFile) 54 SymbolOrder.insert({S, Priority++}); 55 56 // Build a map from sections to their priorities. 57 DenseMap<SectionBase *, int> SectionOrder; 58 for (ObjFile<ELFT> *File : ObjFile<ELFT>::Instances) { 59 for (SymbolBody *Body : File->getSymbols()) { 60 auto *D = dyn_cast<DefinedRegular>(Body); 61 if (!D || !D->Section) 62 continue; 63 int &Priority = SectionOrder[D->Section]; 64 Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); 65 } 66 } 67 return SectionOrder; 68 } 69 70 template <class ELFT> 71 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File, 72 const typename ELFT::Shdr *Hdr) { 73 if (!File || Hdr->sh_type == SHT_NOBITS) 74 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 75 return check(File->getObj().getSectionContents(Hdr)); 76 } 77 78 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 79 uint32_t Type, uint64_t Entsize, 80 uint32_t Link, uint32_t Info, 81 uint32_t Alignment, ArrayRef<uint8_t> Data, 82 StringRef Name, Kind SectionKind) 83 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 84 Link), 85 File(File), Data(Data), Repl(this) { 86 Live = !Config->GcSections || !(Flags & SHF_ALLOC); 87 Assigned = false; 88 NumRelocations = 0; 89 AreRelocsRela = false; 90 91 // The ELF spec states that a value of 0 means the section has 92 // no alignment constraits. 93 uint32_t V = std::max<uint64_t>(Alignment, 1); 94 if (!isPowerOf2_64(V)) 95 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 96 this->Alignment = V; 97 } 98 99 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 100 // SHF_GROUP is a marker that a section belongs to some comdat group. 101 // That flag doesn't make sense in an executable. 102 static uint64_t getFlags(uint64_t Flags) { 103 Flags &= ~(uint64_t)SHF_INFO_LINK; 104 if (!Config->Relocatable) 105 Flags &= ~(uint64_t)SHF_GROUP; 106 return Flags; 107 } 108 109 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 110 // March 2017) fail to infer section types for sections starting with 111 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 112 // SHF_INIT_ARRAY. As a result, the following assembler directive 113 // creates ".init_array.100" with SHT_PROGBITS, for example. 114 // 115 // .section .init_array.100, "aw" 116 // 117 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 118 // incorrect inputs as if they were correct from the beginning. 119 static uint64_t getType(uint64_t Type, StringRef Name) { 120 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 121 return SHT_INIT_ARRAY; 122 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 123 return SHT_FINI_ARRAY; 124 return Type; 125 } 126 127 template <class ELFT> 128 InputSectionBase::InputSectionBase(ObjFile<ELFT> *File, 129 const typename ELFT::Shdr *Hdr, 130 StringRef Name, Kind SectionKind) 131 : InputSectionBase(File, getFlags(Hdr->sh_flags), 132 getType(Hdr->sh_type, Name), Hdr->sh_entsize, 133 Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, 134 getSectionContents(File, Hdr), Name, SectionKind) { 135 // We reject object files having insanely large alignments even though 136 // they are allowed by the spec. I think 4GB is a reasonable limitation. 137 // We might want to relax this in the future. 138 if (Hdr->sh_addralign > UINT32_MAX) 139 fatal(toString(File) + ": section sh_addralign is too large"); 140 } 141 142 size_t InputSectionBase::getSize() const { 143 if (auto *S = dyn_cast<SyntheticSection>(this)) 144 return S->getSize(); 145 146 return Data.size(); 147 } 148 149 uint64_t InputSectionBase::getOffsetInFile() const { 150 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 151 const uint8_t *SecStart = Data.begin(); 152 return SecStart - FileStart; 153 } 154 155 uint64_t SectionBase::getOffset(uint64_t Offset) const { 156 switch (kind()) { 157 case Output: { 158 auto *OS = cast<OutputSection>(this); 159 // For output sections we treat offset -1 as the end of the section. 160 return Offset == uint64_t(-1) ? OS->Size : Offset; 161 } 162 case Regular: 163 return cast<InputSection>(this)->OutSecOff + Offset; 164 case Synthetic: { 165 auto *IS = cast<InputSection>(this); 166 // For synthetic sections we treat offset -1 as the end of the section. 167 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 168 } 169 case EHFrame: 170 // The file crtbeginT.o has relocations pointing to the start of an empty 171 // .eh_frame that is known to be the first in the link. It does that to 172 // identify the start of the output .eh_frame. 173 return Offset; 174 case Merge: 175 const MergeInputSection *MS = cast<MergeInputSection>(this); 176 if (InputSection *IS = MS->getParent()) 177 return IS->OutSecOff + MS->getOffset(Offset); 178 return MS->getOffset(Offset); 179 } 180 llvm_unreachable("invalid section kind"); 181 } 182 183 OutputSection *SectionBase::getOutputSection() { 184 InputSection *Sec; 185 if (auto *IS = dyn_cast<InputSection>(this)) 186 Sec = cast<InputSection>(IS->Repl); 187 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 188 Sec = MS->getParent(); 189 else if (auto *EH = dyn_cast<EhInputSection>(this)) 190 Sec = EH->getParent(); 191 else 192 return cast<OutputSection>(this); 193 return Sec ? Sec->getParent() : nullptr; 194 } 195 196 // Uncompress section contents. Note that this function is called 197 // from parallelForEach, so it must be thread-safe. 198 void InputSectionBase::uncompress() { 199 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 200 Config->IsLE, Config->Is64)); 201 202 size_t Size = Dec.getDecompressedSize(); 203 UncompressBuf.reset(new char[Size]()); 204 if (Error E = Dec.decompress({UncompressBuf.get(), Size})) 205 fatal(toString(this) + 206 ": decompress failed: " + llvm::toString(std::move(E))); 207 208 this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size); 209 this->Flags &= ~(uint64_t)SHF_COMPRESSED; 210 } 211 212 uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const { 213 return getOffset(Sym.Value); 214 } 215 216 InputSection *InputSectionBase::getLinkOrderDep() const { 217 if ((Flags & SHF_LINK_ORDER) && Link != 0) { 218 InputSectionBase *L = File->getSections()[Link]; 219 if (auto *IS = dyn_cast<InputSection>(L)) 220 return IS; 221 error( 222 "Merge and .eh_frame sections are not supported with SHF_LINK_ORDER " + 223 toString(L)); 224 } 225 return nullptr; 226 } 227 228 // Returns a source location string. Used to construct an error message. 229 template <class ELFT> 230 std::string InputSectionBase::getLocation(uint64_t Offset) { 231 // We don't have file for synthetic sections. 232 if (getFile<ELFT>() == nullptr) 233 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 234 .str(); 235 236 // First check if we can get desired values from debugging information. 237 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 238 if (!LineInfo.empty()) 239 return LineInfo; 240 241 // File->SourceFile contains STT_FILE symbol that contains a 242 // source file name. If it's missing, we use an object file name. 243 std::string SrcFile = getFile<ELFT>()->SourceFile; 244 if (SrcFile.empty()) 245 SrcFile = toString(File); 246 247 // Find a function symbol that encloses a given location. 248 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 249 if (auto *D = dyn_cast<DefinedRegular>(B)) 250 if (D->Section == this && D->Type == STT_FUNC) 251 if (D->Value <= Offset && Offset < D->Value + D->Size) 252 return SrcFile + ":(function " + toString(*D) + ")"; 253 254 // If there's no symbol, print out the offset in the section. 255 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 256 } 257 258 // Returns a source location string. This function is intended to be 259 // used for constructing an error message. The returned message looks 260 // like this: 261 // 262 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 263 // 264 // Returns an empty string if there's no way to get line info. 265 template <class ELFT> std::string InputSectionBase::getSrcMsg(uint64_t Offset) { 266 // Synthetic sections don't have input files. 267 ObjFile<ELFT> *File = getFile<ELFT>(); 268 if (!File) 269 return ""; 270 271 Optional<DILineInfo> Info = File->getDILineInfo(this, Offset); 272 273 // File->SourceFile contains STT_FILE symbol, and that is a last resort. 274 if (!Info) 275 return File->SourceFile; 276 277 std::string Path = Info->FileName; 278 std::string Filename = path::filename(Path); 279 std::string Lineno = ":" + std::to_string(Info->Line); 280 if (Filename == Path) 281 return Filename + Lineno; 282 return Filename + Lineno + " (" + Path + Lineno + ")"; 283 } 284 285 // Returns a filename string along with an optional section name. This 286 // function is intended to be used for constructing an error 287 // message. The returned message looks like this: 288 // 289 // path/to/foo.o:(function bar) 290 // 291 // or 292 // 293 // path/to/foo.o:(function bar) in archive path/to/bar.a 294 template <class ELFT> std::string InputSectionBase::getObjMsg(uint64_t Off) { 295 // Synthetic sections don't have input files. 296 ObjFile<ELFT> *File = getFile<ELFT>(); 297 if (!File) 298 return ("(internal):(" + Name + "+0x" + utohexstr(Off) + ")").str(); 299 std::string Filename = File->getName(); 300 301 std::string Archive; 302 if (!File->ArchiveName.empty()) 303 Archive = (" in archive " + File->ArchiveName).str(); 304 305 // Find a symbol that encloses a given location. 306 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 307 if (auto *D = dyn_cast<DefinedRegular>(B)) 308 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 309 return Filename + ":(" + toString(*D) + ")" + Archive; 310 311 // If there's no symbol, print out the offset in the section. 312 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 313 .str(); 314 } 315 316 InputSectionBase InputSectionBase::Discarded; 317 318 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 319 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 320 : InputSectionBase(nullptr, Flags, Type, 321 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 322 Name, K) {} 323 324 template <class ELFT> 325 InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header, 326 StringRef Name) 327 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 328 329 bool InputSection::classof(const SectionBase *S) { 330 return S->kind() == SectionBase::Regular || 331 S->kind() == SectionBase::Synthetic; 332 } 333 334 bool InputSectionBase::classof(const SectionBase *S) { 335 return S->kind() != Output; 336 } 337 338 OutputSection *InputSection::getParent() const { 339 return cast_or_null<OutputSection>(Parent); 340 } 341 342 // Copy SHT_GROUP section contents. Used only for the -r option. 343 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 344 // ELFT::Word is the 32-bit integral type in the target endianness. 345 typedef typename ELFT::Word u32; 346 ArrayRef<u32> From = getDataAs<u32>(); 347 auto *To = reinterpret_cast<u32 *>(Buf); 348 349 // The first entry is not a section number but a flag. 350 *To++ = From[0]; 351 352 // Adjust section numbers because section numbers in an input object 353 // files are different in the output. 354 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 355 for (uint32_t Idx : From.slice(1)) 356 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 357 } 358 359 InputSectionBase *InputSection::getRelocatedSection() { 360 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 361 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 362 return Sections[this->Info]; 363 } 364 365 // This is used for -r and --emit-relocs. We can't use memcpy to copy 366 // relocations because we need to update symbol table offset and section index 367 // for each relocation. So we copy relocations one by one. 368 template <class ELFT, class RelTy> 369 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 370 InputSectionBase *RelocatedSection = getRelocatedSection(); 371 372 // Loop is slow and have complexity O(N*M), where N - amount of 373 // relocations and M - amount of symbols in symbol table. 374 // That happens because getSymbolIndex(...) call below performs 375 // simple linear search. 376 for (const RelTy &Rel : Rels) { 377 uint32_t Type = Rel.getType(Config->IsMips64EL); 378 SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); 379 380 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 381 Buf += sizeof(RelTy); 382 383 if (Config->IsRela) 384 P->r_addend = getAddend<ELFT>(Rel); 385 386 // Output section VA is zero for -r, so r_offset is an offset within the 387 // section, but for --emit-relocs it is an virtual address. 388 P->r_offset = RelocatedSection->getOutputSection()->Addr + 389 RelocatedSection->getOffset(Rel.r_offset); 390 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Body), Type, 391 Config->IsMips64EL); 392 393 if (Body.Type == STT_SECTION) { 394 // We combine multiple section symbols into only one per 395 // section. This means we have to update the addend. That is 396 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 397 // section data. We do that by adding to the Relocation vector. 398 399 // .eh_frame is horribly special and can reference discarded sections. To 400 // avoid having to parse and recreate .eh_frame, we just replace any 401 // relocation in it pointing to discarded sections with R_*_NONE, which 402 // hopefully creates a frame that is ignored at runtime. 403 SectionBase *Section = cast<DefinedRegular>(Body).Section; 404 if (Section == &InputSection::Discarded) { 405 P->setSymbolAndType(0, 0, false); 406 continue; 407 } 408 409 if (Config->IsRela) { 410 P->r_addend += Body.getVA() - Section->getOutputSection()->Addr; 411 } else if (Config->Relocatable) { 412 const uint8_t *BufLoc = RelocatedSection->Data.begin() + Rel.r_offset; 413 RelocatedSection->Relocations.push_back( 414 {R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type), 415 &Body}); 416 } 417 } 418 419 } 420 } 421 422 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 423 // references specially. The general rule is that the value of the symbol in 424 // this context is the address of the place P. A further special case is that 425 // branch relocations to an undefined weak reference resolve to the next 426 // instruction. 427 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 428 uint32_t P) { 429 switch (Type) { 430 // Unresolved branch relocations to weak references resolve to next 431 // instruction, this will be either 2 or 4 bytes on from P. 432 case R_ARM_THM_JUMP11: 433 return P + 2 + A; 434 case R_ARM_CALL: 435 case R_ARM_JUMP24: 436 case R_ARM_PC24: 437 case R_ARM_PLT32: 438 case R_ARM_PREL31: 439 case R_ARM_THM_JUMP19: 440 case R_ARM_THM_JUMP24: 441 return P + 4 + A; 442 case R_ARM_THM_CALL: 443 // We don't want an interworking BLX to ARM 444 return P + 5 + A; 445 // Unresolved non branch pc-relative relocations 446 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 447 // targets a weak-reference. 448 case R_ARM_MOVW_PREL_NC: 449 case R_ARM_MOVT_PREL: 450 case R_ARM_REL32: 451 case R_ARM_THM_MOVW_PREL_NC: 452 case R_ARM_THM_MOVT_PREL: 453 return P + A; 454 } 455 llvm_unreachable("ARM pc-relative relocation expected\n"); 456 } 457 458 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 459 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 460 uint64_t P) { 461 switch (Type) { 462 // Unresolved branch relocations to weak references resolve to next 463 // instruction, this is 4 bytes on from P. 464 case R_AARCH64_CALL26: 465 case R_AARCH64_CONDBR19: 466 case R_AARCH64_JUMP26: 467 case R_AARCH64_TSTBR14: 468 return P + 4 + A; 469 // Unresolved non branch pc-relative relocations 470 case R_AARCH64_PREL16: 471 case R_AARCH64_PREL32: 472 case R_AARCH64_PREL64: 473 case R_AARCH64_ADR_PREL_LO21: 474 return P + A; 475 } 476 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 477 } 478 479 // ARM SBREL relocations are of the form S + A - B where B is the static base 480 // The ARM ABI defines base to be "addressing origin of the output segment 481 // defining the symbol S". We defined the "addressing origin"/static base to be 482 // the base of the PT_LOAD segment containing the Body. 483 // The procedure call standard only defines a Read Write Position Independent 484 // RWPI variant so in practice we should expect the static base to be the base 485 // of the RW segment. 486 static uint64_t getARMStaticBase(const SymbolBody &Body) { 487 OutputSection *OS = Body.getOutputSection(); 488 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 489 fatal("SBREL relocation to " + Body.getName() + " without static base"); 490 return OS->PtLoad->FirstSec->Addr; 491 } 492 493 static uint64_t getRelocTargetVA(uint32_t Type, int64_t A, uint64_t P, 494 const SymbolBody &Body, RelExpr Expr) { 495 switch (Expr) { 496 case R_ABS: 497 case R_RELAX_GOT_PC_NOPIC: 498 return Body.getVA(A); 499 case R_ARM_SBREL: 500 return Body.getVA(A) - getARMStaticBase(Body); 501 case R_GOT: 502 case R_RELAX_TLS_GD_TO_IE_ABS: 503 return Body.getGotVA() + A; 504 case R_GOTONLY_PC: 505 return InX::Got->getVA() + A - P; 506 case R_GOTONLY_PC_FROM_END: 507 return InX::Got->getVA() + A - P + InX::Got->getSize(); 508 case R_GOTREL: 509 return Body.getVA(A) - InX::Got->getVA(); 510 case R_GOTREL_FROM_END: 511 return Body.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 512 case R_GOT_FROM_END: 513 case R_RELAX_TLS_GD_TO_IE_END: 514 return Body.getGotOffset() + A - InX::Got->getSize(); 515 case R_GOT_OFF: 516 return Body.getGotOffset() + A; 517 case R_GOT_PAGE_PC: 518 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 519 return getAArch64Page(Body.getGotVA() + A) - getAArch64Page(P); 520 case R_GOT_PC: 521 case R_RELAX_TLS_GD_TO_IE: 522 return Body.getGotVA() + A - P; 523 case R_HINT: 524 case R_NONE: 525 case R_TLSDESC_CALL: 526 llvm_unreachable("cannot relocate hint relocs"); 527 case R_MIPS_GOTREL: 528 return Body.getVA(A) - InX::MipsGot->getGp(); 529 case R_MIPS_GOT_GP: 530 return InX::MipsGot->getGp() + A; 531 case R_MIPS_GOT_GP_PC: { 532 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 533 // is _gp_disp symbol. In that case we should use the following 534 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 535 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 536 uint64_t V = InX::MipsGot->getGp() + A - P; 537 if (Type == R_MIPS_LO16) 538 V += 4; 539 return V; 540 } 541 case R_MIPS_GOT_LOCAL_PAGE: 542 // If relocation against MIPS local symbol requires GOT entry, this entry 543 // should be initialized by 'page address'. This address is high 16-bits 544 // of sum the symbol's value and the addend. 545 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Body, A) - 546 InX::MipsGot->getGp(); 547 case R_MIPS_GOT_OFF: 548 case R_MIPS_GOT_OFF32: 549 // In case of MIPS if a GOT relocation has non-zero addend this addend 550 // should be applied to the GOT entry content not to the GOT entry offset. 551 // That is why we use separate expression type. 552 return InX::MipsGot->getVA() + InX::MipsGot->getBodyEntryOffset(Body, A) - 553 InX::MipsGot->getGp(); 554 case R_MIPS_TLSGD: 555 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 556 InX::MipsGot->getGlobalDynOffset(Body) - InX::MipsGot->getGp(); 557 case R_MIPS_TLSLD: 558 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 559 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 560 case R_PAGE_PC: 561 case R_PLT_PAGE_PC: { 562 uint64_t Dest; 563 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) 564 Dest = getAArch64Page(A); 565 else 566 Dest = getAArch64Page(Body.getVA(A)); 567 return Dest - getAArch64Page(P); 568 } 569 case R_PC: { 570 uint64_t Dest; 571 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { 572 // On ARM and AArch64 a branch to an undefined weak resolves to the 573 // next instruction, otherwise the place. 574 if (Config->EMachine == EM_ARM) 575 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 576 else if (Config->EMachine == EM_AARCH64) 577 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 578 else 579 Dest = Body.getVA(A); 580 } else { 581 Dest = Body.getVA(A); 582 } 583 return Dest - P; 584 } 585 case R_PLT: 586 return Body.getPltVA() + A; 587 case R_PLT_PC: 588 case R_PPC_PLT_OPD: 589 return Body.getPltVA() + A - P; 590 case R_PPC_OPD: { 591 uint64_t SymVA = Body.getVA(A); 592 // If we have an undefined weak symbol, we might get here with a symbol 593 // address of zero. That could overflow, but the code must be unreachable, 594 // so don't bother doing anything at all. 595 if (!SymVA) 596 return 0; 597 if (Out::Opd) { 598 // If this is a local call, and we currently have the address of a 599 // function-descriptor, get the underlying code address instead. 600 uint64_t OpdStart = Out::Opd->Addr; 601 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 602 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 603 if (InOpd) 604 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 605 } 606 return SymVA - P; 607 } 608 case R_PPC_TOC: 609 return getPPC64TocBase() + A; 610 case R_RELAX_GOT_PC: 611 return Body.getVA(A) - P; 612 case R_RELAX_TLS_GD_TO_LE: 613 case R_RELAX_TLS_IE_TO_LE: 614 case R_RELAX_TLS_LD_TO_LE: 615 case R_TLS: 616 // A weak undefined TLS symbol resolves to the base of the TLS 617 // block, i.e. gets a value of zero. If we pass --gc-sections to 618 // lld and .tbss is not referenced, it gets reclaimed and we don't 619 // create a TLS program header. Therefore, we resolve this 620 // statically to zero. 621 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 622 Body.symbol()->isWeak()) 623 return 0; 624 if (Target->TcbSize) 625 return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 626 return Body.getVA(A) - Out::TlsPhdr->p_memsz; 627 case R_RELAX_TLS_GD_TO_LE_NEG: 628 case R_NEG_TLS: 629 return Out::TlsPhdr->p_memsz - Body.getVA(A); 630 case R_SIZE: 631 return A; // Body.getSize was already folded into the addend. 632 case R_TLSDESC: 633 return InX::Got->getGlobalDynAddr(Body) + A; 634 case R_TLSDESC_PAGE: 635 return getAArch64Page(InX::Got->getGlobalDynAddr(Body) + A) - 636 getAArch64Page(P); 637 case R_TLSGD: 638 return InX::Got->getGlobalDynOffset(Body) + A - InX::Got->getSize(); 639 case R_TLSGD_PC: 640 return InX::Got->getGlobalDynAddr(Body) + A - P; 641 case R_TLSLD: 642 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 643 case R_TLSLD_PC: 644 return InX::Got->getTlsIndexVA() + A - P; 645 } 646 llvm_unreachable("Invalid expression"); 647 } 648 649 // This function applies relocations to sections without SHF_ALLOC bit. 650 // Such sections are never mapped to memory at runtime. Debug sections are 651 // an example. Relocations in non-alloc sections are much easier to 652 // handle than in allocated sections because it will never need complex 653 // treatement such as GOT or PLT (because at runtime no one refers them). 654 // So, we handle relocations for non-alloc sections directly in this 655 // function as a performance optimization. 656 template <class ELFT, class RelTy> 657 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 658 for (const RelTy &Rel : Rels) { 659 uint32_t Type = Rel.getType(Config->IsMips64EL); 660 uint64_t Offset = getOffset(Rel.r_offset); 661 uint8_t *BufLoc = Buf + Offset; 662 int64_t Addend = getAddend<ELFT>(Rel); 663 if (!RelTy::IsRela) 664 Addend += Target->getImplicitAddend(BufLoc, Type); 665 666 SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 667 RelExpr Expr = Target->getRelExpr(Type, Sym, *File, BufLoc); 668 if (Expr == R_NONE) 669 continue; 670 if (Expr != R_ABS) { 671 error(this->getLocation<ELFT>(Offset) + ": has non-ABS reloc"); 672 return; 673 } 674 675 uint64_t AddrLoc = getParent()->Addr + Offset; 676 uint64_t SymVA = 0; 677 if (!Sym.isTls() || Out::TlsPhdr) 678 SymVA = SignExtend64<sizeof(typename ELFT::uint) * 8>( 679 getRelocTargetVA(Type, Addend, AddrLoc, Sym, R_ABS)); 680 Target->relocateOne(BufLoc, Type, SymVA); 681 } 682 } 683 684 template <class ELFT> ObjFile<ELFT> *InputSectionBase::getFile() const { 685 return cast_or_null<ObjFile<ELFT>>(File); 686 } 687 688 template <class ELFT> 689 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 690 if (Flags & SHF_ALLOC) 691 relocateAlloc(Buf, BufEnd); 692 else 693 relocateNonAlloc<ELFT>(Buf, BufEnd); 694 } 695 696 template <class ELFT> 697 void InputSectionBase::relocateNonAlloc(uint8_t *Buf, uint8_t *BufEnd) { 698 // scanReloc function in Writer.cpp constructs Relocations 699 // vector only for SHF_ALLOC'ed sections. For other sections, 700 // we handle relocations directly here. 701 auto *IS = cast<InputSection>(this); 702 assert(!(IS->Flags & SHF_ALLOC)); 703 if (IS->AreRelocsRela) 704 IS->relocateNonAlloc<ELFT>(Buf, IS->template relas<ELFT>()); 705 else 706 IS->relocateNonAlloc<ELFT>(Buf, IS->template rels<ELFT>()); 707 } 708 709 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 710 assert(Flags & SHF_ALLOC); 711 const unsigned Bits = Config->Wordsize * 8; 712 for (const Relocation &Rel : Relocations) { 713 uint64_t Offset = getOffset(Rel.Offset); 714 uint8_t *BufLoc = Buf + Offset; 715 uint32_t Type = Rel.Type; 716 717 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 718 RelExpr Expr = Rel.Expr; 719 uint64_t TargetVA = SignExtend64( 720 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 721 722 switch (Expr) { 723 case R_RELAX_GOT_PC: 724 case R_RELAX_GOT_PC_NOPIC: 725 Target->relaxGot(BufLoc, TargetVA); 726 break; 727 case R_RELAX_TLS_IE_TO_LE: 728 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 729 break; 730 case R_RELAX_TLS_LD_TO_LE: 731 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 732 break; 733 case R_RELAX_TLS_GD_TO_LE: 734 case R_RELAX_TLS_GD_TO_LE_NEG: 735 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 736 break; 737 case R_RELAX_TLS_GD_TO_IE: 738 case R_RELAX_TLS_GD_TO_IE_ABS: 739 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 740 case R_RELAX_TLS_GD_TO_IE_END: 741 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 742 break; 743 case R_PPC_PLT_OPD: 744 // Patch a nop (0x60000000) to a ld. 745 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 746 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 747 LLVM_FALLTHROUGH; 748 default: 749 Target->relocateOne(BufLoc, Type, TargetVA); 750 break; 751 } 752 } 753 } 754 755 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 756 if (this->Type == SHT_NOBITS) 757 return; 758 759 if (auto *S = dyn_cast<SyntheticSection>(this)) { 760 S->writeTo(Buf + OutSecOff); 761 return; 762 } 763 764 // If -r or --emit-relocs is given, then an InputSection 765 // may be a relocation section. 766 if (this->Type == SHT_RELA) { 767 copyRelocations<ELFT>(Buf + OutSecOff, 768 this->template getDataAs<typename ELFT::Rela>()); 769 return; 770 } 771 if (this->Type == SHT_REL) { 772 copyRelocations<ELFT>(Buf + OutSecOff, 773 this->template getDataAs<typename ELFT::Rel>()); 774 return; 775 } 776 777 // If -r is given, we may have a SHT_GROUP section. 778 if (this->Type == SHT_GROUP) { 779 copyShtGroup<ELFT>(Buf + OutSecOff); 780 return; 781 } 782 783 // Copy section contents from source object file to output file 784 // and then apply relocations. 785 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 786 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 787 this->relocate<ELFT>(Buf, BufEnd); 788 } 789 790 void InputSection::replace(InputSection *Other) { 791 this->Alignment = std::max(this->Alignment, Other->Alignment); 792 Other->Repl = this->Repl; 793 Other->Live = false; 794 } 795 796 template <class ELFT> 797 EhInputSection::EhInputSection(ObjFile<ELFT> *F, 798 const typename ELFT::Shdr *Header, 799 StringRef Name) 800 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { 801 // Mark .eh_frame sections as live by default because there are 802 // usually no relocations that point to .eh_frames. Otherwise, 803 // the garbage collector would drop all .eh_frame sections. 804 this->Live = true; 805 } 806 807 SyntheticSection *EhInputSection::getParent() const { 808 return cast_or_null<SyntheticSection>(Parent); 809 } 810 811 bool EhInputSection::classof(const SectionBase *S) { 812 return S->kind() == InputSectionBase::EHFrame; 813 } 814 815 // Returns the index of the first relocation that points to a region between 816 // Begin and Begin+Size. 817 template <class IntTy, class RelTy> 818 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 819 unsigned &RelocI) { 820 // Start search from RelocI for fast access. That works because the 821 // relocations are sorted in .eh_frame. 822 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 823 const RelTy &Rel = Rels[RelocI]; 824 if (Rel.r_offset < Begin) 825 continue; 826 827 if (Rel.r_offset < Begin + Size) 828 return RelocI; 829 return -1; 830 } 831 return -1; 832 } 833 834 // .eh_frame is a sequence of CIE or FDE records. 835 // This function splits an input section into records and returns them. 836 template <class ELFT> void EhInputSection::split() { 837 // Early exit if already split. 838 if (!this->Pieces.empty()) 839 return; 840 841 if (this->NumRelocations) { 842 if (this->AreRelocsRela) 843 split<ELFT>(this->relas<ELFT>()); 844 else 845 split<ELFT>(this->rels<ELFT>()); 846 return; 847 } 848 split<ELFT>(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 849 } 850 851 template <class ELFT, class RelTy> 852 void EhInputSection::split(ArrayRef<RelTy> Rels) { 853 ArrayRef<uint8_t> Data = this->Data; 854 unsigned RelI = 0; 855 for (size_t Off = 0, End = Data.size(); Off != End;) { 856 size_t Size = readEhRecordSize<ELFT>(this, Off); 857 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 858 // The empty record is the end marker. 859 if (Size == 4) 860 break; 861 Off += Size; 862 } 863 } 864 865 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 866 // Optimize the common case. 867 StringRef S((const char *)A.data(), A.size()); 868 if (EntSize == 1) 869 return S.find(0); 870 871 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 872 const char *B = S.begin() + I; 873 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 874 return I; 875 } 876 return StringRef::npos; 877 } 878 879 SyntheticSection *MergeInputSection::getParent() const { 880 return cast_or_null<SyntheticSection>(Parent); 881 } 882 883 // Split SHF_STRINGS section. Such section is a sequence of 884 // null-terminated strings. 885 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 886 size_t Off = 0; 887 bool IsAlloc = this->Flags & SHF_ALLOC; 888 while (!Data.empty()) { 889 size_t End = findNull(Data, EntSize); 890 if (End == StringRef::npos) 891 fatal(toString(this) + ": string is not null terminated"); 892 size_t Size = End + EntSize; 893 Pieces.emplace_back(Off, !IsAlloc); 894 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 895 Data = Data.slice(Size); 896 Off += Size; 897 } 898 } 899 900 // Split non-SHF_STRINGS section. Such section is a sequence of 901 // fixed size records. 902 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 903 size_t EntSize) { 904 size_t Size = Data.size(); 905 assert((Size % EntSize) == 0); 906 bool IsAlloc = this->Flags & SHF_ALLOC; 907 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 908 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 909 Pieces.emplace_back(I, !IsAlloc); 910 } 911 } 912 913 template <class ELFT> 914 MergeInputSection::MergeInputSection(ObjFile<ELFT> *F, 915 const typename ELFT::Shdr *Header, 916 StringRef Name) 917 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 918 919 // This function is called after we obtain a complete list of input sections 920 // that need to be linked. This is responsible to split section contents 921 // into small chunks for further processing. 922 // 923 // Note that this function is called from parallelForEach. This must be 924 // thread-safe (i.e. no memory allocation from the pools). 925 void MergeInputSection::splitIntoPieces() { 926 assert(Pieces.empty()); 927 ArrayRef<uint8_t> Data = this->Data; 928 uint64_t EntSize = this->Entsize; 929 if (this->Flags & SHF_STRINGS) 930 splitStrings(Data, EntSize); 931 else 932 splitNonStrings(Data, EntSize); 933 934 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 935 for (uint64_t Off : LiveOffsets) 936 this->getSectionPiece(Off)->Live = true; 937 } 938 939 bool MergeInputSection::classof(const SectionBase *S) { 940 return S->kind() == InputSectionBase::Merge; 941 } 942 943 // Do binary search to get a section piece at a given input offset. 944 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 945 auto *This = static_cast<const MergeInputSection *>(this); 946 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 947 } 948 949 template <class It, class T, class Compare> 950 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 951 size_t Size = std::distance(First, Last); 952 assert(Size != 0); 953 while (Size != 1) { 954 size_t H = Size / 2; 955 const It MI = First + H; 956 Size -= H; 957 First = Comp(Value, *MI) ? First : First + H; 958 } 959 return Comp(Value, *First) ? First : First + 1; 960 } 961 962 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 963 uint64_t Size = this->Data.size(); 964 if (Offset >= Size) 965 fatal(toString(this) + ": entry is past the end of the section"); 966 967 // Find the element this offset points to. 968 auto I = fastUpperBound( 969 Pieces.begin(), Pieces.end(), Offset, 970 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 971 --I; 972 return &*I; 973 } 974 975 // Returns the offset in an output section for a given input offset. 976 // Because contents of a mergeable section is not contiguous in output, 977 // it is not just an addition to a base output offset. 978 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 979 // Initialize OffsetMap lazily. 980 llvm::call_once(InitOffsetMap, [&] { 981 OffsetMap.reserve(Pieces.size()); 982 for (const SectionPiece &Piece : Pieces) 983 OffsetMap[Piece.InputOff] = Piece.OutputOff; 984 }); 985 986 // Find a string starting at a given offset. 987 auto It = OffsetMap.find(Offset); 988 if (It != OffsetMap.end()) 989 return It->second; 990 991 if (!this->Live) 992 return 0; 993 994 // If Offset is not at beginning of a section piece, it is not in the map. 995 // In that case we need to search from the original section piece vector. 996 const SectionPiece &Piece = *this->getSectionPiece(Offset); 997 if (!Piece.Live) 998 return 0; 999 1000 uint64_t Addend = Offset - Piece.InputOff; 1001 return Piece.OutputOff + Addend; 1002 } 1003 1004 template DenseMap<SectionBase *, int> elf::buildSectionOrder<ELF32LE>(); 1005 template DenseMap<SectionBase *, int> elf::buildSectionOrder<ELF32BE>(); 1006 template DenseMap<SectionBase *, int> elf::buildSectionOrder<ELF64LE>(); 1007 template DenseMap<SectionBase *, int> elf::buildSectionOrder<ELF64BE>(); 1008 1009 template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *, 1010 StringRef); 1011 template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *, 1012 StringRef); 1013 template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *, 1014 StringRef); 1015 template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *, 1016 StringRef); 1017 1018 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1019 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1020 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1021 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1022 1023 template std::string InputSectionBase::getSrcMsg<ELF32LE>(uint64_t); 1024 template std::string InputSectionBase::getSrcMsg<ELF32BE>(uint64_t); 1025 template std::string InputSectionBase::getSrcMsg<ELF64LE>(uint64_t); 1026 template std::string InputSectionBase::getSrcMsg<ELF64BE>(uint64_t); 1027 1028 template std::string InputSectionBase::getObjMsg<ELF32LE>(uint64_t); 1029 template std::string InputSectionBase::getObjMsg<ELF32BE>(uint64_t); 1030 template std::string InputSectionBase::getObjMsg<ELF64LE>(uint64_t); 1031 template std::string InputSectionBase::getObjMsg<ELF64BE>(uint64_t); 1032 1033 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1034 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1035 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1036 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1037 1038 template ObjFile<ELF32LE> *InputSectionBase::getFile<ELF32LE>() const; 1039 template ObjFile<ELF32BE> *InputSectionBase::getFile<ELF32BE>() const; 1040 template ObjFile<ELF64LE> *InputSectionBase::getFile<ELF64LE>() const; 1041 template ObjFile<ELF64BE> *InputSectionBase::getFile<ELF64BE>() const; 1042 1043 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *, 1044 const ELF32LE::Shdr *, StringRef); 1045 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *, 1046 const ELF32BE::Shdr *, StringRef); 1047 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *, 1048 const ELF64LE::Shdr *, StringRef); 1049 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *, 1050 const ELF64BE::Shdr *, StringRef); 1051 1052 template EhInputSection::EhInputSection(ObjFile<ELF32LE> *, 1053 const ELF32LE::Shdr *, StringRef); 1054 template EhInputSection::EhInputSection(ObjFile<ELF32BE> *, 1055 const ELF32BE::Shdr *, StringRef); 1056 template EhInputSection::EhInputSection(ObjFile<ELF64LE> *, 1057 const ELF64LE::Shdr *, StringRef); 1058 template EhInputSection::EhInputSection(ObjFile<ELF64BE> *, 1059 const ELF64BE::Shdr *, StringRef); 1060 1061 template void EhInputSection::split<ELF32LE>(); 1062 template void EhInputSection::split<ELF32BE>(); 1063 template void EhInputSection::split<ELF64LE>(); 1064 template void EhInputSection::split<ELF64BE>(); 1065